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Abstract. The fluctuation field integral, constructed in Part I, is represented by
the exponentiated cluster expansion. It is proved that the terms of the expansion
satisfy the inductive assumptions. This completes the construction of the
sequence of effective actions in the small field approximation.

Introduction

In the first paper of this series we have considered the fluctuation field integral
defined by the k'" renormalization transformation. We have shown there that the
fluctuation field effective action is a small perturbation of the basic quadratic form,
in the small field approximation. This is the main part of the analysis of this
integral, and it includes the analysis of renormalization. Now it remains to construct
a localized representation for the new term in the effective action defined by the
fluctuation field integral. This is done by an application of the exponentiated cluster
expansion. This expansion is constructed in two steps.

At first we localize the fluctuation field effective action by a procedure similar
to a cluster expansion, using the generalized random walk expansions for
propagators and minimizers occurring in the action. This procedure is described
in Sect. 1. It yields the integral in the form to which we can apply in a straightforward
way the exponentiated cluster expansion. This expansion is described in Sect. 2.
It yields the desired localized expansion of the new effective action. We prove
also that terms of this expansion satisfy the inductive assumptions formulated in
the first paper. Thus we complete the proof of Theorem 3 of that paper. The two
expansions constructed here are quite general, as will become clear from their
descriptions. They can be, and will be, applied in many other situations, such as
for the expressions constructed with the help of more general propagators described
in [13], or for integrals conditioned to subdomains of the lattice.

*  Work supported in part by the Air Force under Grant AFOSR-86-0229 and by the National Science
Foundation under Grant DMS-86-02207
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The first paper is referred to as I, so we refer to its sections and formulas by
writing I before the corresponding numbers, e.g. Sect. 1.3, or the formula (I.1.18).
We also refer the reader to the list of references at the end of that paper.

1. Localizations and Bounds of Terms in the Fluctuation Field Action

In Sects. 1.3-5 we have constructed the expansions of terms in the original fluctuation
field effective action in (1.2.12). The newly created terms, after the cancellations
described at the end of Sect. 1.4, satisfy much better bounds of the type (1.0.29),
bounds assuring convergence of the sum of all these terms. They are analytic and
nonlocal functions of the configurations U, J, B. The nonlocality is, however, of a
simple origin, it is introduced by the functions H;, H,, propagators and other
expressions appearing after the expansions. Analyzing the terms (1.3.7), (1.3.21) or
(I.3.34), we see that they have the following structure: there exists a function
E(X,U,J,A) analytic and localized to X in U, J, A, such that a given term is
obtained substituting a proper nonlocal expression in the place of A, e.g., the
function H;(B(1)) + ¢ 6H; in (13.7), (th+tDCD)Hk(B/) in (I.3.34), and so on.
Instead of trying to cover all possible cases, let us consider one important and
typical term, and then discuss necessary changes for other terms. For example let
us consider the last term on the right-hand side of (1.3.34). We have proved that
it is an analytic function of U, J, A, for (U, J)e U; . [ ([Tlo, (1 + 2B)ay, (1 + 2)a, o)
and A satisfying (1.3.31). Substituting

AZ(ZED +IDCD)Hk(B/) (1])

we introduce, through the function H,(B’), a dependence on U, J, B on the whole
lattice. Our problem is to localize the obtained function, more precisely to
represent it as a sum of terms, which are localized in domains from D,, and which
satisfy bounds of the type (1.1.18).

We construct such an expansion by a procedure similar to decoupling
procedures in cluster expansions. To this purpose we use extensively the generalized
random walk expansions for propagators constructed in [13]. The function H,(B')
is determined by the propagators through the equations it satisfies. By the results
of Sect. G [15] this function is given by

H,(B)=H,B' + A, — HD(H,B + A,), (1.2)
where the linearizing transformation D(A4’) is a solution of the equation
D(A")= C(A"— HD(A')), (1.3)
and A, is a solution of the equation
~( 0
Ay + G(EZ V>(HOB’+A0)=0. (1.4)

We have suppressed the subscript k in the equations, and also the dependence on
the variables U,J. The function V(A’) is a nonlinear and nonlocal function
depending on H and D(A’). It is given by the formula (80) [15]. Thus Egs. (1.3),
(1.4) are determined by local, analytic functions, and nonlocal propagators H, H,,, G.
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In these equations we can replace the propagators by arbitrary operators having
the same regularity properties and satisfying the same bounds. Only these bounds
were important in the analysis of Sect. C, E [15], hence the solutions D, A, can be
considered as functionals of these operators, having all the properties proved in [15]

D(A)=D(H,A"), A,=Ay(H,G,H,B). (1.5)

The nonlocality of these solutions is a result of a nonlocality of the operators,
hence we localize the solutions by localizations of the operators. We start with the
original propagators, and we decompose them into generalized random walk
expansions. A propagator is represented by the sum (3.107) [13]

2 Ro(Xo) Ry (X1)-+ Ry, (X,) (1.6)

where = ((0, Xo) (0, X 1), 5 (0, X)), Xos X1,..., X, are simple localization
domains, unions of connected families containing several cubes from =, (1), i.e. of
the size M, instead of M. For more detailed explanations of (1.6) see Sect. C [13].
Localization properties and bounds are important for us. Each factor in (6.6)
depends on external gauge field configurations restricted to the corresponding
domain X f, and its kernel vanishes in a sufficiently thick neighborhood of X,
e.g. in a neighborhood of the width +M,. The term corresponding to a walk w in
(1.6) can be bounded, as (3.108) [13], by

O(HO(M{ V2) M exp(— dyd(w, v, ¥)), (1.7)

where A(y), A(y') are localization cubes of the term. This bound holds for all operator
norms in formulations of theorems in [13], e.g. in Theorem 3.1. The first two
factors in (1.7) are used to control the sum over w, and they determine the constant
B,. We will use the remaining two factors to produce exponential bounds for
localized terms.

To construct the decoupling we introduce a regular partition ¢, of the space
T, in the scale corresponding to the lattice T,, into cubes 4 of the size R; M ;. The
number R, is a power of L satisfying the condition R;M,; M~ *<1. For the
particular example under consideration we take cubes of the size M, which are
disjoint with the interior of []* We denote this family by a,. To each cube 4 in
this family we assign a variable s(4), and we denote by s the system of all these
variables. We introduce a dependence on s in propagators in the following way:
for a random walk o localized in XU X3u---UX? we take the {4,,...,4,,} of
all cubes from o, which intersect this localization domain, and we multiply the
term in (1.6) corresponding to w by s(4,)---s(4,,). This way the s-dependent
propagators H(s), G(s), H o(s) are defined. They coincide with the original ones for
s=1. The symbol B" in (1.1) denotes the local function of B defined by (1.3.2).

Now let us consider the last term in (I.3.34), or an arbitrary expression obtained
by the transformations of one of the terms on the right-hand side of (I1.3.34). We
denote the corresponding function of U,A by E([],, U, A), hence making the
substitution (1.1) we have

E(D09 Us(t‘;;[[ + IDCD)H}:(U: J’ B,))
= E(Co. U, (el + 15 L) Hi (U, 3, Hs), G(s), Ho(5) B)) = (1.8)
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To simplify the formulas let us omit the symbols U, J. Now, as in cluster expansions,
we apply the fundamental theorem of calculus

E(DO’ (tzjg + IDCD)Hk(B/))

=¥ 1 (f) ds(4) 5. ( 330 B0 (1 + 15 L HA(H) GS) Ho (DB s <o (19)
o Aeo

Consider a term in the last sum. The set Y(o) = [J* U(U 4cs4) 1s a sum of connected
components, with the following notion of connectedness. We consider domains Y
which are unions of subfamilies of ¢,, and which satisfy one of the following two
conditions: either Y is disjoint with the cube [J%, or it contains this cube. In the
first case Y is connected if and only if for any two cubes A, A" = Y there exists a
sequence 4,4,,...,4,, A" of cubes contained in Y and such, that boundaries of
two successive terms in the sequence have a common d — 1-dimensional wall, and
there is no cube in Y having this property with respect to []*. In the second case
Y is connected if and only if for any cube A < Y there exists a sequence having
the above property and connecting A with []% ie. the last term in the sequence
intersects []* along a d — 1-dimensional wall. We denote by Y, the connected
component of the domain Y(o) containing the cube []*.

Consider the function (t0 + ¢ ¢ )H(H(s), G(s), Ho(s)B)) for s satisfying
5(¢°)=0. We prove that it depends on B, s is restricted to the component Y,. At
first we remark that kernels of the operators H(s), G(s), H,(s) vanish, unless both
arguments are in the interior of one component of Y(o), in fact with distances to
the boundary of this component bigger than M, . Consider Eq. (1.3) with H replaced
by H(s). By the above remark this equation reduces to the equality D(4") = C(4")
on the neighborhood of Y(¢)°, and to separate equations in components of Y(o).
The solution D(H(s), A') restricted to the interior of a component depends on
A', H(s), hence s, restricted to this component. This implies that the function
(6/0A"YV(H(s), A") has similar properties, i.e. it coincides with the local function
(6/0A")Vy(A") on the neighborhood of Y(0), and considered on a component of
Y(o) it depends on A', H(s), s restricted to this component. Thus Eq. (1.4) represents
a system of separated equations in components of Y(g). The solution Ay(H(s),
G(s), Hy(s)B') is equal to 0 on the neighborhood of Y(0)", and again, on a component
of Y(g) it depends on the propagators and B’ restricted to the component. Finally,
the function B’ defined by (1.3.2) is a local function of B. As a consequence of these
properties we obtain that the term in the sum on the right-hand side of (1.9),
corresponding to the set g, depends on propagators and function B, s restricted to
the component Y,, the component of Y(s) containing []* If there are other
components, then the derivatives with respect to s restricted to these components
render the term equal to 0. This simplifies the sum in (1.9). We can write it as a
sum over connected domains Y, containing []*, with parameters s =0 on Y¢. We
denote s by s(Y,), hence we have

E(DOa(tZD + [DCD)HI((B,))

=y |l de(A) E(Do,(tCDHDCg)Hk( H(s(Yo)), G(s(Yo)), (Ho B)(5(Yo)))).

Yo Ac vy 04 o
(1.10)
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In the term corresponding to Y, in the above sum all propagators and the function
B are restricted to Y,. This implies that this term depends on U, J restricted to
You .

To estimate a term in the sum (1.10) we use the Cauchy formula, hence we
have to investigate analyticity properties of the functions E(---) with respect to the
variables s(Y,). We review successively the functions and the operators in (1.10).
Let us start with a bound for the function H(s(Y,))X, X is an arbitrary g‘-valued
function on Y, the parameters s(Y,) are complex valued and satisfy the bound
|s(4)| < ¥t for A = Y, \ (1%, k, is a sufficiently big positive number. Using the bound
(1.7) we estimate the function by

Bo| X |sup M @l exp(— dyd(w))e™ !, (1.11)

where d(w) is a length of a shortest tree graph intersecting all localization domains
of w,m is the number of the parameters s connected with the walk w. If m is big
enough, for example m > 2% then §,d(w)=36,mM, for a positive constant &,
depending on J, only, and we can bound the expression under the supremum in
(1.11) by 1, for 6, M = x,. If m < 2% then we can have short walks, in fact with
|w] =0, and the expression can be bounded by e** only. Thus the function
H(s(Y,)) X is an analytic function of the variables s(Y,) on the domain |s(Y,)| < ",
bounded by B,e!®!|X| in all norms of Theorems 3.1.-3.10 [13].
Consider the change of variables

A=A — H(s(Y,))D(H(s(Yy)), A). (1.12)

The function D is the solution of Eq. (1.3) with H(s(Y,)) instead of H. Let us
introduce an auxiliary constant ¢,, and consider this equation on the space of
functions satisfying |A'| <e,. Let us recall the most important points from the
discussion of Sect. C [15]. If we replace the function D in (1.3) by a configuration
X, then for the complex s(Y,),

|C(4" = H(s(Yo))X)| £ 2C, 83 + 2C, Bi e | X |2, (1.13)

and for X satisfying |X|<4C,e? <(4C,B%e***)™ !, hence for ¢, satisfying
4C,B,e''e, <1, the right-hand side above is bounded by 4C,e%. Thus the
transformation defined by the function on the left-hand side of (1.13) maps the
domain {X:|X|<4C,¢3} into itself. We prove similarly that it is contractive on
this domain, hence the fixed point is an analytic function of 4’,s(Y,), bounded by
4C, 2. Because &, can be chosen arbitrarily close to | 4’|, so we have the inequality

ID(H(s(Y)), A))| < 4C, | A’ (1.14)

It is the same as the inequality (55) [15]. Similarly the other inequalities and
statements of Sect. C [15] hold in this case, for example the transformation (1.12)
can be bounded as in (57) [15]: | 4| <&, + Bye*®*'4C,e3 < 2¢,. This implies that
the function V(H(s(Y,)), A'), defined by (80) [ 15] with the help of the transformation
(1.12), is an analytic function of A’, s(Y,), and Proposition 4 [15] holds for it (with
&5 replaced by ¢,). Consider now Eq. (1.4) with the above function V, and with
G, H,, replaced by G(s(Y,)), Hy(s(Y,)). The last propagators are analytic functions
of s(Y,), and they have the same bound (1.11) as H(s(Y})), hence their norms are
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bounded by B,e!® . Using this, and the inequality (98) in Proposition 4 [15], we
obtain

~ 0
lG(S(Yo))<ﬁ
<2C,(Boe'® ) |B'|* +2C, Bye' * (max {|A[,|VA|})?

<2C,(Bye'®)2e2 + tmax {|A,|VA|} <4C,(Bye'®)%e2,  (1.15)

V)(H(S(Yo)): Ho(s(Y,))B' + A)]

if
max {|A|,VA|} <4C,(Bye'®**)*e] < (4C,Boe' o)~ 1,

and if | B'| < &5, where ¢ is another auxiliary constant. The last inequality holds
if 4C4B3e***1e5 < 1. The norm of the function Hy(s(Y,))B + A is bounded by

Bye!® ey +4C,(Bye'®1)3e3 < 2Bje!® e,

and we assume that 2Bye'*'¢; <e,, so the function satisfies the assumption of
Proposition 4 in this case. The inequality (1.15) holds for all admissible norms. It
implies that the fixed point, ie. the solution of Eq. (1.4), is an analytic function
of B',s(Y,) on the considered domains, it satisfies the bound
|Ao(s(Yo), Ho(s(Y,))B')| < 4C4(Bge' ™)’ | B'|?
<4C,(Boe'* )3 < Bpe'®*ey <te,,  (1.16)
and the same bound for the other norms. This finally implies the desired result
for the function
H, (s(Y,), B)) = Ho(s(Yo)) B' + Aq(s(Yo), Ho(s(Y,)) B)
— H(s(Y,))D(H(s(Y,)), Ho(s(Y5))" + Ao(s(Yo), Ho(s(Y,)) B')).
(1.17)
It is an analytic function of s(Y,), B, satisfying the bound
[H,(s(Yy), B')| <4Bye'®*'|B'| < 4Bye'® ey < 2e,, (1.18)

and the same bound for all admissible norms. Let us recall that all the considered
functions and operators are analytic functions of the configurations U,J in a
domain given by the conditions I.(i)-(iii) with some og,«}, and all the bounds
above are uniform on the domain.

We have to consider the function B’ yet. Notice that in the preceding
considerations B’ was a variable field. The function is given by the formula

B' =g,CB— hD(g,CB). (1.19)
It satisfies the bound
|B'| < O(1)g,| Bl + 4C,(0(1)g,| B|)* < C, 9| Bl < Cy ¢4, (1.20)

where C; is an absolute constant, and g, |B| <¢;.
Gathering together the above statements and estimates we obtain that
H,(s(Y,), B')) is an analytic function of s(Y}), B, for |s(Y,)| £ €** and ¢g,|B| <e¢,. It
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has the estimate
[H,(s(Y,), B')| £4B,C, elfmgle( <4B,C, 916“81 , (1.21)

and the same for all admissible norms, if e32*! ¢, is smaller than an absolute constant.
This constant can be easily obtained by inspection of all the above conditions. We
have yet another condition for the function H, in (1.21), namely this function
multiplied by tZD +1t4{ has to satisfy the bounds (13.31). We assume that
4B,C,e*® ¢ < La,,and this implies that the product with ¢, satisfies (1.3.31) with
10,. The product with {; has the norms in (I.3.31) bounded by 4B,C,e'°* g, | B| <
4B,C, e'®* ¢, and we extend the expression in (1.10) analytically with respect to
t, satisfying |1|4B,C,e' % g, | B| < 3o,. Taking ¢ for which the equality holds,
we get
@= 8B,C, e a5 g, | Bl <8B,C e ;e (1.22)
Let us come back to the expansion (1.10). We differentiate it with respect to
to, at i5 =0, and we represent all derivatives by the Cauchy formula. The term
in (1.10) corresponding to a domain Y, is represented as

i, ! do(d) . ,
i ?D—ACIY;I\E“"“dS(A)% (o) — s(A)7 E(Oo, (t{5 + t5{)Hi(a(Y,), B)),
(1.23)

where the f-integration is over the circle (1.22), and the g(A)-integrations are over
the circles |g(A)| = ¢*'. We were doing all the considerations for the last term in
(1.3.34), hence we estimate the above expression using (1.3.54). We get

5
|<1.23>1§SBocle16"*a;1gle|Eo(§l) (Lin)°

3
rexp(— (15, — DM ™ Yo\ *]) exp( — xd (X)), (1.24)

Adding and subtracting §x,d,([],) under the first exponential above, we can
bound it by

exp(— 40, — DY) +dr di( o) = 30, = DM H Y\ %), (1.25)

where Y = Y,u [],. Of course Y is a localization domain form D,. The inequality
(1.24) supplemented by the above bound is enough to control the sum over all
terms (1.23) having a common localization domain Y. Before considering such a
sum we have to take a common domain of analyticity for all terms in it. From
the results of Sect. 1.3 it follows that the term (1.23) is an analytic function of
configurations U, J, defined on the space U, (g, (1 4+ 2f)a, (1 + 28)ay,%0). By
the construction it depends on U, J restricted to Y, u [, = Y, and the conditions
outside Y are unessential. Thus we consider this space defined by the conditions
1.(1)-(iii) on the domain Y, and we take its subspace U;, (Y, (1 + B)ag, (1 + Bay, o).
All terms (1.23) with the localization domain Y are defined and analytic on this
space.

Now we consider the sum of all terms (1.23) having the same localization
domain Y. It is a sum over all admissible [J,, Y,, j and X. The expression defined
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by this sum can be bounded using (1.24), (1.25). At first we consider the sum over
X. We take XeDj, X < [J2. This sum can be bounded by two sums, the first is
over ('en;, 0 = DZ This sum can be bounded by two sums, the first is over
Oen;, O c )2, the second over X eD; such that [’ < X. For the second sum
we have

Y exp(—xd;(X) S 0(1), (1.26)

XeDpXx>0'

for k sufficiently large. The number O(1) is in fact small, because we sum over X
with d;(X) #0, as it follows from our inductive construction. This inequality was
used many times in convergence proofs for cluster expansions, for example see
[48, 50,40, 26, 3]. To bound the first sum, over [’ = []?, we use the factor (L/7)°
in (1.24). This yields (6L)*L/n, and the sum over j is bounded by 2(6L)*. The sum
over Y, is simply a sum over subsets of the family of cubes A contained in [J,\ []*.
The number of terms in this sum is an absolute number, but we get a better bound
using the last term under the exponential in (1.25). The sum is bounded by

exp(8-123exp(—4(x; — 1)) < e (1.27)
for k. sufficiently large. Finally, the sum over [J, can be bounded by
M4 Y| <323, (Y) S expik(i, — 2)d (). (1.28)
Gathering together the above bounds we obtain
[} (1.23)| £ Ege, O(M4) exp O(1)k, exp(— 15k, d(Y)), (1.29)

with absolute constants O(1),q. The constant ¢ is a small, nonnegative integer,
which can be easily calculated from the conditions on ¢, o, &;. Another possibility
is to use the expression g, |B| instead of ¢,. It gives a better bound, but the above
is simpler.

These considerations and bounds were done on the example of the last term
on the right-hand side of (I.3.34), but almost all of them are quite general and can
be applied to all terms in the fluctuation field action. Let us discuss the other terms
briefly. The simplest situation is for the remaining terms on the right-hand side of
(I.3.34), or rather for expressions obtained by the transformations described in
Sect. .4. We apply the expansion (1.10) to them, and the terms in this expansion
can be bounded similarly as in (1.24), using the inequalities (1.4.5), (1.4.22), (1.4.36),
(I.5.44), and other inequalities mentioned in the previous sections. The summation
over all possible choices of [, Yy, j, X yields an expression satisfying (1.29).

Consider now the expression (I.3.7), or rather its analytic extension (I.3.15). It
is determined by the functions H, (6/0B)H;, besides the function H,, and it depends
on the first two functions restricted to X. We introduce the parameters s in the
same way as before, only the family ¢, is different. It is defined now as the family
of all cubes A4 disjoint with the interior of X, where X, is the smallest localization
domain from D, containing X. We apply the expansion (1.10). Terms in this
expansion can be bounded using the inequalities (1.3.17),(1.21), and we obtain the
bound

E024BOC B3816K10(2 81 exp(_‘_“ M(L] ) 50dlst(é)(X D))
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‘exp(— (k, — )M ~*| Y\ X, |) exp(— xd;(X)). (1.30)

By the definition of the linear size functions they satisfy the following fundamental
scaling inequality

di(X) Z (L) di(Xo). (1.31)
It implies that the last two exponentials in (1.30) can be bounded by
exp(— (1 = d)xd(Y) — oxd;(X)), (1.32)

if Hx;—1)2(1—9)k,0<<1. Now we sum all the terms having the same
localization domain Y. At first we notice that each term is defined and analytic on
the corresponding space (1.3.16) restricted to the domain Y. All these spaces contain
the subspace Uj, ;(Y,(1 + B)ag, (1 + By, %), and all the terms are defined and
analytic on it. The summation over X is controlled in several steps. We fix a cube
O'en; such, that (' c X, dist®(X,[0)=dist®(0,0), and we sum over X
containing [, using the second exponential in (1.32), and the inequality (1.26) for
ok sufficiently large. Next we sum over the cubes [, and this sum is controlled
by the first exponential in (1.30). The first term under the exponential gives also
the factor L7y, which controls the sum over j. Finally, the sum over all possible
cubes [J can be bounded by

M4 Y| <32%d,(Y) < exp Skdy(Y).

These estimates yield again a bound of the form (1.29) for the considered sum,
with the last exponential replaced by exp(— (1 —2d)xd,(Y)). We assume that
({6)xc1 = (1 — 20)k, hence we can bound both sums by the above exponential.

The expression in (1.3.21), given by the last integral, is expanded and analyzed
in almost the same way as the last term in (1.3.34), so we do not repeat these
considerations.

The results obtained for the expression in the curly bracket {---} can be
summarized as follows.

Lemma 1. The second expression in the fluctuation field action in (1.2.13) is
represented as the sum

E (UlexpiB' V®) —E (U, (V¥)= Y Vi(Y, Uy, 1, B). (1.33)

YeDy

For each term in the sum there exists a function Vi(Y,U,J, B), defined and analytic
on the space

k+1 (Y, (L+ Blag, (1 + Pay, a0) x {B:|Bl <e;g9,' on Y}, (1.34)
i.e. it depends on configurations U, J, B restricted to the interior of Y, and such that
(Y, U1, B)=Vi(Y,Ups 1, Jis 1, B). (1.35)

There exist absolute constants C,,C,,q, for which
[Vi(Y,U,J,B)| < Eqe; C, Miexp C,x, exp(— (1 — 20)kd,(Y)). (1.36)

We would like to prove a similar result for the first term in the fluctuation field
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action in (L.2.13). It is the function P®(g,, U, ,,B) and, as we have remarked
already at the beginning of Sect. 1.3, this problem is much simpler for it, because
of good regularity and boundedness properties on the unit lattice T{. Nevertheless,
there is one aspect of the problem which we have to discuss here. It is connected
with the factor 1/g2 at many terms in this function. We have to cancel this factor,
and this implies that we can get a bounded polynomial in B only, not the absolute
bound of the type (1.36). Let us discuss it on the most important example of the
expression (1/g7)V(H, B'), where B’ is given by (I.3.2). The function V is given by
the formula (80) [15], which comes from the expansion (41) [15] of the Wilson
action by the change of variables (47). In this function, as in all other terms, we
replace the configurations U, , ;,J, . ; by the variable U, J. We obtain an analytic
function on the space Uy, ;(T,, %, }), with a, o} much bigger than «,,a;. Let us
recall that it is the space of U, J satisfying the conditions 1. (i)—(iii) on the whole
lattice T,. The function V' can have a natural localization connected with the sum
over plaquettes in the Wilson action. We take the decomposition of unity 1 =3 {

. . ... . . a
constructed in Sect. 1.3. This decomposition is introduced into the sum over
plaquettes, and we obtain

V(H,B)=Y V,(H,B), (1.37)
a

where in each term the sum over plaquettes is localized by the function {. Now
we apply the decomposition (1.10) to each term in the sum (1.37). For a fixed cube
[0 we take g, as the family of all cubes A disjoint with the interior of [J. From
the definition (80) [15] it follows that the sum in the decomposition is over all
localization domains Y = D, containing the cube [J]. The term corresponding to
a domain Y is represented as
1 do(A) ’

Ac];[‘\m IdS(A)Znif(O'(A) — )7 Vo(a(Y),H (o(Y))B). (1.38)
The above expression is localized in the interior of Y, with respect to U,J, B’ or
B. It is an analytic function of (U, J) in the space Uy, , (T,, %, «,), and of B in the
domain {B':e'®|B'|<a; on Y}, as it follows from the considerations of the
beginning of the section. The underintegral expression is analytic in ¢(Y) on the
polydisc |a(Y)] < e*'. The estimates (33),(37),(55),(57),(58) [15] imply the bound

|(1.38)] < Cy(e" ™| B'])* M*exp(—(x; — DM ~*| Y\ ), (1.39)

where C; is an absolute constant. To cancel the factor 1/g¢ we expand (1.38) with
respect to B’ up to the second order. The terms of zeroth and first order vanish,
and the second order term is written as a quadratic form with coefficients given
by second order derivatives of the function (1.38). The coefficients satisfy the bound
1 52
dt(1 — t) =———-——((1.38) with B’ replaced by tB’
it =0 5o (139 placed by t5)
<3C33%e7 5 B'exp(— gk, — Ddi(Y) =30, — DM THY]),  (1.40)

if e!®*!|B’'| <3a,. Taking B’ as in (1.19) we obtain the above bound with |B'|
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replaced by C, &;. We fix a localization domain Y and we sum up all the expressions
(1.38) with the domain Y, i.e. we sum over all admissible [] < Y. This yields an
expression satisfying the bounds (1.39), (1.40) with the additional factor M ~4|Y| <
exp M ~4|Y].

The above analysis was done on the example of the expression (1/g2)V (H, B'),
but it can be done in the same way for all terms in P®(g,, U, J, B), and we obtain
the same decompositions and bounds, possibly with other absolute constants. In
fact many of these terms are much simpler, and the above results can be obtained
applying the generalized random walk expansions directly, or even more elementary
means. Our last step is to sum up all the expressions with the same localization
domain. The constructions and the results of this section are gathered together in
the folloiwng lemma.

Lemma 2. The fluctuation field action is represented as the sum

P(k)(gka Uk+1’B)+{“'}= z Vk(Ys Uk+1:B)‘ (141)

YeDy

For each term in the sum there exists a function V,(Y,U,J, B), defined and analytic
on the space (1.34), and satisfying the corresponding equality (1.35). This function is
a sum of two terms

Vi(Y,B)=3<{Q(Y, B), B, B) + V;(Y, B). (1.42)
The matrix elements of the operator of the quadratic form satisfy the bound

|Q(Y, B,b,b')| < Cye; M*exp Cy i, exp(—§(k; — 1)d, (Y) — 3k, — YM ~*| Y)),
(1.43)

and the function Vi (Y, B) satisfies the bound (1.36). The functions V,(Y, U, J, B), and
both terms in (1.42), are gauge invariant with respect to the simultaneous gauge
transformations (1.3.29), for G-valued transformations u in a sufficiently small
neighborhood of all G-valued transformations.

Let us remark that the ast statement is a simple consequence of the statement
in Sect. 1.3, in the paragraph containing (I.3.29), and of the fact that the operations
in this section preserve the gauge invariance.

2. A Final Localization by a Cluster Expansion. Analyticity Properties and
Bounds for Terms in the Effective Action

In the last section we have represented the fluctuation field action in the form
(I.1.7) for j =k + 1, with the analyticity properties and bounds slightly better than
demanded by the inductive assumption. Thus we have prepared the integral in
(1.2.12), or (1.2.13), to the last step in our construction, to a cluster expansion
yielding the decomposition (I.1.7). Let us suppress the dependence on the external
gauge fields in the formulas below. We consider the integral in (1.2.13), with the
fluctuation field action represented by (1.41). The first step is the Mayer expansion
of the action density
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§ dpcoo(B) s eXp[ Y V.Y, B)}

YeD,

1

= Y T Jde(Y)jducon By exp[ Y (V) V(Y B)] [1V{¥.B. @1
DcD, YeDO YeD YeD

Each term in the sum over subfamilies D has the underintegral expression localized

in the domain

Yo= | Y. 2.2)
YeD
Next, for a fixed domain Y, we define the set of bonds Y§ = {heT®:bc
Y§i\{bo(c):ce T * 1}, and we take the following decomposition of the character-
istic functions y,:

T = Xie,yoXiys = 2 ,(_ l)lPle,YoXi,Pa (2.3)

Pc:Yf)

xi,p=ﬂx<{l3(b)122—l}>.

Here the symbol | P| means the number of bonds in the set P. For a given set P
we take the smallest localization domain Z,eD, containing Y, and P. Let us stress
that bonds of P have to be contained in the interior of Z,, they cannot intersect
the boundary 0Z,. We insert the decompositions (2.3) into the integrals in (2.1),
and we write the sums over D and P as a sum over localization domains Z,,
resumming all terms with D and P determining a given domain Z,. Let us denote
by F(Z,, B) the resummed underintegral expression corresponding to the domain
Zy,

21)= Z jdﬂam(B)F(Zo,B)- (2.4)

ZyeDy

The integrals above are represented in a similar way to (2.28) [6], namely as
conditioning on Zj. Thus, we write the term corresponding to a domain Z, as

(Z®)~'fdBexp(—3{B,C*A,CB))F(Z,, B) = [ ducu(B')

JdBlz,exp(—<ZB, C* A, CZyB) — 5{Z,B,C*A,CZ,B))F(Z,, B)
JdBlz,exp(—(Z5B',C*A,CZyB) —3{ZB,C*A,CZ, B))

= Jdpcor (B exp(—3<Z, B, C*4,CCP(Z,)C* A, CZ;B'))
'fd.uc(kuzo)(B) exp(—Z,B, C*A,CZ,B))F(Z, B). 2.5)

In the integral with respect to B’ we make the linear change of variables
B =(C®)'2 X This yields

dX(b)e'”le“’)'z
Jdnew(BIF(Zo. B)= 1] =0 S

(k)y*
beTY

'exp(—%(C*AkCZB(C(k))l/ZX, C(k)(ZO)C*AkCZf)(C“‘))l/zX})
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[ ditcoozy)(B)exp(— (B, C* A4, CZ4(C¥) 2 X Y)F(Z,, B)
= [dug(X)G(Z, X, CP(Z,),(CP)V2 Ay), (2.6)

where the last equality is a definition of the function G, and the measure dy,.

The above expression depends yet on the external gauge field configurations
on the whole lattice T,, through the propagators and the operator in the definition
of the function G. We localize it again by the method used in Sect. 1, introducing
the parameters s and differentiating. There is a difference in comparison with the
construction of Sect. 1, we take cubes from 7, , (, i.e. cubes of the size LM in the
scale corresponding to the lattice T,. We define o, as the family of such cubes A
disjoint with the interior of Z,, or W1th the interior of Z|,, where Z|, is a union of
the smallest family of such cubes containing Z,. The parameters s(4), Aca,, are
introduced into the operators as before, but the generalized random expansions
are constructed now in a slightly different way. We use the possibility mentioned
in Sect. C [13], that the localization domains in expansions can be chosen to a
large extent arbitrarily, they have to be only unions of connected families of
M ,-cubes. We choose Z, as one of the domains, more exactly we take a domain
X, such, that X3 =Z, (let us notice the inconsistency in the notation, the tilde
over X, means that M -cubes are adjoined, and the tilde over Z, concerns
M-cubes). Other localization domains X are chosen as in Sect. C [13], ie.
they are unions of small, connected families of M,-cubes, and we assume
that dist(X,Z,)>3M. For this class of localization domains we construct the
generalized random walk expansions. This construction was discussed in [13] for
all operators determining A,, and for C¥(Z,), but not for (C*®)*/2, To expand the
last operator we use a method similar to the method of Sect. C [16]. There it was
applied to expand the determinant of this operator, see (63) [16]. Now we can
simplify it a bit using a better decay property of an underintegral function, and
we have

1=
(C9)2 = (C*A,0) 12 =~ [dxx 12 (xl + CF4,C)
T o

_Ln - * S, Y (=17
_ngdxx (xI +C*A,C) Z Y
Expanding the operator A, into the generalized random walks, we obtain
an expansion of the series above, if y, is sufficiently large. The resolvent
(xI + C*A,C)~! has a representation similar to (C*A,C)~!. More exactly, the
operator C(xI + C*A,C)” ' C* is representated by the integral (3.185) [13] with
the additional term —4x | y*(QA + Du(QA))||> under the exponential function,
where y* is the characteristic function of the set of bonds T\ {by(c):ce T** 1},
This term determines a nonnegative, bounded and almost local ~operator. The
integral yields the representation (3.185) [13], with the operator G, replaced by
G3(x) which is defined as G,, but with this additional operator. The operator
G 5(x) has the same properties as G, especially it can be expanded into a generalized
random walk expansion. This yields an expansion of the integral above, hence an
expansion of (C%)!/? also.

Using these expansions we introduce the parameters s, and we apply the

TR ACY. (27)
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decomposition (1.10),

Ho 0> > ( §
Jdito(X)G(Zo, X, CO(Z).(C¥)2%,4) =Y, [] [dsia

Z AcZ)\Zy0 A)
[duo(X)G(Zo, X, C(Z,,5(2)),(CV)'2(5(2)), A(s(Z)))
= ; H(Z,Zy). (2.8)

The sums are over Z such, that each connected component of Z contains a
component of Zj,. The equalities (2.4), (2.6), (2.8) imply
21)=Y H(Z), where H(Z)= Y H(Z Z,). (2.9)
z ZyZo<Z
This is the desired expansion into localized quantities. The function H(Z)is localized
in the interior of Z with respect to the external gauge fields. From the definition

of H(Z)itis also clear, thatif Z=Z, u--- U Z,, where Z; is a connected component
of Z, then

H(Z)y=H(Z,)---H(Z,). (2.10)
Thus finally we obtain the polymer expansion
1 .
@h= Y H(Z,)-HZ )—1+ —~ x|l Uz.zpH(Zz,)-H(Z,),
(ZyoiZa) n=11 7, 2, (i<

@2.11)

where the function {(Z, Z') is defined by the condition: {(Z, Z') = 0if Z n Z’ contains
a cube, or a wall of a cube, and ((Z,Z') =1 otherwise.

If the activities H(Z) of the above polymer expansion are sufficiently small, then
the polymer expansion can be exponentiated according to the well-known formula,
see [36,60,26,25,67,50]. We obtain by (1.2.13), (1.41), (2.11)

BV D= Y Y T (Zy ZYH(Z,) - HZ,), 2.12)

where p¥(Z) =1, and
pT(Zl""’Zn): Z H (5(21521)_1)7

9¢Cn {1, 1}eq
C, is the set of connected graphs on the set {1,...,n}. The representation (1.1.7)
for E**V is constructed by taking

E¢ V(X)) = Z — Y o™ (Z,,...,Z)H(Z,)---H(Z,), (2.13)
n=1n! (Zy, . ZyUZi=X

where XeD, ;. To end the proof of the first part of Theorem 3 we have to prove
the bounds (I.1.18). We also need bounds to prove a convergence of (2.12), (2.13).
In the rest of this section we will prove bounds and discuss analyticity properties

of the functions (2.13).
We start with a discussion of analyticity properties of (2.13). The activities H(Z)
are sums of many terms, more exactly the sums in (2.9),(2.1),(2.3) over Z,,D, P.
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The subfamily D is important for the analyticity properties, because it determines
the potentials V, (Y, B). They can be extended to functions of (U, J), analytic on
the space U, 1 (Y, (1 4 B)ag, (1 + oy, 20). Of course Y = Z,,, and Z, = Z = X for
the activities in (2.13). The potentials are also analytic functions on the subspace
w+1(X,a0,0a). The quadratic forms and covariances in H(Z) are analytic functions
on the space of configurations (U, J) satisfying the conditions 1.(i)—(iii) on the domain
Z, with constants o, o) much bigger than «,,o,, therefore we can restrict them,
as analytic functions, to the above subspace. Thus the activities in (2.13), and the
whole sum E** 1(X), are analytic functions of (U, J), on the space U5, | (X, o, %; ).
This is the analyticity statement in the inductive assumptions.
To get a bound for H(Z) we consider a term in the sum over D, P. This term
can be written in the following form:

1 dr(Y)
1T e sy e

Ac 2020

fduo(X)zexp(— 5 T(Zo, a(Z) X, CY(Zy,0(2) (2o, 0(Z))X ))
'jﬂdﬂ(‘U«)(zu.a(y,))(B) exp(— (B, I'\(Zy,0(Z))X )

2
Ye

(— 1)’”zk.y0(B)xi.p(B)eXp[ Y W(Y)V(Y, B)jl, (2.14)
YeD -
where
[(Zy,0(2)) = C* A(a(2))CZ,(CH) 2 (a(Z)).

We consider it as an analytic function of (U, J) in the space U, (X, 2,2, ), and
of the complex parameters o(Z), 7. This complicates estimates of this expression,
because the operators in it are not symmetric, and the second measure is complex.
We use the fact that, by the definition of the space, the configuration U can be
written as U= U'U, U’ =expil " 'nA4’, and A4',J have values in g, but they are
small. More precisely we have |A"|,|V5 "A'| <a,,|d|<a,. For the pair
(U,0) the operators are symmetric, and the measure is positive, and then the
estimates are simpler. The general case is handled by a perturbative argument.
The first estimate is

[(7.14)] < exp(— (i, — NLM) " *Z\ Z, \)ﬂ )
YeD
‘jdﬂo(x)\zexp(—%Re<rk(zo,0(z))X7C(k)(zo,U(Z))rk(zo,o(z))x>)
| det(C(Zy,0(Z)) 1) |2

det(Re CH(Z,,0(Z))™ 1) §dugec® 2oz 11 (B)

exp(—= <B,Re I (Zo, 0(Z)) X D) iy L, pexp[ Y T NV(Y, B)I}
YeD
(2.15)

In the expression on the right-hand side we replace the operators by the
corresponding operators with ¢(Z) =0, U=U,J =0, and we estimate the error.
For the quadratic form in the first exponential the difference is a quadratic form
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1(X,R, X >, with matrix elements satisfying the bound
IRy (b,b")| <(O(1)e™13%M 4 O(0tg + 1)) exp(—3do[b_ —b[).  (2.16)

We have assumed, as in Sect. 1, that M is much bigger than x,, especially that
e 1/3%Mpl6ri 1 The determinants in the next factor are equal for the new
operators, hence this factor can be estimated by

exp((0(1)e™ 1/3%M 4 O(oty + o, )| Zo ). (2.17)

Similarly, the next Gaussian measure is replaced by the measure with the new
covariance, multiplied by a quotient of determinants, which can be estimated by
(2.17), and by the function exp 3{ B, R, B> with R, satisfying (2.16). In the second
exponential the difference between the new bilinear form and the form in (2.15) is
a bilinear from — (B, R;X ) with R; satisfying (2.16). The expression in the last
exponential can be estimated using (1.42), and the inequalities (1.43), (1.36). We
take a small, positive number «,, to be chosen later, and

L
(V)]

We assume that $(x, — 1) = (1 — 36)x, C3 < E,C,, and g = 8. The quadratic form
in (1.42), after multiplication by |7(Y)|, can be bounded by

=Eqe, Croy "Miexp Cyic; exp(— (1 — 30)xd, (Y)). (2.18)

1 ~ _ _ , ,
3 Y ag M Fexp(—g(c, — DM H Y[ —5(c; = DM b — b )| B()||B(')].
bb' <Y
(2.19)
The sum of these quadratic forms over YeD is bounded by a quadratic form with
the above matrix elements resummed over all YeD, containing, for example, the
point b_. We use the first exponential factor in (2.19) to bound the sum, and this

yields a constant O(1). In fact the constant is small for x, large, hence we can
bound it by 1. Using (1.28) we obtain

1
Z}T(Y)HVI((Y:B)léi > auM™*exp(—1g(x; — )M~ b —b_[)| B(b)|| B(b)|

YeD b.b < Yy

+ Y agexp(—drdi(Y)) =50(Na, Y, [Bb)I?

YeD be ¥,

+ 0, MY, (2.20)

The other quadratic forms, i.e. the forms R,, R,, R, can be bounded in a similar
way using (2.16), by the forms

2(0(1)e™ WM 4 0oy +a))(I ZX |2 + [ ZoB1?). 2.21)
Finally we estimate
c 1 Sf 1 2
Tivo Bk p(B) = exp| — EVzg—zlPl +272 I PBII” |, (222
k

where y, is a small, positive constant. Applying the above estimates to the
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expressions under the integral in (2.15), we obtain the following integral:

fduo(X)| exp(— 3T (Z,00X,CY(Z,, 001 (Z0,0)X > + 55| ZX ||?)
'jd,uC(k)(ZOO)(B) exp(— (B, I(Zy,0)X ) + Jos| ZoBJ|?), (2.23)
where as = O(1)e ™ 1/3%M 4 O(ay + o4 ) + O(1)ary + 7,. It is a Gaussian integral, and
can be easily calculated. At first we calculate the integral with respect to B, including

the last two quadratic forms under the exponential into the Gaussian measure. It is
equal to

det(C®(Z,,007Y) |72
det(CP(Z,,0) L — asl)

expG{T(Zo, 00X, (C(Zo,0) " —as]) ' T(Zo, 00X D). (224)

Of course we have assumed that o5 is sufficiently small, e.g. o5 || C*®(Z,,0)| < 2.
The factor with the determinants can be estimated by exp O(1)as|Z,|. The
quadratic form under the exponential is expanded with respect to a5, and the
zeroth order term cancels the first quadratic form under the first exponential in
(2.23). The remainder can be estimated by £ O(x5) || ZX ||2. In fact a better bound can
be proved using localizations and the exponential decay of operators in the above
expressions, but we do not need such a bound. These calculations and estimates
yield the following integral

Jduo(X)lzexp30(as) | ZX ||* = E(l —0(5))"*" <exp(0(25)| Z]). (2.29)
This ends the estimate of the expression (2.14). Gathering together all the bounds
we get

(214)[ S exp(—(ky — DILM) *|Z\Zg))

1 2
[I—[ 2Eqe,Ciog '"MiexpC,k exp(—(1 —36)de(Y))}exp<—§y2;—;|P]>
YeD k
-exp O(1)as1Z]. (2.26)

As we have remarked already it is possible to get a better bound, e.g. with |Z,]
instead of |Z| in the last exponential, by more careful estimates of the quadratic
forms.

To get a bound for H(Z) we have to perform the resummation of the terms
(2.14) over D, P and Z,. We do it in the following order. For a fixed Y, we sum
over all D satisfying (2.2). Next, we sum over Y,, P determining a fixed Z,. Further,
for a fixed Zj), we sum over all possible Z, determining this fixed Z;,. Finally we
sum over all Z; = Z. To bound H(Z) we use the estimate (2.26) for terms of these
sums, and we bound the sums using the factors on the right-hand side of (2.26).

Let us start with the sum over D satisfying (2.2) with a fixed Y,. The set Y, is
a union of its connected components, ¥, = [ ] ¥;, and this decomposition induces
the decomposition of the families D, D = | /D,, D; satisfy | ] Y =Y. The sum over

YeD; .
D factorizes into independent sums over D, similarly the product over YeD in
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(2.26) factorizes into products over YeD,. For simplicity let us denote by Y, one
of the components. Consider the product over YeD in (2.26). We extract the
expression o, exp(— dxd,(Y)) from each factor in it, where o is a sufficiently small,
positive constant. Because | ] Y =Y, and Y, is a connected domain, hence the

YeD
definition of d,(Y) implies the inequality
Y A (Y)+5) 2 d(Yy) + 5. (2.27)

YeD

Assuming 2Eq ¢, Coay og ' M9%exp C, ke, exp Sk < 1, we have

TT-(in (2.26)) < [ 26 exp(— Sxcd, (Y))

YeD YeD
2E e, Cray tag ' MYexp Cyicpexp(— (1 — 48)rd, (Yy)). (2.28)

Now we estimate the sum over D satisfying (2.2). We use the product on the
right-hand side above. For « sufficiently large and o sufficiently small we have

Y T 2eexp(—drdy(Y) = 1. (2.29)
D YeD
Inequalities of this type were proved many times, the above can be proved, for
example, by a simple modification of the argument in [26]. In connection with
this notice the following useful inequality

B2 MY Sd(Y) =M Y- 1 (2.30)

holding for localization domains YeD,. The inequalities (2.28), (2.29) yield a bound
of the sum over D.

Now we consider the sum over Y,, P, with fixed Z,. It is controlled by the
exponential factor with | P| in (2.26). The definition of Z,, yields |P| =3 M ~*|Z\ Y, |,
because one bond in P may connect two cubes in Z,\ Y,. We decompose the
exponential factor into a product of five equal factors. Four of them are bounded
using the above inequality, the fifth is used to bound the sum over P, with a fixed
Y,. We have

2

_ 1 &
;eXp<“20V2;M 4IZO\Y0|>CXP<_EV2§|P|>

1 2 1 2
§3XP{ _M_AIZO\YOII:zo /2'——4M4exp( 10 222)}}5 1 (2.31)
k

for g2, i.e. 72 sufficiently small, depending on M and k. In general the set Z, is a
union of connected components. Let us denote one of the components by Z,. It
contains Y, = | ) ¥;. By a simple geometric argument we have

Ldi(Y}) +AMHZ\ Yol 2 di(Zo). (2.32)
Assuming
1 e 1 &
>
207242 207252 =
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and denoting &, = 2Ey&, C 0y "o " M%exp C,x;, we obtain

2
[Haz exp(— (1 —46)xdk(Y,~))}exp< oMz, \Yo|>
< max{sz, exp< - %yz ;)} exp(— (1 — 40k d,(Z,)). 2.33)

We have used the assumption ¢, < 1, and the fact that if Y, is empty, then we have
the exponential factor. For simplicity let us assume that

1 2
eXp( 20?2_—>§82‘

Finally, we have the sum over Y, = Z,, or over Z,\ Y,. The remaining factor is
used to bound this sum

2
Z exP( 13’2 ;M 4|ZO\Y01><6XP(CXP< : Py 1> ~4lzo|)- (2.34)
oo 20 20
The exponential on the right-hand side multiplied by exp(— dxd,(Z,)) can be
estimated by 1.

Let us write the inequality we have obtained for the partially resummed terms
(2.14). The set Z, is a union of connected components, Z, = | |Z;, and we have

2. (2.14)| Sexp(—(k, — NILM)*Z\ Z5))

D.p

‘[H82 exp(— (1 — 56)de(Zi))Jexp o()us|Z]. (2.35)

The next step is to bound the sum over Z,, with Zj, fixed. Again the set Zj, is
a union of connected components, which are localization domains from D, , ;, and
we denote by Zj one of the components. The set Z, determining it is a union of
connected components, Z, = | ) Z;, and we denote by Z; the smallest localization
domain from D, ., containing Z,. The sum over Z, is decomposed into several
sums. For each Z] we sum over all possible components of Z, determining this
Z;. The we sum over all families of domains Z; such, that | ) Z; = Z{,. Consider the
sum over the components with a fixed Z;. We extract exp(— dxd,(Z;)) from each
exponential in (2.35), corresponding to one of these components. The remaining
exponential is bounded using the following inequality:

2d(Z;) 2 Ldy ., (Z)). (2.36)

This inequality can be obtained by simple, but awkward, geometric and combi-
natoric considerations. It follows by considering locally many possible cases. Now,
the sum over the components can be decomposed into a sum over one component.
plus a sum over two components, and so on. A sum over n components is
estimated by a product of n sums, each of them is a sum over independently
changing components. The last sum is estimated using (1.28), with x replaced
by Jx, and with an additional sum over (L + 2)* cubes [’ from 7, the cubes
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touching a fixed LM-cube in Z;. This yields a bound similar to (2.35), with &,
replaced by (L+ 2)*0(1)e,, and (1 — 50)xd,(Z;) in the exponentials replaced by
(1 —68)5Lkd, . (Z}). For n> 1 we leave only one exponential, estimating by 1 the
remaining ones with the same domain Z;. The sum over n = 1 is now bounded by
2(L +2)*O(1)e,, assuming that (L + 2)*O(1)e, < L. Finally, the sum over all families
of different localization domains Z; from D, , , satisfying the condition | ) Z; = Zj,
is estimated using (2.29). We have diLkd,, ,(Z}) instead of éxd,(Y), but the
inequality (2.29) is valid for all k. The inequality (2.27) is used for the remaining
exponential factors. Assuming that 2(L + 2)*O(1)e, exp 5k < 1, we obtain for a fixed

’
0

Y. (214) sexp(— (i, — DILM)*Z\Z))

D,P.Z,

'[HZ(L +2)*0()e, exp(— (1 — 70)5 Licd,, 1(22))]67413 O(Nas|Z],
(2.37)

where now Z; denote connected components of Z,.

The last sum to estimate is the sum over Zj, or over Z\Z;. Using the
inequality (2.32), properly adapted to the new situation, we bound the exponential
factors in the square bracket above, and half of the first exponential factor, by
exp(— (1 —78)3 Lxd, . (Z)). Of course, we assume that 3(x; — 1) = 2Lx. The sum
over Z\Z; is bounded, using the remaining factor and an inequality similar to
(2.34), by exp(exp(— 5(x, — 1))(LM)~*|Z|). This exponential is of the same type as
the last exponential in (2.37), which can be written as exp O(1)(LM)*os(LM)™ | Z]|.
Let us recall the definition of the constant os:

s =0(1)e 13%M 1 Oy + oy ) + O(1)ory + 7,.

We assume that (LM)*o, (LM)*a,, (LM)*a,,(LM)*y, are bounded by a constant
independent of M, for example by 1. Then O(1)(LM)*as + exp(— 3(x, — 1)) is
bounded by an absolute constant. We use the factor exp(— diLxd, . ,(Z)), and
the inequality (2.30), to bound the exponentials by 1. We leave one factor
2(L+2)*0(1)e,, and the remaining factors are estimated by 1. We define the
constant C; =2(L+ 2)*O(1)2E,C oy *ag ' Miexp C, k.

Thus we have finished the estimate of the resummed terms (2.14). The sum
defines the activity H(Z), and we have proved the following lemma.

Lemma 3. Under all the above restrictions on the constants M, i, Kk, 0o, %1, 04, %,
V2.7, €1, the activity H(Z) for a localization domain ZeD,, .., satisfies the inequality

|H(Z)| = Cyepexp(— (1 = 80)5 Licdy . (Z)). (2.38)

The above lemma implies that sufficient conditions for convergence of the series
(2.12),(2.13) are satisfied, see [ 26, 67,25, 50]. We want to prove the inequality (I.1.18)
for E**Y(X). The series (2.13), defining E**Y(X), is estimated in the standard
way, each factor |H(Z)| is replaced by the right-hand side of (2.38) in the bound.
Consider a term in the sum. We have a product of n exponentials from (2.38). We
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extract the exponential exp(— 64Lkd, ., (Z;)) from the i-th factor, and the
remaining product is estimated using (2.27), and the condition UZ;=X, X is a
connected domain. This yields

|[E®*D(X)] <exp(—(1 —99) Lid, . (X)) exp(— 5k)

s

n' |O'[ (217-.-azn)\ I I C381 CXpSK Xp(_él de 1( i)).
1 z,,.z)uz=X i=1 € ) L /

]

n

To the above sum we can repeat all the considerations and bounds of the paper
[26], for x sufficiently large, and ¢, sufficiently small. We obtain

|[E®*D(X)| < exp(— (1 — 90) Lid, + (X)) exp(— 5k)
=Y, Cyepexp Skexp(—36Lid,, (2))0(1)exp 2(LM)™ 4| Z|.
ZcX
(2.40)

The last sum is bounded by Cje;exp5kO(1)(LM)™*X|< CyepexpSk0O(1)
exp(LM)~*|X|, and the last exponential multiplied by exp(—3dLxd, , (X)) is
bounded by 1. This yields

[E*TD(X)| = 0(1)Caey exp(— (1 = 100)3 Licdy 1 1 (X)). (2.41)

Now we make our last assumptions. At first we assume that (1 — 108)3L =1, or
0 =15(1 —2L""). Next, we assume that O(1)C;¢, <3E,. In fact this assumption
is unessential, because the constant Cye; is small anyway, and we can take E,
such, that the assumption is satisfied. The assumptions allow finally us to fix all
the constants, or rather bounds on these constants.

The inequality (2.41) and the assumptions imply the inequality (I.1.18), with
1E, instead of E,, for the terms of the effective action E** 1 in (1.1.3). The effective

action in (I.1.6) is obtained by adding to the above action the expression
[log Z®(Uy 1) —log Z¥(1)].

For this expression we construct the representation (1.1.7) using the generalized
random walk expansion for Z®(U,, ;). The expansion was constructed in [16],
see the formula (63) there, and the discussion after it. We gather all terms in the
expansions, localized in X, and we extend them to analytic functions of U, J. The
expression localized in X satisfies the bound (I.1.18) with « replaced by d,M, and
with an absolute constant instead of E,. We define $E, as equal to this constant,
and we take M sufficiently large, so that 6, M = k. This yields the bounds (1.1.18)
for terms of the effective action in the representation (I.1.6) also.

Let us make a last remark about the expressions (2.14). By Lemma 2, and the
transformation properties of the operators in (2.14) with respect to gauge
transformations, e.g. see (3.28)—(3.34) [ 13], the expressions (2.14) are gauge invariant
with respect to all G-valued transformations. The expressions are analytic functions
of (U, J), hence the invariance can be extended, by the analyticity, to G-valued
gauge transformations in a small neighborhood of the space of G-valued ones.
This means that the expressions are constant on intersections of orbits with the
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corresponding space of configurations (U, J) satisfying the conditions L.(i)-(iv). We
extend them to constant functions on whole orbits having non-empty intersections
with the space.

The above remark completes the proof of the inductive assumptions for the
action A4, , hence the proof of Theorem L.3.
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