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Abstract. The definition of the dynamical entropy is extended for automorph-
ism groups of C* algebras. As an example, the dynamical entropy of the shift of
a lattice algebra is studied, and it is shown that in some cases it coincides with
the entropy density.

Introduction

While in the 19™ century the concept of entropy appeared in thermodynamics and
its connection with statistics was realized, a satisfactory mathematical theory
became available only through the Kolmogorov-Sinai entropy of automorphisms,
which was a byproduct of progresses in information theory [1].

Not only did this new mathematical concept of a dynamical entropy for a
measure invariant under a transformation clarify the mathematical set-up of
thermodynamics, especially because it allowed a formulation of variational
principles [2] without appealing again and again to a thermodynamic limit, it
became also the key notion in ergodic theory. Through the work of Bowen and
Ruelle the thermodynamic formulation has invaded the theory of smooth
dynamical systems and appeared to be a crucial tool for problems such as the
iteration of fractional transformations in C [3].

From the early beginning of the work of Kolmogorov and Sinai it was clear
that a quantum or non-commutative analogue was required for both to be
applicable in microphysics and to provide an important mathematical concept
which in fact von Neumann and Sinai were asking for. For instance the work of
Cuntz and Krieger on subshifts of finite type leads to a natural non-commutative
C*-algebra together with an automorphism for which entropy and variational
inequalities would be very relevant. As far as quantum thermodynamics is
concerned, there exists a definition of entropy density [4] but it refers in a crucial
manner to a net of finite subsystems and thus has no a priori invariance properties
as the KS entropy does. More precisely, in the classical context a corollary of the
KS theorem shows that the entropy density computed on a limit of finite systems is
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equal to the KS entropy of space translation. The latter does not refer to any
specific sequence of finite subsystems, thus is more conceptual and also has
stronger invariance properties.

The quantum case, which is the relevant one in nature, is not in every aspect
more complicated than the classical case. For instance, the KMS condition which
ties up the non-commutativity of the algebra or, more precisely, the lack of trace
property of a state with the one-parameter group of time evolution is a very
relevant and powerful property of equilibrium states. Certainly it has its classical
analogue [ 5] but even to state it one has to introduce auxiliary structures beyond
the algebra, the state and the time evolution.

If we are looking for the quantum mechanical generalization of the dynamical
entropy we first have to notice that in the classical case it is non-trivial only if the
generator of the time evolution has a continuous spectrum. In complete analogy
we will construct a dynamical entropy which is zero for a finite quantum system,
i.e. an algebra of type I. Thus a dynamical entropy >0 requires an infinite system
and thus a thermodynamic limit. There exist other definitions [6] of the entropy of
the time evolution of a finite system: there the infinite system is split into a finite
part and an infinite reservoir and the entropy measures how much the completely
positive map of time evolution for the finite part fails to be unitary. This notion is
different from ours; we do not refer to a division of the system into reservoir and
observable subsystem but consider the — non-commutative — algebra ob-
servables in the thermodynamic limit.

The price of non-commutativity is twofold: even if one starts with a trace such
that the state does not see the non-commutativity of the algebra, it is no longer true
that a finite number of finite subsystems generate a finite subsystem. In fact, one
can easily construct an example of two finite-dimensional algebras such that they
generate an infinite-dimensional algebra. However, thanks to the progress in
quantum statistical mechanics [7] it was possible to handle the tracial case [§].
The task was to find a quantity Hy(N, ..., N,) which measures the information
contained in the subalgebras N, CM if the total system M is in a state ¢. We
require

Hqﬁ(va---ka)équ(Ml’""Mk) if NiCMia

k
H¢(N13N29 sees Nk)é .;1 H¢(Nl)9
HyN{,N,,..,N)<H, (\/ Ni>,

where \/ N, is the algebra generated by the N; and for commuting algebras

1
equality should hold iff ¢ factorizes. Correlations should reduce the gained
information. In this paper we shall generalize, following [8], this construction of
the H’s for non-tracial states and make this notion applicable to the relevant
cases of physical systems at finite temperature.

There have been other attempts [9] to extend the classical theory to type III
algebras by restricting the state to a maximal abelian time invariant subalgebra.
This might give insight into macroscopic properties but is too restrictive for a
microscopic theory of systems without non-trivial invariant subalgebras. In
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contradistinction our dynamical entropy may be >0 for such systems. The main
problem that arises in passing to the type III case is an incompatibility between a
state and a finite-dimensional subalgebra in the following sense. In the commuta-
tive case any finite-dimensional subalgebra A of L®(x, u) yields a conditional
expectation E : L* — A4 such that u=y]|, o E. For non-tracial states ¢ a conditional
expectation E: M — A such that ¢ = ¢|, o E exists only if 4 is invariant under the
modular automorphism. It is exactly the desired property of ergodicity which
denies the existence of such A’s=+al. Moreover, this incompatibility is also the
cause of the lack of monotonicity in A4 of the usual entropy of ¢| .. Thus already for
H ,(A) we cannot use S(¢|,). It turned out that the authors (A.C. on the one hand
and H.N. and W.T. on the other) arrived independently at the following formula

H¢>(N)= zigg¢ ; (S(Ply» ¢i|1v)_ 1) logg(1)).

In [10] this formula proved to be useful to deduce the various properties of the
entropy. In [11] it was used to define the entropy of automorphisms in the non-
tracial situation. In this paper we shall improve the results of [11] and get a more
conceptual understanding of the function H,(N,,...,N,) by extending it to
completely positive maps with finite rank.

Roughly speaking, the motivation for our construction is that we try to map
the non-abelian case as well as possible to an abelian situation where one knows
how to compute the dynamical entropy. Thus we introduce the notion of an
abelian model which is a map P from the algebra 4 with state ¢ onto an abelian
algebra B with state u such that ¢ =puo P. Of course, P cannot be an algebraic
isomorphism, but to preserve as much structure as possible we use for P
completely positive maps. In general, the entropy of u, S(w), is in no way related to
the S(¢) and to arrive at a definition which implies S(u)=S(¢) if 4 is abelian
requires the following considerations.

An abelian model (B, P, 1) is equivalent to a decomposition ¢ =Y u;$,, where
for a basis e; in B the map P is given by P(4)= Y e;p{(A)VA e Band y;= u(e,). If ¢ is
given by a density matrix ¢ the model corresponds to a decomposition of unity
Yx;=1, x;e A*, such that u;=¢(x;) and ¢, is given by the density matrix
Qizl/éxil/é/,ui. Thus the model can be thought of as a measurement of the
observables {x;}. The information gained by the measurement will be ¢=S(¢)
— Y u:8(¢,), the difference of the entropy of ¢ and its components weighted with
their probabilities ;. It is zero iff §, = ¢ Vi, in which case no additional information
is obtained. ¢ assumes its maximal value S(¢) iff all ¢, are pure. This observation
was the basis for considering the quantity H,(N). ~

The notion of an abelian model still contains the useless possibility that the ¢;
do not carry different information, for instance, they may allbeequal, p =¢ ¥ ;. In
this case S(u)= — Y p;logu; may arbitrarily exceed S(¢). To discriminate against
such models we introduce the notion of the entropy defect s,(P)=S(u)—¢, the
difference of the abelian entropy and the information gain. It attains its minimal
value 0iff §(¢p ;)=0for i= j. With the entropy defect we are in the position to define
H,(N,,...,N,) as the difference of the abelian entropy and the sum of the entropy
defects for the N’s.

The aim of this paper is to give detailed proofs of these results and thus to
provide a starting point for further investigations.
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I. Preliminaries on Relative Entropy

Since the proof by Lieb [12] of the Wigner-Yanase-Dyson conjecture, the main
properties of the quantum relative entropy

S(¢,w)=Trace(g,(loge, —10gg,))

[for states ¢, yp on a finite-dimensional C* algebra A; ¢(x)=Tr(e,X), w(x)
=Tr(e,x) Vx e A] have been established. By the results of Araki [13] the relative
entropy can be defined for arbitrary normal states on a von Neumann algebra. The
main properties of S(¢, ) are its joint convexity and weak lower semicontinuity.
They can be restated by writing S as a supremum of weakly continuous affine
functionals and there is indeed an explicit way of doing so, due to Pusz,
Woronowicz, and Kosaki:

Lemma L1 [14]. Let A be a unital C* algebra; ¢, positive linear forms on A, then
the relative entropy S(¢, ) is given by

(1)

()= sup | [m

000~ + o 5.

where x(t)+ y(t)=1 and the sup is taken over all step functions x(t) with values in A
which are equal to 0 in a neighbourhood of 0.

This can be used as definition for arbitrary states over a C* algebra. We shall
now list for the convenience of the reader the known properties of S(¢, ) which
will be used in the rest of this paper:

(2) Scaling property: S(A1¢, Ap)=1,8(¢, W)+ A,p(1)log(A,/4y), 4;€R™.
(2) Positivity: S(¢,w)=0 for states ¢, p, =0 iff p=1.
(3) Joint convexity: For 4,20, 3. A;=1 one has

SEAde T2p)S T AS@e).
(4) Monotone properties:
a) Decrease in the first argument. ¢; < ¢, = S(d 1, v) = S(P,, W)
b) Superadditivity in the second argument. S (d), ) w,-) =) S(¢p, ;).
¢) If y: A— B is unital completely positive then l l
S(@ oy, o) =S, w).

(5) Lower semicontinuity: The map (¢, p)e A% x A% - S(¢, p) e ]— o0, 0] is weak-
ly lower semicontinuous.

(6) Martingale convergence: Let (y,), .y be a sequence of completely positive unital
maps 7,: A—A which converges pointwise in norm to id,, then:

S(@ oy wer) =S4, ).
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(7) Invariance: Let BC A be a subalgebra and E: A— B a conditional expectation.
For any ¢, pe B% one has:

S(po E, o E)=S(,p).

Remarks 1.2. 1.1n the following completely positive unital maps will play a crucial
role. For the convenience of the reader we shall first summarize the terminology.
The word “unital” stands for containing or preserving the unit element and
“normal” for commuting with sup. A completely positive unital map ¢ between
two unital C* algebras 4 and B is a positive unital map such that the map ¢
between M (A4)and M ,(B) the n x n matrices with elements from A (respectively B),

(¢(a)); = P(a; j)

is positive. For them positivity is strengthened to Schwarz positivity ¢(a*a)= ¢
(a*)¢(a). With respect to composition they form a semigroup which contains
x-homomorphisms, in particular the natural inclusion if ACB. If 4 or B are
abelian, any positive map is completely positive. In the linear space of linear maps
the completely positive unital maps are a closed convex set. If BC A a positive
unital map with ¢(b,ab,)=b,¢(a)b,, b;e B, ac A, is called unital conditional
expectation. It is automatically completely positive. Let w be a faithful normal
state on a von Neumann algebra 4 and let B be a unital subalgebra. Then there
exists a conditional expectation ¢ with wo¢=0w if and only if the modular
automorphism group ¢ satisfies 6’ B C B. In this case w determines ¢ uniquely and
we call ¢ canonically associated to w.

2. We do not explicitly write to which algebra S(¢,y) refers and always
understand this expressed by the states ¢ and .

3. Since S(A¢, Ap) = AS(¢, ) the convexity (3) is equivalent to the subadditivity
in both arguments:

S b Y w)= Zl: S(is ;).

4) Since the natural inclusion is completely positive, (4b) says in particular the
monotonicity for subalgebras BC 4

S(dl vl = S(d,v).

IL. Entropy Defect of a Completely Positive Unital Map

Let A, B be unital C* algebras and P: A— B a completely positive unital map. The
transpose P* maps the state space X(B) to X(A) by P*u=u-P. When B is
commutative, i.e. B=C(X) for a compact space X, it is equivalent to give a
completely positive unital map P: A— B or a weakly continuous map x— P* of X
to 2(4) [15].

Let then p be a state on B, i.e. a probability measure du(x) on X. Foreach xe X,
P is the state on 4 defined by | du(x)P¥(A) = u(P(A)) = P¥(A). The relative entropy
S(P*u, P¥) is a well-defined positive real number, lower semicontinuous as a
function of xe X. We put

6,(P)= 5(( S(P* 1, P¥)du(x). (IL1)
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From now on we shall assume the algebras to be finite dimensional. Then the
entropy of a state ¢ over A4, defined by [10]

S(¢)= sup ¢,(P)
¢=peP

is finite and
e,(P)=S8(P*u)— [du(x)S(PY). (I12)
¢,(P) enjoys the following properties which can be deduced from (L.1):

Proposition IL2. a) ¢,(A, P, +A,P,) < A,8,(Py)+ A,8,(P5) for Ay, 2,20, 4, + A, =1.
b) &,(P)<S(P*p). Iff P¥ is pure a.e. then ¢,(P)=S(P*p).
¢) Let y:Ay—A be a completely positive unital map, then &,(Poy)<e,P).
Equality holds if vy is a conditional expectation.
d) One has ¢, (P)<S(u) for any P.
€) €101 + aous P) 2 A18,,(P) 4 A56,,(P) for Ay, A, 20, A, +2,=1.

Definition I1.4. The entropy defect s,(P) of the completely positive unital map
P: A—B is the positive real number

5,(P)=S() —£,(P).

The prototype of a completely positive map with zero entropy defect is the
conditional expectation E from the algebra A of nxn matrices to a maximal
abelian subalgebra B of the centralizer of a given state ¢ on 4 with pu=d|.

Proposition IL5. a) s,(A, P, +A,P,) = A,5,(P1)+ A,8,(P>) for A1, 4,20, 4, +4,=1.

b) If P is an extreme point of completely positive unital maps, then s,(P)=S(u)
—S(po P).

) s,(Poy)=s,(P) with equality if y: A;—A is a conditional expectation.

d) For each subalgebra B, of B let Py be the composition with P of the
conditional expectation from B to B, canonically associated to p, then

SPp,ve,)=<S(Pp)+5,Ps,),
where B, v B, is the subalgebra generated by B, and B,.

Proof. a)-c) follow from Proposition IL.2.

d) Let us label the minimal projectors of B, by ie{1,...,n,}, of B, by
je{l,...,n,} and of B, v B, by (i, j). We can assume that B= B, v B,, and let E; be
the conditional expectation of B onto B; determined by u. Let 4; ;= u(i, j) be the
value of yu on the minimal projectors (i, j), then one has, with obvious notations:

P?fj(k’l)=5ik5ﬂa Ptp= izjli,jpfja
(Bve P = (L APE) (S 400) " (Bao P = (L APE) (X 405)
If we let y, ;= A, ;P¥, wi= Y v, wi= Y, , we get
j i

su(Pp)= Z.(—xi,jIOgli,j_;”i,jS(P*ua PE))=— Z S, w7
129) t,J
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where = P*u. Similarly
s(Pp)=— XS, vi), sPp)=— ZS(IP, 7.

One has Y. S(w, y; )— S}, w; )= S(p, p}) so that
Y S pi )= Y Stw.w) =Y. Sy, )= Y S (Z Vi Y v, j) =Y S(y, pi
LJ J L] i J J i

using the joint convexity of the relative entropy. [

III. The Function Hy(y,,...,7,) for Completely Positive Maps

In this section we shall extend the function H,, of [11], defined there for arbitrary
finite dimensional subalgebras to a more general and more manageable situation,
where the subalgebras are replaced by completely positive maps. Let 4 be a unital
C* algebra and recall [15] that there is a natural bijection between completely
positive maps 0: M,(C)— A4 and positive elements of M,(A4). The positive element
associated to 6 is the matrix (x;;) = 0(e;;), where e;; are the matrix units in M,(C).
The condition 6(1)=1 means that Z x;=1. This correspondence insures the
existence of plenty such completely positive maps, while in general 4 does not
contain any finite dimensional subalgebra. The following is based on the result of
Choi and Effros [16]:

Proposition III.1. Let A be a nuclear unital C* algebra. There is a sequence (0,), .y
of completely positive unital maps A— A such that

1. For each v there exists a finite dimensional C* algebra A, and unital
completely positive maps 6,: A>A,, 1,: A,— A such that 0,=1,00,.

2. For any xe A, lim [|6,(x)—x| =0.

The construction of the function H, is done by comparison with the abelian
situation in which the ambient C* algebra is commutative. Let us start from a C*
algebra A, a state ¢ and n completely positive unital maps y,,...,7, from finite
dimensional C* algebras A, ..., 4, to A.

Definition 111.2. An abelian model for (4, ¢,y4, ..., 7,) is given by

1. An abelian finite dimensional C* algebra B, a state u on B and subalgebras
By,...,B, of B.

2. A completely positive unital map P: A— B with ¢=P*p.

For each j=1,2,...,n let E;: B—~B; be the canonical conditional expectation
(associated to ), then g;=E;o Poy; is: a completely positive map from 4; to B;.
We define the entropy of the abelian model as

S(ulvg,)— 2 $.0)), (I11.3)

with g¥u=y¥P*u=7y¥¢p=¢ o7y; we can express this quantity in terms of entropies
as follows:

(111-3)—S(ulv3 Z Sulg)+ Z {S(¢oy)— fdulp ()S(¢°7).)}
Z S(¢o v,
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The last inequality comes from the subadditivity S(ul, )< Z S(ulp,). Note that
this bound does not depend on the abelian model.

Definition I11.4. H y(y4, ...,7,) is the sup of the entropy of the abelian models for
(Aa ¢> {’VJ})

By (IIL3) one has Hy(y,,...,7,) = Z Sy ¢).

Remarks I11.5. 1. For any finite dimensional C* algebra A there exists a matrix
algebra M,(C) containing A as a subalgebra and a conditional expectation
M, %5 A. Thus Proposition I11.6 will show that to compute H o715 -+ 7,) ONE can
assume that all y;’s are maps from a matrix algebra to 4. Moreover, completely
positive unital maps from M,(C) to 4 correspond exactly to elements a; of
M, (A)", Y a;=1€A. Letting M_(A4) be the increasing union of the algebras

M (A), with maps

0
xeM,— <Z)C 0>€M,,+1,

we see that we can consider H as a function defined on all finite subsets X of
{XEMw(A)+,ZxLl:1}.

2. If A is abelian and the A4, are finite dimensional subalgebras of 4, y; the
inclusions we may take

B= .\_/1 A, oi=idl,, and u=¢ls.

Then g,;*, is pure, thus with Proposition I1.2b,

e,(0)=S(ef )= S(ulg,).
Thus the entropy defects vanish and we have the classical definition

H¢(71= ""yn)=S(¢IVA,)'

3. Let A; be subalgebras of A and y; the inclusion. An abelian model is
characterized by the minimal projections Q; in Bj, the minimal projections Q;, ;,
in B and the map

P(A)=3% (Z;il...i,.(A)Qi;.,.in: qu(i)(A)Q(i)'
P is a completely positive map iff ¢, are states over A. ¢ = P*u corresponds to

H(A)= % $(i)(A)/"(Q(i))-

Thus an abelian model is in this case in one-to-one correspondence with a
decomposition of the state ¢. In the GNS-construction such a decomposition can
also be represented in terms of positive elements x;, Y x;=1 of the commutant

(A). $(A)= Y P(x;A). Thus the definition of H can then be written in the
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following equivalent ways:

no=—xlnx, ¥ ¢y =0, d=¢/¢(1),

11...ln
iy fixed

H¢(A1’ o Ay)= sup [Z W(¢(i)(1))+ kil IZS((I"M,(W&?A,()J

Howm=9¢

E ¢(i)~—

= s [ S6u)- 5 Tao0)
%

) ﬂ%@MMWW@

I

sup (Z npxp)+ Y X Sl ol X(k))mk)]
Zx@ =1 (i) k=1 i

0=x,=1

X(i)E‘IE(A’)

sup ["(¢(i)(1)_ XX (b (1)

Lowy=¢

+ £ Sa)- SHSG |

The main properties of H are the following:

Proposition I11.6. a) Let 0;: Aj—A; be completely positive unital maps, then

Hq&(yl 001’ '~'9’yn00n)§Hd>(’})1a -~-:’Yn)'

Equality holds if A;C A’ is a conditional expectation for all j.
b) If 6: A—> A are completely positive unital maps with ¢ o 0= ¢, then

Hd)(eo'))l: "-990vn)§H¢(v19 '“”Vn)'

Equality holds if the 6 are automorphisms.
¢) Hyyy,...,7,) depends only upon the set {yy,...,y,} =X, that is H(y,p)= H(y)
and so on.
d) With the notations of c) one has max{HyX), Hy(Y)} SH,(XUY)< HyX)
+HyY).
e) Concavity:
AHy (71, ooy F(A=AH 4 (v, ..o 7))+ (= 1) (Aln A+ (1 =) In(1 — 2))

§H,1¢1+(1 —,1)452(7’1, s V)
SAHy (15 o Pu) (L= DH (715 - 0r 1) — A0 A— (1 = 2) In(1 — J) .
) Hy(Ays + (U= s 0+ (L= Ay SAH gy 1, -, 7)) + (L= DH (7}, ..o 7))

Proof. Note first that the notion of an abelian model just depends upon the pair
(4, $) and the integer n but not the y;’s.
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a) follows from Proposition II.5c.
b) H¢((9 °y))= sup [S(,u)_ 2 Su(Ej oPofo Vj)]
poP=¢ j

- 2[00 Fode 0]

< sup [S(ﬂ)_ Z Su(EjOP’Oyj:l =H¢((Vj))-
poP'=¢ j
¢) One has to show that Hy(y(, 72, ..V 70 =Hy(?1> V2,-.,70)- Given an
abelian model (B, i, (B)), P) for n we get one for n+1 taking B, , ; =C. Then

n+1 n

,\/ Bj= _\/ Bj’
j=1 ji=1

and since any map to C has zero entropy defect we get the first inequality >. To
prove that Hy(yy, ..., Vo Y) S H (V15 -, V), 1€t (B, 1, (B)), P) be an abelian model for
n+1. Put B;=B; for j=1,...,n—1 and B,=B, Vv B, ., so that (B, i, (B)), P) is an
abelian model for n. One has

n n+1
VB=\ B,
1 1
thus the answer follows from Proposition I1.5d.
d) One has to show that
Hd)(yl’ e Vo eees Vk+p)§H¢(y1a seey yk)+H¢('))k+ 150 'yk+p) .

But given an abelian model for k+p, (B, u, (B;), P) one gets one for k by taking
je{l,....,k} and for p by taking je {k+1,...,k+p}. The inequality then follows
from
Sy, v v ) S8, v ve) T SWB. B ) -
e) Concave side. Let

A

1

Y1 A P) B(l) E; B(~1)
optimize H (74, ...,7,), respectively,
A,y 422, g B, pa) Hy (715 Vn) -

13

Then we use for H,,, ;- 1,, the abelian model B=B" + B®, B,=B{" + B,
P=P®M 4 PP and the state u=Au; +(1—A)u,. In this case we have

S()=AS(uy)+ (1 =A)S(uz) = AlnA—(1 =) In(1—2),
and similarly for S(u ). Concavity of the entropy tells us
S(A¢y +(1=A)P2) o y) 2 AS(¢ 1 o))+ (1 = A)S(P;°72),

and finally
;! dli]B,(X)=/1 XZ dﬂ1|3}<,n(x)+(1 —/1);(5 d#zw}l)(x)-

Using these relations in (II1.3) we conclude
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Hj4 1 —A)¢2(V1, -~->?n)§18(ﬂ1| v3}1))+(1 —A)S(#zl VB](Z))
—AlnA—(1-=A)n(1-2)—} {/IS(il|B);1))+(1 —A)S(,uZIBJm)
J
—AnA—(1 =Dl =2} + Y {AS(d; oy)+(1 = AHS(¢, 7))
J
—Af d.UBij((ﬁb1 ° yj)x) —(1=A4)f d.UBJ(Z)S((d)z ° Vj)x)}
=AHy (71, ) A =DH (71, s ) H— 1) (AInA+(1 =) In(1 —2)).
Convex Side. Suppose B, P, p are the optimal model (within ¢) for
H;y - 2p(V15 - 72)- To P and u there corresponds a decomposition
=P, +(1-N)p,= (E;, #(i)q;(i) = (Z): D(xay)s
where
xpenyA), x320, Y xu=1 (seelIL5, 3).
®
To this decomposition we associated the decompositions
$(A)= (Z): di(xpd), P (A)= % $a(xpA),

which define abelian models (B, PV, u™V) and (B, P®, u®), where () = ¢ ,(x ;) such
that p=Au" 4+ (1 —2)u®. According to (IIL.5, 3) we have

H/lqﬁl +(1 —A)¢2(V1, s V)= S(/l,u(l) +(1 —/1)#(2))

+ 3 2821 +(1=D¢3) o i, (hps +(1 = D)2) (x;, ) oy

I=1 i

<AS(D)+ (1 — HS(U®)— Alnd— (1 — A)In(1 — A)
+2 38801 h il 1)+ T TS0 bl 10)
<AH,, +(1—)H,,— AlnA—(1—2)In(1 — ).

Here we used the short hand notation ¢,(x;oy) for the state (¢,x;°y)(A)

={¢|x;9(4)|¢,), where ¢, is the vector in the GNS-construction such that ¢,(4)
={¢,|A4|¢,> and similarly for ¢,.

f) Suppose B, P, u are the optimal model for H((Ay;+(1—2)y})). Then
Hy((Ayi+ (1= ) =S(u)— Y S(u o Ey)
+ ISP o (Ayi+ (1= p))*p, (P o (A + (1= Ai))d s
=SS — X S(ue EY+AX ISP oy)*u, (Poy)fdu,
FA =AY SUPy)*u (Poy)ddp,
= AH (7)) + (1= DH (1),

due to the convexity of the relative entropy. [
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IV. Continuity of Entropy in the Norm Topology

In this section we investigate the continuity of the function H,(y,,...,7,) with
respect to the norm topology on the y’s,

ly—7'll= ni‘ﬁgl [[y(x) =" ()|l -

Lemma IV.1. Let A be a finite dimensional C* algebra of dimension d, and ¢, y be
states on A, e=|¢—p|. One has:

IS()— S(p)] < 3k +log(1 +de ™).
Proof. One has, with n(s)= —slogs, the equality

t N
)= (j>< s+t m>dt’

thus if we let Tr be the trace on A which is equal to 1 on any minimal projection and
04> 0, be the density matrices assigned to ¢ and vy, we get:

3 B © —t t Qy— 0y
S(¢)— S(y)=Tr(n(ey) —nle,))=Tr | [Q¢+t + 0p+1 T ]dt

By construction the integrand is for each value of ¢ an operator of norm less than
one. Thus one has for any 6 >0:

1S(¢) —S(y)| < 6d + I (41" [tog—0,) +Hes—03) +2s(ey— 2p)ey,]

. d
x(0,+1) llllm,

whose | ||; is the norm T—Tr|T| on 4. One gets

® (3t 1 dt
1S(¢)— S(w)| < 6d + (g (t_2 + m) 1_+t> €

1 1
< — —
=5d+a(3log <1 + 5) —+ 2>.
Taking 6 =¢/d yields the result. []

Lemma IV.2. Let A, B be finite dimensional C* algebras, with B abelian and
d=dimA. Let u be a state on B. Then for any completely positive unital maps o,
¢ : A—B one has

Is, (@) —5,(0)| £ 66z +log(1+de™ ")), where e=lo—'ll.
Proof. |S,(0)—S,(¢)=le(0)—¢, (), and one has
&, (0)= [ S(0*u, 0¥)dp(x)=S(o*p) — § Se¥)du(x).

Furthermore |o*u—o*u| <e, for any state u and therefore also |o¥* —oi¥| <e.
Thus the result follows from Lemma IV.1. [
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Proposition IV.3. Let A be a C* algebra, ¢ astate on Aand A;, j=1, ...,n, be finite
dimensional C* algebras, y;, y; be completely positive unital maps from A;to A. Let d
be the max of the dimensions of the A;s and ¢= max|y;—y;/, then

j

[Hy((7)i=1,..00—Hp(¥Dj=1,...0)l <o6ne(z+log(1+de™ 1)),

Proof. With the notations of Definition I11.2, g;=E;o Poy, ¢j=E;oPoy}. As E;
and P are contractions, one has [|¢;—¢}l| <¢ for all j and hence:

15,00 — 5, 664 +log(1 +dz™ ).

Thus the respective entropies of any abelian model differ by at most 6ne
+log(1 +de™1)). Taking the sup over all models one can find for each model for
H(y') one for H,(y') within the stated margin. []

V. Entropy for Automorphisms of Nuclear C* Algebras

Let A be a (unital) C* algebra, ¢ a state on 4 and 6 an automorphism of 4 which
preserves ¢.

For each completely positive unital map y: M — A from a matrix algebra to 4,
the following limit exists by Proposition 111.6b) and d):

1

1 .
By o) = lim —Hy(p,007,....0"" " oy).

Definition V.1. The entropy hy(0) is the supremum of h, ,(y) for all possible y’s.

Of course to be able to compute h,(0) it is necessary to have an analogue of the
Kolmogorov-Sinai theorem for the ordinary entropy of automorphisms. This is
achieved in the present context by the following use of Proposition IIL.1:

Theorem V.2. Let t, be a sequence of completely positive unital maps t,: A,— A such
that for suitable completely positive unital maps o,,: A— A, one has t, o 0,—~id 4 in the
pointwise norm topology. Then:

lim g, o(z,) = hyl6).

Proof. Let B be a finite dimensional C* algebra and y: B— A a completely positive
unital map. We just have to show that limhy ,(t,) = hy 4y). Let y,=1,°0,°7, then
lim [[y,—7ll=0, since the y,’s are contractions which converge pointwise in norm

n— o

to y on the finite dimensional algebra B. Thus Proposition IV.3 shows that
lim |hy, o(7,)—hg,o(7)| =0. Next by Proposition I11.6a) one has hy 4(y,) < hy, 4(T,),

n—aoo

so that lim hy, o(t,) 2 hy o(7). O

Remark V3. Thanks to Proposition II1.6a) it is irrelevant whether we restrict, in
Definition V.1 and Theorem V.2, to matrix algebras instead of arbitrary finite
dimensional C* algebras.

The simplest example of a sequence (z,,) to which Theorem V.2 applies is that of
an AF algebra, i.e. a C* algebra which is the norm closure of an increasing union
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| 4, of finite dimensional unital subalgebras. In that case we let 7,: 4,— A be the
1

homomorphism of inclusion, which we take unital. For ¢,: 4— A4, we choose an
arbitrary projection of norm one, the existence of such projections is clear since 4,
is finite dimensional. Of course we cannot require that this projection preserves ¢
but this is not needed. Since 7,4, =id 4, one checks that for any such choice of o’s
one has 7,0 0,(x)—>x in norm for any x€ A, and we can state:

Corollary V4. Let A=|)A, be an AF algebra, then for any state ¢ on A and
automorphism 0 e Aut(A, ¢), one has

hy(0)= lim hy, (A4,).

We always take the convention that a subalgebra 4, C 4 is standing for the
(completely positive unital) inclusion A, — A.

V1. Continuity of Entropy in the Strong Topology

In this section we sharpen the results of Sect. IV to the fact that the function
H (4, ...,7,) is continuous even with respect to the following distance on the y’s:

[y=7l4s= uilnlgl 17() =7 (X)l 6 »

where for any xe A4, ||x[l;=(p(x*x))"/%
We fix a matrix algebra M, so thaty;, i=1,...,n,is a completely positive unital
map from M, to A (I11.5, 1 shows that this is not restricted). We define the size of an

abelian model (B, u,(B)), P) for (4, ¢,(y;)) as sup dim B;.
Jj=

Given ¢>0, let #(d, &) be the minimum number of balls of radius ¢/2 needed to
cover the state space of M, (C).

Lemma VL.1. There exists an abelian model with size smaller than r(d, ¢) and entropy
larger than H y(y,, ..., y,)—ne,, where &, =3e(3+log(1+de ™).

Proof. Let (B, u, (B)), P) be an abelian model for (4, ¢,(y;). We can assume that
B= VB so that if X; is the spectrum of B; then elements in X =SpB are

parametrlzed by H X ;. Let (U),.; be a partition of the state space 2 of M, in

subsets with dlameters less than &. We can assume that I has r(d, ¢) elements. For
each j=1,...,n, the map o¥, where ¢;=E;- Py, yields a map from X; to X and
hence to I, which we call «;. Thus, if r, se X,

air)=o(s) = llof(r) —ef(s)ll <e.

The transpose of «; maps C(I) to C(X;)=B;, and we let B;=a;C(I)CB;. Clearly
(B, u,(B;), P) is an abelian model with size r(d, ¢).

Let E; be the conditional expectation of B onto Bj. Since B;CB; one has
E;=F;-E;, where F;:B;—Bj is the conditional expectation associated to the
restriction of u. Thus @j=FEjoPoy; is equal to F;o0; To each ael, there
corresponds the minimal projector o(x) in Bj, and therefore a state over B} which
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we denote by . The state (¢))*(«)=a o F; o g is the average of the states ¢¥(s), s€ X,
for the normalized measure v;= F¥(«) which is supported by {s € X ;, o (s)=a}. Thus
one has:

lef*(@)—ef(s)l <e, seX;, afs)=uq,

and Lemma IV.1 shows that

IS(07¥(e) — [ S(e¥F(s))dv;| < 3e(z +log(1 +de™ 1)) =¢ .
Since ¥ = 0* 1, one gets that [¢,(0;) —e&,(¢))| <&, for j=1,...,n. Now the entropies
of the two abelian models are:

S(#wlv...VB,.)“ ‘21 S(ﬂ]Bj)+ '21 Su(Qj),
j= j=

S(/J|B'1v...v33)_ ’21 S(ﬂ[B,)‘*‘ .Zl 5;1(@})'
J= J=
Thus it remains to show that:

S(IM VB}) -2 S(ﬂm;) 2 S(M v B,-) -3 S(MB,-) .

Let i be the measure on I1.X; which is the product of the 44 and F the conditional
expectation B;— B). Then the inequality is equivalent to

-—S(ﬁOF”LlOF)g _S(ﬁhu),
which also holds according to (I.1.4c). [

Lemma VI.2. Let B be a commutative algebra with dimB=r, g, ¢’ be completely
positive maps from MC) to B and u a state on B. Then, if |o—¢'||,<e one has

lsp(g) —Su(Q,)I é 5(7‘, da 8) with lim 5(7’, d, 8) =0.
e=0

Proof. s,(0)—s,(0)= —¢,(0)+¢,(0"), and since |[uo@—pepo'|| Se, we just need to
evaluate:

)j( (S(ox) — S(F)du(x), where X=SpB.

1
Lete;,>0and X, = {xeX,u(x)g ;81}, then for xe X, one has:

lo(a)— (@i <rer Ho(a)—e'(a)ll;
for any ae M,. The hypothesis of VI.2 implies
lo¥—ee <(rey ') ?e=e, VxeX,.
By Lemma IV.1 we have
le S(0%)— Sl du(x) = 3e(3+log(1 +¢5 'd)).

Moreover
qu [S(e%) — S(ei)du(x) = 2 logdu(X ) < 2(logd)e, .
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Taking &, =&?/*r'/?, we get ¢, =¢**r'/?, and hence:

[ 1S(0.) — S(@ldp(x) = &> r' PG+ 3log(1 +de” °r~ 1)+ 2logd) =é5.
X

Thus finally
leu(7)— ey Se3+3log(1 +de™ 1)) + ¢
and we can take

8(r,d, e)=e*3r133 + 3log(1 +de™*3r~3)+logd)
+e(+3log(1+de™Y). [0

Theorem VL.3. For any d<oo and 0.>0 there exists ¢>0 such that for any C*
algebra A with state ¢, any n and completely positive unital maps y;, 7;: M (C)— A
such that ||y;—yil,<e Vj=1,...,n, one has

'H¢((Vj)j= 1,.,.,n)_H¢((V})j= 1. S no.

Proof. Let (B,(B)), u, P) be an abelian model, then note that with ¢;=E;c Poy,, ¢]
=E;o Poyj, one has

”Qj_Q}”u,§ lh’j_y}llq)-

This inequality follows from the Schwarz positivity of E; - P,since ;o Ejo P=po P
=¢ and (¢;—0})=(E;> P)~(y;—7}). Now given d < co and >0, &, such that 3ey(3
+log(1+¢5 'd))=a/3, and then choose ¢>0 such that with the notation of
Lemma VI.2, one has 6(r(d, &), d, &) <a/3. Assume [y;—7ll,<e¢ Vj=1,...,n. By
Lemma VL1, to prove the inequality V1.3 we just have to show that for any abelian
model of size r, the two entropies differ by at most na/3. But this is exactly the
content of Lemma V1.2, since

lej— iy, sllv;—vills<e. O

Corollary VL4. If the 6; are completely positive unital maps with ¢ o 0,=¢, then
again due to Schwarz positivity |0;07,— 0,29, <7~ 7ill4» and under the hypo-
thesis of V1.3,

|Hg((0; 7)) — Hy((0; 0 y)) = max.

VIL. Entropy for Automorphisms of Hyperfinite von Neumann Algebras

In this section we shall use the estimates of Sect. VI to show that the entropy of an
automorphism 6 of a nuclear C* algebra 4 with invariant state ¢ determines the
entropy of the corresponding automorphism of the von Neumann algebra
n4(A)" =M, the weak closure of 4 in the GNS construction of ¢.

Let us start with a von Neumann algebra M and a normal state ¢. When we
deal with completely positive unital maps M,(C)-> M there is no special
assumption to make. Moreover note that for any abelian model (B, u, (B)), P) for
(M, ¢, (7)), with B finite dimensional, the map P satisfies uo P=¢, so that P is
necessarily normal if 4 is faithful. We can always reduce B by the support of u so
that we may assume that g is faithful. This shows that all properties of the function
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H (74, ...,7,) apply in the von Neumann algebra context and involve only normal
completely positive maps.

In particular, as in Sect. V, h,, 4(y) makes sense for any ¢-preserving automor-
phism 0 of M, and we take:

Definition VII.1. Let M be a hyperfinite von Neumann algebra, ¢ a normal state
on M, and 0 AutM, ¢ - 0=¢. Then the entropy h,(0) is the supremum of h,, 4(y)
for all completely positive unital maps of a matrix algebra to M.

We shall shortly see that we just need to consider subalgebras of M instead of
arbitrary completely positive maps. A need not contain finite dimensional
subalgebras, but its entropy is determined by those of M =m4(A)". For the time
note that we cannot apply Theorem V.2 since M is not nuclear as a C* algebra.
[For instance #(#), dim# = oo, does not have the approximation property.]

Our first task is to compare the C* algebra and von Neumann algebra
definitions:

Theorem VIL2. Let A be a nuclear C* algebra; ¢ a state on A, 0 € Aut A, ¢ 0=¢.
Let M=mn4A)", ¢, 0 the natural extensions of ¢, 6 to M, then

hy(0)=h,(0).
It should be remarked [16] that A being nuclear, we have a hyperfinite M =m4(A)".

Proof. Since any abelian model for (4, ¢) gives one for (M, @), itis clear that for any
completely positive unital map M 4—— A one has hy o(y)=hy 5(y). This shows that
h4(0) < hy(0).

Next, since (Remark II1.5) completely positive maps M;— 4 (respectively M)
identify with M (A)" (respectively M (M) it follows that for any completely
positive unital map M,—> M one can find a sequence (X,) of completely positive
unital maps: M,—> A4 such that lim [y—7,/l,=0. Then Theorem VL3 shows

n—> o0

that hy 5(y,)—hg 5(y) when n—o0. [

Our next step is to show that we have

Lemma VIL3. Let M, ¢, 6 be as above, then sup hy o) = sup hy, o(N) where N runs
through all finite dimensional subalgebras of M.

Proof. There exists an increasing sequence of finite dimensional subalgebras N;
CN;,, of M and normal conditional expectations E;: M— N, E;E;, , = E;, such
that for any xe M one has E(x)—x strongly in the representation .

Now let t;: N;— M be the homomorphism of inclusion. We just have to show
that for any y, completely positive and unital, y: M;—M one has:

h¢, o) <lim hqs, e(‘fj) .

Let then y;=t;0 E;oy. One has y;(x)—y(x) strongly for any xe M, and hence
ly;—715—0 When]—>oo Thus, by Theorem VI3 one gets hy, o(y])——>h¢ o(7),
but by Proposition II1.6a) one has:

h¢,e(Vj) = hqs,o('fj)-
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Since for finite dimensional subalgebras the present definition of the H,’s
coincides with the one of [11] (see IIL5.3), so does hy o(N) for von Neumann
algebras.

It is clear that Lemma VIIL.3 contains implicitly a Kolmogorov-Sinai theorem,
but we shall get a better such result, not invoking the conditional expectations E;.

Theorem VIL4. Let M be a hyperfinite von Neumann algebra, ¢ a normal state in
M, Oe AutM, ¢po0=¢. Let N, be an ascending sequence of finite dimensional
von Neumann algebras with | ) N, weakly dense in M, then:

k

h¢(6) = kh'_.)m h(ﬁ,@(Nk) .

Proof. Let N CM be a finite dimensional subalgebra. We have to show that h 4(N)
< lim hy o(Ny).
k— o0

For each k we shall construct a completely positive unital map j,: N—N, in
such a way that for any xe N one has y,(x)—x in the strong topology where
Ve =1 o7, and i, is the inclusion N, — M. It then follows from Theorem V1.3 that

h¢,o(N )= I}Lm h¢,9(“/k)‘

By Proposition II1.6a) hy o(7,) < hy ¢(iz), thus the conclusion. To construct the y,’s
one starts from matrix units (ef;) in N, where the label g comes from the center of N
and for each g, the indices i, j vary from 1 to n,. Now if ¢ is small enough and k so
large that the unit ball of N is contained in the unit ball of N, up to ¢ in the metric
Ix—yl§ =(A((x—y)*(x—y)+x—y)(x—y)*)"* one can (cf. [8]) construct a
system of matrix units (f;}) in N, such that

lefi—fdllg <oe) Vi j.q,

where 5(g)—0 when ¢—~0. Now it is not true in general that } ff=1,butQ= Y fIf
iq iq
is a projection, and thus we can define y, by:

X)) =0x)+d(x)(1-Q) VxeN,

where 0 is the homomorphism sending e to f;%. Now y, is completely positive,
unital, and since ¢(1 —Q)—0 when k— oo, one has y,(x)—x strongly for any
xeN. [

Properties of the Entropy of an Automorphism VII.5. i) Covariance: hy(0)
=hy.,(0”'00) for all automorphisms ¢ of 4 (respectively M).

ii) Additivity in 0: hy(0")=|n|h(6) Vne N.

iii) Affinity in ¢ :hy4, 41— 2p,(0) = Ahy (0) +(1 = Dhy () VOS AT,

Proof. i) Since Hy, (0™ 91, ..., 6~ 'p)Hy(yy, ..., 1), we have

1 1
EHd,oa(a‘ly,a_lGoo'_ly, cn(0 00 o y)= §H¢(y,00y, a0 o).

Taking k— oo and sup gives i).
Y



Dynamical Entropy of C* Algebras and von Neumann Algebras 709

ii) From IIL.6d) we can infer the monotonicity
H(p,007,...,0%0p,...,0" top) = H(y,0"0y,...,0" Doy,

Suppose y gives, within some ¢, the sup for h(6"), then

1
> lim — o kn—1
hy(0) = ,finfo o H(y,009,...,0 7)

1 1 n —1)n 1 n
> lim EH(%O oY, e, 0K T Do) = E(hqﬁ((?)—s).

k=00

On the other hand, since M was supposed to be hyperfinite, we have seen in the
Proof of YII.4 that V6>0,aeN, i=0,...,n—1, there exists a finite-dimensional B
and y': 6’N - B such that

d(0'a* —'(a*)) (O'a—y'(@) <9,
and thus, because of the invariance of ¢ under 6,
O[O Fa* —0%yi(a*) (0" *a—0"y(a)]<d Vi 0<i<n—1, and Vk.
These are the conditions under which VL3 tells us
HyN,ON,...,0"N,...,0" " 'N)
SH(G% .y 7L 0m0, . 0mm gk Dy g
<HyB,0"B,....0% V"B)+¢.
We have for N optimizing h(6),

1 .
hO)—e= kl:rg;];H(b(N,HN,...,G" 'N)—¢

1 1
< N n (k—npy< n
< lim nkH¢(B,0 B, ...,0 B):nh(e).

k— o0
iii) Using first ii), then II1.6e), we have

i+ 1 - gl 0) — Ahy () — (1 — D)y, (0)

1
= g, 1= 294,(0) = 2y, (%) — (1 = A)hy (07)]

= %(—llogl—(l —A)log(1 —A)).

Letting n go to infinity gives iii).
Remark VII.6. If 6 is the modular automorphism of ¢, so is ¢~ 10 for ¢ oo
$(A0,B)= p(BO,;_ A)<= p(6Aco~*0,6B)= ¢ - 6(Bo~10,_,04).

Hence the entropy coincides for conjugate modular automorphisms. Since for
hyperfinite I1I,-factors the entropy of a modular automorphism may assume any
value =0, this illustrates the discontinuity of 0—hy(0), since they are all
approximately conjugate [17].



710 A. Connes, H. Narnhofer, and W. Thirring

VIIL. Estimate of H,(N,,..., V)

Combining Theorem VIL.2 with Theorem VIL4 the difficulty in computing the
entropy hy(0) of an automorphism of a nuclear C* algebra is reduced to the
estimation of Hy(N, ..., N}), where the N /s are finite dimensional subalgebras of a
hyperfinite von Neumann algebra M. A useful and straightforward upper bound is
obtained by Proposition III.6a) and c):

Lemma VIIL1. If N,,...,N, are subalgebras of a finite dimensional subalgebra
NCM, then: Hy(N, ..., N) ZS(Py).

Proof. Hy(N,,.... NS HN, ..., N)=Hy(N)<S(¢y). [

When ¢ is a trace, one has the following lower bound for H 4, which allows to
compute it in many cases:

Proposition VIIL2 [8]. Let A, be pairwise commuting abelian subalgebras of M and
A the algebra they generate, then, if ¢ is a trace

Hd)(Al’ SR An)=S(¢|A) :

This statement is no longer true, even for n= 1, when ¢ is not a trace. For instance,
if M =M,(C), ¢ is a pure state and 4 is an abelian subalgebra of M such that ¢, , is

not pure, one has:
0=H,(A)<S(¢4)-

[One has H,(A)=0 because H,(M)=0.]

Itis however tempting in the setup of Proposition VIIL.2 (with ¢ non-tracial) to
construct an abelian model (cf. Definition I11.2) where B;=A4;, B is the abelian
algebra generated by the 4’s and p s the restriction of ¢ to B. What is missing still
is the completely positive map P from M to B. The inclusion y: B— M is completely
positive, but we need also a completely positive map from M to B. Given two
von Neumann algebras M,, M,, with faithful normal states ¢, ¢, every unital
completely positive map y: M, —M, such that ¢, oy= ¢, has a canonical adjoint
y":M,— M, uniquely determined by the equality:

(2x32) 0y =Y/ ()PY? Yxe M,

Here we have used the following notation, given a von Neumann algebra M, a
faithful normal state ¢ and an xe M, we let p,=¢"*x¢'*e M, be the linear
functional on M such that:

p(y)= P(ya? i/Z(X)) = ¢p(xa? i/2(J’)) VyeM,

where ¢?, teR is the modular automorphism group of ¢. By [18] the map
x—¢12x¢1/? is a completely positive bijection of M with the linear span of the face
of ¢ in M. Thus:

Proposition VIIL3. a) Let y: M, — M, be completely positive unital with ¢, cy= ¢,
then its adjoint y': M,— M is completely positive unital with ¢, oy'=¢,.

b) One has (yoy) =y'Toy!, y1=y.

¢) If v is the inclusion of a von Neumann subalgebra M, CM, and ¢?*(M )
=M, VteRR, then y' is the canonical conditional expectation of M, on M.

Proof. Cf.[18]. O
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Coming back to the above discussion we can now consider the completely
positive map P=7y" from M to B, where 7 is the inclusion y: B—»M. Then B, U=,
B;, P='is an abelian model. For each j, E;=i}, where i; is the inclusion B;— B.
Thus E;o P=(i} oy")=(yi)' =7} and E;o Poy;=yloy; Thus we get:

Proposition VIIL4. Let A, i=1,...,n, be pairwise commuting abelian subalgebras
of M and A the algebra they generate. Then

H¢(A1’ teey An) g S(¢|A) - 21: SqS]Aj(V} ° ’))]) s
where y;: A;—M is the inclusion.

Let us now compute s,(y" o), where y is the inclusion of the finite-dimensional
abelian algebra A4 in M and u= ¢, ,. Let ey, ..., ¢, be the minimal projections of A.

Lemma VIILS. Let p;;=(¢"?e;p'/?)(e)), uj=Ple;). Then
s o)=Y nlw)— Y nlu).
2] J

Proof. One has by VIIL3a) uoy'ey=p. Thus s,y y)= ¥ S(y;u, where p; is the
composition of the pure state u(e;-)/u; with y*oy. Furthermore,

.ujwj‘(ei)zlu(eij(ei))Z(HI/ZYT(ei)Nl/Z) (ej)=(¢uzei¢”2) (ej):ﬂij'
Thus:
Stw))= L nluy/u;)  and sy oy)= iZjn(uij)— ;n(ﬂj). O

Corollary VIIL6. a) Let N CM be a finite dimensional subalgebra which is invariant
under the modular automorphism group of, teR, then Hy(N)=S(¢yy).

b) Let NCM bea finite dimensional subalgebra, let M, be the centralizer, i.e. the
set of elements of M which are invariant under o, assume that N M, contains an
maximal abelian subalgebra of N, then

H¢(N)=S(¢|N)-

Proof. 1t is enough to prove b) since, if 6?(N)=N Vte R, the centralizer of Pn is
MynN. Let then ACM,NN be maximal abelian in N. One has ACN,, where
=y, and hence S(¢y)=S(¢,). Thus p;;=0,;1; and by Lemma VIIL5 one has
sg(y" e 9)=0, where y: ACM is the inclusion. The conclusion follows from VIIIL.4.

Remark VIII.7. Given a finite dimensional subalgebra N of M, the difference
04(N)=S(¢n)—Hy(N) is a positive convex function of ¢. In particular,
{$,04(N)=0} is a convex set which contains all states for which the hypothesis of
VIIL.6b) holds.

Corollary VIIL8. Let N, ..., N, be finite dimensional subalgebras of M and assume
that they contain abelian subalgebras A;C N ;A M , pairwise commuting and such that
A=\/A; is maximal abelian in the algebra N generated by the Ns. Then:

Hy(Ny, ..., N)=S(dy).-

Proof. One has S(¢y) = S(¢4), since 4 C M 4, thus Proposition VIIL4 applies, with
se(7107,)=0since 4;C M, [
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In realistic situations however M, is often trivial and it becomes crucial to
estimate s4(y' y). By Lemma VIIL5 it is a measurement of the lack of commutativ-
ity between 4 and ¢.

We shall now estimate Hy(N, ..., N,) in the following situation, the N;’s are

pairwise commuting matrix algebras N;C M with the same dimension d, and each

N; contains a matrix subalgebra M;CN;, dimM;=d’" satisfying the following
condition of commutation with ¢:

VxeM; one has ||JL/2(O-—l/2( x))—x| <ellx[, where ¢j=¢|N1~
Proposition VIIL9. Under the above hypothesis, one has
Hy(Ny, ..., N) Z S(y.4) — 6ke(3 +1og(de ™ 1)) 2k log(d/d),

where A=\/A; is the algebra generated by maximal abelian subalgebra A; of the
centralizer of ¢; in N;.

Proof. First Hy(N,,...,N))ZHyM,,...,M;) and we just have to prove the

inequality for the latter. We construct an abelian model as follows, B=4, B;= A4,

u= ¢ pand the completely positive map P is the adjoint of the inclusion y,: B—M.

Now for each j the expectation E;: B— B; is the adjoint of the inclusion B;C B, so

that Ejo P=(yg, )t, where 78, B; —+M is the inclusion. Let y,,: M; —>M be the

1nc1us1on we need to evaluate the entropy defect of (g, ).y M= and then use:
H¢(M1, ooy Mk)gs((blA)_ Z%(“j)-

Let 3, ¥, be the inclusions in N, so that:
VB,—=YN,-°V%J> VszyNjoyguja
Vb0 van, = 0) o (0w ) o v, 0 Vi, -
We claim first that ||(y,‘,j)T oYy, °Vm,—Va, || S&. This follows from

Lemma VIIL10. Let NCM be a von Neumann subalgebra and = ¢y, y: N->M
the inclusion. Let x€ N be in the domain of o), with 6% ;5(x) in the domain of o,
then:

[y epx)—x| < Haz/z(a—z/z(x))_x“~

Proof. For any ye N one has: p!/2yp2(yTy(x)) = (¢ ?y¢*/?)(x) and

W' Py ) (x)=y(ye? l/Z(X)) P(yo? 5(x)= (p'2yp'7?) (0';/20"') i2(x)).
Thus for y=0 one gets:

' 2y ) (7 o p(x) — x) S (y) 6§20% 0(x) — x| .

Thus by Lemma IV.2 one has:
IS”(O( u((yB,)T ° ’))Mj)l < 68(2 + IOg(dS - 1))

It remains to estimate su(yBJ °yu,)» Where now everything takes place inside N ;.
This follows from:

Lemma VIIL11. Let PCN be matrix algebras, ¢ a state on N, yp:P—N the
inclusion, A an abelian maximal subalgebra of N in the centralizer of ¢. Then
so(vi e yp) S2logd”, where d" =dim N/dim P.
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Proof. Let p=¢, 4, a=y} o yp. One has:

S0) = S(u) — S(ue &) + [ S(or)dpalx) .-
Since ACNy, 7} is the conditional expectation of N onto A. Thus

$0)=S(@) = S(p o yp) + [ Sy ° yp)dulx),

where w, is a pure state on N for each x € Sp(4). Since for matrix algebras PCN
implies N=P®P’, subadditivity [7] tells us |S(¢)—S(¢p)| = S(¢p) <logd” and
S(wyp)=S(w,p)<logd’, because w, is pure for N in the optimal
decomposition. []

IX. Entropy of Space Translations for the Gibbs State of a One-Dimensional
Quantum System with Finite Range Interaction

We shall adopt the notations of [19]. Thus we represent the lattice points by Z and
for each lattice point j we have a matrix algebra (4j)= M (C), where ¢ is finite

independent of j. To each subset I CZ we associate the C* algebra A(I)= @ A()).

We let t(n), n € Z, be the automorphism of A(Z) given by the lattice translatlon by
n. Asin [19, 2.12] we let @ € A([0,r]) be the contribution of one lattice site to the
interaction, and r the range of the interaction. The Gibbs state ¢, for the infinite
system is invariant under the generator 6 =1(1) of space translations, and our aim
is to evaluate the entropy h,(0).

Theorem IX.1. Assume to every I'=[0,n] and >0 there existsan [ = —N,n+ N
such that, with y the restriction of ¢ to A(I)

lofa(a? 12(Q)— QI ellQll YQe Al
and lim N/n=0. Then hy(0) is equal to the mean entropy

n—> o0

1
h¢(9)=S(¢)= Illllmoo m S(¢|A(1))-

The mean entropy is introduced in [4], where it is shown to converge and, in
fact, to be an infimum. Examples where the above condition is satisfied will be
discussed in the Appendix.

The inequality h,(0)<S(¢) is obvious, since by Corollary V.4 one has h(0)

= lim hy ¢(A[0,n]) and the algebra generated by the 0°A([0,n]), s=0,1,...,k, is
equal to A([0,n+k]) so that by VIIIL.1:

1
k H ¢(A([O, nj),.. OkA([O n]), < A S(¢|A({0 n+k]))

When k— oo, the right-hand side of the inequality converges to S(¢). To prove the
other inequality we just have to find, given ¢>0, intervals I, J such that h 4(A(I))
1
IJ |
[—N,n+N] for nelN, NeN. We let I'=[0,n].

S()4s)) — & In order to exploit Proposition VIIL9, we choose I of the form:
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Lemma IX.2. Let I, I' as above, y be the restriction of ¢ to A(I) and £> 0 such that:
Il ng(otﬁ i/Z(Q)) —Ql=ZellQ VQeAl).

Let CoCA(I) be an abelian maximal subalgebra of the centralizer of vy, let m=n
+2N and C,=0""C,; C the abelian C* algebra generated by the Cy, k=0, and ¢
the restriction of ¢ to C. Then

1 N
o, AU Z — g (07— O <e, 'rﬁ) .

Proof. For any k, let N,=0" (A(I)) and M, =0"(A(I')). Then N,, M, satisfy the
hypothesis of Proposition VIIL9. Moreover log(dim N,)=(n+2N)logqg while
log(dim M,)=nloggq, thus with obvious notations:

Hy(Ng, ... N)ZS(Picro. .. 1) — Oke(z +1oge™ ' +(n+2N)logg)—4kN logq .

Now 1 1 1
m hy, on(A(I))= ’}ng ok Hy(No,....Ny= - <klin; 2 S(Pycro, ...,k]))

1 -1 2N)1 4
_68</2+10g(8 )y:lr(n+ )ogq>~_m1}f_10gq.

We now have to evaluate the entropy h, (0™) of the one-sided shift on the
abelian C* algebra C. Note that the entropy of the restriction of ¢ to C is equal to
S(¢ 4 since C, is an abelian maximal subalgebra of the centralizer of ¢.

Lemma IX.3. Let 1>%>0 be such that, with m=n+2N as above,
16(Q1 Q2)— P(Q)P(Q) =041l 1Q,]l

for any Q, € A(I'), Q2€A< U «ua +mk)>. Then with the above notations one has:
k=1

1 1
- hy (0™ 2 " S()4) — Om) -

Proof. Let X be the spectrum of the abelian C* algebra C}, ., i.e. the algebra
generated by the 0™(C,)=C, for k=1. Then the disintegration of ¢, on
C=C,x C'isoftheform ¢.= |(w, x ¢, )du(x), where each w, is a state on C, which
by the above inequality IX.3 is such that ||w, — ¢, | £#Vx € X. The entropy of the
shift is [1]

[ S(@Jdp, =S¢~ S(¢ic)
and by Lemma IV.1 one has:
S(Pyco) — )f( S(w,)du(x)| =3nG+log(1+dn™ 1),

where d=dimC,=¢"*?". Thus:

1 o 1 37 -
m hy (0™ 2 " S(ary) — wm T m —3nlog(1+q).
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Let us now show that the hypothesis of Lemma IX.3 is fulfilled for a given >0
as soon as m—(n+2N) is sufficiently large.

Lemma IX.4. Given >0, there exists pe N such that

[6(Q1 Q2)— Q)N =n Q1 10,1l
for any Q, € A(]— o0, —p]), O, € A([p, + o).

Proof. ¢ satisfies the Gibbs condition, which tells us, that the interaction W
between the right and the left can be removed by the factor

G=Texp [j ot Wdy]

such that Q— ¢(GQ) is a product state for A(]— oo, 0[) x A([0, + oo[). As shown in
[19] G is a bounded essentially local operator. From the uniform clustering
property of ¢ [19, (8.41)] it follows:

1p(Q)— (GO =n Q] YQeAZ\]—p,pD).
For Q, e A(]— o0, —p]), @, € A([p, + oo[) one has with [|Q,[ =1,

[P(GQ10,)—d(Q:1Q2)=n,  [d(GQ)—PQ)=n, j=12,
#GO10,5)=P(GQ)PGQ,),
thus:

1(Q,02)— d(Q)P(Q,)I=3n. O
Appendix

It remains to discuss in which physical situations the conditions of Theorem IX.1
are satisfied.
We have to estimate

1/2(0"ﬂ 1/2(Q)) ol

for Qe A(I') and = 41,

0%,Q is a bounded operator belonging to A(I). If we are dealing with a one-
dimensional lattice system with finite range interaction, it is shown in [19, 4.28],
that all local operators are analytic with respect to time automorphism, therefore,
the above norm is bounded, If we are considering a more than one-dimensional
lattice system with short range interaction, a corresponding statement is only
available for temperature above a critical one [20].

Lemma A.1. Assume that A= (X) A; and the time evolution is given by a
JjeZ
®ec A([0,r]). Let H;= Z @(J) and H, be the operator that implements the modular
automorphism of p= d)l Ay Then
WEeXP[HI/z] exp[— HI] eXp [Hl/z] >

and W is a bounded operator concentrated on the boundary of I, i.e. W=W, +W,,
W, e A[—N,0]®A[n,n+ N] and |W,|| <e(N).
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Proof. This follows from combing the estimates in [19, 20]. If we can use the
Campbell-Baker-Hausdorff formula, i.e. if the temperature is high enough so that
the series converges, we can obtain

H,=H,+V,
with ¥ located on the boundary such that

_ 1/2
exp[H;,lexp[—Hy,]=Texp [ (j) ’C,/de}

gives the following desired bound:

Lemma A.2. Under the assumptions of (A.1) there exists a critical temperature
B < oo such that for B< ., with ¢ a 1/ KMS state, there exists Ve >0, an N, such
that with = 41— n,n+np

lofa(c® (@)~ Ql <&l Qll Vn,QeA[O0,n].

For quasifree states it is easier to control H, such that we obtain the estimate
for all temperatures:

Lemma A.3. Let ¢ be a quasifree interaction. Then .= co.

Proof. Let a, be a fermionic destruction operator at a lattice point xe Z, {a,, a¥}
=6, and a(f)= Y a.f, f €l*(Z). The time evolution is governed by he B(I*(Z)),
t'a(f)=a(e™f).

We have for the KMS state @ (with temperature=1)

)

Denote by 0, (respectively 0,.=1—0,)e B(I*(Z)) the projection operators onto
ICZ (respectively its complement I°). The modular automorphism t; of w4, is
generated by h;

olalf)*alg) = <f T

ta(f)=ale"'f), felX(), (A.4)
which is determined by

1 1 1 1

0, Lo =0, 5o 0;, OICW =0, e O,
with h;=0,h,0,, hje=0;h0;.. Thus
1
0, l—i—e" 0,
=0,(1+¢"0,—0,e"0,.[0,(1+ "0, 10,€"0;,
and similarly for I°. Together these relations say
M=ol ()"0, —01."0,—0,"0,.[0,(1 + "0, ] 10",
—0,.€"0,[0,(1+€eM0,1710,e"0,.. (A.5)

0,(1+¢M)0,=0, 0,
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We want to estimate [[6,(0%;2(Q)—Ql <&[ Q| YQ € A;. We are looking for an
operator that implements a{),0%;,0 for Q € 4, thus an operator that satisfies

Ua(f)U™" =ale’f)—alee"f),

where e¥=(1—0,)e "(1—0,)+0, and therefore e*f =e "' = f for all f with
suppfel’. .
We write e’e” ="' = e"¢? in its polar decomposition, i.e. s=s* g=¢*. Then U
can be written in the form
exp(i Y. a*sa)exp(}.a*ga).
Thus
1U—11 = |exp(Y a*oa) — 1| + [exp(i y a*sa)— 1] Lellelt —1 4 elslli 1,

We observe
fe?—1]; =lle"—1],,

e =11 < et =1, + e — 1], S2fje" 1]

If |e2—1]|, <e<s,, this implies ||Q|, <2¢ if ¢, is sufficiently small, and equiva-
lently if |Ql|, <e<eg, then [e2—1], <2¢. Further

lexp(Y a*ea)—1] Sexp(|Y a*eal| =1=el¢l1 1,

thus we only have to estimate ||v, ;.
With e’ =1+ D, we have

2 (=Dy

lv1]ly = llog(1 + D), = “— X —”D“1

n=

1
IIDH 1—[D]
So what remains to show is that || D| , and therefore || D|| go to zero if I and I' are
sufficiently separated. For this purpose we have first to construct

ev___e—h/Ze(h1+h1=')/2

to use VIIL10.
To extract its square root we employ the integral representation
2

5D o 1
atb ]/-l—jdoc +a+b o’4a’

and hence

o o? 1
exp(—h/s)exp(G(h;+hy))—1= (j) do.exp(—h/2) Z1oTh b R

with
—b=0,e"0;.+0,e"0,.[0;(1+e"0,.] 10,.e"0,+ 1 I°.
This gives the bound

—h/2

1D, = (e~ 1), < :fda e 0,

o+ et

a2+e"+b|‘ .
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Observing e"+b=exp(h; +h;)>0 and h bounded from below, we note

2

— ll<c
a’4e"+b

Furthermore b is of the form b=c0,.+c,0,."0;, with ¢, and ¢, bounded
operators. What remains is an estimate of

e

and
o +et

1
"0 ———— 0,
Olce 1a2+eh 91

1 1

For these trace norms we use the inequality

M|l = ;]/ Y {ejlMe?,

where the e; are any orthonormal basis. We shall use as basis the vectors |x) which
are 1 at the site x and zero otherwise. If & is in Fourier space multiplication with
&(p) e C*([0,2n)), then in this basis we have the matrix elements

27 etp(x y) 1 p ‘ )
= ip(x—y
g(x=) <y o? 4 et > (j> Pye® = Ix—y* o j pe

o g'e’ g e 2
(a2+ee)2 ’ (ee+a2)2 (e8+cx2)3

for x+y and <2n/(1+a?) for x=y. Altogether this shows

g,(x— y)l

with | dac(a)=c<oco. Now if ['={— o0 <x< —N} and I'={0<x <n}, then
0

e

[ do||I
0

© n -N 1/2
<7 (£ i)

x=1\y=—

n

A

1
< — - <¢/N'?,
=c x£1 Gt N <c/
With our assumption on h we also have {x|e"|y) < c/(|x — y|?), and a similar bound
can be worked out for the other term in b.
Combining these estimates, (A.3) follows. []
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