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Abstract. The Lie algebra of area-preserving diffeomorphisms on closed
membranes of arbitrary topology is investigated. On the basis of a harmonic
decomposition we define the structure constants as well as two other tensors
which appear in the supermembrane Lorentz generators. We derive certain
identities between these tensors and analyze their validity when the area-
preserving diffeomorphisms are approximated by SU(N). One of the additional
tensors can then be identified with the invariant symmetric three-index tensor
of SU(N), while the second has no obvious analog. We prove that the Lorentz
generators are classically conserved in the light-cone gauge for arbitrary
membrane topology, as a consequence of these tensor identities. This for-
mulation allows a systematic study of the violations of Lorentz invariance in
the SU(N) approximation.

1. Introduction

The recent interest in (super)membrane theory has been motivated as much by
their mathematical structure as by their possible interest for the unification of
fundamental interactions (recent developments are reviewed in [1]). Of particular
importance is the group of area-preserving (symplectic) diffeomorphisms which
naturally appears in membrane theory as a residual symmetry in the light-cone
gauge [2,3] (the corresponding symmetry in string theory consists only of the
"length-preserving" diffeomorphism σ -> σ + constant, and is thus rather trivial).
Little is known about these infinite-dimensional groups in general (for an early
reference in the physics literature, see [4]), and one of the possible benefits of
membrane theories could well be an improved understanding of their mathematical
structure. A remarkable result, already obtained some time ago, is that, for spherical
membranes, the structure constants of the group of area-preserving diffeo-
morphisms can be obtained as the ΛΓ-> oo limit of the SU(N) structure constants
[2,3]. More recently, and partly motivated by the discovery of supermembranes
[5], several papers have appeared dealing with area-preserving diffeomorphisms
on the sphere and the torus [6-12], which have led to a certain amount of progress.
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For instance, it was realized that (the simple subgroup of) the area-preserving
diffeomorphisms on the torus can also be obtained from SU(co) ([10,12,19] and
Appendix A of this paper); this result, however, does not necessarily imply that the
area-preserving diffeomorphisms for spherical and toroidal membranes are the
"same." As for topologically more complicated membranes, results are scarce due
to the lack of explicit representations for the associated Lie algebras. Another
complication is that the Lie algebra associated with the group of area-preserving
diffeomorphisms is no longer simple for nonzero genus (it is simple for the sphere
[13]). This follows from the observation that, for nonzero genus, there are
diffeomorphisms generated by harmonic vector fields, such that the remaining
area-preserving diffeomorphisms constitute an invariant subgroup.

The group of area-preserving diffeomorphisms is also important for another
reason. It was shown in [7] that supermembranes can be formulated as one-
dimensional supersymmetric gauge theories of area-preserving diffeomorphisms.
The supermembrane Hamiltonian can thus be regarded as a one-dimensional
reduction of N = 4 super-Yang-Mills theory with an infinite-dimensional gauge-
group. A supersymmetric regularization of this theory is obtained by approximating
the group of area-preserving diffeomorphisms by a finite-dimensional gauge group.
In this way, the supermembrane can be analyzed as a system in supersymmetric
quantum mechanics. Clearly, a regularization is not only useful but, in fact,
necessary if one is to gain any understanding of the nonperturbative dynamics of
supermembranes, just as it is necessary for any other interacting (and possibly
divergent) field theory. For instance, by employing such a regularization it
was demonstrated recently that the spectrum of the associated supersymmetric
Hamiltonian is continuous and has no gap [14]. We repeat, however, that the
validity of this result is contingent upon the approximability of the group of
area-preserving transformations by a finite Lie group.

In Sect. 2 of this paper we will give a systematic treatment of area-preserving
transformations (for related discussions, see e.g. [8]). The presentation is set up in
a way suited to the treatment of the (classical) Lorentz in variance in the light-cone
gauge, which will follow in Sect. 3. Performing a harmonic expansion of all
dynamically relevant variables in a basis of scalar harmonics on the membrane,
one is naturally led to define the structure constants fABC of the area-preserving
transformations in terms of a certain overlap integral involving these harmonics
[2,3]. Our analysis of the Lorentz generators reveals the existence of two further
tensors, which to the best of our knowledge have not appeared in the literature
so far. In the SU(N) approximation, one of these, denoted by dABC, corresponds
to the SU(N)- invariant symmetric three-index tensor; the other, denoted by CABC,
has no SU(N) analog. The existence of such a tensor CABC different from fABC and
dABC is a genuine property of the infinite-dimensional group that distinguishes it
from its finite-dimensional "regulator" subgroups. Namely, we will show explicitly
that a tensor with analogous properties can always be redefined to become a linear
combination of the known group invariant tensors if the Lie algebra possesses
a Killing-Cartan metric (for the infinite-dimensional group of area-preserving
diffeomorphisms this metric is singular). Relying on the completeness relations for
the scalar and vector harmonics on the membrane, we deduce a number of identities
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for these tensors. Using these identities it is thus possible to establish the light-cone
Lorentz in variance in an "algebraic" fashion. One of the advantages of the present
formulation is that we can treat arbitrary membrane topologies. Furthermore, it
is now easy to study the violations of Lorentz in variance that appear in the SU(N)
approximation. Not unexpectedly, we find that the boost generators are only
conserved modulo terms of order 0(\/N2\ but these terms can be controlled and
shown to vanish in the N -> oo limit. In two appendices we describe how the torus
and the sphere algebra can be approximated by SU(N) and give explicit formulae
for all the tensors that were introduced before.

Having established the classical Lorentz invariance in the large-ΛΓ limit, it
follows that the Lorentz algebra must close in the usual fashion in this limit. One
might wonder whether the formalism is also useful in order to study the closure
of the quantum Lorentz algebra and thus could lead to the determination of the
critical dimension of the supermembrane. Indeed, treating the variables as quantum
operators and paying attention to the order in which they appear one would pick
up extra contributions which stay finite or diverge in the limit ΛΓ-> oo. However,
their determination would not be sufficient for the following reason. Before
embarking on such a calculation one would have to ensure first that the Lorentz
generators are well-defined as quantum operators. In string theory, this is achieved
by normal ordering, which is sufficient to render all operators well-defined, because
string theory is essentially free. In contrast, the (super)membrane is described as
a three-dimensional interacting quantum field theory. Therefore one cannot a priori
expect the operators to become well-defined through normal ordering alone.
Rather, one must treat them as composite operators in interacting field theory
with all the concomitant complications. This, in turn, requires the order-by-order
calculation of the relevant renormalizations and counterterms. As to date no such
results are available, it does not make much sense to further pursue the question
of the quantum Lorentz algebra at this point. To be sure, one can attempt an
analysis of the short distance singularities based on certain plausible "kinematical"
assumptions about the operator product expansions [15]. It is indeed possible
with rather mild assumptions to predict the space-time dimension D = 27 as a
necessary condition for the consistency of the bosonic membrane [15] (the same
procedure yields D = 11 for the supermembrane [16]). In conclusion, there is some
evidence of an underlying mathematical structure leading beyond string theory,
but much more work is obviously needed to explain the "enigma" of D = 11
supergravity.

2. Area-Preserving Diffeomorphisms and Harmonic Decompositions

In this paper we will be considering closed membranes, so that the membrane
coordinates and momenta can be expressed as functions of two parameters, σ1

and σ2, which are local coordinates on a closed compact two-dimensional space
of the same topology as the membrane. In this parameter space it is convenient
to define a metric, which we shall denote by wrs(σ) to avoid confusion with the
(dynamically relevant) Nambu-Goto metric of the membrane which we denote by
grs. Without loss of generality we may fix the total area of the parameter space to
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unity,1 i.e.,

\d2σ^(σ) = \. (2.1)

Area-preserving dlffeomorphisms are dlffeomorphisms

(σ), (2.2)

with

d,(^(σ)ξr(σ)) = Q, or, equivalently, Drξ'(σ) = Q, (2.3)

where w(σ) = det wrs(σ) and Dr is the covariant derivative with respect to the metric
wrs. The general solution of (2.3) can be decomposed into co-exact and harmonic
vector fields. Furthermore, there can be homotopically nontrivial transformations;
these will not be considered in what follows. The co-exact components can be
parametrized in terms of globally defined functions ξ(σ\

(2.4)

Under these dlffeomorphisms, the (transverse) membrane coordinates X transform
as

δX = {ξ,Xa}9 (2.5)

where the bracket {A9B} for two functions A(σ) and B(σ) is defined by

{A, B}(σ) = -=edrA(σ)dsB(σ\ (2.6)

This bracket can be shown to have the requisite properties of a Lie bracket. In
particular it satisfies the Jacobi identity,

μ, {β, C} } + {B, {C, A} } + {C, [A, B}}=Q. (2.7)

The harmonic component of area-preserving diffeomorphisms can be decomposed
into a set of harmonic vectors, denoted by Φ(

r

λ\ which satisfy

DΓΦ(A)r = D[ΓΦ<f = 0. (2.8)

For a membrane of genus g there are precisely 2g independent harmonic vectors.
It is clear that the diffeomorphisms generated by the co-exact vector fields form

a group; this group will be denoted by G. The commutator of two infinitesimal
G-transformations characterized by functions ξί and ξ2 yields a similar trans-
formation characterized by

ξ3 = {ξ2,ξ1} (2.9)

One can also include the transformations generated by harmonic vector fields. The
commutator of such an infinitesimal transformation generated by Φ(Λ)r with a
G-transformation characterized by ξί is again a G-transformation characterized by

rξl. (2.10)

1 Note that in previous publications (e.g. [7]) we used w rather than
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Furthermore, the commutator of two infinitesimal transformations generated by
Φ(Λ)r and Φ(λ)r yields also a G-transformation characterized by

ξ = ̂ (σ)8rsΦ
(λ}rΦ(λ'}s. (2.11)

The above commutation relations show that G is an invariant subgroup of the
full group of (homotopically trivial) area-preserving diffeomorphisms. Hence the
latter group is in general not simple. Observe that this remark is not relevant
for spherical membranes, where no harmonic vectors exist, while for toroidal
membranes (2.11) is constant so that the commutator vanishes. However, in most
of this paper we will be concerned with the subgroup G. As we shall discuss below,
it is possible to view this group as the N -> oo limit of SU(N)9 at least for spherical
and toroidal membranes.

To exhibit the group of area-preserving diffeomorphisms in a convenient fashion
one expands the membrane coordinates into a complete orthonormal basis of
functions 77(σ) (where / = 0, 1, . . . ) according to

X(σ) = Σ*Jr/(σ), (2.12)
/

and likewise for all other quantities of interest such as momenta or fermionic
coordinates. The basis functions Yl9 which can be chosen real or complex, are
normalized according to

$d2σ^(σ)YI(σ)YJ(σ) = δI

j9 (2.13)

where

YI=Yf = ηIJYJ. (2.14)

The last equation follows from the completeness of the functions Y/. The tensor
ηu is thus given by

ηu = f d2σ^(σ) Y,(a)r». (2.15)

It is now convenient to split the basis functions into the constant mode Y0 = 19

which characterizes the center-of-mass coordinate of the membrane, i.e.,

(2.16)

and the remaining functions YA9 where here and throughout the text the indices
A will run over the positive integers. The completeness of the basis functions now
implies

Σ YA(σ) YA(P) = --4=5<2>(σ, p) - 1, (2.17)
A VW(σ)

where the last term is due to the fact that the constant function 70 is not included
on the left-hand side. Observe that we made use of the normalization (2.1).

For the basis functions Ύl one may choose the eigenfunctions of the covariant
Laplacian A = DrDr, so that

0 = 0, ΔYA=-ωAYA, (2.18)

where ωA > 0. The Green's function of the Laplacian can then be expressed in
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terms of this basis, viz.

G(σ, p) = - Σ -^A r» YA(P\ (2.19)

so that

p)- 1. (2.20)

Below we will also need another Green's function in order to solve the equation

drX~ = Vr, (2.21)

where X ~ is a light-cone coordinate of the membrane, while Vr is defined in terms
of the transverse coordinates and momenta as well as fermionic coordinates. As
X~ must be a single-valued function of σ the consistency of (2.21) requires that
the vector field Vr satisfies the following equations:

D[rVs] = 0, \d2σ^σ)Φ^(σ)Vr(σ} = V. (2.23)

Both these equations are equivalent to requiring that Vr vanishes when integrated
along any closed loop, i.e.,

§ Λ/vKσ) Vr(σ)dσr = 0. (2.23)

To express the solution of (2.21) in terms of Vr, let us first discuss the
decomposition of vector fields in terms of "vector harmonics." From the Hodge
decomposition, it follows that a basis for them is given by

(2.24)
A Γ v / r v / AωΛ x/ωΛ

and the harmonic vectors Φ(

r

λ\ These vector fields are eigenfunctions of the
Lichnerowicz operator, which, in two dimensions, reads

AL = DSDS + ̂ R, (2.25)

where R is the scalar curvature. The eigenvalues of Y(

r

l)A, Y(

r

2)A and Φ(

r

λ} are given by

ΔLΎ^A(σ)=-ωAΎ^A(σ\ ΔLΦ™ = 0 (α=l,2). (2.26)

With a suitable choice for the harmonic vectors the functions Y(

r

1}A, Y(

r

2)A and Φ(

r

λ}

are orthonormal,

(σ)Φίλ\σ) = 0,

(σ)Φ(

s

λ'}(σ) = δλλ'. (2.27)

The corresponding completeness relation reads

(2-28)
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With the above results it is not difficult to establish that the solution of (2.21) is

X~(σ) = \d2p^p)Gr(σ,p)Vr(p) + constant, (2.29)

where the constant is arbitrary. The Green's function Gr is given by

Gr(σ,p) = ̂ ^ΎA(σ)drΎA(p). (2.30)
A 0)

It is easy to check that this Green's function obeys

δ™(σ9p)+l9 (2.31))G'(σ,p) = 0, D'rσ(σ,p)=

(where D'r denotes the covariant differentiation with respect to p) as one directly
verifies from (2.30) and (2.19).

From (2.9) it is obvious that the Lie bracket corresponds to the structure
constants of the (subgroup G of the) area-preserving diffeomorphisms. We can now
substitute the expansion (2.12) and thereby extract the structure constants of the
group of area-preserving diffeomorphisms in this basis. From the completeness of
the YA (the function 70 does not play a role in what follows), we obtain

{YA,YB} = fABCY
c, (2-32)

so that the structure constants are defined by

/ABC = \d2σ^(σ)YA(σ){YB(σ), Yc(σ)}. (2.33)

Note that fABC is totally antisymmetric in A, B and C.
As we have already indicated, the treatment of the Lorentz algebra in this

formalism requires further tensors. One of them is the (fully symmetric) overlap
integral between three 7's (readers curious to see where these definitions come
from are invited to glance at the following section),

dABC = $d2σ^(σ)YA(σ)YB(σ)Yc(σ). (2.34)

A third tensor arises in the harmonic expansion of (2.29) for Vr oc Ydr Y'. It is given by

CABC= -2$d2σ^^™^drYA(σ)YB(σ)dsYc(σ). (2.35)
ωA

There are several important identities for these tensors that follow from the
above definitions. For instance, the Jacobi identity is simply a consequence of the
Jacobi identity (2.7) for the Lie brackets,

/W//CJDE = 0, (2.36)

where (2.32) has been used. Another relation follows immediately by partial
integration,

CABC + CACB = ~ 2dABC. (2.37)

Two identities similar to (2.36) are

θ9 (2.38)
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<W/V/%ϊ = 0. (2.39)

The proof of these identities is simple and follows from writing the left-hand sides
as an integral of ω^drYD{Y{B, Yc}drYA] and {Y[D, YE}{YP]9 YG}YC, respectively.
Subsequently one makes use of the Schouten identity, which in the present context
expresses the vanishing of any tensor antisymmetric in three membrane indices.

The proof of the following identity requires a little more work,

fλB
 C
ECD
 = C
EAβf CD ~ ̂ /BD ^ACE + X,

 C
λAβf CD? (2.40)

where fλAB and cλAB are antisymmetric in \_AB~] and defined by

fun = \d2σ^(σ)Φ^(σ)dt YB(σ) YA(σ\ (2.41)

CUB = ~ 2$d2σε'sΦγ\σ)dsYB(σ)YA(σ). (2.42)

Observe that fλAB is precisely the structure constant corresponding to the
commutator (2.10). To derive (2.40) one substitutes the definitions (2.33) and (2.35)
on the left-hand side, such that the contraction over the functions YE takes the
form drY

E(σ)daYE(ρ)a)E l. This is just equal to Y(

r

1)E(σ)Y$(ρ). Subsequently one
uses the completeness relation (2.28), which leads directly to (2.40).

Before continuing let us examine the index structure of (2.40). Using the fact
that the cλABfDC

λ is antisymmetric in \_AB~] and [CD], symmetrization of (2.40) in
either one of these index pairs leads to

fA(BEdcD>E = 0, (2.43)

where we have made use of (2.37). From this result we can rewrite (2.40) in the form

fAB CE[CD] ~ CE[AB]f CD ~ ^f[D[B &A\C\E = 2-, CλAβf CD- (2.44)

As the left-hand side is now antisymmetric under the interchange of the index pairs
\_AB~] and [CD], we conclude that also the right-hand side of (2.44) must exhibit
this antisymmetry. This result can also be justified on the basis of independent
geometric arguments.

Furthermore, one may contract (2.40) by fFG

c and antisymmetrize in the three
indices [FGD]. Using the Jacobi identity (2.36), this yields

/ABE(cEclDfFG]C) = - 2dACEfEB^f^c. (2.45)

This result is obviously consistent with (2.38) and (2.39). Observe that in the
derivation of (2.45) we have also used the Jacobi identity for structure constants
that involve one index λ.

/UB£/C,EΛ = O. (2.46)

Clearly there are more identities for products of the various tensors, such as

(2-47)

However, these identities are not needed in what follows, and we will not further
elaborate on them.

Let us now return to (2.36) and (2.43), which suggest that / and d are invariant
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tensors under the subgroup G of the area-preserving diffeomorphisms. Actually,
it is easy to see that / and d, as well as ηAB, defined in (2.15), are invariant under
all area-preserving transformations, not just under those contained in G. This
follows from the observation that /, d and η are defined in terms of integrals that
are invariant under general reparametrizations, provided that one also transforms
the metric wrs in the usual manner. On the other hand, wrs is supposed to be a
given metric. However, since / does not depend on wrs while d and η depend only
on the determinant of wrs which is invariant under area-preserving diffeomorphisms,
/, d and η must be invariant under the change of the functions YA induced by these
diffeomorphisms.

However, the above arguments are not applicable to the tensor CABC, because
it depends explicitly on the metric; consequently we have

δcABC = 2$d2σ^W — drYA(σ)YB(σ)dsYc(σ)(D'ξs + D*ξ'\ (2.48)
ωA

which does not vanish. On the other hand, the covariant variation suggested by
the index structure of CABC, gives

UCABC = ί (J AE CDBC~^JBE CADC~^~JCE CABD)AE

= ξE(fBC

D(cDAE + cADE) + fBC

λcλAE), (2.49)

where we have made use of (2.38) and (2.44). For the transformations generated
by the harmonic vector fields, we can derive a similar result, which takes the same
form as (2.49) upon changing the index E into λ. This leads to the definition of
new tensors cABλ and cλAλ>. Furthermore we note that there are identities similar
to (2.38)-(2.40) in which one index is replaced by λ (for example, see (2.46)).

In Sect. 3 we will argue that CABC is only relevant up to terms proportional to
fBC

D. On the other hand, (2.49) shows that CABC is invariant up to precisely such
a term. This would seem to suggest that CABC can be made invariant by making
a suitable modification proportional to fBC

D. Under such a modification the
identities (2.37) and (2.38) would remain valid by virtue of the Jacobi identity (2.36),
whereas (2.40) and (2.44) would acquire an extra term proportional to fAB

EdCD

F.
Assuming the existence of the Killing-Cartan metric

9AB=-fACDfCDB, (2.50)

one can indeed write down a modified tensor C'ABC, which is formally invariant. It
reads

C/ABC = CABC ~ fee CDEFJ (9 )GA (2.51)

From (2.49) and (2.50) one can easily verify the invariance of c'ABC. However, in
the case at hand, these conditions cannot be applied because the Killing-Cartan
metric is singular for the group G of area-preserving diffeomorphisms. Therefore
no modification will render the tensor CABC invariant.2 On the other hand, the

2 This conclusion is in agreement with a more general result in Lie algebra cohomology, according
to which there are only nontrivial cohomology classes in representations where the second-order
Casimir operator is invertible. See, e.g., [17]



48 B. de Wit, U. Marquard and H. Nicolai

modification is possible if the group G is truncated to a finite group such as SU(N).
Then any tensor with the same properties as CABC is actually expressible as a linear
combination of the invariant three-index tensors of the finite group, up to the
modification given in (2.51). Therefore it appears that the existence of a tensor CABC

different from either fABC or dABC is a genuine property of the infinite-dimensional
group G.

This brings us to the question of how the definitions and results described so
far are affected when the group G is replaced by a finite group. As already mentioned,
such an approximation is possible for spherical and toroidal membranes, where
the structure constants fABC can be obtained from the ordinary SU(N) structure
constants in the limit N-*ao. We have demonstrated the necessity of further
numerical tensors for the Lorentz generators, and this raises the question whether
these, too, can be approximated by SU(N) tensors. The tensor dABC defined in (2.34)
evidently corresponds to the symmetric three-index tensor of SU(N), and in the
appendices we will confirm this expected correspondence (which, incidentally shows
that the SU(N) groups are the only finite-dimensional simple Lie groups that can
possibly serve as a regulator group, since no other simple Lie groups admit an
invariant symmetric three-index tensor). As for the tensor CABC, the arguments
presented above show that it has no counterpart for finite-dimensional groups. In
accordance with these arguments we can try to represent it as a linear combination
of the known SU(N) invariants dABC and fABC- Quite independently of the explicit
representation, however, it is impossible for finite N to simultaneously satisfy all
of the identities that we have derived in this section; it is even impossible to satisfy
the ones involving only dABC and fABC. This is most conveniently checked by means
of the explicit formulae of Appendix A. For instance, (2.39) and (2.47) are invalid
for finite JV; substitution of the relevant expressions in Appendix A shows the
violations to be of order O(1/JV2) for finite N. As the identities involve only invariant
tensors, this conclusion is independent of the explicit basis chosen for the SU(N)
matrices. To be sure, there is a certain ambiguity in the choice of CABC for finite
N. Since it has no proper SU(N) analog and since the identities we relied on in
deriving (2.51) are anyhow violated for finite N, we can just as well regulate it by
any tensor whose components differ from their exact values by O(l/N2) (further
details are given in the appendices). In this way, it is possible to satisfy all identities
up to terms of order O(ί/N2).

3. Lorentz Invariance

In this section we will apply the formalism developed in the foregoing section to
establish the Lorentz in variance of the classical supermembrane formulated in the
light-cone gauge and to show that it holds independently of the topology of the
membrane. We will not repeat the basic results about supermembranes here but
rather assume that the reader is familiar with them (see e.g. [1]); in particular, we
refer the reader to [7] for our conventions and notation as well as a derivation of
the results needed here.

The canonical Hamiltonian H in the light-cone gauge is given by
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(3.1)

Here, P(σ) denotes the canonical momenta conjugate to the (transverse) coordinates
X(σ\ which transform as a density under reparametrizations of σr; θ(σ) are the
fermionic coordinates, which transform as a spinor under the transverse rotations
and as a scalar under reparametrizations.3 Our choice for these coordinates is
such that the only nonvanishing Dirac brackets take the form

θβ(p))DB = -- yL= <5α/
2>(σ, p). (3.2)

The quantity PQ represents the total momentum of the supermembrane in one of
the directions along the light-cone; as indicated in (3.1) the other momentum
component along the light-cone is related to the Hamiltonian. Regarding the
light-cone components of the coordinate vector, X+ is related to the time τ, the
dependence on which we have suppressed above, while X~ does not explicitly
appear in the Hamiltonian, but is determined through the condition

(3.3)

As was first observed by Goldstone [2] this condition can be solved by means of
the Green's function Gr introduced in Sect. 2, provided the following conditions
hold (cf. (2.22)),

°̂  , *(σ)j^{0(σ),0(σ)}=0, (3.4)
/vφ) V ' J 2 '

$(p(σ) d,X(σ) + l-J^)θ(σ)drθ(σ)\dσr = 0. (3.5)

We then obtain (cf. (2.29))

1 _ /_ _ ί . \
X (σ) = cl —-^)dpGr(σ,p)lP(p) drX(p) + -^/w(p)θ(p)drθ(p)\, (3.6)

where q~ denotes the center-off-mass coordinate of the membrane, which is
canonically conjugate to PQ . Therefore we have an additional nonvanishing Dirac
bracket,

(q-,Po)DB=l. (3.7)

3 If the membrane moves in a 11-dimensional space-time, the fermionic coordinates θ are thus
16-component spinors of 50(9). In contrast with the coordinates used in [7], we have rescaled θ by

Λ/PO times a numerical factor. The gamma matrices ya are real and symmetric
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The part of phase space that satisfies the constraints (3.4) and (3.5) will be referred
to as the "physical subspace."

The supermembrane is invariant under Lorentz transformations and space-
time supersymmetry, although not all these invariances are manifest in the
light-cone gauge. Furthermore, the invariance under general diffeomorphisms of
the three-dimensional world tube is broken in this gauge and one is left with a
residual invariance under area-preserving diffeomorphisms, which we have exten-
sively discussed in Sect. 2. According to [18] the first-class constraints (3.4) and
(3.5) are also the generators of the area-preserving diffeomorphisms. These
generators therefore take the form

φ(σ) = -- X(σ}--{θ(σ\θ(σ)}, (3.8)

(3.9)

To calculate the Lorentz and supersymmetry generators of the supermembrane
in the light-cone gauge, we apply the Noether procedure to the original super-
membrane action, pass to light-cone coordinates and impose the light-cone gauge
conditions. This straightforward but somewhat tedious calculation leads to the
following result for the Lorentz generators:

Mab = f d2σ( - PaXb + PbXa - -Aθyabθ
V 4

M+a = \d2σ(-P+Xa

M-« = $d2σ(paχ- - P-χ«-^θyabΘPb-
l^{Xb,Xc}θyabcθ\ (3.10)

\ 4r0 °*o /

The supersymmetry generators read

(3.11)

where Q+ and Q~ transform according to inequivalent spinor representations of
the transverse rotation group.

Following the analysis of the previous section, we expand the membrane
coordinates into a complete set of orthonormal functions, so that all relevant
quantities can be expressed with the help of the tensors J ABc>dABC,cABC and the
metric ηAB. For instance, the generators of the area-preserving reparametrizations
now become
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(3.12)

(3.13)

and the constraints
φA = 0, ^ = 0 (3.14)

hold on the physical subspace.
In this formulation the canonical brackets are given by

(XΛ,P%)DB = ̂ AB, (&*A, θpR)DB = - iδxβηAB,

(«~,-Po+)M=l, (0αoΛoW=-*<V (3.15)

The solution (3.3) for the light-cone coordinate X~ can now be written explicitly
with the help of the coefficient CABC defined in Sect. 2,

XΛ = -p0-XA + oeA+-cABCp
B-X C + 0C (3.16)

In view of the remarks made towards the end of Sect. 2, it is clear that X ~A does
not transform covariantly under the group of area-preserving diffeomorphisms.
Using (2.49) we find

, (3.17)

and a similar result for the diffeomorphisms generated by harmonic vectors.
However, the anomalous terms in the transformation rules of X~ are proportional
to the constraints φA and φλ, so that XA transforms covariantly in the physical
subspace. Of course, the same remark applies to the Lorentz generators M~fl,
which depend on X ~ .

The Hamiltonian (3.1) reads in this basis,

~p2 ^2

" = + (3 18)

where Jί is the invariant mass of the supermembrane, which is given by

^2_"p2 i l / f γBγC\2 f flAvaYBftc Π 1 Q^
^ — r A~T~2\JABCΛ

a

Λb> ~ 1J ABC" 7 Λ

 a

U ' (A1^

Observe that M does not depend on the center-of-mass coordinates and momenta,
and neither does it depend on PQ .

It is straightforward to substitute the mode expansions and (3.16) into the
Lorentz generators listed in (3.10). The first three generators take a simple form,

Mab= -Pa

0X
b

0 + Pb

0X
a

0--θ0y
abθ0-Pa

AX
bA + Pb

AX
aA--θAγ

abθA, (3.20)

M+- = -Ptq~-Hτ, (3.21)

M + Λ =-P 0

+ X* 0 + τP«0, (3.22)
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where we have substituted X+ = τ. It is convenient to write M~α, which contains
many more terms, in the following form:

M-O = (M-*)(0) + -p0bM
ab - - ρ + ~M'α, (3.23)

•* 0 \ 2 / PQ

where (M~β)(0) represents the contributions of the center-of-mass modes,

(M-*)<0) = q-Pav + X'oH ~ - 0 o 7 α V0> (3.24)

and Q+, Mfl6 and M~α refer to contributions of the nonzero modes; those are
defined by

Q+ = (P Ay. + ϊfABCx
B

ax
c

bf
b)θA, (3.25)

Mab = - P"AX
bA + P* XaA - - θAf

bθA, (3.26)

M-» = idABCX"A(PB-Pc + i(fB

DEX"DX<E)(fc

FGX>'FX<G) - ifcDEX"DθBybθE)

(3.27)

In principle, the construction of the Lorentz generators ensures that they are
conserved charges i.e.,

^ M = A M + (M, H)DB = 0, (3.28)
dτ dτ

where M generically denotes all the Lorentz generators.4 Explicit verification of
(3.28) can thus be viewed as a check on the consistency of the light-cone gauge.
However, in the formulation that we employ the classical check of the Lorentz
invariance is reduced to a purely algebraic problem for the tensors defined in the
previous section: what we intend to show is that Lorentz invariance is a
consequence of some of the tensor identities derived in Sect. 2. This has the
advantage that we can explicitly see where the Lorentz invariance breaks down
in the SU(N) approximation.

The verification of (3.28) for the generators Mab,M+~ and M+α is
straightforward, and does not depend on the properties of the various tensors.
The proof of the τ-independence of M~a is more involved. In order to simplify
the discussion somewhat, we first note that the Dirac bracket of (M~α)(0) and H
vanishes. Using the decomposition (3.23) one can then easily show that M~a is
conserved, provided that

(M*fc,^2)Dβ = 0, (3.29)

4 In principle one should use the total Hamiltonian, but as the Lorentz generators are invariant under
area-preserving difieomorphisms in the physical subspace (cf. (3.17)) it is sufficient to consider the
canonical Hamiltonian
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(6+,^2W = 0, (3.30)

(M-\JΪ2)DB = Q. (3.31)

The first equation is obviously satisfied as a consequence of the manifest invariance
of Jt2 under transverse rotations. While the second equation represents the
well-known fact that the invariant supermembrane mass is supersymmetric (see,
e.g. [7]), its explicit verification is not entirely straightforward, and depends on
the Jacobi identity (2.36) and an identity for anticommuting spinors,

01/02 Θ,yabθ4 + 03/04 0l7«*02 - 01/04 Θ3yabθ2

- 03/02 0ιyflA + 20402 03yβ0ι - 20! 03 02y«04 = o. (3.32)
This identity is derived from a similar identity for Lorentz spinors in the co variant
formulation of the supermembrane [5]. As is well-known, the necessity for these
identities leads to the restriction that supermembranes can only live in a d = 4, 5, 7
or 11 dimensional space-time. Using (3.32) one derives

(3.33)

so that (3.30) is satisfied in the physical subspace.
Finally, we are left with the proof of (3.31). We find it convenient to write the

result in the following way,

(M -«, Jt2)DB = A, + A2 + Λ3 + A4 + A5 + A6 + AΊ9 (3.34)
with _^

A, = P\(cABC + dABC)PB Pc, (3.35a)

A2 = Pa

A&
ABCfB

DEfc

FGXD XFXE XG

- cABCfDEFfBD

GXc XFXE XG), (3.35b)

A, = iPa

A(-dABCfc

DEX»DθBybθE - ±cABCfB

DEXb

cθDybθE

- $cABCfc

DEXb

DθBybθE + ±cABCfB

DEXb

DθcybθE), (3.35c)

A —±i(s1BDEfAGFf CY Y . Y 0 vabflΛ4 — 2i(a ] JAB ΛGb ΛC ΛFυDy UE

-BDEfAFGf Cγa ~γ ~γ r\ c\
~C J JAB ΛFΛC ΛGUDUE

+ dABCfA

FGfc

DEXFbXGcXDd θBf
b<y<θE

+ 2dΛBCfc

DEf/GX"AX
b

DXc

F ΘBγbycθG), (3.35d)

A5 = X°A(2d*BCfB

DEfc

fGXD XF XE PG

-2d*BCfE

GFfc

EDXF PBXD XG

- cBCDfAEFfBE

GXD Pc XF XG\ (3.35e)

A — Ί'Va AAECί f DE pb a r\ , r DE pb n ..bn \Λ6 — — IΛ Aa (jc rDuBybvE H- jc rBuDy UE)

+ idABC(fB

DEPCbXDcθAffθE - yA

DEPDbXEβBy
abcθc)

-ϊcΛBCfA

DEPB XcθDγ"θE, (3.35f)

AΊ = &cABEfA

CD + 2dABCfA

DE)θBθE θcfθD. (3.35g)

Observe that the evaluation of the 04-terms requires the use of the identity (3.32).
We will now show that (3.34) vanishes in the physical subspace by virtue of the



54 B. de Wit, U. Marquard and H. Nicolai

tensor identities derived in Sect. 2. Using (2.37) and (2.38) one first shows that
Aί9A2 and A3 vanish. Subsequently, one rewrites A4 and A6 in the following form:

Λ = ifA

FC(dABDfc

GE - ±2c
ABEfc

DG)X"D XF XG ΘBΘE, (3.36)

A6 = - i&A»
EfACD + dΛ

BCfADE)θcfθD XE PB, (3.37)

where, for A4, we made use of (2.36-39) and (2.43), while, for A6, we only used
(2.43). Combining the previous results, and using again (2.36) and (2.43), one finds

_ _
(\Λ~a M2\ _} J DGfACΈr EBγa γ .γ(M ,<M )ΌE-\—ac J JA XFXD'XG

fc

FGXa

FXD XG -
 l- θcfθ(cA™fA

CD - 2dABDfA

CE)

(3.38)

It is now easy to see that (3.38) becomes proportional to the constraints φA

and φλ, as result of (2.40),

ABCφA + cλBCφλ\ (3.39)

so that also the Lorentz boost operators M~a are conserved in the physical
subspace. We should stress that this result is valid irrespective of the topology of
the membrane. In the SU(N) approximation we get of course additional terms
and Lorentz invariance is inevitably broken for finite N. As the relations (2.37-40)
hold for finite N modulo terms of order 0(1/ΛΓ2), these additional terms are of
order 0(1/JV2), too. This shows that in the limit N-* oo the Lorentz symmetry is
restored.

From the fact that the Lorentz generators are conserved, it follows that these
generators must close with respect to the Dirac brackets, at least in the physical
subspace. On the other hand, an explicit verification of this closure seems to require
various new identities, such as identities for products of the otensors. As the
closure is already guranteed by the calculation of this section, we must conclude
that these new identities are already contained in the set of identities used above.
Another issue concerns the evaluation of the quantum Lorentz algebra, but as we
have pointed out in Sect. 1, this requires more insight in the structure of the
quantum divergences of supermembranes.

Appendix A: Area-Preserving Diffeomorphisms on T2

Choosing torus coordinates σ = (σl9σ2) with σ1?σ2e[0,2π), we label the basis
functions YA by two-dimensional nonzero vectors with integer components
\ = (Al9A2). They are given by

(yA(σ))* (A.I)
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With wrs(σ) = (4π2)~1(5rs it is straightforward to check that the basis functions are
normalized and to compute the various tensors defined in Sect. 2. We find

ί/AB^A + B' (A 2)

/ABC= -4π2(A x B)<5A + B+C, (A.3)

(A 4)

U ABC ~~ ^ A A °Ά + B+C' (A 5)
A A

where A x B = A1B2 — A2Bl. The normalized harmonic vectors are

φW(flr) = —<JA (A =1,2). (A.6)
2π

From these we compute the tensors (2.41) and (2.42),

(A.7)

(A.8)

The identities of Sect. 2 and, in particular, the noninvariance of c can now be
explicitly verified.

It has been recognized only recently that the structure constants of the torus
algebra can also be approximated by SU(N) structure constants [19, 10, 12]. The
essential trick is to exploit 't Hooft's twist matrices [20]. These are SU(N) matrices
Ω19Ω2, obeying [20, 21]

ΩlΩ2 = zΩ2Ω1, (A.9)

where the phase factor z must satisfy ZN = 1 (explicit representations for these
matrices can be found in [20, 21] ). For later convenience we choose N odd and put

(A.10)

To each vector A we assign a N x N matrix

TA = Nz(1/2}AίA2Ω^Ω*\ (A.ll)

Making use of the explicit representation of the twist matrices given in [20,21]
we can now show that

TA-ΓB iff Ar = BrmodN. (A. 13)

According to (A. 13) we can restrict the vectors A to some fundamental lattice, for
instance the sub-lattice defined by Al9A2 = Q9...9N —I, with the exception of the
origin Aί = A2 = 0. Hence we conclude that there are precisely N2 — I traceless
independent matrices ΓA, which we will use as the generators of SU(N).
Furthermore, if we also include the identity matrix, T0 = ATI, we have a complete
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set of N x JV matrices, which close under multiplication. One easily derives

where £A + B equals 1 ifiMr = BrmodN, and zero otherwise. From (A. 15) we define
an SU(N)-invariant tensor »/AB,

„ _ 1

^B = ̂
which coincides with (A.2). The coefficients appearing in the product rule (A. 14)
decompose into two SU(JV)-invariant tensors. One corresponds to the SU(N)
structure constants

(A. 17)

the other to the symmetric invariant tensor

(A. 18)

In (A. 18) we have extracted an extra factor JV in order to ensure that dAEC remains
finite in the limit JV-* oo. At this point, the advantage of choosing the phase factor
as in (A. 10) becomes clear: the tensors 7ABC and dABC now satisfy the proper
periodicity requirements for shifts by N unit lattice vectors. In the large-JV limit
it is obvious that

(A- 19)

(A.20)

Thus, the torus tensors /ABC and dABC can be approximated by the SU(N) tensors
/ABC and ^ABC> and moreover the large-JV corrections can be determined explicitly.
As an example, let us look at (2.39) in the finite-JV approximation. Substituting
(A.17) and (A. 18), we find

/ 1
^ABC/ [DE/ F]G = ̂ I ̂

so that (2.39) is only valid in the limit JV-> oo.
As already pointed out in Sect. 2, the definition of CA B C for finite JV is ambiguous.

We may, for instance, adopt the following definition,

2π . 2πA CΓ 2πA{ 2πA2Ί~l

^ABC = ¥sm-Ίvr^2-cosΊNΓ-cos-^J 5A + B+C, (A.22)

which is periodic and tends to (A.5) in the large-JV limit. Another question is
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whether, for finite N9 one can also incorporate the structure constants /λAB

associated with the vectors (A.6) by an extension of the SU(N) algebra. However,
imposing the Jacobi identity (2.46) for the case of A + B + C = 0, we find that

/λA(-A) +/AB(-B) + /λ(-A-B)(A + B) = ® (A.23)

Furthermore /λAB must be antisymmetric under the interchange of A and B. Under
these conditions we can show that there is no periodic solution to (A.23) so that
no consistent extension of the SU(N) structure constants exists that includes /AAB.
Nonetheless, at the level of the group, it is possible to include the corresponding
finite transformations. For the infinite lattice, the transformations generated by
(A.6) are simply the shifts σr ->> σr + cr, where cr is a constant vector. On the basis
functions (A.I) this induces the transformation

yA(σ)->exp(fc A)rA(σ). (A.24)

For the finite lattice, the phase factors for finite shifts by (4iπ/ΛΓ)e, where e is a
unit lattice vector, are obtained by conjugation with Ω± and ί22,

(A.25)

Appendix B: Area-Preserving Diffeomorphisms on S2

Several discussions of area-preserving diffeomorphisms on S2 have appeared in
the literature [3,7,9, 11], which mainly deal with the structure constants and their
SU(N) approximation. In this appendix we present a uniform treatment of all the
tensors that were introduced in Sect. 2. To facilitate their derivation we make use
of a two-component (SU(2)) notation for the spherical harmonics.

In terms of the standard angular coordinates on S2, σ1 = φe[0,2π) and
σ2 = θe [0, π), the induced metric for a two-dimensional sphere of unit area reads

.J*«-f ft'' ?4π \ 0 1

The basis functions YA are now the spherical harmonics, which can be represented
as symmetric traceless polynomials of a three-dimensional vector X(φ9 θ) of unit
length. It is convenient to adopt a two-component notation, where three-vectors
are written as

χ*β = χβa Ξ χi^2 σyβ9 (B 2)

with α,jβ, ... = 1,2 and σt the Pauli spin matrices. For a real vector X we have a
corresponding reality condition

(B.3)

Consider now the set of functions YΛ(2n)(φ, 0), where α(2n) denotes an array of 2n
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symmetrized indices oq, α2,..., α2w, which are defined as the symmetrized product
of n coordinates XΛΛ'(φ, θ\

yα(2«) Ξ J^(αια2j^α3α4 ... J^«2n- ι«2n) (β </n

For given n we have thus 2n + 1 independent polynomials, which transform
according to an irreducible representation of 50(3). Observe that the 7α(2n) are
not normalized,

^θ) 7α(2m) Yβ(2n) = v ; ^W^ - - - βα/?, (B.5)

2m

where symmetrization (with unit strength) over the indices in each array α(2n),
β(2w), etc., is understood henceforth. Furthermore, we have

DrDr Y*(2n} =-12 Y"(2n) =-n(n+ 1) Y*(2n\ (B.6)

where L are the angular momentum operators, Lt = — ίεijkX
jB/dXk, or, in

two-component notation,

L*β = 2iεγ("Xβ)δ-d—. (E.I)
dχyδ v

Here d/dXΛβ = ̂ (σlσ2Y
βd/dX\ so that

(<* β)9
(B.8)
v '

*~\ = - 2ίε(a(yLδ}β\ (B.9)

Any product of two functions yα(2m) and Yβ(2n} can be decomposed into the
same basis functions,

yα(2m) γβ(2n) _ y £)mw g^^ . . . gtβ y«(m ~ « + k)β(n -m + k) (BIO)

k " - -v - '
m + n — k

where /c = m + n, m + π — 2,..., |m — n|. The real tensor D™n is directly related to
the tensor dABC, after the appropriate normalization factors for the basis functions
YA are taken into account, and satisfies the following relations,

4k2 -I

. .
2n m + M + fe+l

The above equations are sufficient to determine DjJ"1. While (B.ll) is still rather
obvious, the proof of (B.I 2- 13) is more involved and will be discussed later. After
multiplication of (B.I 0) with another spherical harmonic and integration over S2,
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one readily deduces that ((/c!2*)2/(2/c+ I)!)/)™" must be symmetric in w, n
and k.

For the evaluation of the tensors fABC and CABC we first derive the following
expressions for arbitrary functions A and B of XΛβ(φ, θ\

wrsDrADsB = - ±(

Choosing >4 = yα<2m> and 5 = Y^(2M) and decomposing into the same set of basis
functions leads to two real tensors, F™ and CJ™, which are related to the tensors
fABC and CABC after proper normalization,

I yα(2m) γβ(2n) j — V fmn £*P £aP . . . £α^ Yα(m ~ M + fc)^(π ~ m + fc) (B. 1 6)

_2

m(m +1)
m + n — k

where

γx(m-n + k)β(n-m + k) (BIT)

_8πmn(2fc±l)

- -

* m(m+l) fc l

In deriving (B.18) and (B.19) we made use of (B.10) and (B.13). Note that F™ and
C™n are zero whenever m + n — k is even or odd, respectively. Obviously the Jacobi
identity (2.7) for the Lie brackets gives rise to a corresponding identity for the
tensor F™.

The structure constants can be approximated by those of SU(N). To show this
one introduces the matrices [3]

( 4
— - I JL(αι«2Lα3α4...Lα2,-ια2n)) (B.20)

where the LΛβ are the generators of 50(3) in the AΓ-dimensional representation, so
that Laβ LΛβ = ̂ (N2 — 1). These matrices satisfy the following conditions:

Tα(2M) = 0 for n^N, (B.21)

(B.22)

N-l

As all the Tα(2n) are independent, there are ^ (2n + 1) = N2 - 1 traceless
n = l

independent matrices τa(2n\ 0<n<N, which we may choose as the generators of

SU(N). If we also include the identity matrix, T° = ̂ ((N2 - 1)/4)1, then these
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matrices close under multiplication,

-n + k)β(n -m + k) 24)

m + n — k

where k = m + n, m + n— l, . . . , |m — n|. We note the following properties of the

coefficients {m

fc

w},

/ f™ ^ \* f™ *lΊ

m

,,„„,
Λ k \)

ί m n j

1 k J

m n j

^ m + n j

1+ n-l j

'm Π

. «-ι I
ιa.(2m)ηrβ(2ri)\

-ί_v"+"-*J" "I( ) I * J '
f n m j

1 / c f

/N 2 -l

V 4 '

= — imn,

2m N2-m2 JN2~1

2m +1 ΛΓ 2 -1 V 4 '

, V / ^mw r<xβ r<xβ r<xβ 1 \ ' ΓT I

Om I 1M - — .. Λ Λ ,11, ΛΓ2-. 1 /

(B.25)

(B.26)

(B.27)

(B.28)

(B.29)

(B.30)

2m

From (B.30) we may define an SU(N)-m variant metric, which, up to normalization
factors, yields the tensor ηAB for the spherical harmonics in the JV-xx) limit
(cf. (B.5)).

If the matrices Laβ were commuting then {m

k

n} would coincide with DJJ"1, up

to an overall factor — l)/4. The fact that the L"β are not commuting gives
rise to additional contributions, but those will be suppressed by powers of

— 1). Using this observation and the intermediate result shown in (B.14),
one can establish the following result,

m n

k

m + n — k even

-— FΓ + °(-^) L for m + n-fcodd

(B.31)

Observe that (B.31) is indeed consistent with various results that have been listed
above. As far as the large-AT behaviour is concerned, there is a qualitative agreement
between (B.31) and the coefficients that arise in the products of the SU(N) generators
for the torus (cf. (A. 19-20)). The SU(N) approximation to the tensors fABC and dABC

is therefore given by the coefficients {m

k

n} and ^/4/(N2 - 1){V}, multiplied by
the appropriate product of ε-symbols and the normalization factors for the spherical
harmonics. The SU(N) approximation of the tensor CABC then follows from (B.19).

The coefficients {m

k

n} are subject to the following recurrency relations, which,
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when combined with (B.26-28), allow their complete determination,

n} k2 -(m-n)2N2 -k2 f m n]

(B.32)

k+l[ fc - 2 J 4k2 - 1 JV2 - 1

k(k - 1) - m(m -hi)- n(n + 1)

m + n + k + 1

n — m + k f m t t ] 2k+1 fm n — 1

jm n j

I *-l Γ

2rc [ k J m + π + fc+Hfc-1

_i k(fc + l)-φ-l) + ιφ + k ) f m n-1

m + n + k + 1

m — n + k + 2N2-n2 \m

(B.33)

2k + 3 N2-

i (m + n + k + 2)(m - n - k - l)(n - k - 1) fm

2n(2k +
(B.34)

These relations have been derived by using the associativity of the matrix product,
(τα(2m)T^(2n))Tv(2) = Tα(2m)(τ^(2W)Tv(2))? ̂  substituting (β.24) and the explicit

expressions for {V}. The latter have been calculated separately (cf. (B.27-29)).
For m + n - k even, (B.32-34) become degenerate in the large-JV limit and yield
(B.I 2- 13). Obviously, the associativity of the matrix product can be used to derive
more identities for products of the {m

k

n}.
Finally, we come to the relation between the area-preserving diffeomorphisms

generated in the N -» oo limit of the torus and the sphere. Clearly, for finite N, the
generators TA of the torus algebra can be decomposed in terms of the generators
Tα(2") of the sphere algebra. For instance, using the results given above, we can
explicitly compare the diagonal generators of both algebras. In a basis where L12

(which is equal to z'L3 in Cartesian coordinates) is diagonal, we may choose
ί21=exp(4πL12/AΓ), so that

where Mn0 are the elements of an N x N matrix M, defined by

n2 N2 _ 2

(\nM)n_ln=-2πA^--^

(B.36)
n = 0,...,N- 1,

and all remaining elements of In M equal to zero. From the left-hand side of (B.35)
it is clear that M00 = 0, unless ^4 = 0 mod N9 although this property is not manifest
for the right-hand side of this equation. For Λf-> oo, (B.35) defines a map between
the torus functions Y(AίQ) and functions on the sphere, expressed as a series
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expansion in terms of the spherical harmonics y1^)2^). Although the functions
corresponding to (B.35) are relatively simple, as they are only functions of one
coordinate of the torus and the sphere, respectively, this example demonstrates
the complexity of the relation between the two sets of functions. However, in view
of the different topological structure of the torus and the sphere, it is unlikely that
the torus functions 7A will always lead to functions that are differentiable on the
sphere.

Acknowledgements. We are grateful to E. Bergshoeff and M. Lϋscher for clarifying discussions.

Note added. Recently, the relation between the algebra of area-preserving diffeomorphisms on 5 l2 and
the algebras used for the description of higher-spin gauge fields [22] received some attention [11, 23],
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