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Abstract. We study the superextension of the semi-infinite cohomology theory
of the Virasoro Algebra. In particular, we examine the BRST complex with
coefficients in the Fock Space of the RNS superstring. We prove a theorem
of vanishing cohomology, and establish the unitary equivalence between a
positive definite transversal space, a physical subspace and the zeroth coho-
mology group. The cohomology of a subcomplex is identified as the covariant
equivalent of the well-known GSO subspace. An exceptional case to the
vanishing theorem is discussed.

0. Introduction

The BRST approach has long been known to be an effective method for studying
quantization of string theories. It was first applied to the Virasoro algebra of the
bosonic string by Kato and Ogawa [11]. Based on a vanishing theorem, unitary
equivalence between the BRST cohomology groups and the physical spaces known
to physicists was proven by Frenkel, Garland and Zuckerman (FGZ) [5,17]. They
have also provided a conceptual proof of the no-ghost theorem. Several authors
have recently studied the BRST quantization of the Ramond—Neveu—Schwarz
(RNS) model [13, 15]. In their work, a BRST differential operator was defined and
shown to be nilpotent at the critical dimension of spacetime D = 10 together with
an appropriate normal ordering. An extension of the GSO (Gilozzi, Scherk,
Olive)-projection was also proposed.

In this paper, we apply some of the ideas introduced in [5] to the Super-Virasoro
algebras. Using some standard techniques in homological algebra, we prove a
vanishing theorem. Formal characters and signatures of the cohomology groups
are expressed in terms of modular functions. We show that the canonical hermitian
forms on the BRST complexes naturally lead to ones on the relative subcomplexes
and induce an (positive definite) inner product on the physical spaces. We define
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a natural generalization of the GSO projection and show that it coincides with
that proposed in [13,15].

We now outline the organization of this paper. In Sect. I, we review a
construction of the BRST complexes of the RNS model, mostly following the
notations of [19]. In Sect. 2, we define the relative BRST complexes and examine
several important consequences of the vanishing theorem and we study the
hermitian structures on the complexes. We also discuss the correspondence between
the zeroth relative cohomology classes and the physical states known to physicists.
In Sect. 3, we discuss the proof of the vanishing theorem. The generalization of
the GSO projection is defined and shown to have the required properties in Sect.
4. Finally, in Sect. 5, we return to the BRST complexes and examine their
cohomology. An exceptional case to the vanishing theorem is discussed.

1. BRST Complex of the RNS Model

The Super-Virasoro algebras Vir, are super-extensions of the Virasoro algebra
given by

(s Ly = 0= W)L+ 0% = 26m)0 s B = O noh
[Lma Gn+x] = (%m —hn— K)Gm+n+m

{Gm+x’ Gn—-x} = 2Lm+n + %(mZ + 2Km)5m+ns

[Lm’ C] = O = [C, Gm+x]’

where m,neZ,x =0,3. Vir, is called the Ramond algebra and Vir,, is called
the Neveu-Schwarz algebra. Vir, has a Z,-grading: respectively || CL ,@ Cc,

neZ

1 CG,+, are the even and odd parts of Vir,. These algebras arise as the “covariant
neZ

constraints” in the classical formulation of the RNS model [12, 14, 19].

Two important representations of each of these algebras are well-known. They
are Fock spaces constructed from certain complex super Heisenberg algebras.
We will briefly review them here. Since we will consider both Vir,, k=03,
simultaneously, whenever x appears unspecified, we will mean either case.

Consider the infinite dimensional super Heisenberg algebra with the Lie
brackets

Lo, o] = mé,y 4,9 1d,
[ah, dniic]=0,
{dhsrodn—} = Omsng" 1d,
where m,neZ,u,v=1,...,D,g" is the inverse of the Lorentz metric with signature
((D—=1)4, 1—) and Id denotes the center. For each peR?~ %!, there corre-

sponds an irreducible representation of this algebra. It is the linear space
V(p, k) = R(p, k) ® U(x), where U(k) is the space of polynomials C[a* ,,d* . . ]|p)>*

! Unless otherwise stated, n in this notation is always ranging over N ={1,2,...} and g over {1,...,D}.
The same notation will be used in the future without specifying these ranges of n and u
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which respect the above commutation relations, and R(p, %) = C, R(p, 0) is the spinor
representation of Spin(D — 1,1) in which df acts. We will sometimes drop the
factor R(p,3) when x=43. Here |p) denotes the highest weight vector with
oablpy=di_ \p>=0 for n>0, af|p> =p*|p>=0. In all subsequent uses, p will
always be assumed non-zero until Sect. 5. The operator of is interpreted as the
“center of mass momentum,” also denoted by p. Let

n(Lm =%Z SOy gt +%Z(%m +hn— K):d—n+xldm+n—1<:
neZ neZ

n(Gm+K) = Z OC—n.drH-m+K9
neZ

where
Oty = guvaﬁa:n lf m> 0,
=g, 0, otherwise,
and
:dn+x'dm—;<: = guvdﬁ+xd:"_x if m>0
= —g,dy_.di,, otherwise.
Note that we have summed over repeated Greek indices. In view of the commutation

relations, the normal ordering : : above is well-defined. A direct calculation (see
[19] for example) shows that

Proposition 1.1.

D-1d,
8

[n(Lm)> n(Gn+x)] = (%m —n— K)n(Gm+n+K)a

D-1
{n(Gm+xs n(Gn—k)} = 27t(Lm+n) + 2dV

(L) 7(Ly) ] = (m — )7Ly 1) +

(m2 - 2Km)6m+ns

(m2 + 2Km)5m +ns

where m,neZ.

Thus for n(c) = D-1d,,, (V(p, ), n) is a representation of Vir,.. This representation
has long been known in physics as the “matter sector” of the Super-Virasoro
algebras. We will call this the Fock space.

The ghost sector is constructed as follows. Consider the infinite dimensional
complex super Heisenberg algebra with Lie brackets:

[Vm -+ Br-r] = Omn1d, (1)
{Cm> bu} = Om+n1d, ©)
[mt s €] = [Vm+Od = [Cms Bu—icd = [bms Bu-1c] =0, 3)
{b1s B} = {Cus Cm} = Dmtreo Vntd = Bt Basnd =0, m,neZ )

Friedan and coworkers [6] have defined a class of irreducible representations of
(1). Specify a vacuum vector |qg), qg€Z + k and let

ﬂn+x'q8> =0 for n+Kk> —{p,
Tn+xlqp) =0 for n+x2=gs.



304 B. H. Lian and G. J. Zuckerman

The representation space is then the linear space of monomials generated by the
commuting operators { B, + > Ym+x> N+ Kk < —qg,m + Kk < qg}. The parameter gg is
called the Bose-sea charge (Note: g here differs from that in [6] by a constant).
Representations corresponding to distinct charges are inequivalent. We denote
each of them by 7.

A similar class of irreducible representations of (2) is defined by specifying a
vacuum |qz), qp€Z and letting

b,lgp> =0 for n> —gqp,
clqry =0 for nz=gqg.

The representation space is the linear space spanned by the monomials generated
by the anti-commuting operators {b,,c,,n< —qp,m<qp}. qp is called the
Fermi-sea charge. Each of these representations is equivalent to the linear space
of semi-infinite forms constructed by Feigin [4] and FGZ [5]. To be definite, we
fix gr =0 and denote the space by A, and denote its vacuum vector by |g = 0).
Note that under the above equivalence we can identify |gz» withb_,b_, . {---bo|0)
for n=gr—12=0 and with ¢,c,.{---c_,]|0) for n=¢g <O0.
Define

p(Lm) = Z (n '_m):c—-nbn+m: + Z (%m_n - K):y-—n—xﬁn+m+x: - K5m=

neZ nez

p(Gm+k) =-2 Z‘éb—n’yn+m+x + ZZ %— m— K)C—nﬁn+m+x’
where

b = Cybp if m>0
= —b,c, otherwise

and

:Yn+Kﬂm*x:=Yn+Kﬁm~K lf m>0
=B u—xVu+x Otherwise.

Similar to Proposition 1.1, one has (see [19])

Proposition 1.2. For qgeZ +x, (A,® T ,,,p) is a representation of Vir, iff
plo)=—-101d, g, . ‘
It is sometimes convenient to write the above representations of Vir, in terms
of generating functions or “quantum fields.” Let (cf. [6])
biz)= Y b,z7""?

neZ

o(2)=3 ez ™",
neZ

B@) =) Buruz ™" T2,

neZ

'Y(Z) = z yn+xz_"—x+ 1/29
neZ

TV(Z) = Z TE(Ln)Z_n_ 25

neZ



BRST Cohomology of Super-Virasoro Algebras 305

e9_V(Z) = Z n(Gn+k)Z_n_x—3/2’
neZ

To(z)= ZZP(L,.)Z'”’Z,

7 ol2) = ZZP(GHK)Z_""‘—“Z.

Then

d 1
Tal2) =2e(2) b + 2 cble): — 1370e) o le) — 3 o ),

T qlz) = —2b(zy(z) + C(Z)— B(2) + oy C(Z)ﬁ(z)

We now construct hermitian bilinear forms (,)g, (,)y»> (-) 45 (,)5 On each of the
spaces: R(p, k), U(x), A, 7 ,,. The notations (,) <,) will be used interchangeably.

Definition 1.3.

(i) For k =4, (recall that R(p,3) =C) let {1,1)p=1.

(i) For k=0, will assume that D=10. Let W', ¥!, i=1,...,2P?"!
be a basis of R(p,0) with definite chirality and satisfying p-d,¥: = ¥* . Set

Wi Wiy e=/—169 (Wi Wiy,=0=(¥ Wi Y. For pp<0, we set

I\Wi =+ W, [\W =—Y', where I'y is the chirality operator of R(p,0),
I'y=2%dy);,...,(do)1o. For pp=0, half of ¥, and half of W' are in
Ker(I'y — 1) and the other two halves are in Ker (1o + 1).

Remark. We note that (,)r above is defined so that (p-dy)* = — p-d,. We will see
later that this indeed gives the correct signature for the physical space. For
convenience, we will assume that p is always in the future half R2~ 11 of RP~ 11,
ie. RE™ %1 = {peRP~11:pP > 0}. For if we allow p® < 0, “time reversal” will reverse
the signature of (,)z. The construction of the “chiral” basis in the above definition
is quite standard, and the reader is referred to [19] for details.

To define (,)y, let ab* =, dt_ ¥ =d* ,..,n=1,2,3,...and (|p), |p>)y=1.
It is well known that these conditions define a unique non-degenerate hermitian
form on U(k) = C[a* ,,d" , ;. ]|p). Similarly a non-degenerate hermitian form (,) ,
on A is defined by ¢c¥=c_,, b¥=b_,, neZ, and (|qz),| — qr + 1)) ,= 1 (for any
quZ) Before we look at the hermitian forms on ,_, we state the following lemma.

qB°

Lemma 14. Let o/ be a complex Heisenberg Lie algebra with a canonical
basis {a;,c;,1d,i€Z} such that [a;,a;]=0=[c;c;] and [a;c;]=0;Id. Let

T=Sym][[Cc) be the representation of & in which a(c;) acts by derivation
icZ

(multiplication), and <, > be a hermitian form on T. If cfes/ for all k and a¥ = a;

for some i,j then {,»;=0.

Proof. 1t is enough to show that {ul,1>; =0 for an arbitrary monomial u of the
c’s. Now <{ul, 1>y =<pul,[a;,c]11) =<ul,a;c,1) = cFa;ul, 1). If aul =0, then
{u1,15>7=0. If not, then u = cju’ for some n >0 and some monomial x’ such that
[#,a;]1=0. Thus

0={c;ul,a;1) =<aje;pl, 1) =(n+ D)<l 1), O
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The lemma states that the representation T does not admit a non-degenerate
hermitian form for which an annihilator (derivation) a; is conjugate to another
annihilator a;. We now search among the J ., qgeZ + «, for a representation
that has a non-degenerate hermitian form such that

Y:+K=’Y—n—x ﬁ:r+k= _ﬂ—n—lc' (5)

Thus the y’s the s and their conjugates are creators or annihilators on each 7,

Lemma 1.4 implies that in order for 7, to admit such a hermitian form, g must
be chosen so that the conjugate of any annihilator is never an annihilator. We find
that for k =1, then gz =3 is the only choice. For if g5 > 3(qp <%), then B,,, and
BY2(y12 and y%),) are both annihilators on ;.. When x =0, there is no such
choice. For if g5 >0 (g5 £ 0), then S, and S(y, and y§) are both annihilators on
7 .- However, consider the spaces 7, and 7 ,, ®J _,, + 1, qp # 3. Each of them
actually admits a non-degenerate hermitian form with property (5). If we let

(see [6])
(Ig8>, 1 —qp+ D)y =1, qgeZ+x (6)

then (5), (6) together defines a unique non-degenerate pairing between 7 ,, and
T _.s+1- Note that with respect to (,),, the conjugate of an annihilator is always
a creator. Each of the spaces 7, or 7, @ _,, .1, qp #% inherits a natural
gradation from the graded operators, y,,, and f,.., with degy,, ., =n+xk=
deg B,+.. A space in which deg (or “energy”) is bounded neither above nor below
will give rise to various difficulties. Fortunately, for each sector k = 3,0, there is a
unique such space in which deg is bounded above, namely

‘9_1/2 fOI‘ K=%
To®T,; for k=0. 7

Therefore we will restrict to these spaces for our construction. Denote

Clp,x)=R(p,0)@UO)® A, ®(9‘0®9'1) if k=0
_R(pa2)®U(2)®A 1/2 if K=% (8)

Definition 1.4. Define {,>c on C(p,«) as the tensor product of the four hermitian
Jorms (<, >us) 4,50 7 defined above.

We now define a Z,-gradation on R,U, A, 7, and hence on %, as follows:
¥ is Z,-even (Z,-odd) if I'\¥= + ¥(=—"P) for rc 0. Since U, A, 7 ,, are all
linear spaces of polynomials, it is enough to assign a Z,-grading to the generators
and the vacuo. Let a¥,|p) be Z,-even and d*_, be Z,-odd. Let b,,c,,|qr =0) be
Z,-odd and B, _,,7,-«,|q5> be Z,-even.

We extend the action of b, ¢,, d4, ., o, Buirx> Vusw» 10 C (p,x) by demanding
that (indices omitted)

{b9d} =[b,a]= (b, B] =[b, y]1=0,
{C, d} = [C’ “] = [C, B] = [C, )’] = 07
[d,f1=1[d,y] = [o, f1= [, 7] =0.
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More precisely, we let the b,,c,,d4, ., 0%, Byt Vusr act on C(p, k) as
(1) ®b6,®1, (-1)®a®l, . ®1,81,,
06:,"@1,\@19-, 1v®1/\®ﬁn+m 1V®1A®yn+x

respectively. (Note: If T is a Z,-graded vector space (—1)7w = + o if w is Z,-even,
—w if w is Z,-odd.) Using these definitions of the actions, one can easily check
the following

Proposition 1.5. With respect to <{,)c, the above operators on C(p,x) have the
following hermiticity property:

(@) For k=1,

* * — © * — K
bn—b—m Cn =Cn> dn+1/2 _d—n—l/Z’

k __ i %k — * — .
ar=0o,, Briip=—B-n_120 Vm+12=V-n-12» NE€L;
(i) For k=0,
bf=-b_,, cf=—c_, d*=-d",,
* ol * — * —
Oy = Ay, n — _ﬂ—na Yn =7 -n> nel.

Definition 1.6 [19]. Define the BRST, Kinetic, Dirac—Ramond, and the ghost-number
operators:

Q= Z (n(L—n)cn+n(G-n+x)vn—x_%(m_’n): bm+nc—mc—n:

n,meZ
+ (%n +m+ K):c—nﬁ—m—xym+n+x: ~y—m—x7—n+xbm+n) - KCO,
K(=mn(Lo) + p(Lo)) = Y, (t—y 0ty + (n—1)d_ 1 @y +nC_,b, +nb_,c,

n>0
_(n_ K)'})—n+xﬁn~1< + (n - K)ﬁ—n+x?n—x) +%PP — K,
DR(= TC(GO) + P(Go)) = de + ZO (a—-n'dn + d—n'an

- 2b—n')’n - 2y—nbn + %nc—nﬁn - %nﬁ-'ncn) - 2b0'y0:
U= cObO + Z (C_,,b,, - b-ncn - Y—n+Kﬁn—x - B—n+xyn—x)_(1 ~ZK)‘)}—;(ﬁﬂc_K‘

n>0

We note that Q can be interpreted as the charge of some BRST current [6], i.e.

1
Q= Z:—ij J(2)dz,

where
J(@)=:Tyc(z) + T y7(2) + 3 Tqcl2) + 37 o)(2):,
and the integral means taking Res, . o(J(2)).
Proposition 1.7.
(i) All the operator sums above are well-defined on C, i.e. for each veC, only finitely

many of the operator products in each sum act non-trivially on v.
(il) Q% =0 iff D = 10.
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(iii) D= —Dg,K* =K, Q* =(—1)**"1Q with respect to {, ).
(iv) [Q,K]=0.
(V) {Q’DR} =0.
(i) [U,Q]=0.
(vii) [U,K]=0.
(vili) [U,Dg]=0.
(ix) D2 =K.
(x) For k=0, Q=Kco+ Mby+ Dgyo+ NBo + Qo + boys, where M,N,Q, are
some operator sums of products of b,, B, Cp,Vn, REZ\O.
(xi) For k=%,Q =Kcy+ Mby+ Q,, where M,Q, are some operator sums of
products of b,, B+ 1/2>Cn> Ym+1/2> NEL\O, meZ.

Proof.
(i) is a direct consequence of the normal ordering in the operator sums.
(ii) is done in [13,15].
(iii) follows from Proposition 1.5.
(iv) to (viii) are obtained by straightforward computations, some of which are done
in [13, 15, 19].
(ix)
D% =3{n(Go) + p(Go), M(G) + p(Go) }

=m(Lo) + p(Lo) = K.

(x) and (xi) Calculations are done in [13]. [

It is obvious that K, U are diagonalizable in C(p, x) and their eigenvalues are
respectively [(1 —k)Z +4p-p]l- and (Z + k)-valued. Thus C(p, k) is turned into a
doubly graded space. By convention, we let C(p, k) be graded by U and —K:

C=C(p,x)= [] C, C= 11 crs,
reZ+x se(1—x)Z—(1/2)p'p
where C* = {veC:Uv =rv, Kv = — sv}.
- From now on, we will take D = 10. Then by Proposition 1.7 (ii), (iv), (vi), (C*, Q)
is a complex with Q:C"¥— C"* 1,

Definition 1.8. The (Z + k)-graded complex (C*(p, k), Q) is called the BRST complex.
Its cohomology is denoted by H*(p, k).

We note here that since the eigenvalues of — K are bounded above, for all
sufficiently large positive s (independent of r) C"**=0. We will call the Z + -
gradation, the ghost-number, and call the (1 — k)Z — 3p-p-gradation, the degree.
Finally, we state an important fact about {, . which follows from its definition.
Proposition 1.9. For eachr,s, <, is non-degenerate when restricted to C"** @ C™"*.
In particular it is non-degenerate in each eigenspace of K and in the whole C(p, k).

2. Relative BRST Cohomology

Proposition 2.1. [13] {Q,bo} =K, [0Q, o] = Dg.
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Definition 2.2. Define the subspaces of C'(p,x),reZ + k,

%" (p,x)=Kerb, for 1, reZ+«x
=Kerby,nKer f, for 0, reZ
F"(p,k)=%""*(p,k)nKerK for neZ
Cra(p; ¥) = F"(p, ) for k=3
=%"p,k)nKerDy for x=0.

We write B= || #*F =[] %" and C,, = 1] Cra.
neZ

aeZ+x neZ

K
K

Remark. Note that %(p,k) is the linear span of canonical basis vectors of the
form Y*® A|p)®Blqgr=1)>®C|qg=1—x), where 4,B,C are monomials in
Clo* ,,d* ,+ 1, C[b_,,c_,] and C[B_, .,V —n+r]? respectively. Similarly, Z (p, k)
is the (finite dimensional) linear span of those canonical basis vectors with
deg A +degB+degC=p-p/2—«k.

By Proposition 2.1 and Definition 2.2, we see that Q leaves C,,, invariant and
that C,,, is graded by U + «:

1 ={v€C.:(U + k)v =nv}, neZ.
Since [U, Q] = Q,(C¥%,(p,x), Q) is a Z-graded complex.

Definition 2.3. (C%,(p, k), Q) is called the relative BRST complex. Its cohomology is
denoted by HX,(p,x). We will also call the Z-gradation of the complex given by
U + k, the ghost-number.

Theorem 2.4. Suppose p #0: then H%,(p,k) =0 unless n=0.

This is the analogue of the vanishing theorem proven by FGZ. We will see
that as consequences, the zeroth relative cohomology group can be identified with
the positive definite subspace of physical states and that its Euler characteristic
and signature is closely related to various modular functions [10, 17]. We will first
discuss these consequences and will return to the proof of this theorem in the next
section.

In order for H2,(p, k) to be physical, there must be an inner product. Does
there exist such a “natural” inner product? We need first a hermitian form on the
complex C,,(p; k).

Proposition 2.5. (, ). is identically zero when restricted to %(p,x) and hence to
Crel(pa K)'

Proof. Since C,.(p, ) = B(p, k), it is enough to show that {, ) = 0 when restricted
to &(p,x). Since {by,co} =1 and b} =0, we have Kerb,=Imb,. Thus by
Definition 2.2, 4(p, k) = by C(p, k). Proposition 1.5 implies that b¥ = + b,. Thus
<’>C500n '@(pax) r——l

Definition 2.6. For k=7, define the hermitian form on #(p,%) by (-," > =<",¢oX12" Ves
where 3y, =(—1)€ is the Z,-grading on C(p,%).

2 See footnote on notation in Sect. 1
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Note: #(p,3) =boC(p,3), {bo, o} = 1, together with the second part of Proposition
1.9 implies that {-,-), is non-degenerate on %(p,«). Hermiticity can be easily
checked.

The case k = 0 requires special treatment. In fact, (-, cy* )¢ =0 when restricted
t0 C,e1(p, 0) = B(p,0) = V(p,0) @ by A, ® T, nKer f, because (I ,,T ;) ,=0.To
define {,),, on C,,(p,0), we need to understand the structure of the space
better. First note that D =K, {Dg,by} =0 and [Dg,Bo]= —2b,. It follows
that # - % —» % is a complex (¥ = Kerb,nKer f,nKer K), with Dg|; as its
differential.

Theorem 2.7. Assume p#0: the above complex has zero cohomology. Thus
Crel(p’ O) = Dky(p’ 0)

Proof. For p #0, say p* #0, we have {Dg|,,ds/p'} = 1. Applying this formula on
QeKer Dgl,, one sees that Qelm Dy|,. Thus, Ker Dyl =ImDgl,. O

Note that (7,7 ), =0 because {,), is a non-degenerate pairing between
T, and ;. Also 7 ,nKerf,=C[B_,,7-nllgg=1).> Thus, following [6,16],
we define a “picture changing operator”

X CLB-ny-nllap=1>>C[B_,,7-,1145=0)
by
XsPlgp=1)=Plgp=0)
for any PeC[f_,,v_,]

Definition 2.8. Define a hermitian form on %(p,0) by {,coXo >c, Where o=
(=11, ®1,®y,, and (— 1) is the Z,-grading on C(p,0).

Again it is easy to check hermiticity and non-degeneracy. Furthermore,
it follows from the commutation relations (Egs. (1) to (4) in Sect. 1) and
Proposition 1.5 that

Proposition 2.9.

(i) With respect to {,coXo'Yc on %B(p,0),
by=—-b_, ct=-c., di=-d-,
Br=—B-n vi=v-, i =ak, neZ

(except for by, co, Bo, Vo)
(ii) With respect to {",coX1/2" >c on #(p,3),

*

by=b_, cr=c_, di_yp=d% i1
*

ﬁ:‘—l/2= —ﬁ—n+1/2 V:—1/2=?—n+1/2 af =at,, nel

(except for by, co).

3 See footnote on notation in Sect. 1
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Proposition 2.10.

1) {yceoxo e restricted to F(p,0) is non-degenerate.
(i) Dglk = — Dglgz. Thus {,coxo e =0 when restricted to C,q(p,0)= % (p,0)n
Ker Dy.

(iti) (-, cox1/27Yc restricted to C,o(p,3) = F(p,3) is non-degenerate.
Proof.
(i) Recall that <-,cqyyo" ¢ is non-degenerate on %(p,0) and that & (p,0) = %(p,0)n
Ker K. Given ue % (p,0)\0, we can find ve#(p,0) such that {u,cyxov )¢ #0. Since
Ku =0 and K* = K with respect to {,)¢, we can choose veKer K.
(ii) Since Z(p,0) = &(p,0), it is enough to check Dg|% = — Dg|, with respect to
{*,CoXo" Yc- But this follows from Proposition 2.9 and that cy), commutes with
all the generators (except by, ¢y, o, 7o) Now Dg|% = K acts like zero in % (p,0).
Using Theorem 2.7 and Dg|% = — Dg|, we have the result.
(iii) Since Z(p,3) = %(p,3)nKer K, the argument for (i) applies here. []

Now using Theorem 2.7 and Proposition 2.10, we have the following well-defined
non-degenerate hermitian form on C,,(p, k).

Definition 2.11. Define the hermitian form <,).q on C.,(p,x) as follows: for
uavecrel(pa K)a let

<u’v>rel=<uav>g if K’=%
= /=1 u,d, if k=0 where v=Dgi.

Remark. In the case k = 0, although the way { ), is defined seems rather peculiar,
given any u,veC,,(p,0) one can in principle compute {u,v),,;. Note first that

0D =</ =1, D)4 v=Dgbd
is independent of the choice of 9. For if v = Db = Dy, then
U0 —Dyy=—<t,Dg(0 — 7)), =0.

Recall that (Theorem 2.7) there is a contracting homotopy ¢:# — & such that
{Dg,¢} = 1. Then one finds that

Cu,ev) g = U, eD0Y 5 = {u, 0),.
Thus

<u7 v>rel = 1 <U, 8U>g.

It is remarkable that the right-hand side of this equation is independent of the
choice .

Definition 2.12.

() If Tis a$Z-graded vector space, T= [] T", with a non-degenerate hermitian
nei)2z
Sform {,> ¢, then we call T hermitian. Suppose dim T" < + oo for alln and T" =0

for all large enough positive n. Then the character and signature of T are
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respectively
¢h,T= Y dimT "q¢",
nel/2Z
sign,T= Y, signT"q", where
nel/2Z

sign T" =#{+ signs of {,); restricted to T" in its diagonal form}
—# {— signs of {, )y restricted to T" in its diagonal form}.

@) If (C*,Q) is a complex with finite support and Z-gradation, then we write
char C = Y (—1)*dim C*.

keZ

Definition 2.13. [10] Let o(g)= l_[0 1—=g" 9o =0@*ed® ™!, ¢12@)=
0(q"*)e(@*)(q) ™", and p(n), ne(1 — k)Z, be the coefficient of q" in ¢,(q)".
Proposition 2.14.
(i) Q* = Q with respect t0 {, ;e
(i) char C,(p, k) = 3(2k + 1) dim R(p, K)p{¥(k — (pp/2)) = sign C,,(p, k).
Proof.
(i) Recall that %(p,x)=byC(p,x). Similarly, F(p,k)=bo(C(p,x)nKerK). For
K= %9 Crel(p’%) = ?(pa%) Let u, Uecrel(pa%)' Then

QU vy = QU Co Y12V e = LUy CoX1/2Q0 D¢ + <, {Q, Co} X120 Ve 6y

But u = by, v = b0 for some 4, e C(p, k)" Ker K and [by, {Q,co}]=0. Thus, the
second term of (1) vanishes because b = b, and b3 = 0. Thus the Right-hand side
of (1) is <u, Qv),;. By non-degeneracy we have Q* = Q. For k =0, let u,veC,(p, 0).
By Theorem 2.7,

u=Dgl, v=Dgd forsome #,5e%(p,0).
By definition,

(Qu, 0y =/~ 1{QDsil, 04 = \/~ 1{QDgdh o100 )
As in the case of k=41, the right-hand side = — \/——‘1 {Dgih, coxoQ0>c =
- \/——1<DR12, 00> 5= {u,Qv),, since Qu= —DpQp. Thus Q* =Q.
(ii) Recall that 4(p, ) is the linear span of the canonical basis vectors of the form
Q=No¥' @ 1@ )2 (dL 4, )" (@2 1 )52 |p=0)
®(c-q)"(c-2)" (b )"(b-2)" - |gr =1
-1+ (=24 (Bo 14 B2+ lgp=1—1), 3

where the powers m;,n;,q;,€{0,1},k;,1;,p;,€{0,1,2,...} such that all but finitely
many of these powers are zero. { ¥} is a basis of R(p,x) and N , is some fixed but
yet undetermined positive constant. We will denote the basis by A. Recall also
that # (p, k) = %(p, k) " Ker K (Definition 2.2). Thus & (p, k) is the zeroth eigenspace
of K. Note that this subspace is Z-graded by U + k, i.e. #"(p, k) is the nth eigenspace
of U + k. Thus we have

Y (—1)y"dim #"(p, k) = const term Tr {(— 1)” **¢*(4) D siyiar- @

neZ
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Here {(— 1)V **qX(A) sivia; 18 the matrix of the operator (— 1)V **¢X in the basis 4,
with respect to the bilinear form defined by <{£2,0Q2") ;a1 =90 o, 2, 2'€A. Now
using the explicit expression for the ghost number operator U and the kinetic
operator K together with the above basis A, direct calculations give

Tr (= D7 q%A) Dieiviar = 4772 7 9,(q) ™ ® dim R(p, x). &)

For k=4, C"y(p,%)=Z"(p,%). Thus (4) and (5) give the desired result for
char C,(p,3). For k = 0, unfortunately the above formula for char does not hold.
However, Theorem 2.7 implies that

dim #"(p,0) = 2 dim C’,(p, 0). (6)
Thus (4), (5) and (6) give the desired result for char C,(p,0). O

To compute the signatures, we introduce the following notion, Let A =
{ay,a,,...,ay} be a basis of a hermitian space W, and L:W — W be linear. Then
(L(A))w denotes the matrix whose (i, j)-entry is {a;, La;>y. We say that 4 has the

canonical pairing property with respect to {, )y, if the matrix {1(A) ), has exactly
one non-zero entry in each column and {a;,a;> =0 or +1 for each (i, j).

Lemma 2.14.1 If A has the canonical pairing property, then
sign W =Tr (1(A4) -

Proof. Let A= {a,---ay}. By reordering, we can assume that for each i, exactly
one of <a;,a; - 1 Dw, @i a;Dw, {a;, a; 4 1 yw 18 nonzero (ao =0 = ay, ;). Thus {1(4) >y
is block diagonal, each block being of the form +[1] or

2

Thus, its diagonal form O<{1(4))», O (where O is an orthogonal matrix) can be
obtained from {1(4))y by replacing

o)
[I/Bﬁ —I?ﬁ]'

By definition, sign W= ) sign(O{1(4)>y0");. But the right-hand side=
i=TN
Z‘N@z, WA)apw =Tr{l(A)dw. O

i=1--

by

Remark. sign W =Tr (1(A) )y does not hold for an arbitrary basis A.
Counter Example. Let W =R?* A ={a,,a,} be a basis,

1
{ay,a,pw=0,{ay,a,)p =<a,a,)w =\—/2‘, {ay,a)w=1.

Then obviously Tr {1(4) )y = 1. But sign W =0.
We now compute sign C,.(p,1). Denote the canonical basis (given by (3)) of



314 B. H. Lian and G. J. Zuckerman

the subspace %#*(p,3) = Ker (K — (p'p/2) + 3 — s)n%(p,%) by A,. Then A = | ) A, is

the canonical basis of #(p,3)= @ %*(p,3). Because R(p,3)=C, we will drop
se€l/22Z +

¥ from (3) for k =13.

Lemma 2.14.2. For each s, the basis A; of %°(p,%) (with suitable normalization
constant N g; see (3)) has the canonical pairing property with respect to (-, > ,.

Proof. Let 2,0 be two canonical basis vectors. Then
2,05 5= 82,0012 >c #0,
iff
m;=n;, n,=m; k;=I.
i=kis Piw=DPi> Gin=dips
for all i, u, where the powers with (without) primes correspond to the basis vector

£2'(2). This implies that each Qe A, pairs with exactly one other 2’ 4,. Thus we
can choose N, so that each matrix entry of {1(4,)), is either 0 or +1. [

Now C,.\(p,3) = #*(p,3) for s= —(p-p/2) + 3. Thus by the above two lemmas:
Sign Crel(po %) =Tr <1(As) >.43

= const term [ Yy, gteprmUdTy <1(A,)>@]
rel/2Z +
= const term Tr {g%(4) ) . (7)
Using the above basis vectors and the commutation relations in Sect. 1 to do direct
calculations, we get
Tri{g¥A)a=q" PP~ g, ,(q)"" ®)

Combining (7) and (8) gives the desired result for sign C,.(p,3).

We now turn to x=0. This calculation is slightly less trivial because
C..(p,0) = F(p,0)nKer Dy and Dy, is in general not diagonal in the basis defined
by (3). Note also that C,(p,0) is zero unless p-p/2 is a non-positive integer.

Case 1. p-p=0. One can easily check that (Definition 1.3)

Cia(p,0)=Span {¥ . ®Ip>®lgr= 1) ®lgz=1),i=1,...,16}.
Using Definition 1.3, 2.11, we have

sign Cat(p,0) = ), Y ~{(PL®IP®lgr=1>Qlgz=1,

i=1,...,

i=1,...,

Case 2. p-p/2 is negative integer. There are a few facts we need to establish first.
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Recall (Definition 2.2) that*
#(p,0) = R(p,0)® C[o ., d" ] p>

®C[b—n: —n]|qF_1>®C[.B—nay—n]|qB=1>' (9)
Then %(p,0)=R(p,0)® ¥, where we denote the last three factors as <.
Let ¥ = l/ﬁ(l/m wi 4+ /—1¥.) (cf Definition 1.3). Then p-d,¥i =

+/—1m¥Py and m(WYy, Wi dp= £6,, (¥, P g =0,forij=1,...,16, and

m=./—p-p/2. Let {&(s,k) }y=1 . a5V {O(S, 1) }1=1 .. n e the canonical monomials
in C[o*,,,d*,1®C[b_,,c_,]®C[B_,,y_,] such that for each s=1,2,...,

(1) [K,e(s, k)] = se(s, k), [K, O(s, )] =5O(s,]) for all k, 1.
(i) e(s,k)(O(s,])) are Z,-even (Z,-odd).
We abbreviate |[p)®|gr=1>®|qg=1) as Q,. Let
A?={e(s, VL @2y, k=1,...,M(s),i=1,...,16},
={O(,)PL®02y,1=1,...,N(s),i=1,...,16}. (10)
Note that KW', ® 2, = (p'p/2)¥’; ® £2,. Thus by (i), 42U AL is the canonical basis

of #(p,0)=4%(p,0)nKer K whenever s= —p-p/2. In this case dim % (p,0)=
32(N(s) + M(s)).

Lemma 2.14.3. DzA?, DgA} are two bases of C,,(p,0)=ZF(p,0)nKer Dy when
s=—p'p/2.
Proof. By Theorem 2.7, observe that DgA?, D RA1 are both in C,(p, 0). Using the
definition of Dy, we can write Dg|, = p-d, + D, where D is a Z,-odd operator
containing no ¢y, by, d%, o, By, 7o Using this formula, one can easily show that
DRA?, Dz A} are both linearly independent sets containing 32 M(s), 32 N(s) elements
respectively. But Theorem 2.7 implies that

2dim C,,,(p, 0) = dim & (p, 0) = 32 (N(s) + M(s)).
Thus we must conclude that

dim C,,(p,0) = 32 N(s) = 32 M(s).

This means that DgA2, DA} are both bases of C,(p,0). [

Recall that %#(p,0) = R(p,0) ® & (see (9)). When we computed sign C,,(p, 3), the
hermitian structure of %(p,3) and its canonical basis (cf. Lemma 2.14.2) played a
crucial role. We will see that as %(p,3), & has a similar structure which simplifies
the computation of sign C,,(p, 0).

Recall that

S = C[a—nsd‘in]®C[b—mc—n]®C[ﬂ—n9'))—n]‘{209 where
Q,=p>®lgr=1>®Igp=1). (11)

4 See footnote on notation in Sect. 1
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Define a non-degenerate hermitian bilinear form (,),, on & by

(Q0,20)5 =1, (12)
b¥=b_, c¥=c_, i =d*
ocﬁ*=oc“_n B:=_ﬁ—n 3’7=7—n

where neZ\0.
Then one can easily check that

(Ja=0r®()y (13)

(O(s, k)2, &5, )25) # =0 (14)

for all k,I=1,...,N(s). Let A,={O(s,k)2q,2(s,k)20,k=1,...,N(s)}. Then (] 4,
s=1

is a basis of &. Note that & inherits a N-graded structure from this basis,
s = (@ s*, where s*° is the C-span of A4,.

s21

Lemma 2.14.4. With suitable normalization, the basis A of &* has the canonical
pairing property with respect to (*,),.
The proof is similar to that of Lemma 2.14.2.

Lemma 2.14.5. With suitable normalization, Dz A and DgAl(s = — p-p/2) are two
bases of C,(p,0) with the canonical pairing property with respect to {*," e

Proof. We will show it for DgA?. The argument is similar for DzA?}. From Egs.
(13) and (14), we have
(O(s, k)P, ® 20, &5, 1) ¥}, ® 20) = 0 (15)
foranyk,/=1,...,N(s)and 0,p = +. Write Dy =p-d, + D as before. Observe that
De(s, k)P, ® Q, are linear combinations of @(s,l) W', ® 2,. Thus using these two
facts, we have
(Dre(s, k) ¥, ® 2o Dge(s, ) ¥}, ® Lo)res

=/~ U@ k)pdo ¥, ® 2o, (5, 1) P}, ® Q)

= om(e(s, k) ¥, ® 20, &(s, 1) P4 ® 204

= (e(s, k)20, &(3, )€20) 6,6 5, (16)
Here o, p ranges over +, and m= ./ — p-p/2 > 0. Thus by Lemma 2.14.4, for each
(k,i,0) there is a unique (l,j, p) such that the last expression is non-zero. With

suitable normalization of the vectors Dge(s, k) ¥', ® 2,eDgA?, this basis has the
canonical pairing property. []

We are now ready to compute sign C,,(p,0). By Lemma 2.14.1, 2.14.5 and a
short calculation, we have for s = — p-p/2,

25ign Cyey(p, 0) = Tr (1(DAY) Dret + Tr <UD RAL) Drer
=32 Z (8(5, k)'QO ’ 8(59 k)QO)y’
N(s)

+32 ) . )(@(s, k)Qq, O(s,k)20) . 17)
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Thus
sign C,;(p, 0) = 16 const term [ Y. @ PDTr {1(4,)) 5,,]
seZ

= 16 const term Tr (g¥(4)) #, (18)

where 4 = | ) 4,. Now direct calculations can be carried out using (12) and the
s21

canonical basis A of & (with suitable normalization). Just as the case x =1 (cf.
(8)), we have here

Tr<q"(4)>s = 4" " polg) . (19)
Combining (18) and (19) gives the desired result for sign C,.,(p,0) O

Corollary 2.15.
(i) (“Quantization Condition™)

dim Hy,(p, ¥) =3(2« + 1)dim R(p, K)pg?)(,c _ P_;)_

(ii) (No-ghost Theorem) H,(p, k) is a positive definite space.
Proof. (i) We recall the Euler—Poincaré Principle for characteristics:
Y, (=1)"dim Hy,(p,x) = ZZ (—1)"dim C7y(p, ).

neZ
Thus by Theorem 2.4, the left-hand side gives dim HY,(p, x) while the right-hand
side is char C,.,(p, k). Hence (i) follows from Proposition 2.14 (ii).

(i) Similarly, the Euler—Poincaré Principle for signature states that

Y. sign Hyo\(p, k) = ZZ sign Crey(p, ).

neZ

Again Theorem 2.4 implies that the left-hand side = sign HS, (p,x), while the

€

right-hand side is sign C,.,(p, ). Thus (ii) follows from Proposition 2.14(ii) also. []

We now proceed to relating H, (p, ) with the physical space well-known in
the “old covariant” formalism. Thus we will recall some of the structure of V(p, k)
(see [19]).

Definition 2.16. Let Z(p,x) = {veV(p,k): (L, = k0, 1(G,+, Jv=0, n=0}. It is
called the space of physical states.

When restricted to 2(p,0), (,>y={.>r® {Dy is identically zero because
(Go)* = —m(Go) and n(G,)? = n(L,) is zero on 2(p,0). This is reminiscent of the
fact that (cf. Proposition 2.10 (ii)) for k = 0, {, ), is zero when restricted to C,,,(p, 0)
because D} = — D and D% = K acts as zero on C,(p, 0). Thus we have the analogue
of Definition 2.11:

Definition 2.17. Define the hermitian form {, ), on 2(p, k) as follows: for u,ve ?(p, k),
let

<u’v>9=<u,v>V !f K=%

=/ —WKu,td, if k=0 where v=mn(Gg)0.
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We note that {,), is a well-defined hermitian form on 2(p, k) in the very same
way {, . 18 on C,(p, k) (see Remark following Definition 2.11).

Proposition 2.18. There exists a subspace T(p,x) of V(p, ;c)‘”"<+
hilated by (L), (G, _ ), n > 0) with

ch, T(p,x) = dim R(p, k)q* "*¢,(q) ~°.

T(p,3) is positive definite with respect to <, ). T(p,0) is a direct sum of two subspaces
T* of equal characteristics, where T* (respectively T ™) is positive (respectively
negative) definite with respect to {,)y.

(i.c. elements anni-

Proof. Using the so-called spectrum generating algebra, physicists [1,2] have
constructed these spaces. However, we will prove their existence the way FGZ did
in the bosonic case.

It has been shown [7,9,10] that the Verma module of M, (h,c) over Vir, is
non-unitary for h < 0,c = 1 and unitary for 2 > 0, ¢ = 9. By Kac’s determinant [22]
formula, for h" <0 and W' >0,M,(h",1), M (W,9) have no (non-zero) proper
Z,-graded submodule. Note however that M (#,9),h' >0, is the direct sum
of two irreducible proper submodules N (/',9), generated by the highest weight
vectors (HWYV)

we =, 9>+ W 12Gy|l,9> with Gowy=+h 1w, (20
where [1,9) is a Z,-homogeneous HWV of M (K, 9). Given peR®'1\0, we choose
a decomposition p = p” @ p’ with p”"eR%\0, p'eR®°\0. Then

(i) M. (p" p"/2,1) has no proper Z,-graded submodule.
(i) My,(pp/2+71,9), No(p'*p'/2 + n,9) are unitary and irreducible for all re3Z
and neZ, .

As in the bosonic case, there is a canonical isometry V(p, k) = V(p”", k) @ V(p', k),
where V(p”,k)(V(p',«)) is non-unitary (unitary). We will briefly describe their
structures.

(iii) V(p”,x) and V(p', k) are given by
V(p’, k)= R(p", k) ® C[«1%,d% . .,neN]|p">, non-unitary,
V(p,x)=R(p,x)@C[o",,d", . ,neN,i=1,...,9]|p’>, unitary,
R(p",k)=Cl if k=%
= 2-dimensional representation of {d}%,d}°} = —1 if k=0,
R(p,x)=Cl if k=%
= 16-dimensional (positive definite) representation of
{di,di}y =6 if k=0.
(iv) The characters and the c-values are:
ch, V(p", 1) = (2 —2x)g" "9, (9) ", 21
ch, V(p', k) = (16 — 30K)g" * ¢, (q) ~°, (22)
'(c)=1, 7'(c)=9, (23)
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where n”(x)(7'(x)) is the action of xeVir, on V(p”,k)(V(p’,x)). Thus (i) to (iv)
imply that we can express these spaces in terms of irreducible modules:

V'R = M,(<”~—;’ : 1>, (24)
f oV~ ) rp ; _1
V(p', k)= U piAMM, ), +1n9 | if k=3
ne(1/2)Z + 2

~ (a,,N+(’-’—§’l+n,9>@bnN_<”;’+n,9>> it k=0, (25
neZ +

where a,,b,eZ . with a, + b, = 16p®)(n).
The eigenspace of n"(L,) corresponding to the eigenvalue p”-p”/2 is given by

Vo(p",k)=C-1 if k=1
=Cl,®Cl_ if x=0 (26)
where
<191>V(p”,1/2)= 1, <1i71i>V(p",0)=0, <1+>1—>V(p",0)=\/ -1 (27)
1
dy’l, = 1\%1;, 1, is Z,-even. (28)

Equation (24) implies that
V(' 1) = Vo(p', ). (29)
Equation (25) says that each eigenspace of 7'(L,),

Vip' k)= {ve V(p',k):m'(Lo)v = (n + %)L)v}, ne(l —k)Z,
is such that .
dim V,(p, k)" = (16 — 30x)p® (n). (30
Since V'(p’, k) is unitary, we can choose an orthonormal basis
wim):l=1,...,(16 = 30K)p® ()} of V,(p', )" : Wi wilm) Yy g = Si- (31)
Now following FGZ, we let
T(p,1)= V', 1) ®@ V(p', 10" (32)
It follows from (26), (29), (30) that
ch, T(p,x) = (2 — 2)(16 — 30)¢” "2, (q) ~®
=dim R(p,x)q" " ¢,(q)"*. 33)
Equations (27), (31) imply that T(p, ) is positive definite with respect to (,)y (. 12) =
(>)V(p”, 12® (’)V(p', 1/2) while
T(p,0)=T*@®T~ with
T*=C(L, T/~ 1)@ V(p, 0", (34)
where T*(T ™) is positive (negative) definite with respect to Ghvp.o- O
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Remark. V(p,x) is in general not a direct sum of Verma modules of Vir, even
though it is Vir, -free. This was also pointed out in [5] in the bosonic case.
To see a counter-example, we consider the Neveu-Schwarz case. Suppose
V = V(p,3) is a direct sum of Verma modules. Then computing ch, gives

Ve @a,,M<¥+n,10) (39)

for some positive integers a,,n ranges over 0,1 1,.... We wish to derive a
contradiction. Recall that V is hermitian. Thus

. . *
@anM<p-2-’3+n, 1o>g@anM<B-2£+n, 10) . (36)

By Kac’s determinant formula, M (h, 10) is irreducible for & > 0 and hence hermitian.
Thus (36) implies that

. . *
D a,,M<”2—p+n, 10); P a,,M<%+n,10> NG
0<n<|p-p/2| 0=n<|pp/2|

Since Verma modules are strongly indecomposable, (37) implies that (see [20],
Sect. 3.4)

pp
7|
But by Kac’s determinant formula, there are some negative half integers h such

that M(h,10) is reducible. If p-p/2+n is one such number, (38) contradicts
reducibility.

(38)

. . *
M(?—ZE +n, 10) ~ M(I%R +n, 10) for n<

Corollary 2.19.

(i) dim TnZ? =12k + 1)dim R(p, x)p®(x — p-p/2).
(i) TN is positive definite with respect to {,),.
(iii) V(p, k) is a free Vir, -module.

Proof.
(i) The case x =% is an immediate result of Proposition 2.18. Consider the case
k =0. Clearly T(p,0) is left invariant by n"(G,)® 1. But

{m(Go), 1"(Go)® 1} =27"(G,)* ® 1 = p"p" Id s, o). (39
This implies that in T(p,0)nKer n(L,),
TnKern(Gy) = TnIm 7(Gy). (40)
The left-hand side is Tn 2. Thus by (40) and Proposition 2.18, we have
dim Tm@:idimR(p,O)pg&(—%p-). 41)

(i) Again the x =1 case follows from Definition 2.17 and Proposition 2.18. Let
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of Tn&. By using Definition 2.17, and Egs. (27), (28), (31), we obtain
{M(Go) 1+ ®@wi(n), m(Go) 14 @Wy(n) )y = Iy 1. (42)

(iii) Equations (24), (25) imply that V(p,k) is a direct sum of tensor products of
free modules over Vir, . One can easily check that each of the tensor products is
also Vir, -free. [

Theorem 2.20. There are unitary isomorphisms TnP =~ P[rad ? =~ HY,,.
Proof. Consider the map 1:2 — C?, defined by
A)=v®|gr=1>®|gp=1—x), ve?.

We note that 4 maps £ into the cocycles Z%, and thus induces an isometric
inclusion /A~ ' B, — H?,,, where BY,, is the (zeroth) coboundaries. But A~ ! B2, is
a subset of rad 2. By Corollary 2.19(ii), Tn? —»2/rad #? is also an isometric
inclusion. Thus we have

, 0
Hrcl

P/ 1B

onto

rel

Tn? Ji»?/radg’.

Using Corollary 2.15(1) and Corollary 2.19(i), we have the desired result. [

Having discussed its consequences, we now return to the vanishing theorem (2.4).

3. The Vanishing Theorem

Lemma 3.1 (Poincaré Duality). HI:(p, k) is isomorphic to the anti-dual of H {"(p, k).

Proof. For each m, Cl,(p, k) is a finite dimensional vector space over C. Thus we
can write
Cra(p, k) = Ker Q,, ®Ker 0,

where Q,,=Q restricted to C",(p,x), and KerQ; is a subspace of C,el(p, K)
complementary to Ker Q,,. Similarly we can write KerQ,,=ImQ,,_, ®ImQ;._,,
where Im Q;,,_, is a subspace of Ker Q,, complementary to Im Q,,_ ;. Now {,)>
deﬁnes a non-degenerate pairing between Cr:\(p, k) and C_"(p, k), i.e. restricted to
Chi® C. ", <, e 1s non-degenerate. Using Q* = + Q (Proposition 2.14 (i)) and the
non-degeneracy of {,>,,, we have {ImQ,,_,,KerQ_, >, =0 and that ImQ,,_,
pairs with KerQl Similarly {ImQ_,,_ l,Keer>m—0 and that ImQ_,,_,
pairs with Ker Q5. Note also that {(C™;,C",>,., = 0 for all m # 0. Recall that

Cr=Im Qm—l @ Im Qm—l @ Ker Qma
Cir=ImQ_,,_,®ImQ%,_,®KerQ=,,.
Assume m # 0. The case m =0 is similar. Pick a basis for each of the six spaces:

ImQ,_;, ImQ,_,, KerQs, ImQ_,,_,, ImQ*,_,, KerQ*,. Label these
bases according to the same order: I,,.. ., [¢. Then, the matrix M of {, ), in these
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bases must have the form

0 0 0 0 0 X
0 0 0 0 O X
0 0 0 X X X
0 0 X 0 0 O
0 Ogx 0 0 O
X X X 0 0 0

where the (i, j) block is the evaluation of {I;,I;),, and the X’s denote some
nonzero blocks. That M is non-degenerate implies that the square blocks [] are
both non-degenerate, i.c. Im Q_, pairs with ImQ*,, _,. Thus

ImQ,_;=(ImQ%,_,)* (antidual).
This induces an isomorphism
Hiy=H M O

To compute the cohomology, we will use some standard techniques in
homological algebra. The same techniques were applied to the calculation of the
BRST cohomology of the bosonic string by FGZ. Here we need only a slight
modification. The strategy is to define a filtration of the complex such that the
induced differential operator § simplifies considerably. One can then relate the
new cohomology groups with the ones we want to compute, by some long exact
sequence. As we will see, it is then enough to compute the new cohomology groups.
In fact they are essentially the classical homology of a (super) Lie algebra (see [23])
which will be dealt with using the standard techniques we mentioned earlier.

Recall that C,(p,3) (respectively C,(p,0)) is spanned by the canonical basis
vectors of the form

Q2=p,palp> ®Pspclar=1> @ pp,las =13,
(Q2=Dr V' ®p.palp> ®Psp.lar=1>®pyp,las=1))

(see Definition 2.2 and Theorem 2.7), where p,, p,, Py, Pc» Pg P, are monomials of
creation operators. Define on C,,(p, k) the filtration degree

fdegQ= —l—g—p+degpa+degp,,+degp,,—degpc+degp,,—degpy.

For example,
fdeg(al_ld2_3/2|p>®b_3c_4|1)®ﬁ_5/2y_7,2|%>)

fdeg(Dr ¥ (p)®@ai'd2,Ip>®@b_3¢_4|1) @B _sy-6/1))
=—¥—1—2—3+4—5+6.
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Here we emphasize that for k =0, Theorem 2.7 tells us that
Ca(p,0) = (Im D (p,0) > 7 (p, 0));

also, fdegDp=0 is essential for fdeg to be well-defined on C,,(p,0). Let
I,=(1—«k)Z —p-p/2. Then f deg is I,-valued on C,(p,«). Define

Bt= {'Qecrel(pa K')fdeggg q}’ quK‘ (1)
Then one can easily check that

Proposition 3.2. {B?} ge1. s a finite filtration of the complex (C.q(p,x),Q), ie.
QBYc B4, B**'"* < B! for all qel,, and there exists qo,q, such that for q < q,,
B? = C,(p,x) and for ¢ = q;,B*=0.

This means that for each ¢, (B?, Q) is a complex with differential Q, graded by the
Z-valued ghost number, B? = (P (B%)". Furthermore, (BY/B?*1 7 Q) is a complex

~ meZ
with the differential Q induced by the map B?—BY/B*!~* () BYB*'~* is the
el
associated graded space of C,,. !

Proposition 3.3. For p #0, the cohomology of the associated graded space is such
that H"(BY/B**1~*)=0 for m <0, gel,.
First, its consequences

Corollary 3.4 (Theorem 2.4). H? (p,x)=0 for m#0 and p #0.

Proof. From the short exact sequence of cochain complexes 0 —B?*1 7% B
BY/B?*17* (), one obtains the long exact sequence

"'—)Hm_l(Bq/Bq+1—K)—'>Hm(Bq+1_K)"’Hm(Bq)—')Hm(Bq/Bq+1_K)—>"'
Then by Proposition 3.3 we have H™(B**! %)=~ H™(BY) for all gel, and m <0.

From the finiteness of the filtration (Proposition 3.2), it follows that HI(p,x) =0
for m < 0. By Lemma 3.1, we have the desired result. []

Proof (Proposition 3.3). The proof consists of 3 steps

Step 1. Define D? = {QeC,.(p, k): f deg 2= q}. Thus B?= B* 1 "*® D? and we can
identify
D= BYB1t17¥ 2)

Thus the induced differential O is now acting in D9,Q:D?— DA Explicitly,

~

0=0,+0,, where
Ql = Z TC(L_,,)E(L._,,)+ 20 7T(G—n+)c)'g(G—n+k)

n>0

_% Y f([Lem Ly D)e(L_p)e(L_,)

m,n>0
+ z>0 l([L—m’ G—n+x])8(L—m)8(G—n+x)
1
_5 Z>0l({G—m-Hc’G—n+x})8(G—m+x)8(G—n+x), (3)
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Q2

) "Z> , ELm)e(Ln) { LLoms L) + )y . &(Lyn)e(Gy - U [Lims G- 1)

,n>

| = N =

- l({Gm—m Gn—x})e(Gm—x)s(Gn—x)’ (4)

2 m,n>0
where ¢,1 are linear maps from Vir, onto the super Heisenberg algebra (Egs. (1)
to (4), Sect. 1) defined by
S(Ln) = C-—n E(G—n+x) = yn—xs
l(Ln)=bn I(G—n+x)=ﬁ—n+x‘
By definition of D4, it is clear that

C;‘el(p9 K) = @ (Dq)”s (5)
qel;,
where (D?)" is the elements of D of ghost-number n. Then (C7,, 0) is a cochain
complex with differential Q. Recall (Definition 2.2) that
B, k) =V(p, ) QC[b_p,c_,]1qr=1>QCLB-ptrsV-n+xllgp=1—%).

Thus there is a canonical isomorphism

Bp,)=C¥_-,V)RC(¥.,,0), (6)

where
CE-,V)=V(p,x)QCLb_p, B-p+il; 0]
C#+,0O)=Clc_p,y-nsrl- ®

Here, n ranges over 1,2,.... Throughout this proof, we will denote the tensor
product in the right-hand side of (6) by F. Here ¢, denotes the subalgebras of
% = Vir, given by ¢, =span {xe¥%: + deg x > 0}. Note that C(%¥_,V),C(%.,C),F
are also graded by the ghost number and that

CNG_,V)=C"%,,C)=0 for n>0, )
F'= @ C99_,"®C¥,,0). (10)

n=b-a;a,b20

Furthermore (cf. (3), (4))

0,:CM%_,V)->C"* (% _,V), (11)
0,:C"%,,0)»C"1(¥4,,0), (12
Q:F"—Frtt, (13)

and Q?=0Q2=0%=0. Thus C*%_,V), C*%.,C), F* are complexes with the
above differentials.
Recall that
C.a(p,x)=B(p,5)nKerK for k=3
=%(p,0)nKerDy for x=0. (14)
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By (6), K(K and Dg) has a canonically induced action on F when x=3%
(when k= 0). Thus by (5), (6) and (14), we have the canonical isomorphisms of
complexes

@D*=FnKerK for k=

qel,

N

~FnKerDg for x=0. (15)

Following FGZ, we denote the right-hand side of (15) in either case by F¥°. Here
9, =CK(%,=CK @®CDg) when x=3(x =0). Combining (2) and (15), we have
for each n,
@ H"(BY/B*'~*) = H"(F*°), (16)
qel,
where H" denotes the n™ cohomology group.

Step 2. It is easy to check that, as acting on F,

[K,01=0={Dg,0}. (17)
In particular, K has a naturally induced action on H"(F). Let
H"(F)X = H*(F)nKer K. (18)

By the Kiinneth formula and (10) we have
H'(F)z @ HC%-,V)®H(C¥,,0). 19)

n=b—a;a,b=0

Asin [5], H™%(C(% -, V)) will be computed in Step 3 using the standard technique
we mentioned earlier. Suppose that

H™*(C%_,V))=0 forall a>0. (20)
We will establish that for x = 0,3,
H"(F%)=0 forall n<0. (21)

Proposition 3.3 then follows from (16) and (21).
Let #" and 2" be the spaces of n'™ coboundaries and cocycles in F".

Case 1. k =%. Equation (17) implies that there is a natural homomorphism
¥:H"(F¥)—> H"(F),
w+ (B > w + 5" (22)
We will show that ¥ is bijective. Let we(2™)X and w + %" = 0. Then
w=0w for some weF" ! (23)
Since [K, (0] =0, leaves each eigenspace of K invariant. Thus we can choose
we(F" HK, (24)
By (23), (24), we have
w+ (2" =0. (25)

Thus ¥ is injective.
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Note. To prove surjectivity, it is tempting to use {Q,b,} = K to argue that every
cocycle of F is annihilated by K. But remember that Q # 0 and that b, is not
define in F!

However, let

w+ #B"eH"(F)X. (26)
Again, we can choose w to be an eigenvector of K,
Kw=Aw for some A. 27
But (26) implies that either
weg" or A=0. (28)

In either case, w + #"cIm ¥. This means that ¥ is surjective. Thus for k =1, (22)
is a natural isomorphism, i.e.

H"(FX)~ H"(F)X. (29)
Thus (19) and (20) imply (21).
Case 2. k=0. Recall that D3 = K, %, = CK @ CDy. They imply that
H"(F%0) = H"(FP~), (30)
Repeating the argument used in Case 1, we have (cf. (29))
H"(F¥)~ H"(F)X. (31

By (17) and Theorem 2.7, we have the short exact sequence of cochain complexes:
0 FPr L, FK 2, FPr 0, (32)
where i is the inclusion map and ¥ = Dx(— 1)F. Thus there is a long exact sequence
-o— H""1(FPRr) — H"(FPR) — H"(FX) - H"(F’®)— . (33)

Equations (19), (20) and (31) imply that
H"(F¥)=0 forall n<0. (34)

Since FX is finite dimensional, the sequence (33) terminates on both ends. But (34)
implies that

H" Y(FPR)~ H"(FP®) for all n<0. (3%

This in turn implies (21).
We have now established that for x = 0,4, if

H 4C%_,V))=0 forall a>0, (36)
then

H"(BYB**'1 *)=0 forall n<O. (37)
Thus to complete the proof of Proposition 3.3, we need only to show Eq. (36).
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Step 3. We first state a theorem.

Theorem 3.3.1. Let £ = %°@® #! be a super Lie algebra where £° #! are the

even, odd parts. Let C,= P UL ® APL°Q v L, where APLO(v L") denotes
n=p+gq

the p'® exterior space generated by ¥°(q™ symmetric space generated by ') and

UZ is the (Z,-graded) universal enveloping algebra of . Define d:C,— C,_, by

AU X; A= AX,®@Y1 V-V Y,)
=(—' l)u Z (_ 1)i+1xi.u® A ‘)el /\xp®y1 Voo qu

1<isp

+ Z yi-u®X1/\-.-/\xp®y1\/... iV Vg

15isq

—(=0 Y (—=D)Tu@[xpx ] A Xy ARy R AX, @V VY,
15i<jsp

+ (=1 Z (_I)i'u®x1/\“"’ei"'/\xp®[xi’yi]vy1V'”j}j'”qu

1Sisplsjsq

(=1 z u®{yi,}’j}/\x1/\"‘/\xp®J’1V“‘ i P Ve (38)

15i<jsq

where (— 1) is the Z,-grading of ueUZ. Let &. Cy— C be the map defined by
linearly extending

1 i =
e(u®1®1)={ you=1 . . (39)
0 if us1anduisacanonical basisvector of UZL.
Then the sequence
C:C-5Cp_y—>-Cy—>C—0 (40)

is exact. In particular, the homology groups H,(C) =0 for n> 0.

This is a generalization of a theorem in the theory of classical Lie algebra
homology (a good exposition is given in [18]; see also [23]). The proof of this
super case requires only a slight modification of the ordinary case. Note that the
theorem holds if we replace U by any free #-module A, for then 4 ~ P (UL),
where A is free on S. seS

We now apply this theorem to the subalgebra Vir_ of Vir,. Let & = Vir_. Then
it is clear that canonically, A £°~C[b_,] and v £ ~C[B_,.,]. By Corollary
2.19(iii), V(p,x) is a free ¥-module. Now let d=Q, and C,=C~"(%_,V). Then
(C,.d) satisfies the conditions of the above theorem. Thus, 0=H,(C)=H "(C(% _,V))
for n> 0. This completes the proof of Proposition 3.3. [

4. The GSO Projection

It is clear from Corollary 2.15(i) that in the case k =3, a “tachyonic” state (i.e. a
state with p-p > 0) exists. In the early days of superstring theory, the RNS model
was meant to be a “spacetime” supersymmetric extension of the bosonic string
in which the Neveu—Schwarz sector (k = 3) consists of bosons and the Ramond
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sector (x = 0) fermions. However, Corollary 2.15 (i) implies that dim H® (p,0) #
dim H? (p,2). Thus one of the basic requirements of a supersymmetric theory — #
bosons = # fermions at each mass level—is violated. It turns out that these two
undesirable features can be removed by certain natural truncations on the spectrum.
They were first proposed by Gliozzi, Scherk and Olive [8] (GSO) in the “old
covariant” formalism. It turns out that if one projects out the Z,-odd states of
2(p, k) in both sectors, the above two features will be eliminated. We will discuss
these truncations below.
GSO defined the G-parity on the Fock space V(p, k) by

G —F (_ l)ngld—n‘é-xdn—x’

where I'y,=—1 and I, is the chirality operator on R(p,0) with I'j=1,
{Io,dt} = 0. Note that G, is essentially the Z,-gradation defined on V(p, ). Thus
a natural extension to C,.(p,x) would be

Z C] -—n+xdn x+b—ncn+c—nbn)

Definition 4.1. Let G, = I",(—1)z! . Then one has
Q:3(1+ G)Cry(p, %) > 3(1 F GICrt (P, K). (1)
Let
P, =11+(-1U*"G,). )

It follows that (P C*.(p,x), Q) are two subcomplexes of (C* (p,x),Q). We will
denote their cohomology groups by H*(P, C,,) and call (P, C%,,Q) the GSO
subcomplex.

Proposition 4.2. char P, C,(p, k) = 8p®(— p-p/2).
Proof. Let k = 3. Then
charP,C,y =Y (- 1)"dimP,C",

= Y QL1+ (= DUHRG ) (- DUFRQ Y L 3

NeAd

where <, )i 18 defined by (2,2)=0,,, where 2,Q2'cA and A4 is the
canonical basis of C,.,.
Recall that C,,, = %(p,3) nKer K. Thus (1) becomes

char P, C,,, = const. term [Tr{3(— 1)V 2%y . 4+ Tr{3G 120 pivia)- @)

Calculations as in Proposition 2.14 give

. ] _ 1+ n—1/2\ 8
Tr<%(_1)U+ qK>trivial=%qp Pi2-1/2 n (—q_n‘) ’ (5)
n>0 1-q
n 1/2\ 8
Tr{3G 120" ) i = — 30" 7>~V [] <1——) . (6)
n>0 —_

Combining (4), (5), (6) and using Jacobi formula (see [19], Chap. 4), we have
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_ 1 n\ 8
char P, C,,, = const terml:Sq""’/2 11 < +4 ) ] )

n>0 1—q"

The reader should compare this with a calculation in [19] using the “transverse
coordinates.”

Now consider, ¥ = 0. We will do only the nontrivial case where p-p/2 is negative
integer. As before,

Charﬁ+ Crel =% 2 <Q’( - I)UQ >trivial +% z <Q’ (_;O‘Q >trivial' (8)
NeA

QeA

The first term of (8) is 3 char C,; = 8p®( — p-p/2), by Proposition 2.14(ii). Thus it
is enough to show that the second term of (8) is zero. Recall the Z,-odd canonical
monomials {@(s,k)},=1 .. n defined in the proof of 2.14(ii) with s = — p-p/2 > 0.
Recall also the basis vectors of R(p, 0) (Definition 1.3(ii)) ¥*,, ¥ , which satisfy
TV, =+W¥ I[P =-Y¥ .

Lemma 4.2.1. The set

A={DrO@ ) PLRIp>®|gr=1>®|gz=1>i=1...16,k=1,...,N(s)}

is a basis of C,.(p,0).

The proof is exactly the same as that of Lemma 2.14.3. Now it is clear from the
definition of G, that precisely half of the above basis is in Ker(G, — 1) and the
other half in Ker (G, + 1). Thus Y. <2,Go2),,,.; =0 O

QeAd

Remark. We note that each of the factors
2 bontn Y, c_chy
(_1)@1 s (_1)@1 s

—n+x’n—x z Y—ntwbn—x

Dy
(— 1=t » (=12t
in (— 1)V** is an involution. Thus we can write
( _ 1)U+"G =TI (_ l)ngl(d._n-p,“d"_K+ﬁ—n+xyn—x—7n+xpn—x)
K K M

The right-hand side is precisely the “G-parity” proposed by Terao, Uehara [15],
and Ohta [13], as a generalization of the GSO projection.

Proposition 4.3. For k= 0,1,
(i) there is an isometry
H* = H*(P,C..) @H*(P_C,)

such that the right-hand side is an orthogonal decomposition;
(ii) the cohomology of the GSO subcomplex has
dim Hn(ﬁ+ Crel) = 8p(08)< - EEI—)> for n=0

=0 otherwise.
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Proof .
(i) Itiseasy to check that P, are orthogonal projectors with respect to {, b ,¢;. i.e.

P;;t':Fi’ Fi*=Pi’
P,P_=P_P,=0, P,+P_=1.
Furthermore, [Q, P, ] = 0. These equations imply that the map
H:"::l_)H*(P‘+ Crel)+H*(F— Ctel))
[w]—~[P, 0]+ [P_w]

is an isometry. _
(i) Combining (i) and Theorem 2.4, we have H"(P, C,,) =0 unless n=0. By the
Euler-Poincaré¢ Principle, we have

Y (= 1)"dim P, C,yy = dim HO(P,, C,,y).

neZ

The left-hand side is char P, C,,, which is given by Proposition 4.2. []

We note that the cohomology of the GSO subcomplexes HO(P, C,.(p,x)),
x = 0, no longer have the two undesirable features—i.e. H°(P, C,.(p,2)) has no
tachyonic states and dim H(P . C,(p,3)) = dim H°(P ., C,.,(p,0)). Thus we have
achieved the “covariant” equivalent of the GSO projection.

5. Cohomology of the BRST Complex and the Exceptional Case

We now return to the BRST complex defined in Sect. 1. First the Neveu—Schwarz
case (k=4%). Recall that (CX,(p,3),Q), (C*(p,2).Q) are Z- and Z + }-graded
respectively (Definition 1.8, 2.3).

Theorem 5.1. There are isomorphisms HC (p,%) =~ H*Y?(p,%) and H"(p,3) =0 for
n#+3.

Proof. We observe that {Q, b, } = K. Thus, the cohomology of C*(p,3) is the same
as that of C*(p,2)% = C*(p,1) nKer K. Define the map

q’: Cn+ 1/2(p, %)K - :"el(p, K)
by ¥(w)=(—1)"bow, where (— 1) = + 1 if wis Z,-even, — 1 if Z,-odd. Then we
have a short exact sequence of cochain complexes:
0= Cii ' (p, ) — C (0, = Crap 1) 0, (M
where i is the inclusion map. This implies the long exact sequence
o _>H;‘eI l(p’%) —)H;‘:l- l(p,%)_)H'H- llz(p’%)—)H:'lel(p9%) > (2)
Theorem 2.4 then implies the desired result. [

In the Ramond case (x = 0), again



BRST Cohomology of Super-Virasoro Algebras 331

H*(p,0) = H*(C(p,0)%) canonically. 3

Unfortunately, because C(p,0)¥ is infinite dimensional, a short exact sequence
similar to (1) does not exist. Recall that (Sect. 1)

C(p:O)K= C0®C1a (4)
where C(p,0) has a doubly graded structure (cf. Proposition 1.9) and
Con=V®A,®T )", dp=0,1. 5)
Let
C2;1/2—_- {Uecqs:UU=(n+qB)U}’ nel. (6)

Remark. Note that although C,, is infinite dimensional, each Cj'/? is finite
dimensional. This follows from the fact that for fixed g5 =0, 1, and neZ, there are
only finitely many monomials v in V® A, ® 7 ,, which satisfy both

Kv=0 and Uv=(n+qp)v.
Note that QCy. V2 = Cp 7 '/2. Thus by (3), (4), we have
H"(p,0) = H"*'>(Co)@ H"™V3(C,). (7
Proposition 5.2. H"*Y/2(C,) = H™ "~ Y3(C,)*, for all neZ.

Proof. By Proposition 1.9, (,). defines a non-degenerate pairing between C™° and
C~ "0 = (C™™K. In particular, there is a similar pairing between the two finite
dimensional spaces, C3**/2 and C;"~ /2 (cf. (6) of Sect. 1). Since Q* = — Q with
respect to (,)c, the pairing induces the isomorphism we want. The detailed argument
is very similar to that Lemma 3.1. [

Thus, it is enough to compute one of H*(C,,),qz =0, 1. Observe that C,(p,0)
is a subspace of C;. As we did in the case k = 1, we will try to relate H* (p,0) and
H*(C,). Since both ¢4, b, act in C, and {by,co} =1, b3 =0, we have

Kerby =Imb,. 8)
Let

D} = {veC{™2:byv = 0}. )
Then we have a short exact sequence similar to (1):

0-D1*t 50112 5 pr 0, (10)

where ¥'(w) =(—1)"b,w as before. This implies the long exact sequence:
<> H""YD,)>H"*(D,)»H"*V2(C,) > H"(D,) - ---. (11)
Proposition 5.3. If p #0, then H(D,) = H'.,(p,0) for all neZ.
First its consequence:
Theorem 5.4. For k =0, the cohomology of the BRST complex is given by
H"(p,0)=~ H?,\(p,0) for n=1
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rel(ps 0)* @Hm(P, 0) for n=0
rel(pa 0)* for n=-—1
= 0 otherwise.

Proof. By Proposition 5.3, Theorem 2.4 and the long exact sequence (11), we have
H'(C)=Hy(p,0) for r=+3
=0 otherwise. (12)
The theorem then follows from Proposition 5.2 and Eq. (7). [

We now return to the proof of Proposition 5.3.

Proof (Proposition 5.3). Recall that D; = @ D7 has the structure, by (5), (8) and (9),

meZ
D, =(V@A,®7 1) (13)
where
T 1=ClBnymns —Lm<1]lgp=1), (14)
Ay =byClb,, ¢, ,n<0,m<0]|gr=0)
=C[by,c,,n<0]lgp=1). (15)
Thus, D, can be written as
@Ela E,=9,%(p,0), (16)

where (Definition 2.2)
,g"(p, 0) = (V® C[bm Cm n< O] qu = 1 >

®C[ﬁm‘}"mn<0:”q8= 1>)K (17)
From Proposition 1.7 (x), we see that Q acts on D, like
Q=Ay,+ B+ CB, (18)
where
A=DR+2b0y0, B=Qo, C—_-N. (19)

One can easily check that 4, B, C contain no zero modes (by, ¢y, B0, Vo) and they
satisfy

A?=C?=0, B?>=CA, (20)
{B,A}={B,C} ={A4,C} =0, (21)
A, B, C commute with f,,7,, (22)

Ker 4 =1Im A. (23)

Note that (23) is essentially Theorem 2.7 since b, acts as zero. A similar structure
((18) to (23)) was first realized by Dixon and Taylor [21] in their study of gauge
theories. Kato and Ogawa [11] then apply it in a different context. It turns out
that such a structure allows one to define a projection map from the cocycles of
D% to those of C¥,.
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Lemma 5.3.1 (Dixon—Taylor). There is a projection map Py:Z™(D,)— Z%, such
that for each weZ™(D,), w= Pow + QW' for some w'eD7 1.

Proof. For each m, choose a fixed complementary subspace (Ker A)" = D7. Then
(20) and (23) implies that

A:(Ker A)* - Ker 4 is invertible. (24)
Now
ow=0 25)
and
w=Pyw+ Qw (26)
are equivalent to
AYoWy—1 + Bw, + CBow,41 =0, n21, 27)
Wo = Pow + Bwg + Cfow) (28)
and
W= AyoW,—1 + BW, + CBow, 1y, n21, (29)
where w,, w,eE, are components of w,w’. Note that w= )  w, terminates. Thus
nz0
using (20), (21), (24) and (27), one can inductively solve for a unique
w =Y w,e(KerA)" (30)
n=0

such that (29) is satisfied. The solution and Eq. (28) then uniquely defines P,. One
can verify that P, has all the required properties. The reader can consult [11] for
details. [

Corollary 5.3.2. There is an isomorphism H*(D)— H¥,(p,0) given by [w]—[Pyw].
This completes the proof of Proposition 5.3. [

Thus far, we have assumed p #0. For p =0, the vanishing theorem does not
hold because the Fock space V(p, k) is not Vir, -free, as in the case of the bosonic
string (see [5]). In fact, n(L_ ;)R(0, k) ® C|p = 0) = 0. Fortunately, the cohomology
groups in this case are easy enough to compute explicitly.

Proposition 5.5. Let p=0:
(i) For k=0
Hi;=0 for n#0
=Cu= U32C‘I’i®|p=0>®|qp=1>®|q3=1> Jor n=0,

i=1,...,
where W' are basis vectors of R(0,0).
(i) For k=14,
Hi,=0 for n#0

=C,= U loCd”—1/2|P=0>®|‘1F=1>®l‘13=%> for n=0

p=1,...,
~C for n=+1.
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(ili) For k=0,
H"=0 for n+#0,+1
=C’= [] [C¥®Ip=0>®lgr=1>®lgs=1)

i=1,..., 32
®CY¥'RIp=0>R1gr=0>®|qz=0>] for n=0
=C*' = LI C'P‘®lp 0>®lgr=1>®0lgg=1> for n=+1

.....

zC“= U32C'P'®lp=0>®lqp=0>®ﬁolqs=0> for n=—1
(iv) For k=1,

H"=0 for n#+% +3

xC = U10Cd—1/2|P=0>®|‘1F=1>®|(IB=%> for n=-3

=C¥= ]l Citiplp=0>@lar=0>®laz=3> for n=-+}

~C for n=+3
Proof.
(i) For x =0, the only non-trivial C?, is CZ,, as given above. One can also check

that each element of C, is a cocycle.
(ii) For k =4, the only non-trivial C?, are

Cri =Clp=0>®|gr= 1>®ﬁ—1/2|‘15=%>a
C?el'_‘ UIOCd‘i1/2|P=O>®|‘1F=1>®|‘13=%>s

Cr1e1=C|P=0>®|‘1F=1>®)’—1/2|‘13=%>’
all of which are cocycles that are not exact.
(iii) Let
A4,=¥V'®lp=0>®lgr=1>®15lgs=1),
B,=¥'®lp=0>®lqr=1)®ptlas=0),
Co=¥'®Ip=0>®1gr=0>®75lgs =1,
D,=¥'®|lp=0>®|9,=0>® 5195 =0).
As in Proposition 5.1, we need only to consider C(0,0)X = C(0,0)nKer K. Then,
the complex C(0,0) is given by

(CY= ]_[ CA 0@ CDp,

(C™¥ = U CA’eaccm1 m>0,

(CmK = U CB _1®CDi, m>0.
Using these bases the calculations of H"(O, 0) becomes trivial.
(iv) This is similar to part (i)). [
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6. Conclusion

We have constructed a complete super analogue of the BRST cohomology theory
for bosonic strings using the methods introduced by FGZ. We have shown that
such a construction indeed leads to a theory equivalent to the “old covariant”
quantization method.

As in [5], the construction here of the super-extension of the BRST complex
can be generalized to an arbitrary super graded Lie algebra. The only mathematically
non-trivial result is the vanishing theorem (2.4). Work in this direction is under way.

Note added in proof. After the completion of this work, we received preprints from J. Figueroa-O’Farrill
and T. Kimura, whose work appears to be similar to ours.
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