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Abstract. We study representations of affine Kac-Moody algebras from a
geometric point of view. It is shown that Wakimoto modules introduced in
[18], which are important in conformal field theory, correspond to certain
sheaves on a semi-infinite flag manifold with support on its Schubert cells.
This manifold is equipped with a remarkable semi-infinite structure, which is
discussed; in particular, the semi-infinite homology of this manifold is
computed. The Cousin-Grothendieck resolution of an invertible sheaf on a
semi-infinite flag manifold gives a two-sided resolution of an irreducible
representation of an affine algebra, consisting of Wakimoto modules. This is
just the BRST complex. As a byproduct we compute the homology of an
algebra of currents on the real line with values in a nilpotent Lie algebra.

1. Introduction

In [18,19] we have introduced and studied a new class of representations of
affine Kac-Moody algebras, the so-called Wakimoto modules [44]. These repre-
sentation allow bosonίc realization, the Sugawara energy-momentum tensor being
quadratic in bosons. This gives a new bosonization rule for the Wess-Zumino-
Witten (WZW) models. In [19] we explicitly constructed the intertwining
operators between Wakimoto modules and chains (or primary fields) which are
submodules of their homomorphisms, using vertex operators. Our results enable
us to give an integral representation of the correlation functions in WZW models
on the plane in spirit of [14] (it was done soon after [15,27]). In [20] we have
proposed the two-sided Bernstein-Gelfand-Gelfand (EGG) resolution, or BRST
complex, of an irreducible representation of an affine Kac-Moody algebra,
consisting of Wakimoto modules (recall that the usual BGG resolution [7, 26,
41] is one-sided and consists of Verma modules). According to Felder's work
[23] (where a similar resolution is constructed over the Virasoro algebra), this
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enables us to compute the correlation functions in the WZW models on the torus,
"extracting" an irreducible representation from Wakimoto modules with the use
of our resolution.

Wakimoto modules also play an important role in the study of the functorial
correspondence between affϊne Kac-Moody algebras and the Virasoro algebra (or
W-algebras [20, 47]) and of the highest weight modules with central charge -
(dual Coxeter number) [19], Appendix B.

Thus we see that Wakimoto modules are very useful both in representation
theory and in conformal field theory.

In this work we show that Wakimoto modules naturally appear in the
representation theory of affϊne Kac-Moody algebras: Verma modules, contragra-
dient Verma modules and Wakimoto modules are the particular cases of the
general construction. Moreover, modules with similar properties emerge in the
case of finite-dimensional simple Lie algebras. Analogous construction seems to
exist for arbitrary Kac-Moody algebras.

The crucial point in our investigation is the correspondence between the
highest weight representations of the Lie algebra and the sheaves of ̂ -modules (or
constructible sheaves) on its flag manifold, lίsse with respect to Schubert
stratification [1, 2, 4, 10, 34].

As well-known, the contragradient Verma module with integral highest
weight over a finite-dimensional Lie algebra corresponds to the constant sheaf
supported on the big Schubert cell and to the sheaf of local cohomology of the
appropriate invertible sheaf on a flag manifold with support on this cell. If we
take the local cohomology of the invertible sheaf, with support on another cell,
then we obtain the module, which we call the twisted Verma module. Twisted
Verma modules with equal highest weights are labelled by elements of the Weyl
group (in particular, the unit corresponds to the contragradient Verma module,
and the element of maximal length - to the Verma module). Their composition
series quotients coincide but the composition series themselves are different.

The Cousin-Grothendieck resolution of a dominant invertible sheaf with
respect to Schubert stratification of a flag manifold appears to be the contragra-
dient BGG resolution [35], the Cousin-Grothendieck resolution of a twisted
invertible sheaf gives the twisted BGG resolution, which consists of twisted
Verma modules. In particular, the element of maximal length of the Weyl group
corresponds to the usual BGG resolution.

The infinite-dimensional affine case is more interesting. Here again we have
twisted Verma modules, but additional opportunities appear.

The affine Weyl group is infinite and there are no elements of maximal length.
But let us consider a "limit element" of "semi-infinite length" of this group. The
highest weight module corresponding to is a Wakimoto module. Thus, Wakimo-
to modules are intermediate between contragradient Verma modules and Verma
modules (which correspond to the element of "infinite length").

The sheaves, corresponding to Wakimoto modules, "live" on the limit semi-
infinite flag manifold, which is the coset space of the affine Kac-Moody group by
an appropriate subgroup. They are lisse with respect to the Schubert stratifi-
cation. The usual flag manifold of an affine Kac-Moody algebra allows two
stratifications: by cells of finite dimension or by cells of finite codimension
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[40,39]. The cells of the semi-infinite flag manifold are both of infinite dimension
and of infinite codimension.

The semi-infinite flag manifold is endowed with a rather intriguing "semi-
infinite structure." For example, its Schubert cells represent the semi-infinite
homology classes of this manifold. It is interesting that this homology may also
be obtained using Floer's theory [24]. There is a remarkable Morse function of
Conley-Zehnder type [11] on this manifold, whose singular points are of semi-
infinite indices and give the same semi-infinite homology. We believe that there
exists a theory of semi-infinite manifolds, including semi-infinite sheaves and
their cohomologies. Our flag manifolds seem to be the first examples of this
theory.

A Wakimoto module corresponds to a constant sheaf, supported on a
Schubert cell of the semi-infinite flag manifold and to a sheaf of local "semi-
infinite cohomology" of the invertible sheaf with support on this cell. Cousin-
Grothendieck resolution is a two-sided BGG resolution (a similar resolution may
be obtained in a different way).

The Two-sided BGG resolution gives the semi-infinite analogue of Borel-
Weil-Bott theorem. As a corollary we obtain an unexpected result about usual
homology of the Lie algebras of currents on the real line with values in nilpotent
subalgebras of the simple Lie algebra.

The paper is arranged as follows.
In Sect. 2 we treat the finite-dimensional counterpart of our constructions.

This section illustrates the main ideas, which we apply later. In Sect. 3 we give
the definition of Wakimoto modules over affine Kac-Moody algebras and account
for their place in the representation theory of these algebras. Section 4 is devoted to
semi-infinite flag manifolds. It clarifies the relations of Wakimoto modules with
the geometry of these manifolds. In Sect. 5 we construct Wakimoto modules
overcoming certain homological problems. In Sect. 6 we establish and prove two-
sided BGG resolution and use it for computation of (co)homology. The concluding
Sect. 7 is devoted to some examples and applications.

Appendix A contains the definition of semi-infinite (co)homology [16], used
in this work. In Appendix B we sketch our results and conjectures [19] about the
structure of highest weight modules with central charge - (dual Coxeter number).

2. The Finite-Dimensional Case

2.1. Notations and Preliminaries [29, 5, 6]

Let G be a complex simple Lie group of rank n, g is its Lie algebra, n_0/ι0n+is the
Cartan decomposition of g, A =Δ(G) is the root system of G, A = AG is the root
lattice ofG. A=A + vA_, where A + ( A _ ) is the set of positive (negative) roots.
Denote by α l 5..., αM the set of simple roots, Eb Ht, F{ - Cartan generators of g. Let
(,) be the inner product in ft*, S = S(G) is the Weyl group of G, w0 is its maximal
element.

Let F = G/B be flag manifold of G, where B is the Borel subgroup of G,
corresponding to the Lie algebra b = ft0rc_. As is well-known, F decomposes into
Schubert cells FS9 where s runs the Weyl group S, which are the orbits of the
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nilpotent group N+9 corresponding to the Lie algebra n+. Namely, Fs = Ns s,
where s is the image of 5 e G under the projection G-+F. The cell Fs is isomorphic to
sJV+s~ 1nJV+, codimFs = /(s) is the length of the element s of the Weyl group,
defined as follows: l(s)= # { α e z l + : s ~ 1 α e 2 J _ } (here and further # denotes the
number of elements of the set).

The category 0 of highest weight representations (in this paper highest weight
representation means any representation from the category G) of g decomposes
into the subcategories 0Θ of representations, where the center of <$f(g) acts by the
character θ. If λ is the dominant integral weight, and θ(λ) is the corresponding
central character, then &θ(λ} consists of the modules with highest weights of the
form s * λ = s(λ + ρ) — ρ, s e S, and ρ is a half of the sum of positive roots of g.

2.2. Twisted Verma Modules

Let μ E h* and <Cμ be one-dimensional representation of b+ = ft ©n+, determined as

composition b + -+h — ><C. Denote by Mμ the Verma module over g with highest
weight μ:M =<%(%) (x) (CL Verma modules are characterized by the following

*(6 + )

properties:
a) Mμ lies in the category 0,
b) H0(n_,Mμ)~<Cμ (as Λ-module), Hj(n_,Mμ) = 0, ΪΦO.
Let M* be the contragradient Verma module. It is characterized by the

property a) and by the property
b*) #°(n+,M*)~Cμ (as Λ-module), Hfy+,M*) = 0, iφO.
Our aim is to introduce highest weight modules M £ over g, where w 6 S which

are intermediate between Mμ and M* in the following sense. Put n+ = wn+w~ 1 .
M™ is characterized by the property a) and by the property

bw) #/(wVΐ,M;r)~Cμ_w(ρ)+ρ (as Λ-module),

In particular, M*~M*, M£° = Mμ.
We call Mμ twisted Verma modules1. They are highest weight modules with

highest weight μ. Mμ is free over n+nn_ and dual to Mμ is free over n+nn + .
Their composition series quotients coincide with those of the Verma module Mμ9

but they are "glued" in a different way. If Mμ is irreducible then Mμ ~ Mμ , but if it is
not so, then the composition structures of Mμ

 1 and Mμ

2 differ from each other.
We will construct twisted Verma modules.
But first, let us recall the correspondence between the highest weight g-modules

from Oθ(λ> (λ is a dominant integral weight) and certain sheaves on the flag
manifold.

Any integral weight v = w * λ defines the linear holomorphic complex bundle £v

on F and invertible sheaf £ v of its holomorphic sections. Let ^v be the sheaf of
differential operators on the sheaf f v. We denote by ξ = ζQ the structural sheaf.

1 Using shifted cohomology //](«+, •) of n+ with respect to the decomposition
rc+=(n+nn+)0(n+nrc_) (see Appendix A) we can rewrite bw) as follows: Hj(nΐ,M£)^Cμ (as
Λ-module), Hj«,MJ) = 0, ΐ φ O
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The following functor U™ defines the equivalence between the derived
category of the highest weight g-modules D0e(λ) and of the derived category D™ of
the AΓ+'invariant holonomic ̂ w ̂ -modules on F [of amplitude ^/(w)] [1]

There are also contravariant functors from D(9θ(λ] to the derived category
Con of the category Con of constructible sheaves on F, lίsse with respect to
Schubert stratification.

Let M be g-module from ββw Denote by <f the structural sheaf on the manifold
G/N '-. The sheaf <f(x)M is equivariant and equipped with the left action of g and the
right action of h. Consider the complex of sheaves C^g, <f(χ)M) on F, where
C^g, <f(x)M) denotes the standard homological complex of g. This is the complex
of sheaves with constructible cohomology, equipped with the action of h. So, it
decomposes into direct sum:

Ct(g,ξ®M)= θ Cς(g,<f(χ)M),
μeh*

where C£(g, <f(χ)M) denotes μ-eigenspace of h. The subcomplexes of sheaves
CJ(g,f®Λf) are acyclic if μφw*l The subcomplex C£*λ(g,<f(x)M) on G/N.
defines the complex of sheaves C™*λ(M) on F and the complex of sheaves with
constructible cohomologies Homξ(C™*λ(M),ξw*λ) = i^M on F, ^MeCon. For
the point K e F denote by bκ the Lie algebra of the stabilizer of K and by nκ its
radical. All subalgebras bκ are conjugated and we identify bjnκ = hκ with h. The
stalk of f"M at K is isomorphic to C^*λ(nκ, M). This defines the functor V™ : Dθθ(λ}

->Con.
For a given Ί^eDerCon we can construct the ^WJ(tA-module using the

functor of local cohomology:

Three functors, defined above, give the following commutative diagram:

Let Cs be the constant sheaf with support on Schubert cell Fs. It is well-known
that Z^(Cs) = ̂ s)(F;fw,λ) [/(s)] is the sheaf of local cohomology of ξ^λ with
support on Fs, and so the g-module, corresponding to Cs is the space of local
cohomology Hf\F;ξw*λ). It follows from the definition, that Hf\F;ξw,λ) is
isomorphic to M^λ (in particular, H^F ^J-M*^ [35], H^o

F(F;ξ^λ)

— ̂  (\VQ\V)* λ)

Thus, we see that the twisted Verma module corresponds to the sheaf of local
cohomology and to the constant sheaf with support on the Schubert cell. In
particular, V?(Ms

(sw)*λ)~<Cs
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Fig. la, b. Generalized BGG resolutions, a Usual BGG resolution, b Twisted BGG resolution

2.3. Generalized BGG Resolution

Now we pass to the Cousin-Grothendieck resolution of the invertible sheaf ξw^λ.
According to the Borel-Weil-Bott theorem [9] Hl(w\F;ξw,λ)~Lλ-irreducible
representation of g with highest weight λ and flrί(F;?WΦλ) = 0, iφ/(w).

The spectral sequence for the computation of Hl(F;ζwtλ) associated with the
filtration of F by Schubert varieties degenerates in the first term and we obtain the
Cousin-Grothendieck resolution C**λ, whose terms are isomorphic to

Cl*λ= Θ H%>fa.J= Θ Ms

(s^λ.
seS seS

l(s)=j l(s) = j

The cohomologies of this resolution are trivial in all dimensions except the
/(w)th and the /(w)th cohomology is isomorphic to Lλ.

The complex CJ (investigated in [35]) is contragradient to the BGG resolution
[7] and consists of contragradient Verma modules. The complex C*^ coincides
with BGG resolution and consists of Verma modules.

We call C*φλ the generalized strong BGG resolution. It consists of twisted Verma
modules, and its /(w)th cohomology group is isomorphic to irreducible represen-
tation Lλ of g. The structures of the usual and one of the twisted BGG resolutions
over s/3 are shown in Fig. 1.

2.4. Algebraic Constructions

Now we will give algebraic constructions of twisted Verma modules and
generalized BGG resolutions. They will be adapted in Sect. 5 for construction of
Wakimoto modules.
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Let Γw be the Heisenberg algebra with basis αα,α*,αew(zl+) = zl + and
commutation relations [αα, aβ~] = [α*, α|] = 0, [αα, α|] = δ^β. Let πw be an irreduc-
ible representation of Γw with vacuum vector, annihilated by αα,αez! + nzl + and
by α*,αez! + nzl_. Denote by A0 the algebra of operators on πw, commuting with
0*, α 6 A + (it consists of all polynomials on α*, α e A +) and by ^4X - its normalizer.
Evidently, ^4ι/^40 *

s identified with Lie algebra Vectw of vector fields on the formal
neighbourhood ^w of the cell Fw C F. Lie algebra g acts on ̂ w and hence imbeds
into Vectw, the space of embeddings being parametrized by Hl(g9A0)^h*. Fix
μ 6 ft* and the corresponding embedding. Then πw is g-module with highest weight
μ, which is isomorphic to M£. In particular, if w= 1, then M™ is the module of the
functions on the big cell of F, which is isomorphic to the contragradient Verma
module M*, if w = w0, then M™ is the module of δ-functions on F, isomorphic to
Verma module Mμ.

Now we will give a description of the generalized weak BGG resolutions.
Let Ω* be the de Rham complex on the formal neighbourhood ̂ w of the cell Fw.

Consider the corresponding complex Ω* of local cohomologies:

#£5̂ ς, Ω£HH{£>(#W Ω V#j£}(*w £2H .

Evidently, cohomologies of this complex are non-trivial only in dimension /(w)
and equal to <C. Consider the tensor product complex Lλ® Ω* = ί2*(2). The center
of ^(g) acts on Ω*(λ) and ί2*(Λ) decomposes into a direct sum of subcomplexes,
corresponding to eigenvalues θ of the center: Ω*(λ)= ®Ω*(λ)θ. The subcomplexes
Ω*(Λ,)β are acyclic if 0Φθ(λ). The subcomplex Ω*(λ)θ(A) is the generalized
weak BGG resolution C*φλ. For w = 1 this fact was proved in [7]. In other cases
the proof is analogous. C*φλ is isomorphic to C*+λ only if vv = 1 or w = w0.

We give algebraic construction of this complex.
Let T+(ΦJ be the tangent bundle over %„ with changed parity of fibers. The

complex Ωw is the restriction to g of the graded module over the Lie superalgebra of
vector fields on Γ+(ΦJ, which contains the canonical element-differential,
commuting with g.

Let Γw

+ be the extension of Γw by odd generators φα, φ*, α G zl + commuting with
Γw and with the following anti-commutation relations:

+ = 0, [φ

Let π^ be the irreducible representation of Γ^~ with vacuum vector, annihilated by
αα,φα,αezl + nzl+ and by α*,φj,αezl + nzl_. Introduce grading on Γw

+ and π^,
putting degαα = degα* = 0, degφα= -1, degφ* = l.

Denote by AQ the algebra of operators on π^ commuting with αα, <pα, α e Zl +,
and let ̂  be its normalizer in Endπ^. A^/AQ is identified with Lie superalgebra
of vector fields on T+(^J, and since g acts on T+(^w), there is the embedding of g
into this superalgebra.

There is a canonical element d e 7^+ of degree 1 such that [d, g] = 0, [d, d] + = 0.
This equips π^ with the structure of the complex of g-modules, which is
isomorphic to Ω*. Note that if w = 1, then π^ and Ω* is nothing but the de Rham
complex on the big cell of F.
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Using this algebraic construction we can describe the generalized BGG
resolution. Introduce modified length on Weyl group. Let

and let A?±} = w(A±)r\A+. Put

In particular, l±(s) = l(s\ ίwo(s) = -l(s).
We have C£^= 0 M™tλ. Using this result we can compute the coho-

seS
MS) = ί

mology #*(w+,LA). Namely,

seS
Ms) = i

as the fc-module, or equally, Hj(n+,LA)= φ C5,λ. This is the Borel-Weil-Bott
seS

MS) = i

[9] theorem.
In particular, dimίΓ(n+, Lλ) = # {s : l(s) = i} for any w. We can compare it with

the following result:

dimH2ί(F;<ϋ)=Φ{s:l(s) = ί } , #2ί+1(F;C) = 0.

We will generalize this result to semi-infinite flag manifolds in Sect. 4.
In conclusion we define certain functors in the category Der(Pθ(Λ) connected

with the Weyl group. Let 7£ = Us

λ ° Zs

λ o FΛ

W. We have T£ o 77 = Tsl The functor 7^
transforms the twisted Verma module Aίj,w)φλ to M(S,S)I(!A. So Γ^ transforms the
generalized BGG resolution C**A to C*,,λ, and hence Lλ to Lλ[/(5) — /(w)]. Note,
that Bruhat-Hecke correspondence Nw on

F x F : ]VW = {(/c, κ')eF xF: (bκ, bκ) are in relative position w}

gives the functor T^ = £7] ° JVw, o Z\ o F/. Functors T^ seem to be closely related
to Kazhdan-Lusztig theory [33]. It would be interesting to give an algebraic
construction for them.

3. Wakimoto Modules: Definition

Now we pass to representations of affine Kac-Moody algebras. The affine Kac-
Moody algebra LgΛ is the unique central extension of the algebra of currents
Lg = g(χ)C((ί)) The commutation relations in LgA read

where A(m) denotes A®tm e Lg, A e g, K is the central element, < , > is Killing form,
normalized so that (Hi,Hjy=(άi,δίJ), where δίί = 2θίi/(oίi,ocj)y ι = l,...,n.

Let A be the root system of LgΛ, α0, α l 3 . . ., αΛ - be the set of simple roots, A+(A _)
denotes the set of positive (negative) roots. The roots of LgA are divided into
imaginary and real roots. Imaginary roots are of the form lδ, where / eZ and δ = α0
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+ αmax> αmax being maximal root of g. Real roots are of the form lδ + α, where / e Z,
oceA.

Cartan decomposition of LgΛ is given by LgΛ = ή_®ίi®ή+, where

Any character χ of ί determines the character of the algebra £+=/ϊ0ή+,

£+-»/z+-^C [note, that χ = (χ,k), χeh*9 k e (OC)* ̂  <C, fc is called the central
charge]. Let Mχ be Verma module %(LgΛ) ® <Cr where (Cχ is one-dimensional
representation of 5+, determined by χ. ^(b+)

The category (9 of highest weight Lg^-modules [13,41] decomposes into the
direct sum of subcategories Sθ9 where θ is the eigenvalue of the Casimir element of
LgΛ [29,30]. Denote by Φθ(χ} the subcategory containing Mχ [Θ(χ) = (χ + 2ρ9χ)9

where ρ e ft*, ρ(α, ) = 1 , ί = 0, . . ., «]. In particular, if χ is the dominant integral, then
&Θ(X) consists of modules with highest weights of the form s * χ = s(χ + ρ) — ρ, where s
is an element of affine Weyl group Saf f = Saff (G).

The Verma module Mχ is characterized by the following properties (cf. Sect. 2):
a) Mχ belongs to the category Φ,
b) H0(n.9Mx)^Cx (as ^-module), Hί(ή_,Mχ) = Q, ίφO.
Now let M * be a module, contragradient to Mr M* is characterized by the

property a) and by the property
b*) H°(A+9M*)^CX (as ^-module), ff(n+,M*) = 0, iφO.
Following Sect. 2 we should consider the flag manifold X = X(G) = LGΛ/BΛ

[39,40]. Here LGΛ denotes the unique central extension of the group of all
smooth maps S1 ->G and BΛ denotes Lie subgroup of LGΛ corresponding to Lie al-
gebra £=A_0/z. We also need the dense submanifold Xan = Xan(G) of X, Xan

= LanG
Λ/Ban, where LanG

Λ denotes the group of analytic maps S1-*G, and Ban

denotes the corresponding subgroup. Flag manifold X decomposes into disjoint
union of Schubert cells XS9 where s runs the affine Weyl group Saf f of G, which are
the orbits of N + (Lie group of ή + ). Xs = N + - s, where s is the image of s e LGΛ in X .
The Schubert cell Xs is isomorphic to sN+s~ 1n]V+, and is of finite codimension.

Let χ be integral dominant weight. Then we can introduce the functors
ί/7, FA

W, Z\, acting between the appropriate derived categories. It is possible to
construct twisted Verma modules M*s^*χ as local cohomology Hl^(X9ζw^χ)9

where %w*x denotes the suitable invertible sheaf on X. Twisted Verma modules
Mμ are generally characterized by the property

bw) HI

Here /(w) = # { α e J + : w ~ 1 α e J _ } i s the length of w e Saff . In particular, M^ is the
contragradient Verma module M*.

Twisted Verma modules correspond to constant sheaves, supported on the
Schubert cell. It is possible to construct them algebraically and also to define affine
Weyl twist functors 7^ as in 2.4. Twisted Verma modules compose twisted BGG
resolutions of irreducible representation as in 2.3.
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So our program may be generalized in the affine case as well. But in contrast to
the finite-dimensional case, the affine Weyl group is infinite and there are no
maximal elements. That is why, starting with the contragradient Verma module
M* we cannot pass to the Verma module Mμ "moving" on the Schubert cell, as in
the finite-dimensional case (where M* corresponds to the cell of maximal
dimension and Mμ to the cell of maximal codimension - to the point), in the affine
case there are no Schubert cells of maximal codimension.

But we can try to take into consideration twisted Verma modules, which
correspond to certain "limit elements" of the affine Weyl group (and also "limit"
cells of flag manifold).

Recall that Sa{{~SocΛ, where S is the finite Weyl group and A is the root
lattice.

The group Saff acts on LgΛ as follows:

Choose an element ye A and transform the subalgebra ή+ by its powers:

t (Y 6&tl\ — Y (^\tl+m(^y^lmy\Λ Ά^1 ) ~ Λ a.yyl ?

and so when w->oo we obtain the limit subalgebra ή+(y) = limtmy(ή+):

Λ+(γ)= 0 <CJΓα(x)(C((ί))Θ (h® ® CXΛ ®ίC[[ί]]Θ 0 <DΓα(χ)
aeΔ I αe/4 / αe/d +

(α,y)<0 \ (α,y) = 0 / (α,y) = 0

Note that py = h® 0 (CXΛ is the parabolic subalgebra of g.

The algebra ή + (γ) depends only on pr so we denote ap = ή + (y), where p = pr Let
p = rp®vp, where vp is the reductive subgroup of p and rp is the nilpotent radical
of p. Then

We have the twisted Cartan decomposition of LgΛ : LgΛ = αp0/ί©α*, where *
denotes Cartan involution [29].

It is natural to consider the infinitely twisted Verma modules WXtp, correspond-
ing to ap (and to limίmy) which are characterized by the property a) and by the
property

bp) H^2 + i(ap,Wχ,p) = 0, i Φ O ,

H*l2(ap, Wχ,p)~<Cχ (as ί-module)

where Hcc/2 + i(apy-) denotes semi-infinite cohomology of ap with respect to
decomposition ap = ap®a~,a^=apnή± (see Appendix A).

We call Wx^p Wakίmoto modules (note, that in [18-20] we considered only
WXtb). Composition series quotients of WXtp and Mχ coincide, and if Mχ is
irreducible, then Mx is isomorphic to WXtp. W X ί p is free over ap and dual to WXtp is
free over ap.

One can define Wx^p as the limit of M^ in the sense of Jantzen filtration [30].
Let JlWXtp and JlM*™y be the z'th terms of Jantzen filtration of WXtp and M .̂ Then
for any j there is m0 such that J1WX >p~ JίM^my for i = l, ...,7, m>m0.
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According to our geometric approach, we should consider the semi-infinite flag
manifold Xp = LGΛ/Bp=LG/Bp, where Bp is the twisted Borel subgroup corre-
sponding to Lie algebra Sp = a*@ίί (twisted Borel subalgebra) and its dense
submanifold X? = LanG

Λ/B^ = LanG/B™.
In the next section we will study the geometrical and topological properties of

Xp9 Xa

p

n. In particular, we will show that X™ decomposes into Schubert cells of
semi-infinite dimensions (that is both of infinite dimension and of infinite
codimension), which are labelled by the affϊne Weyl group. These cells are related
to Wakimoto modules in the same way as cells on X are related to contragradient
Verma modules (or twisted Verma modules): the constant sheaf on the cell
corresponds to Wakimoto module, and the Wakimoto module is isomorphic to
the local "semi-infinite" cohomology of the invertible sheaf on Xp. Cousin-
Grothendieck resolution of the invertible sheaf (with respect to Schubert
stratification) gives two-sided BGG resolution of the irreducible representation,
whose terms are Wakimoto modules. Explicit algebraic constructions of Waki-
moto modules and of two-sided BGG resolutions (in spirit of 2.4) are given in
Sects. 5 and 6.

Recall that we have defined Wakimoto modules starting with the contragra-
dient Verma module M* and taking the limit element on the affϊne Weyl group. It
is also possible to start with Verma module Mμ. In this way we obtain co-twisted
Verma modules, characterized by the property:

bw) Hl(w)(wή_w-\wMμ)~<£μ+ρ_w(ρ} (as Λ-module),

Evidently, wMμ^M™*.
These modules correspond to the sheaves on the "turned" flag manifold

X+ =LGΛ/B^, where £+ is the Lie group corresponding to S+ (or on its dense
submanifold Xan = LanG/B+an). These sheaves are supported on Schubert cells X*
of X+ :X* =N+ -s. The cell X* is isomorphic to sN_s~1r\N+ and is of finite
dimension.

Taking the limit, as above, we obtain contragradient Wakimoto modules W*p,
corresponding to limit elements of Saff (and to limit cells of X+). They are
characterized by the property

bp) #oo/2 + K>^%) = 0> i Φ O ,

#oo/2« W*p) ̂  <Cχ (as Λ-module) ,

where H^^ + ̂ α*,-) denotes semi-infinite homology of α* with respect to the
decomposition: , + .

The corresponding flag manifold is Xp = LGΛ/Bp

 + , where Bp

 + is the Lie group
corresponding to the Lie algebra βp = αpφfi.

We see that the way starting with Mμ is dual to the way starting with M*.
Possibly, there are other ways.

Wakimoto modules are intermediate between Mμ and M*. The cells of Xp, Xp

may be considered as infinitely far cells of the usual flag manifolds X and X+.
So we may consider manifolds X, Xp9 Xp, X + as the pieces of the unified "flag

manifold" of affine Kac-Moody algebra LgΛ, whose geometry is in one-to-one
correspondence with representation theory of LgΛ.
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4. Semi-Infinite Flag Manifolds

In this section we will study semi-infinite flag manifolds Xp and their submanifolds.

4.1. The Usual Cohomology of Xp

The group Bp is homotopically equivalent to the group H (Lie group of/ϊ) for any p.
Hence LGΛ/B* is homotopically equivalent to LGΛ/ίϊ~LG/H and to φ = $/f,
where ̂  is a compact form of LG and T is its maximal torus, acting on ̂  as
constant maps. So we obtain the following.

Proposition 1. For any p the semi-infinite flag manifold Xp is homotopically
equivalent to the manifold X = LGΛ/B. In particular, the cohomology rings of Xp and
X coincide, and

Note, that #*(JT,Z) was computed on [36,31,...].

4.2. Loop Spaces and Semi-Infinite Structure

Let Rp be the nilpotent radical of P (Lie group of/?) and Np = P/Rp the reductive
subgroup of P. Vp is the product of the semi-simple Lie group Gp and abelian
group Hp.

Consider the space L(P) of C°°-maps S1-^Fp = G/P. Note that
π1(L(P))c^JFί2(Fp,Z) is isomorphic to the group of characters P->C* (or the
quotient of lattices AG/ΛGp). Denote by L(P) the universal covering space of L(P).
This space is isomorphic to the space of C°°-maps D2-*Fp, where D2 is a closed
disk, up to the following equivalence: two maps γ1 :D

2-+Fp and y2' D2-+Fp are
identified, if they coincide on the border of D2 and are homotopically equivalent in
the class of such maps.

The natural map Xp-*L(P) is a fibering, the fiber being the usual (not semi-
infinite) flag manifold Yp of the group LF/. Yp is the product of X(GP) and X(HP),
where X(Hp) - "flag manifold" oϊLHp - is isomorphic to the product of the group
of characters of P [or to H2(Fp,Έ)\ and the vector space hp® ίC[ί] (hp is the Lie
algebra oΐHp). Thus, Xp is homotopically equivalent to the bundle over L(P) with
fiber X(GP). Denote it by Xp.

Note that L(P)~LG/LP0, where LP0 denotes the connected component of the
unit of the group LP. We put LJP) = LanG/LanP0.

The manifolds L(P) and Lan(P) are endowed with remarkable semi-infinite
structure. At this moment we cannot give a strict definition of such objects as semi-
infinite manifolds, sheaves on them and semi-infinite cohomology of sheaves. But
we are convinced that the suitable theory does exist and that manifolds
L(P), Lan(P) are the first examples of this theory.

As an illustration we will compute the semi-infinite homology of these
manifolds. We will propose two ways for computations.

The first one is an application of Floer's theory [24] which is the semi-infinite
analogue of the usual Morse theory [8]. In contrast to the usual theory in Floer's
theory the indices of the singular points of the Morse function are infinite, but the
difference of indices of two points is finite, so we can define the relative index
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putting the index of a certain marked point to be equal to 0. Singular points
compose Morse complex graded by the relative index with a differential defined as
usual and semi-infinite homologies are the homologies of this complex. In our case
there is a remarkable Morse function of Conley-Zehnder type [11], the complex
being non-trivial only in "even" dimensions (as in finite-dimensional case [8]), and
so singular points represent homology classes of L(P).

The second is the decomposition of Lan(P) into Schubert cells of semi-infinite
dimensions. It means that cells are both of infinite dimension and of infinite
codimension, but they are commensurable, so that we can define the relative
dimension of the cell which is finite. Dimensions of all cells are "even" and hence
they represent semi-infinite homology classes of L (̂P). Note that this cellular
decomposition is related to singular points of our Morse function.

The decomposition of Lan(P) into Schubert cells gives the decomposition of Xp

into Schubert cells, which are connected with Wakimoto modules. It leads to the
semi-infinite analogue of Cousin-Grothendieck resolution which gives two-sided
BGG resolution.

4.3. Morse Function

As is well-known, Fp = G/P = %/Tp (where % is a compact form of G, Tp is a
compact form of P) is a symplectic manifold an orbit of the coadjoint
representation of ύli. Denote the symplectic form on Fp by ωp. Let τ e tp (Lie
algebra of Tp) be a regular element of tp and hτ(κ) be the hamiltonian of the vector
field τ on Fp. It is a Morse function on Fp with singular points-images of the
elements seS(G)/S(Gp) in Fp [8].

Let us_define the semi-infinite Morse function 7ίτ(y):L(P)-><C. For any y.D2

^Fp, yeL(P)weput

Hτ(y) = \ωp-\hτdφ.
y dy

We call Hτ(y) the Conley-Zehnder function [11].
Its singular points are such maps y : D2-+Fp, which transfer the border of D2 to

seFp (and winds the disk D2 on a certain element of H2(Fp;%)~ΛG/ΛGp). So
singular points of Hτ(y) are labelled by S^GyS^Gp).

Let us compute the relative indices of singular points of Hτ(y).
At first, recall how to compute the indices of singular points of hτ(κ). Let

ΔP=Δ(G}\Δ(GP\ AP=Δ;UΔP, Δ^=ΔP^Δ±. we put

(this definition is correct because s(Ap~) = Ap~9 if s e S(Gp)). The index of the point s
is equal to ind(s) = 2lp(s).

Denote Ap = A(G)\A(Gp). For seSaff(G)/Saff(Gp), let

This definition is correct, because for any beAG and α 6 Ap there is a' e A ~ : (α', b)
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Now if we put ind(l) = 0, then

ind(s) = 2U$ , S e Saff(G)/Saff(Gp) .

So semi-infinite homologies of L(P) are contained in even dimensions 2i and
generated over C by elements of the set Mp(ΐ), where Mp(i) = {seSaff(G)/Saff(Gp):

4.4. Cellular Decomposition

The cells of Lan(P) are the orbits of^the group N_+. Let % = N+ s9

seSaff(G)/Saff(Gp), s is embedded onto Lan(P). Then % is identified with
NpΓ^sN+s'1, where Np is the subgroup of LΆnG

Λ, which corresponds to Lie
algebra rp(x)(C((ί)) [note that NpnsN +S"1 = NpnN +2_ 5e^ff(Gp)]. So, putting
dim^^O we obtain that relative dimension dim% = 2ltp(s). It agrees with
Sect. 4.3. Note that all cells are of "equal size" and the closure of ̂ s consists of ̂ r,
such that dim%,<dim%.

We also obtain the decomposition of Xp

n into Schubert cells. Let seXp be the
image of seSaff(G) in Xp

n. Then the orbits of s under the action of N+ give this
decomposition. Denote %S = N+ sCXa

p

n. Evidently, ^ίs is the product of the
appropriate cells of Jζ^(P) and Yp. The relative dimension of ^ίs (we put dim^ =0)
is equal to 2ΪΓp(s\ defined as follows. We have Δ(G) = Δ(P)vAp. Let

Then

ΪΓp(s)= #{αe A(P)nA(G)+ :soceA(G)_}- #{αe

In particular,

and_if s = s' ίy, s'eStG), fceyiG, then /^(s) = l(s') + (2ρ, y). We define also ltp(s)

4.5. Connection with Wakimoto Modules

We suppose that in a semi-infinite case there are analogues of functors (7, V, Z of
Sect. 2, 3, which establish the connection of Wakimoto modules Wχ p with sheaves
on Xp.

The Wakimoto module Ws^XtSps-i corresponds to the space of "local semi-
infinite_cohomology" with support on the Schubert cell of the invertible sheaf
H%^2~ltp(s\Xp, ξχ), where ltp(s) is the (complex) relative codimension of the cell ^ίs.
In the next section we will give algebraic construction of Wakimoto modules
which is similar to finite-dimensional construction of 2.4 and clarifies the notion
of local semi-infinite cohomology.

The constructible sheaf on Xp, corresponding to the Lg^-module M, has the
stalk at the point /c, isomorphic to the complex of semi-infinite homology (more
exactly, its w * χ eigenvalue component with respect to the action of /ί)
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C^*/2+*(a%,κ>M\ where a*jK = κa*κ~ΐ=a* is the Lie algebra of the stabilizer of
κeXp and we take its decomposition

a** =

So, the Wakimoto module ^sw)*χ,sps-ι corresponds to the constant sheaf on
the Schubert cell tfls. The irreducible representation with dominant integral
highest weight Lχ corresponds to the constant sheaf on Xp. Irreducible represen-
tations Ls*χ correspond to semi-infinite analogues of Goresky-MacPherson
sheaves [4].

4.6. Cousin-Grothendieck Resolution

There is a semi-infinite analogue of Cousin-Grothendieck resolution R™/2+*(χ) of
invertible sheaf ζy with respect to Schubert stratification o f X p . Its terms are local
cohomologies of ξχ with support on the Schubert cell, that is Wakimoto modules:

R?l2+i(χ)= Φ H^2+i(xp,ξχ)^ φ Wί.,.^.,.
codim^s = i _seSaff

seSaff ltp(s)=-i

The cohomologies of this complex coincide with cohomologies of ζχ:

H°°/2 + ί(Xp,^HO, iφO, H*l2(Xp,ξχ)^Lχ.

[analogously, tf00/2 + \Xp, ξ,.χ) = 0, if i Φ ϊΓp(s\ #°°/2 + lt^s\Xp, ξs*χ) ~ L J. This is the
analogue of the Borel-Weil-Bott theorem.

So R'pD/2+*(χ) is the resolution of an irreducible representation. It is the limit
resolution of twisted resolutions on the usual flag manifold X. We call it two-sided
BGG resolution. This is an analogue of generalized strong BGG resolution.

In Sect. 6 we will prove a similar two-sided BGG resolution in a different way.
It is an analogue of generalized weak BGG resolution.

4.7. Grassmanίan Model

There is a Grassmanian model of L(P) similar to the Grassmanian model of the
usual flag manifold [40]. We give this model for LpolSL2 [40], the other models
for other algebras are direct generalizations of this.

Let Jf = L2(S1, <C2) be Hubert space. Let e1 and e2 be basic vectors in (C2. We
choose the basis ub ieZm ffl, such that u2i = e1z\ w2ί = /2z

1'. The shift operator z
transforms u{ to u2i+ί.

There is decomposition of J f into a direct sum of mutually orthogonal
subspaces:

where H+ is generated (over (C) by ui9 i > 0, H(^ - by u2i9 i ̂  0, #(2) - by u2i _ t , i ̂  0.
Let us consider the manifold Gr of all subspaces H of Jf , commensurable

with H(l} or f/(2) (see [40]), characterized by the property:
zHcH and zn~1H/znH is one-dimensional.
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The manifold Gr is isomorphic to L(J5)pol of Lsl2. The group LpolSL2 acts on
Gr naturally, the stabilizer of H(l} being the group LpolB0 (the connected
component of the unit of LpolB).

We say that an element ueJJf isoί finite order q if u = £ cμb ct ε (C.

we put QH = {qεZ:H contains an element of order q}. For the set of integers Q we
put Σ = {HeGr:QH = Q}.

Q

The affine Weyl group Saff(SL2) is freely generated by s0 and sί. Let us denote

s(ί) — Sporl ••• SlS0Sls * = 0 ?

— i times

S(i)=,SOorl '" S0S1S0> ϊ>0.

i times

Then ws(r) - the cell of L(B) coincides with £, where
Qί

It is the orbit of HQ. = s(i) under the action of N

5. Wakimoto Modules: Construction

In this section we will construct Wakimoto modules algebraically as certain
modules over the algebra of infinitesimal automorphisms of the bundle over the
formal neighbourhood of the cell of the manifold L(p). This is the generalization of
the finite-dimensional construction of twisted Verma modules 2.4. But in the
infinite-dimensional case we meet with some homological problems.

5.1. The Case of Borel Subalgebra

We start with the most important case p = b. Denote Wχ=WXtb. Wakimoto
modules Wχ are boson representations of LgΛ, which are interesting in conformal
field theory. It is possible to obtain explicit formulae for these representations. The
formulae for Lstf are represented in Sect. 7.

Consider the formal neighbourhood Jf of the cell 4^ of L(B). It is isomorphic to
the linear space N_®<C((ή)~<Cd(9\(t)), d(g) = (dimg-n)/2.

First of all let us study Lie algebra of vector fields on J f .
Let Γ be Heisenberg algebra with generators αα(w), α*(w), α e z l _ , meZ and

commutation relations

[αα(m), aβ(l) ] = [fl*(m), α|(/)] = 0, [αα(m), α|(/)] = δΛtβδmt _,. (1)

Let M be an irreducible representation of Γ with vacuum vector, annihilated by
αα(m), w>0, α e z l _ , α*(m), m^O, α e z l _ . Introduce grading on Γ and M, putting
degα*(w) = l, deg0α(w)=— 1. Denote by A0 the algebra of operators M-*M,
commuting with all α*(m) and by A1 its normalizer in EndM. The space AJAQ = W
= 0 Wi is a graded Lie algebra.



Affme Kac-Moody Algebras and Semi-Infinite Flag Manifolds 177

It is easy to see that Wί consists of the operators £ ρα(m)αα(m), where
aeA
ro^Γ

ρa(m) e (C, / e TL. So W_ l is identified with JT. Denote ΛT+ = N _ ® ί<C[[f ]] . We have

Proposition 2 [18]. 1. The Lie algebra WQ is isomorphic to the algebra of operators
a : Jf^Jf, such that dim((φK+) + Λr+)/Λr+)< oo WQ® W_ 1 is normalίzer ofW_ ί

in W;
2. The Lie algebra W is Carton prolongation of the pair (W&W-i). W is

identified with the Lie algebra of vector fields on ΛΛ

It is interesting to compute the cohomology of W with coefficients in Aθ9 which
is identified with the space of the functions on Jf.

We can change W by the Lie algebra W^ of "finite" vector fields, which is the
Cartan prolongation of the pair (g/^, V^\ where gl^ is the injective limit of g/π, and
V^ is the injective limit of vector representation Vn of g/M. Denote by F(V^) the space
of functions on V^ and consider H^W^ F(VJ). Wao = Waθt.1®tyao9 where
WK ^ 0 W^ f. As is well-known,

i^O

)^fl^M,Q^H*(g/Λ,Q

Here the first isomorphism is given by the Schapiro lemma and the second is
proved in [25].

We obtain the analogous result for W.

Theorem 1. H*(W,A0)~H*(W0,<C).

Proof. The isomorphism H*(W,A0)~H* ί 0 W^(C\ is given by the Schapiro
lemma and the proof of the isomorphism ^-°

is the same as in [25]. D
The cohomology ring H*(W0,(C) was computed in [22].

H*(W09tyc*S*(ci9c29...)9 degcί = 2i, ί=l,2,....

Note that H2(W0, C)^(C is generated by the well-known Tate [42] or "Japanese"
[12] or "wedge" [31a] cocycle c± and so H2(WίAQ)^(C. We can give the
description of the cocycle c1 generating H2(W,A0). Let W± and W2 be two vector
fields on Jf from W. Any point KtJi* determines two elements W^K) and w2(κ)
from W0, which are linearizations of W± and w2 at K. We put

[c^Wi, w2)] (K:) = C^W^K), w2(κ:)) .

Now we pass to LgΛ. It is clear that Lg acts on Jf and it gives the embedding
Lg^W.

Propositions [18]. Composition

H2(W,A0)-*H2(Lg, A^H2(Lg, A0/<C) ,
applied to c{ is 0.
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Proof. Short exact sequence O^C-^o^^c/^"^ gives

H2(Lg, C) -ΪU H2(Lg, Λ) — H2(Lg, A0/<C) .

According to Schapiro lemma,

H2(Lg, A0) ~ H2(Lb + , Q - H2(Lh, <C) .

Denote the image of the projection of c1 onto H2(Lg,A0) by c1? and the
corresponding element ofH2(Lh, C) by c. We should show that c lies in the image of
βj. Recall that H2(Lg, (C)~(C is generated by the central charge. It means that we
should show that c (central extension of Lh) is the restriction of the central
extension of Lg. It follows from the computations below.

Let us compute c. In order to do it we should express operators HΆ(m) e LgΛ (HΛ

is the coroot, dual to the root αezl) via operators aβ(m\ α|(m).
We need some preparations. For any countable set A(m\ meZ, of operators we

put A(z) = Σ A(m)zm, A(z) = z — A(z). Introduce normal ordering : : , as usual [1 9].
roeZ dz

Operators Ha(m) act on M as follows:

HJίz)= Σ (α,0:*XΦ?(z):
βeA-

Using the Wick theorem we obtain:

where cg is dual Coxeter number of g [29]. We see that c is the restriction of the
central extension of Lg and Proposition 3 follows. D

We obtain the following result.

Theorem 2 [1 8]. The embedding Lgc+W is lifted to the embedding LgΛ c^A^ The set
of these embeddίngs is the principal homogeneous bundle over H1(Lg,A0). There is
natural homomorphism /ι*^/ί1(Lg,^40). There is an n-parameter family of
LgΛ-modules W^ χ e ft* with central charge — cg in M.

We call Wχ a restricted Wakimoto module. It is characterized by the
homological property:

W% corresponds to the cell of L(B). We studied W% in [19] (see also Appendix B).
In order to construct Wakimoto modules Wχ we should consider the fibering

over jV with the fiber πfc/-Fock representation of LhΛ with vacuum vector
annihilated by ft(x)(C[[ί]] and central charge k'.

So we should consider the extension Γ of Γ by generators fo^m), ί = l, ...,n,
meZ, commuting with Γ and with commutation relations [^/(m), bβj]
= δmf _l^Hi,Hjy. The subalgebra of Γ is identified with the algebra of infinitesi-
mal automorphisms of our fibering. So LgΛ imbeds into Γ and it equips W2® πk>
with the structure of an Lg^-module with central charge k = h' — cg and highest
weight χ = (χ, k). So we obtain an (n + l)-parameter family of Lg^-modules, which
is the family of Wakimoto modules Wχ [18].
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5.2. General Case

Now we will construct W X t p with an arbitrary parabolic subalgebra p of g.
We introduce some notations. The subgroup Vp of G is the product of semi-

simple subgroup: GP = GP

1} - ... - G(*} (where Gp° are simple subgroups of Gp) and
of the abelian subgroup Hp. We assume that corresponding Lie algebras gp°,
i = l, ...,<? and hp are mutually orthogonal with respect to the Killing form.

Let Mfχ>k } be the contragradient Verma module over Lgp :

where M(* . > f c ( I ) ) is a contragradient Verma module over Lgp

l)yi. Let n(X'tk^ be a Fock
representation of Lhp with central charge k'p and highest weight χ'.

Consider the fibering over the formal neighbourhood Jfp of the cell ̂  C L(P)
with fiber Mfχ*M®π(;(^;)-M^χ%kp,fcp,

We define the algebra Wp of vector fields on the space Jfp [which is isomorphic
to .Rp(x)(C((i))] in the same way as in 5.1. Let Γp be a Heisenberg algebra with
generators αα(w), αj(w), αezlp, mtTL and commutation relations (1). Let Mp be its
irreducible representation with a vacuum vector, annihilated by αα(m), αezlp,
w>0 and a*(m\ αezP, w^O. Denote by 4g the algebra of operators Mp-+Mp,
commuting with α*(w), <xeAp, meZ, and by ^4? its normalizer WP = AP

1/A% is
identified with a Lie algebra of vector fields in End Mp on Λ^.

The algebra Autp of infinitesimal automorphisms of the fibering defined above
is a semi-direct sum of Wp and of the algebra

The extension of Wp by A^ defined in 5.1 gives the extension of Wp by Endp

and of Autp by Endp. Denote by c the element of Jϊ2(Autp, Endp), which
corresponds to the representation of Autp in M£>χ, k > f c ,®MP.

We want to obtain the condition, when LgΛ may be embedded into Autp. Lg
acts on Jfp and hence imbeds into Wp. So LgΛ imbeds into Autp if and only if the
composition

"""' ~ < x """' " ^ ""^,Endp/C),

applied to c gives 0.

Proposition 4. The composition

#2(Autp, EndpH#2(Lg, Endp)^H2(Lg, Endp/C) ,

applied to c, gives 0, if and only if the following conditions are satisfied:

jUO _ v rKP -KP~CQ^'

Proof. The short exact sequence 0->(C->Endp->Endp/<C->0 gives:

H2(Lg, <C)^H2(Lg, Endp)^^2(Lg, Endp/C) .

As in Proposition 3, we see that, according to the Schapiro lemma,
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and we should show that the restriction of c to the latter cohomology space is the
restriction of the central charge of Lg. In order to do it we should compute the
extension on h C p.

For any Hβehwe have Hβ = Hp

β+ Σ Hβti9 where H$ehp and Hβtieg®.
i = 1 ' _

We have the action of Hβ(m) in M* tχ, >k fc '

H(t}= Σ :aJίz)a*(z):&

where H$(m) denotes the action of Hp

β(m) in πχ>,k^ Hβ ^(m) denotes the action of
Hβtl{m)mM*ιtkp.

We have:

(2)

Evidently, <H/3,HV>= £ (H^H^y + ̂ H^H'y. We must obtain
i = 1

. (3)

So we see that the following conditions must be satisfied for it:

*? = VP-CV, (4)

(where cg(l) denotes dual Coxeter number of g£}).
ThenP(2) is (3) with k = k'p-cg.
The proposition is proved. D
So we obtain that if (4) is satisfied, then M£ tχ, kp ̂ kj,®Mp is equipped with the

structure of an Lg^-module, which is isomorphic to WXtp, where χ = (%,χ',k), with
central charge k = k'p — cg.

Our construction shows that Wχ^p is the Lg^-module, "semi-infinitely induced"
from the (Lg^SL/z^-module M^ tχ, j k p ί k p , and the existence of a central extension
imposes the constraints (4) on the central charges. Indeed, it is possible to induce
from any representation of (Lgp®Lhp)

Λ, if the conditions (4) are satisfied.
In particular, if we induce from a Verma module, then we obtain the module

W*p* corresponding to the cell of X**.
Our consjtruction also says that it is possible to put the sheaf of (LgpφLhp)

Λ-
modules on L(p) into correspondence with highest weight Lg^-module, by taking
the complex of semi-infinite homology Cw/2+J>p(χ)<C((ί)),M) as the stalk of this
sheaf. The corresponding sheaves may be lifted (in some sense) to the constructible
sheaves on Xp (see Sect. 4).

6. Two-Sided Bernstein-Gelfand-Gelfand Resolutions

In this section we construct and prove two-sided Bernstein-Gelfand-Gelfand
(BGG) resolutions of irreducible module over LgΛ, consisting of Wakimoto
modules. The approach we develop is an alternative to that of Sect. 4, where
similar resolutions appeared to be Cousin-Grothendieck on the semi-infinite flag
manifold.
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Our resolutions are the subcomplexes of the semi-infinite de Rham complex in
the neighbourhood of the big cell on the semi-infinite flag manifold (for a finite-
dimensional counterpart see 2.4).

Let Γp

+ be the supersymmetric extension of Γp by odd generators φα(m), φ*(w),
p, meZ, commuting with Γ with the following anticommutation relations:

+ = [φ*(m), φ|(/)] + = 0 ,

Let Mp be the irreducible representation of Γp

+ with vacuum vector annihilated by
αα(m), φα(m), α e Ap, m > 0 and by #*(w), φ* (m), α e /dp, m ̂  0. Introduce grading on
Γp

+ and Mp putting degαα(m) = degφα(w) = — 1, degα*(ra) = degφ*(w)= 1. Denote
by A%+ the algebra of operators Mp~ -+Mp , commuting with all α*(m), φ*(m) and
let A*i+ be the normalizer of AP

Q

+ in the Lie superalgebra. The superalgebra A*i+/A%+

= W+ = 0 Wp

+i is a graded Lie superalgebra. We see that Wp

+_ 1 consists of the
ί^-l

operators

X ρα(m)αβ(m) + £ ρ;(m)φα(m), where U'eZ,
aeAP,m^.l aeΔP,m^.l'

and so W^t-i *s identified with thejangent bundle T+J/

p over J^ [the formal
neighbourhood of the cell ̂  C L(p)] with the changed parity of fibers. Wp

+ is
identified with Lie superalgebra of vector fields on T+ JVp. In the same way as in
Sect. 5, we obtain: H2(WP

+, AP

0

+) -C. The generator c+ of H2(Wp

+, AP

0

+) is induced
by Tate-" Japanese" cocycle cϊ from H2(^0,C)^C.

Now change the grading on Γ^ and Mp, putting deg0αα(w) = deg0j/α*(w) = 0,
degφα(m)= — 1, degφ*(m) = 1. There is a canonical element 3 (differential) in Γp

+

such that deg0ί?=l, \_Ά,d~]+ =0, which endows Mp with the structure of complex
R* = Θ #p It is evident that their cohomologies are contained in the 0th

ieZ

dimension and equal to C. This complex is the semi-infinite analogue of de Rham
complex on Jfp.

On the other hand, let us consider the usual de Rham complex Ω* on the big
cell X1 of the usual flag manifold X(GP) of the group LG^? ί2* = φ β .̂ Denote by

i^O _
Fp the space of the functions on X1. The tensor product complex R* = .R*(χ)Ω*

= φ /ϊp may be considered as the semi-infinite de Rham complex on the product
ieZ

of Xί and Λ^. Denote by d its differential. Note that the product of Λ^ and X^ is
isomorphic to the cell of the manifold Xp (see 4.2). Denote by P^+ the Lie
superalgebra of vector fields on T+(<Λ/'p x XJ (tangent bundle over Jfp x X1 with
changed parity of fibers). The Lie algebra Lg acts on T+(J^p x XJ and hence Lg
imbeds into ί̂ +, the image commuting with d. We have the following

Proposition 5. The composition

H2(W+

P

(the first mapping is due to the Schapiro lemma) transforms cj1" to 0.
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Proof is analogous to the proof of Propositions 3 and 4 (we should consider the
superconformal current algebra Lg+ [32] which imbeds into Wp

+, and fur-
thermore is the same as in the proof of Propositions 3 and 4).

So R* is equipped with the structure of complex of Lg^-modules. Its
cohomologies are trivial in all dimensions except 0th, where they are equal to (C.
Simple calculation by virtue of those of the proof of Propositions 3 and 4 show that
the central charge of LgΛ is equal to 0 (due to supersymmetric "cancellation of
anomalies"). D

Now let Lχ be an irreducible representation of LgΛ with dominant integral
highest weight χ. Consider the complex R$(χ) = R*®Lχ. It is an Lg^-module with
highest weight χ. Hence, the Casimir element Cas of LgΛ [29] acts on R*(χ),
commuting with differential d. So R*(χ) decomposes into the direct sum of
subcomplexes R*(χ)=®R$(χ)θ, where

R*p(χ)θ = {ce R*p(χ) \ 3m : (Cas - θ)mc = 0} .

Denote Rp(χ) = Rp(χ\χ+2ρ,χy Cohomologies of this complex are contained in the
0th dimension and are isomorphic to Lχ.

R*(χ) is a two-sided BGG resolution corresponding to parabolic subalgebra p
ofg.

Theorem 3. Rί

p(χ)= © Ws*χ>p.
SeSaff

ltp(s)=-i

Proof is equivalent to the standard [26]. It is easy to see that R*(χ) is free over a~
and the dual to R*(χ) is free over ap. So there is filtration of R*(χ) by Lg^-modules,
whose adjoint quotients are isomorphic to Wakimoto modules Wχ,tp. Highest
weights χ' of these modules lie on the set χ— Σ y,, χ e Lχ, where yt are different roots
oίLgΛ. Applying the arguments of [26] we see that the eigenvalue of Cas is equal to
Oί + 2ρ,χ)onlyif l(s)

x'=s(x)- Σ yi=

where {y1? ...,y/(5)} = {ye A+ :s~lyε A_}. In R*(χ) the corresponding module
Ws*Xtp lies in the dimension —ltp(s). After all, the fact that filtration indeed splits
follows from homological considerations in spirit of [41].

Our resolutions enable us to compute the semi-infinite cohomology of twisted
parabolic subalgebras ap and rp®C((ί)) with coefficients in the irreducible
representation (semi-infinite Borel-Weil-Bott theorem).

Theorem 4. 1 . H °°/2 + \ap, Lχ)= 0 Cs*χ as ίϊ-module,
SeSaff

ltp(s)=-i

2 #«/2 + '(n + (g)<C((ί)5Zg= 0 π ( s , - X f k + C g } (as an LK -module) .
SeSaff

/ f f c . ( s )=-ί

Proof. The spectral sequence corresponding to our resolution degenerates in the
first term and gives the result. D

We use this result for computing the (co)homology of Lie algebra rp(χ)(C[[ί]] of
currents on the line to a nilpotent subalgebra.

We will formulate the result only for the algebra rc
_ _

Denote SΆff = A+ x S, where A+ = 0 TL+VL{. For seS"aff ltb+(s) = l(s).
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Theorems. Hf(n+(χ)(C[ί])^ © (C[/z/m)]4=Λ\ϊ.:,V(S)> as ft®C[ί] module, where
seSaff ' ' J

l(s) = i

lj{s)9 j=!9...,n are defined as follows:

ρ — s(ρ) = Σ '/(5)α / 5 lj{s) €%+, hj are generators of h.
7=1

Proof is based on the study of the action of the homologies of n+ ®C[ί] on its semi-
infinite homology and follows from Theorem 4. D

Detailed proof and related results will be published elsewhere.
Note that the standard methods of computing the (co)homologies of current

algebras [17] fail in this case. Thus, Theorems is one of the interesting
applications of our theory.

7. Examples

7.1. Explicit Formulae for Wχ over Lstf+i

We give the explicit formulae for the action of the generators oϊLstf+ ί which were
obtained in [18]. For the simplest case Lsl* they were obtained by Wakimoto in
[44] - that is why we call Wχ Wakimoto modules. Note also that formulas forLs/2
and Ls/3 were independently obtained by A. B. Zamolodchikov (unpublished).

Denote by Ei9 Hi9 Fi9 i = l, ...,n, standard generators of sln+1. Denote α0 (m)
= α _ α. _ _ αj.(m), 1 rg i rgy ̂  n, α*(w) = a _ α. _ _ Λj9 l^ί^j^n. Commutation rela-
tions of flί/m), afj(m) are given in Sect. 5.

Then

Λ -i
Ei(z)=\afi( Σ α/.i-iύβi-i

\j = ι

. _ + ι

ί-1

Hί(z) = 2 : a ί i a f i : + Σ 0^7*-'--'^,i
7=1

n

+ Σ OfliA*-^i+i f/»*+i
7 = i + l

Fί(z) = aίi+ Σ βjjflf+Lj, fe = v2

7 = ί+l

(aipafj denote α^^^z))

define the action oϊLstf+i in PFχ with χ = (χ1? ...,χΛ, v2 — (n +1)), the central charge
is equal to v2 — (rc + 1). We denote this module by ΐΦ^v, where χ = (χι, ...,#„).

7.2. Co-twisted Verma Modules over Lsl^ with dominant weights are shown on
the picture (Fig. 2). The points on the figures denote singular vectors in wMχ or in
its quotient, which correspond to singular vectors in the Verma module Mχ.
Interrelations between these vectors are expressed by the arrows.
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M*
A
•

A

IXt

jxj
Jxi

2m

Fig. 2. Twisted Verma modules and Wakimoto module over Lsl*

A

>χϊ

The chain of arrows leads from one vector to another if and only if for any
choice of vectors projecting under some factorizations into singular vectors, the
latter vector is generated by the former.

In Fig. 2 the structure of the corresponding Wakimoto module is shown (the
description of the structure of Wakimoto modules over Lsl* was given in [1 9]). We
see that this structure is "approximated" by the structures of M™.

7.3. Structure of Two-Sided BGG Resolutions over Lsl* and Lsl^

The affine Weyl group Saff(SL2) is generated by two simple reflections s0 and 5X. Let

— i times

S = Z >U .

ϊ times

Then Rl

b(χ) = Ws(i)*r We want to give explicit formulae for the differential of R*(χ).

In [21, 43, 19] composition vertex operators

were defined. Blίt_t Im(βί9 ...,j8m;y l 5 ...,yj acts from FK _„, ^ v v to W χ t V .
^

Let Aι,...,zm(7iJ •••'7m) be the operator: W^-

A1,...,/m(yι> >yJ= Σ ^(iι) Λ(

I 1

defined as follows:

^V V

In [19] the following theorem is proved.
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\Sl

y®
\S0 /sS 0 / x x S0

- 3 - 2 - 1 0 1 2

Fig. 3a, b. Two-sided BGG resolutions over Lsl$ and Ls#. a Ls#, b Ls/^

Theorem 6. Let γt= -^(χ-2(ί-l))-/ί? ι=l,...,m. // Σ ^ = 0 (Kac-Kazhdan
v i = ι

equation [30],), thenDh^ lrn(y^ ...,yOT) Js απ intertwining operator between W^-2m,v

and W%tV.

Now let χ = (m — 1 , / + m — 2), /, m 6 Z, /, m > 0, by the integral dominant highest
weight. Then the differential of R?(χ) ̂  ^Γ^χ)-^^^) is given by [20],

. .
> if MS even,

> if ί is odd.

The differential for the two-sided BGG resolution over other algebras may be
also expressed via vertex operators. Two-sided BGG resolution over Lsl^ does
exist for any highest weight χ = (χ,k) with χ and fc rational and fc> — 2 [19,20].

The structure of the two-sided BGG resolution over Lsl* and Lsl$ is shown in
Fig. 3.

The points in the figure denote Wakimoto modules. The marked point denotes
Wχ. The arrows show the action of the differential. The weight of the module
situated in the given point is equal to s * χ, where s is the product of simple
reflections along the way from the marked point to the given point. Note that the
pictures are composed of BGG resolutions over corresponding finite-dimension
Lie algebras sl2 and s/3.

Two-sided BGG resolutions R*(χ) over LgΛ may be used in WZW models for
computations of the correlation functions on the torus and higher genus surfaces
in integral representation, in the same way as in Felder's work [23].

Note that Felder's resolution over Virasoro algebra [23] is closely connected
with our two-sided resolution over Lsl2 via the functorial correspondence between
Ls/2 -modules and modules over Virasoro algebra [20,47].

Appendix A. Semi-Infinite (Co)homology [16]

Let & be Z-graded Lie algebra %=®%b dim^ <oo, n =

b = JfoΘJf^Θ... - its subalgebras. Let M be such an ^-module that the
Jt-submodule generated by any vector of M is finite-dimensional.
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Put Jf* = 0 2£f , Jf* = rc1® fe1, where L denotes the orthogonal complement.
ieZ

Choose a basis φί? ieZin^ and dual basis φf, ieZin 3?*. Let Cl(3ί) be a Clifford
algebra with generators φ i 9 φ f 9 ieZ and anticommutation relations: [<P;, Φ/] +
= [<?*> Φ*] + = °> [<Pi> <PjΠ + = ̂ ij Introduce grading on C/(3Γ), putting degφ^ = - 1,
degφf = 1. Let / be an irreducible representation of C/(Jf) with the vacuum vector
annihilated by φt e n and φf e n1. The module / inherits grading.

Put φ = Σ : φiφ*φ* '- c*jk> where cjfc are structural constants of 2£ and : : denotes
normal ordering. Define the operator T:M(g)/-»M(g)/ as follows:

T(m(x)p) = m® φ(p) + £ φ&n)®φf(p) -> w e M, pel .

It is easy to see: T2 = Id® £ b^φfφj, btj e (C. The expression £ b^φfφj determines
the 2-form ω on Jf, and simple calculations show that ω is cocycle from H2(2£\ If
f/2( Jf ) = 0, then w = (5v, where v = £ r fφf and 5 is differential in the cohomological
complex of ̂  . Define the operator d:M(x)/->M(χ)/, putting d = T— v. Evidently,
d2 = 0. We obtain the complex (M(x) /, d}, whose z'th cohomologies are semi-infinite
cohomologies of 2£ with coefficients in M with respect to the decomposition
& = n®b. We denote them ίf°°/2 + ί(^,M).

Semi-infinite homologies are connected with semi-infinite homologies by the
rule: H00/2+i(^M) = H^2-\^M).

Our considerations may be applied to the finite dimensional Lie algebra «2Γ.
The corresponding cohomology groups will be denoted Hl

s(&, M) and called a
shifted cohomology with respect to the decomposition £f

Appendix B. Modules on the Singular Hyperplane

The singular hyperplane is the hyperplane k= — cg in K*. The structure of LgΛ-
modules, whose highest weights lie on the singular hyperplane, differ from the
structure of other Lg^-modules. This is caused by the fact that Segal-Sugawara
operators [28, 37] of LgΛ commute mutually and with LgΛ if k = — cg. So they yield
a great number of singular vectors in the Verma molecule. Let us consider a
restricted Verma module M ( χ >_c } = MX, which is the quotient of the Verma
module Mα _Cg) by a submodule, generated by all singular Segal-Sugawara
vectors. In [28, 37, 45] it is proved that in general a point of the singular
hyperplane (that is if χ does not belong to other Kazhdan-Lusztig hyperplanes
[30]) M^ is irreducible and hence isomorphic to the restricted Wakimoto module
Wχ defined in 5.1.

In [19] we used explicit formulae for W^ for the study of the structure of a
restricted Verma module. Here we sketch our main results.

First of all we consider W% and M% over Lsl^Cg = 2).

Theorem B.1 [19]. // χ = 0, 1,2, ... then M% is isomorphic to Wχ and contains the
unique singular vector of degree-(χ + I)α1? the quotient by the submodule generated
by this singular vector being irreducible.

If χ = — 2, — 3, . . ., then M2 is isomorphic to Wf and contains the unique singular
vector of degree ( + χ + I)α0, the quotient by the submodule generated by this singular
vector being irreducible.

If χφO, 1,2 and χφ — 2, — 3, ... then M% is irreducible and isomorphic to Wr
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Note that Malikov has proved this result by other means [38].
For a general affine ^Cac-Moody algebra LgΛ we have proved the theorem

about the structure of Mχ, if χ is projective. We call χ projective if the Verma
module M% over g is projective in the category 0 [5]. It means that M2 is not
contained in another Verma module over g as a proper submodule. In particular, if
MX is irreducible and is not contained in another Verma module, then χ is
projective, and the dominant integral weight is projective.

Theorem B.2 [19]. If weight χ is projective, then the singular vectors of M% over LgΛ

coincide with singular vectors of M% over g, and also M% is isomorphic to W%. In
particular, ifM% is irreducible and is not contained in another Verma module then M%
and Wχ are irreducible (and mutually isomorphic).

We also have the conjecture about non-projective highest weight modules.
Let χl9..., χt be highest weights of Verma modules over g such that MXi C M% or

M2CM%. or there is χp such that M^.CM χ . , MχCM2j. Let χmax be the maximal
weight among χl9 ...,χhχ. Then χmax is the projective weight.

Conjecture B.3 [19]. The number of singular vectors of M% coincide with the
number of singular vectors of M^maχ. In particular, if χ = s * χ0, where χ0 is the
dominant integral weight, then the number of singular vectors in M% is equal to the
order of the Weyl group S(G).

We also conjecture the acyclic resolution consisting of restricted Verma
modules. This resolution seems to_be the Cousin-Grothendieck resolution of the
invertible sheaf on the manifold L(B) with respect to Schubert filtration.

Conjecture B.4 [19]. There is an acyclic resolution Al(χ) (χ is the dominant integral
weight) of LgΛ-modules with central charge - cg, so that Al= φ Msα+ρ)_ρ.

lt(s)=-ί
seSaff
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Note added in proof. After this paper had been accepted for publication, we received preprint
[48], where a two-sided BGG resolution (BRST complex) was constructed for Lsl^. The
formulas obtained in [48] coincide with ours from 7.3. In [49] certain explicit formulas for the
differential of two-sided BGG resolution (BRST operator) were given using vertex operators
introduced in [19]. We would like to thank P. Bouwknegt and J. McCarthy for interesting
discussions.






