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Abstract. In the work L. D. Faddeev and his collaborators, and subsequently V.
G. Drinfeld, M. Jimbo, S. L. Woronowicz, a new class of Hopf algebras was
constructed. They can be considered as one-parametric deformations of either
group ring or the universal enveloping algebra of a simple algebraic group. In
this paper we define and investigate a multiparametric deformation of the
general linear supergroup. This is the simplest example of some general
constructions described in [5, 6].

Introduction

Quantum groups were recently introduced and studied from various viewpoints in
the work of Faddeev and his collaborators (cf. [3] and references therein) followed
by Drinfeld [2], Jimbo [4], and Woronowicz [7].

In [5, 6] I described a class of quantum groups which are natural symmetries of
non-commutative algebraic varieties defined by quadratic equations. This appro-
ach furnishes a vast supply of new quantum groups together with their
representations.

This paper is devoted to the detailed and explicit study of the simplest groups
that can be constructed in this way. It can be read independently of [5, 6] although
it is useful to keep in mind the underlying philosophy explained in [6]. In addition,
we take into account some new effects of a structural Z2-grading thus superizing
some parts of [5, 6].

Our working definition of a quantum (super)group is that of a Hopf
(super)algebra generated by the entries of a multiplicative matrix i.e., admitting a
faithful finite-dimensional corepresentation. This viewpoint is close to that of
[3, 7] but dual to that of [2, 4].

The paper is structured as follows. In Sect. 1 we state all essential definitions
and results. Proofs and some complements are given in Sects. 2-5.

1. Notation and Results

1.1. Hopf Superalgebras and Quantum Supergroups. All our objects are defined
over a ground field k of characteristic φ 2 e.g., R or C. An associative algebra with
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unit is a triple (E, m, η) consisting of a linear space E, a linear multiplication map
m\E®E^E and a unit map η:k^>E subject to the well known axioms. A
coassociative coalgebra with a counit (E, A,ε)is defined by inverting all arrows in
the diagrams of data and axioms for (£, m, η). In particular, we have Δ:E^>E®E,
ε:E-+k. A bialgebra is a linear space which is simultaneously algebra and
coalgebra, both structures being connected by the condition that A : E-*E®E is an
algebra morphism. Finally, a Hopf algebra is a bialgebra endowed with an
"antipodal map" i\E-*E such that

m(i(g)iά)A=m(id(g)ί)A=iά. (1.1)

Bialgebras form a convenient algebraic framework for introducing and
studying quantum semigroups, while Hopf algebras do the same for quantum
groups.

In order to define superbialgebras, Hopf superalgebras, and eventually,
quantum supergroups, one makes the following minor changes in definitions. The
space E becomes Z2-graded, and this grading is extended to the tensor algebra of
E. All maps are grade-preserving. Finally, signs are added in many places e.g., the
multiplication in the tensor product of two superalgebras is given by

where we generally denote by S the Z2-degree of b.
We shall call a format an arbitrary sequence (a1,...,an\ αI e Z 2 . A matrix

Z = (z\) with entries in a Z2-graded space has this format if z^a^ak (then it has
also format (1 — au ...,1 — an)).

A matrix Z with entries in a superalgebra (E, A,ε)is called multiplicative one if it
has a format and «

) = Z®Z,i.e. A(z\) = Σ 4®ή,
j'x (1.2)

J i ( * ) 5j

1.2. Deformation Parameters and Commutation Relations. From now on we fix a
format {au ...,an} and a family # = {#jj|l ύhjn} of non-zero elements of k. We put
ΐ=at and denote by Eq the algebra generated by n2 symbols z\ subject to the
following relations: ( kλ2 - r

(zf)2 = O for i + k odd; (1.3)

ήz\-(-ίf +1)ii+1)qklz
l

iz* = 0 for Γodd, k<l; (1.4)

z f z [ - ( - l ) % V ^ = 0 for Γeven, fc<J; (1.5)

zfz j-(-1)%7 ^ z * = 0 for £ even, i</; (1.6)

ί } z 7

f e z ? = 0 for £ odd, i<j; (1.7)

(1.8)

f o r i<j9k<l. (1.9)
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We define a Z2-grading of Eq by zk = f+ /c, so that Z = (zk) has format (α 1 ? . . . , an).
Now we can state our first main result;

1.3. Theorem. There is a unique structure of a superalgebra on Eq for which Z is
multiplicative.

We make two comments to clarify the statement.
Firstly, if one puts #i/=l for all ij, then (1.3)—(1.9) become equivalent to the

simple supercommutation relations [z/, zι

k~\ = 0. Therefore, Eq is a deformation of
the ring of polynomial functions on the supermanifold Mat(α|ft) where a
(respectively b) is the number of even (respectively odd) at in our format.

Secondly, the Theorem 1.3 is equivalent to the following statement made in the
language of "points." Consider a /c-superalgebra B and two matrices Z l 3 Z 2 with
elements in B of format (au ..., an). Assume that each element oίZί supercommutes
with all elements of Z 2 . Assume also that elements oϊZί and Z 2 separately verify
(1.3)—(1.9). Then the same is true for Z1Z2. In other words, one can multiply two
points of a quantum semigroup if they are "simultaneously observable."

In principle, one can check Theorem 1.3 by a direct calculation. However it
would be messy and non-instructive. Instead, we shall deduce it by showing that Eq

is a universal bialgebra co-acting upon two dual "quantum superspaces" Aq and
A*
Λq.

1.4. Quantum Superspace Aq. This space or, rather, the polynomial function ring
on it is generated by coordinates x l 5...,xΛ with parity assignment xt = i and
commutation rules

xf = 0 f o r i = l ; (1.10)

xixj — q^j

1(-l)ijXjXi = 0 for i<j. (1.11)

1.5. Quantum Superspace A*. It is generated by coordinates ξί,...,ξn with
ζ* = 1 — /c and commutat ion rules

(ξk)2 = 0 for/c = 0; (1.12)

ξkξ1-qkl(-ψ+1)iί+l)ξιξk = O for k<l. (1.13)

Note that if we put V= © kxb F* = © kξj and define an odd bilinear pairing
i J

<|>:F*(χ)F-+/c by (ξJ\Xi) = δi then the left-hand side tensors in (1.12), (1.13)
generate a subspace in V*®V* that is the orthogonal complement of the subspace
in V®V generated by the left-hand sides of (1.10), (1.11) [to check it use
<ξk®ξl\xi®xj}=(-lfl+l)δkδι

j].
Therefore, A\ is different from Aι

q as defined in [5, 6], where an even bilinear
pairing is used. One can say that * combines ! and parity change.

We shall deduce Theorem 1.3 from the following result:

1.6. Theorem, a) There exist algebra morphisms

such that n

δ(x) = Z®x i.e., δ(xί)= Σ zί®xp (1.14)

δ*(ξ) = Z®ξi.e.,δ*(ξk)= Σ 4 ® £ z . (1.15)
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b) The pair (δ, (5*) is universal in the following sense. Let Bbea super algebra and
(y5y*) two superalgebra morphisms

such that y{V)QB®V, y * ( F * ) g £ ® F * and

for some YeMat(n,B) of the same format (z) as Z. Then there exists a unique
superalgebra morphism β:Eq^B such that

y = (β®id)δ, y* = (β®id)δ*.

Theorems 1.3 and 1.6 are proved in Sect. 2.
In the course of deduction of 1.3 from 1.6 it will become clear that δ and δ*

define corepresentations of the bialgebra Eq upon Aφ A* and also upon each
homogeneous component of these algebras with respect to the Z-grading d )

ί.7. Quantum Supergroups. Bialgebra Eq has no antipode. We interpret the
problem of construction of a quantum supergroup from a quantum supersemi-
group E as a problem of construction of a universal bialgebra map E-+H, where H
is a Hopf superalgebra.

We can give an explicit description of such a map in the case when E is
generated by entries of a multiplicative matrix Z. In order to do that, define the
supertransposed matrix Zst by

Note that if we replace the format of Z by (1 — j), Zst will change. Therefore one
should rather write (Z, format)sί. However, we shall omit format in notation and
prescribe to Zst the same format as to Z. We have (si)4 = id but (si)2 + id in general.

Assume now that a superbialgebra E is generated (as algebra) by the entries of a
multiplicative matrix Z = (z{). Put E = k(z{}/R0, where z{ are free associative
variables and Ro is the ideal of relations between z{. Put Z0 = (zj) and introduce an
infinite sequence of matrices of the same format Z o , Z l 5 Z 2 , . . . with independent
entries. Denote by H the free associative algebra generated by these entries.

Define a structure of superbialgebra on H by

A{Zf) = Zf®Zf, ε{Zk) = 1; k = 0,1,2,....

Define a linear map i.H^H by

Denote by R the ideal in H generated by the following sets:

the entries of ZfZf+ ί ~/, Zf+ X2f -I; (1.16)

Rk = ik(R0); fc = 0,l,2,.... (1.17)

Put H = H/R. Clearly, there exists a superalgebra morphism y:E->H defined by
y(Z) = Z0 mod.Ro.
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1.8. Theorem, a) R is a coideal in H. Therefore, A induces on H a superbialgebra
structure and y is a superbialgebra morphism.

b) i(R)cR, and i induces upon H an antipodal map so that H is a Hopf
superalgebra.

c) For an arbitrary superbialgebra morphism y':E^>H\ where H' is a Hopf
superalgebra, there exists a unique Hopf superalgebra morphism β'.H^H' such that

y'=βy

If we apply this construction to Eq we shall obtain the Hopf superalgebra Hq

which is our "general linear quantum supergroup."
This theorem is proved in Sect. 3.

1.9. Quantum Determinant. As was explained in [5,6], there is a natural
construction of the quantum determinant of the matrix Z generating Eq when it is
of the format (1,...,1) i.e., when Λq is a deformed exterior algebra of n
indeterminates x l 5 ...,xn. We simply define D = ΌEΎq(Z)eEq by the identity

which exists since xx ...xn generates the degree n component of Aq.
From this definition one sees that A(D) = D®D, and

DETg(Z)=Σsgn(ils...,g Π
a>b

This definition is based upon the existence of a natural one-dimensional
comodule for Eφ the quantum highest exterior power (Λq)n of the fundamental
corepresentation.

In the general case, it is necessary to construct the quantum Berezinian. Since it
is not polynomial in entries of Z even in the classical case, one cannot expect it to lie
in Eq. It may lie in Hq where Z becomes invertible. However, in order to construct
the one-dimensional corepresentation furnishing our Berezinian I shall have to
diminish Hq further making an additional factorization. I do not know whether it
is really necessary.

l.ίO. Quantum Koszul Complex. Put Bq — A*® Aq. Clearly, this is an algebra of the
same kind as Aq, with generators (ξ1®!, ...,£"(x)l, l ® x l 3 . . . , ί®xn) of format
( l - α l 5 . . . , l - α Λ , aί9...,an). Put

c = Σ ? i q

One immediately verifies that c2 = 0. Let d:Bq^>Bqbε the linear map df = fc. Put

1.11. Proposition. H'(Bq) is an one-dimensional k-space generated by

Π <f Π x7 modlm(d).
i = 0 } = 1

This space will be our superanalog of the highest exterior power. Now we must
prepare a Hopf superalgebra coacting upon it.
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Let us start with the universal Hopf algebra Gq coacting upon Bφ

δ:Bq^Gq®Bq. Put
q^Gq®Bq.

x =

1.12. Theorem, a) The entries of the matrices i\W\ in{W) and in(V-i(Us%
n = 0,1,2,... generate an i-stable coideal S in Gq. Put Fq = GJS with natural coaction
upon Bq which we denote δF.

b) δF(c) = l®ceFq®Bq. Therefore, δF induces a coaction

δH: H\Bq)^H\Fq®Bq) = Fq®H\Bq).

c) Put

W ? Π xλ=D® Π ? Π
0 } 1 / ί 0 } 1\i 0 } 1 / ί 0 } 1

Then δH(D) = D®D; D is called the quantum Berezinian (of V).

Note that in view of the universality, there exists a Hopf superalgebra
morphism Hq->Fq for which Z goes into V. If it is an embedding we may
transport D into Hq.

1.13. The Structure of Eq. It is pretty clear that Aq (respectively A*) is "of the same
size" as a polynomial ring of a even and b odd (respectively a odd and b even)
supercommuting variables. This means that the normally ordered monomials, say,
x™1...x™n, with mf = 0,1,2,... for f= 0 and mt = 0,1 for Γ= 1 form a fc-basis of Aq.

It is known that a similar statement is true for Eq when all qtj are equal and
there are no odd variables (in the dual language, this is equivalent to the quantum
Poincare-Birkhoff-Witt theorem). On the other hand, it is false for general values
of the parameters. We prove the following result which falls short of giving
the complete picture.

Define an ordering of z{ by

z{ < z[ if either i > k, or i = k, j > I.

Call a monomial in z{ normally ordered if for any z' < z" in this monomial z' is to
the left of z", and if no odd z' enters this monomial twice.

1.14. Theorem, a) Quadratic normally ordered monomials form a basis of the
quadratic part of Eq iff qfj + — 1 for all ί, j .

b) If this condition is satisfied then the normally ordered monomials span Eq.
They are linearly independent iff cubic monomials are independent, and this can be
true only if qtj = ± q + 1 for some q. For n = 2 this is always true.

Note that a specialization of the values of qtj may enlarge Eq. Somewhat
paradoxically, the largest Eq for n = 2 corresponds to q2 = — 1. Therefore, from the
Hopf viewpoint, the algebra k(x,y}/(xy — iyx} is more symmetrical then k\_x, y\\
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2. Proof of Theorems 1.3 and 1.6

2.1. Proof of the Theorem 1.6. We start with an arbitrary superalgebra morphism
y\Aq^B®Aφ linear in xb and temporarily denote by z\ eB the coefficients in

n

y(χi)= Σ zί®χj
7 = 1

Clearly, y is well defined iff it conserves the identities (1.10), (1.11). We must apply y
to the left-hand side of these identities and then calculate the coefficients of the
resulting expressions represented as linear combinations of monomials l ® * ^ ,
i<j, which are linearly independent over B in B®Aq. In this way we shall obtain
one half of the commutation relations (1.3)—(1.9), namely:

coefficient of x\, £ = 0 , in y(1.10) => (1.3) for ί = l , £ - 0 ;
coefficient of xkxu k<l, ΐ=ί in y(1.10) => (1.4);
coefficient of x\, £ = 0 , in y(l.ll) => (1.6);
coefficient of xkxb &</, in y(l.ll) => (1.8).

The other half of our relations is supplied by y*:A*-*B®A*. It can be directly
deduced from the previously established relations applying to them the parity
charge f->l — Γand the parameter change q^q^1.

This calculation proves simultaneously both parts of Theorem 1.6.

2.2. Proof of the Theorem 1.3. Apply now the universality statement of
Theorem 1.6 to the following situation: B = Eq®Eφ and

y = (id®δ)δ:Aq-+Eq®Eq®Aq;

y* - (id® <5*μ* : Aq^>Eq®Eq®A*.

We get the map β denoted now A : Eq-+Eq®Eq. From its definition it follows that
A(Z) = Z®Z, that A is coassociative and that ε:Z-*I is a counit. One also checks
directly that δ (respectively <5*) defines on Aq (respectively on Aq) the structure of a
left comodule.

2.3. Fundamental Corepresentatίons and Their Symmetric Powers. For each m^O,
the space of forms of degree m in Aq plays a role of the mth symmetric power of the
fundamental corepresentation V=®kxi. Similarly, we have the "symmetric
quantum powers" of the odd-contragradient corepresentation V* = @kξJ.

3. Proof of the Theorem 1.8

3.1. Lemma, a) Let Z be a matrix with entries in a supercoalgebra (E,A,s) which
has a format. Then

o zlop(Zst) = Z s t ® Z s t , (3.1)

where
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b) Let Zbea multiplicative matrix in a Hopf super algebra. Put Zk = ik(Z). Then
Zfk is multiplicative, and

Zst k ί7st k -7stk y s t k

k Zjk+l~Zjk+lZjk —

Proof, a. Let Z = (zk\ Δ(Z) = Z®Z. Then

(JOP(Z80)? = ( - 1 ) W + 1 ^

(z s t ®z s t )f = ) }

Comparing signs, we get the implication => in (3.1). The inverse implication is
similar.

b. Applying the antipode axiom (1.1) to Z and using the multiplicativity we get

i.e., (3.2) for k = 0. Now, we have im = mS12{i®ΐ) (see [1] for the non-graded case).
Calculating as in a. we get from here that i{{ΛBγt) = ί{Bst)i{Λst) if A, B are of the
same format. Applying i to (3.2)st we get (3.2) with fc+1 instead of k.

Finally, again as in a., we have S 1 2 (Z®Z) s t = Z s t ®Z s t . Hence, assuming that
Y=Zs

k

tk is multiplicative, we can prove that Z%++

1

1 = i(Yst) is multiplicative using
the identity Aί = Sί2(i®ϊ)A (cf. again [1] for the non-graded case):

Ai(Y*η = S12(i®ήA(Y«) = S12(i(Y)®i(Y)r

3.2. R is a Coideal. Since £ is a coalgebra with A(Z) = Z®Z, we have A(R0)
C k(z{}(g)R0 + JR0®/c<z/>. It follows that the same is true for Rj with evenj instead
of Ro. One can treat o d d ; similarly using (£,mop,zjop) instead of (E,m,A).

In order to treat (1.16) put A = Z%k+\ B = Zflv According to the Lemma 3.1

Δ(A) = A®A, A{Bst) = Bsi®Bst.

Hence

Δ(AB)\ = [{A® A) (Bst® J5st)st3]f

jrs

= Y ar-bk(S)ajb%—l)^+j)(s+k)+Hk+1)+jCs+1)+jik+l)

From this we deduce
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which shows that the entries of ΛB — I generate a coideal. A similar calculation can
be applied to BA — I.

3.3. R is i-Stable. Clearly, ί(Rk) = Rk + 1. Furthermore, since i reverses multipli-
cation we have i((AB)si) = ί(Bst)i(Ast) so that

ystk+1ystk+ι

3.4. imodR is an Antipode. The entries of Zs

k

k, k = 0,1,2,... modi^ generate
H = H/R as a fc-algebra. Reducing (1.16) mod R we see that applying (1.1) to any of
these generators we get an identity. Therefore, it suffices to check that if (1.1) is
verified when applied to u, v e H it is also verified for uv. In fact,

m(i® id) (A(u)A(v)) = m(i® id) (Σ u'k®u'k'\ (Σ v\®v'l

M(- \)m) = ηε(u)ηε(v).

The last equality is valid even if u = 1 because then ε(w) = 0.

3.5. Universality. Let y':E-*(H\i') be a superbialgebra morphism to a Hopf
superalgebra. Put Z'k = (ϊ)k(y\Z)). In view of Lemma 3.1, the entries of Z'k verify the
relations (1.16) and (1.17). This allows us to define β.

3.6. Bijective and Unipotent Antipodes. The class of Hopf superalgebras with a
bijective antipode is closer to that of usual algebraic groups. It is not difficult to
modify our construction so as to obtain a universal map E^H in this class. It
suffices to introduce matrices Zk and relations (1.16), (1.17) for all integers k.

If we impose additional relations Zk = Zk + 2d we shall obtain a universal map
into a Hopf superalgebra with the antipode verifying i2d = id.

4. Quantum Berezinian

4.1. Cohomology of the Koszul Complex. Since xb ξ
j verify (1.10)—(1.13) one easily

sees that

hence c2 = 0 and even c\ = 0 for cλ = Σ ̂ Aι®xb h £ k. For n = 1, Bq is a polynomial
ring in one even and one odd variable so that Proposition 1.12 is evident. The
general case can be reduced to this one because Bq as a complex is isomorphic to
the tensor product of n classical n = 1 Koszul complexes. We leave to the reader
taking care of twisting by qtj.

We now turn to the proof of Theorem 1.12.

4.2. S is a Coideal. We have

' u w\ (u w\ (u w
Δ\w vl \w v)^\w v
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Hence
A(W)=W®V+U®W; Δ(W')=W'®U +V®W\

so that the entries of FFand W generate a coideal. Applying first to this matrix f"st"
we get the same conclusion for in(W), in(W).

If A, B are two multiplicative matrices of the same format we have

Applying this to A = in(Vstn), B = in+ί{Vstn + 1) we see that S is a coideal.

4.3. c is a Coίnvariant. Put ξt = {ξ\ ...,ξn). We have

Therefore ^ = δ^tχ) = ξt^y^ VmodS®x = l®c.

The rest is clear.

5. The Structure of Eq

5.1. Commutation Relations. The relations (1.3)—(1.9) for fixed indices i, j, k, I
constitute a block corresponding to a choice of a two-by-two submatrix in Z. In
order to present them in a more manageable form we first put

A' qίJ= q» ( v e r t i c a l ) <lki = ah (horizontal).

c a)

Then (1.4H1.9) take form

ab = (-lfqi-^+ίba; ci = ( - l ) ^ - 1 ) ; + 1 d c ; (5.1)

ac = (-lfq[-^+1ca; bd = {-ίftύΓ»i+ιdb; (5.2)

ad-(-\fq;1qhda=-η(qhbc-(-lfq;icb); (5.3)

ad-(-lfqvqh1da = η(q};
1bc-(-lfcqvcb), (5.4)

where η = (—l)kj+kι+jl. In particular, if qv = qh=l then a, b, c, d pairwise
supercommute.
5.2. Quadratic Monomials. Call a monomial dδcybβaa normally ordered one if
α, /}, y, (5 = 0,1,2,... (respectively 0,1) for even (respectively odd) entries. Four non-
normally ordered monomials ab, cd, ac, cd can be expressed via normally ordered
ones with the help of (5.1), (5.2). The rest of them ad, be can be expressed via (5.3),
(5.4) iff

i.e., iff q%φ—l. Otherwise, subtracting (5.3) from (5.4) we get a linear relation
between normally ordered monomials



Multiparametric Deformation of the General Linear Supergroup 173

which disappears if also ql = — 1. But then (5.3) and (5.4) become equivalent so that
the normally ordered quadratic monomials cease to span the quadratic part of Eq.
In fact, one should complement them by either ad or be.

In general, if ql + — 1, (5.3) and (5.4) together are equivalent to

-η{—\γccb, (5.5)

» (-lfcb+ qv q_\ qAh η(-lfda. (5.6)

Note now that the normal ordering of entries of Z induces the normal ordering of
entries of an arbitrary two-by-two submatrix of Z. Therefore, if g? φ — 1 for all qip

the normally ordered quadratic monomials form a basis of the quadratic part of
Eq. This proves the first assertion of Theorem 1.14.

5.3. Normally Ordered Monomials Span Eq. Now we shall describe an algorithm
Im, m^n, allowing one to reduce any polynomial of z{, i^ m, to a normal form, i.e.,
to present it as a linear combination of the normally ordered monomials. We shall
do this inductively, starting with /„ and then defining consecutively / w _ l 5

7n_2, ...Jv The last algorithm Iγ will do the job.
Each algorithm consists in applying a series of "elementary transformations."

An elementary transformation substitutes a left-hand side of one of the relations
(5.1), (5.2), (5.5), (5.6) occurring in a polynomial by the corresponding right-hand
side.

In acts upon polynomials depending only on the entries of the last line of Z.
Since the corresponding commutation relations have the simple form (5.1) one can
simply rearrange the entries in the normal order supplementing the twisting
coefficients and deleting all monomials where a square of an odd variable occurs.

If Im is already defined, Im_1 acts in two stages. At the first stage, we take an
arbitrary neighbouring pair in a monomial, of the type yx, where y lies in the
(m — l)-th line while x lies below this line. Using (5.5), (5.6) or (5.2) we replace this
pair by a linear combination of two pairs of the type x'y\ where y' lies in the
(m — l)-th line while x! lies below. After a finite number of such steps we shall arrive
at a linear combination of monomials in each of which the elements of the
(m —l)-th line lie to the right of the elements of the lines m, m + 1 , ...,n. At the
second stage, we rearrange separately the elements of the (m—l)-th line and the
rest using respectively (5.1) and Im-V

This algorithm, for the case of pure even format and all q(j equal, was suggested
by Yu. Kobyzev.

5.4. Cubic Monomials. Elementary transformations in general can be applied to a
polynomial in various orders. If two different normalization procedures lead to
different results we get a linear relation between normally ordered monomials in

This may first happen in degree three. Namely, a monomial uvw can be
normalized in two different ways iff we have u>v>w so that we can start
rearranging either uv, or vw. The following lemma deals with the case when u, v, w
lie simultaneously in a two-by-two submatrix of Z as in the beginning of this
section.



174 Yu. I. Manin

5.5. Lemma. Suppose that ^ Φ — 1 , q2ή=—l. Then the normally ordered cubic
monomials in a, b, c, d are linearly independent in Eq iff qv=±qh1

Proof. We must directly normalize eight monomials a2d, ad2, b2d, bd2, abc, abd,
acd, bed in two different ways and compare the results. We shall do that for abc and
leave the rest to the reader.

Denote by Rtj the application of an elementary transformation to the (/-places
of a monomial e.g., R23(abc) = a (right-hand side of (5.6)).

Applying R23R12R23
to abc w e β e t a polynomial in which cba enters with the

coeficient

1 . (5.7)

On the other hand, cba appears in R12R23R12(abc) with the coefficient which
coincides with the second term of (5.7). Therefore, the two normal forms can
coincide only if either q~ίqh = qυqϊ1 or q;1qh:

1=qvqh, i.e., qv= ±q£K Then one
checks that in this condition, the coefficients of da2 in these two normal forms
automatically coincide for ά = 0; otherwise, da2 = 0.

5.6. Uniqueness of the Normal Form. Assume now that normal cubic monomials
are linearly independent in Eq. We want to deduce that monomials of any degree
are linearly independent. This is equivalent to the statement that they have a
unique normal form.

There is a well known combinatorial principle allowing us to ascertain such
uniqueness.

Namely, let p be a polynomial and 7", T" two elementary transformations
applicable to p. Suppose that there exist two sequences of elementary transfor-
mations S'u...,S'a and S\, ...,S'b such that

If this condition is valid for all triples (p, T', T") then the normal form is unique.
Let us check this condition in our case. In fact, if T', T" are either applied to

different monomials in p, or to the same monomial but the respective pairs do not
intersect, we can simply put S\ = T", S'[ = T. Otherwise, up to renaming, T
replaces uv and T" replaces vw in a neighbouring triple uvw, u>v>w. By
assumption, uvw has a unique normal form. Reducing T'(μυ) and T"(vw) to this
common normal form we obtain S and S'j.

5.7. The n = 2 case. Here qv = qh, so that Lemma 5.5 can be directly applied. No
more cubic monomials should be checked.
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Note added in proof. John Tate has independently obtained the Theorem 1.14 (for the pure even
format). E. Demidov has calculated the necessary and sufficient conditions for cubic monomials
to be independent. They run as follows: if

qij = εijq
v-, cυ = ± l , vu= ±1

then

(Vij-vlk)(vjk-vik) = 0

for all i<j<k. It follows that, after a renumbering of x l 5 ...,xπ5 one can assume that ufj do not

depend on (ij).






