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Abstract. The definition of the dynamical entropy is extended for automorph-
ism groups of C* algebras. As an example, the dynamical entropy of the shift of
a lattice algebra is studied, and it is shown that in some cases it coincides with
the entropy density.

Introduction

While in the 19th century the concept of entropy appeared in thermodynamics and
its connection with statistics was realized, a satisfactory mathematical theory
became available only through the Kolmogorov-Sinai entropy of automorphisms,
which was a byproduct of progresses in information theory [1],

Not only did this new mathematical concept of a dynamical entropy for a
measure invariant under a transformation clarify the mathematical set-up of
thermodynamics, especially because it allowed a formulation of variational
principles [2] without appealing again and again to a thermodynamic limit, it
became also the key notion in ergodic theory. Through the work of Bowen and
Ruelle the thermodynamic formulation has invaded the theory of smooth
dynamical systems and appeared to be a crucial tool for problems such as the
iteration of fractional transformations in C [3].

From the early beginning of the work of Kolmogorov and Sinai it was clear
that a quantum or non-commutative analogue was required for both to be
applicable in microphysics and to provide an important mathematical concept
which in fact von Neumann and Sinai were asking for. For instance the work of
Cuntz and Krieger on subshifts of finite type leads to a natural non-commutative
C*-algebra together with an automorphism for which entropy and variational
inequalities would be very relevant. As far as quantum thermodynamics is
concerned, there exists a definition of entropy density [4] but it refers in a crucial
manner to a net of finite subsystems and thus has no a priori invariance properties
as the KS entropy does. More precisely, in the classical context a corollary of the
KS theorem shows that the entropy density computed on a limit of finite systems is
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equal to the KS entropy of space translation. The latter does not refer to any
specific sequence of finite subsystems, thus is more conceptual and also has
stronger invariance properties.

The quantum case, which is the relevant one in nature, is not in every aspect
more complicated than the classical case. For instance, the KMS condition which
ties up the non-commutativity of the algebra or, more precisely, the lack of trace
property of a state with the one-parameter group of time evolution is a very
relevant and powerful property of equilibrium states. Certainly it has its classical
analogue [5] but even to state it one has to introduce auxiliary structures beyond
the algebra, the state and the time evolution.

If we are looking for the quantum mechanical generalization of the dynamical
entropy we first have to notice that in the classical case it is non-trivial only if the
generator of the time evolution has a continuous spectrum. In complete analogy
we will construct a dynamical entropy which is zero for a finite quantum system,
i.e. an algebra of type /. Thus a dynamical entropy > 0 requires an infinite system
and thus a thermodynamic limit. There exist other definitions [6] of the entropy of
the time evolution of a finite system: there the infinite system is split into a finite
part and an infinite reservoir and the entropy measures how much the completely
positive map of time evolution for the finite part fails to be unitary. This notion is
different from ours; we do not refer to a division of the system into reservoir and
observable subsystem but consider the - non-commutative - algebra ob-
servables in the thermodynamic limit.

The price of non-commutativity is twofold: even if one starts with a trace such
that the state does not see the non-commutativity of the algebra, it is no longer true
that a finite number of finite subsystems generate a finite subsystem. In fact, one
can easily construct an example of two finite-dimensional algebras such that they
generate an infinite-dimensional algebra. However, thanks to the progress in
quantum statistical mechanics [7] it was possible to handle the tracial case [8].
The task was to find a quantity Hφ(Nl9 ...,ΛΓk) which measures the information
contained in the subalgebras N^CM if the total system M is in a state φ. We
require

HΦ(N19...9NJ£HΦ(M19...9MJ if

ί = l

where y Nf is the algebra generated by the Nt and for commuting algebras
i

equality should hold iffφ factorizes. Correlations should reduce the gained
information. In this paper we shall generalize, following [8], this construction of
the H's for non-tracial states and make this notion applicable to the relevant
cases of physical systems at finite temperature.

There have been other attempts [9] to extend the classical theory to type III
algebras by restricting the state to a maximal abelian time invariant subalgebra.
This might give insight into macroscopic properties but is too restrictive for a
microscopic theory of systems without non-trivial invariant subalgebras. In



Dynamical Entropy of C* Algebras and von Neumann Algebras 693

contradistinction our dynamical entropy may be > 0 for such systems. The main
problem that arises in passing to the type III case is an incompatibility between a
state and a finite-dimensional subalgebra in the following sense. In the commuta-
tive case any finite-dimensional subalgebra A of L°°(x, μ) yields a conditional
expectation E: L°° -*A such that μ = μ\A° E. For non-tracial states φ a conditional
expectation E: M-+A such that φ = φ\A ° E exists only if A is invariant under the
modular automorphism. It is exactly the desired property of ergodicity which
denies the existence of such yfsΦαl. Moreover, this incompatibility is also the
cause of the lack of monotonicity in A of the usual entropy of φ\A. Thus already for
Hφ(A) we cannot use S(φ\A). It turned out that the authors (A.C. on the one hand
and H.N. and W.T. on the other) arrived independently at the following formula

Hφ(N)= sup Σ(S(Φ\N,Φi\N)-Φtt)lθBΦM).
Σφί = φ i

In [10] this formula proved to be useful to deduce the various properties of the
entropy. In [11] it was used to define the entropy of automorphisms in the non-
tracial situation. In this paper we shall improve the results of [11] and get a more
conceptual understanding of the function Hφ(Nl9...,Nk) by extending it to
completely positive maps with finite rank.

Roughly speaking, the motivation for our construction is that we try to map
the non-abelian case as well as possible to an abelian situation where one knows
how to compute the dynamical entropy. Thus we introduce the notion of an
abelian model which is a map P from the algebra A with state φ onto an abelian
algebra B with state μ such that φ = μ°P. Of course, P cannot be an algebraic
isomorphism, but to preserve as much structure as possible we use for P
completely positive maps. In general, the entropy of μ, S(μ), is in no way related to
the S(φ) and to arrive at a definition which implies S(μ) = S(φ) if A is abelian
requires the following considerations.

An abelian model (£,P,μ) is equivalent to a decomposition 0 = Xμί<^ί, where
for a basis et in B the map P is given by P(A) = Σ ei$i(A) VAeB and μi = μ(eί). If φ is
given by a density matrix ρ the model corresponds to a decomposition of unity
Σ*i = l> xteA+, such that μί = φ(xi) and $t is given by the density matrix

Qί = ]/Qxi]/Q/lJ'i' Thus the model can be thought of as a measurement of the
observables {xt}. The information gained by the measurement will be ε = S(φ)
— ΣfaSiΦί)' the difference of the entropy of φ and its components weighted with
their probabilities μt. It is zero iff $t = φ Vι, in which case no additional information
is obtained, ε assumes its maximal value S(φ) iff all $t are pure. This observation
was the basis for considering the quantity Hφ(N).

The notion of an abelian model still contains the useless possibility that the (j>t

do not carry different information, for instance, they may all be equal, <^ = 0 £ μf. In
this case S(μ)= — X^log^ may arbitrarily exceed S(φ). To discriminate against
such models we introduce the notion of the entropy defect sμ(P) = S(μ) — ε, the
difference of the abelian entropy and the information gain. It attains its minimal
value 0 iff $i($j) = 0 for i ή= j. With the entropy defect we are in the position to define
Hφ(Nlί..., Nk) as the difference of the abelian entropy and the sum of the entropy
defects for the ]V/s.

The aim of this paper is to give detailed proofs of these results and thus to
provide a starting point for further investigations.
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I. Preliminaries on Relative Entropy

Since the proof by Lieb [12] of the Wigner-Yanase-Dyson conjecture, the main
properties of the quantum relative entropy

S(φ, φ) - Trace(ρφ(log ρv - log ρφ))

[for states φ, ψ on a finite-dimensional C* algebra A; φ(x) = Ύτ(ρφx), ψ(x)
= Ύr(ρψx)\/xEA] have been established. By the results of Araki [13] the relative
entropy can be defined for arbitrary normal states on a von Neumann algebra. The
main properties of S(φ, ψ) are its joint convexity and weak lower semicontinuity.
They can be restated by writing S as a supremum of weakly continuous affine
functional and there is indeed an explicit way of doing so, due to Pusz,
Woronowicz, and Kosaki:

Lemma LI [14]. Let A be a unital C* algebra; φ, ψ positive linear forms on A, then
the relative entropy S(φ.> ψ) is given by

)= sup J -φWt)*^))- φ(x(t)x(tΓ) ,
o \_l+t t J t

where x(t) + y(t) = 1 and the sup is taken over all step functions x(t) with values in A
which are equal to 0 in a neighbourhood of 0.

This can be used as definition for arbitrary states over a C* algebra. We shall
now list for the convenience of the reader the known properties of S(φ, ψ) which
will be used in the rest of this paper:

(2) Scaling property: S(λίφ,λ2ψ) = λ2S(φ,ψ) + λ2ψ(l)log(λ2/λί), λteR + .

(2) Positivity: S(φ,ψ)^Q for states φ9ψ9 = 0 iff φ = ιp.

(3) Joint convexity: For Λ.^0, £^ = 1 one has

(4) Monotone properties:
a) Decrease in the first argument. φ1 ̂ φ2=> S(φί9 ψ) ̂  S(φ2, ψ).

b) Superadditivity in the second argument. S (φ, £ ψλ ^ £ S(φ,
\ i

c) If y:A-+B is unital completely positive then

(5) Lower semicontinuity: The map (φ, ψ)eA^x A^ -*S(φ, ψ) e] — oo, oo] is weak-
ly lower semicontinuous.

(6) Martingale convergence: Let (yv)veN be a sequence of completely positive unital
maps yv:A-+A which converges pointwise in norm to id^, then:

S(φ o γv, ψ o γv) ——-* S(φ, ψ) .
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(7) Invariance: Let B C A be a subalgebra and E : A-+ B a conditional expectation.
For any φ,ψeB*ί one has:

Remarks 1. 2. 1 . In the following completely positive unital maps will play a crucial
role. For the convenience of the reader we shall first summarize the terminology.
The word "unital" stands for containing or preserving the unit element and
"normal" for commuting with sup. A completely positive unital map φ between
two unital C* algebras A and B is a positive unital map such that the map φ
between Mn(A) and Mn(B) the n x n matrices with elements from A (respectively B\

is positive. For them positivity is strengthened to Schwarz positivity φ(a*a)^φ
(a*)φ(a). With respect to composition they form a semigroup which contains
*-homomorphisms, in particular the natural inclusion if AcB. If A or B are
abelian, any positive map is completely positive. In the linear space of linear maps
the completely positive unital maps are a closed convex set. If B C A a positive
unital map with φ(b1ab2) = b1φ(a)b2, bteB, aeA, is called unital conditional
expectation. It is automatically completely positive. Let ω be a faithful normal
state on a von Neumann algebra A and let B be a unital subalgebra. Then there
exists a conditional expectation φ with ω°φ = ω if and only if the modular
automorphism group σω satisfies σ™B C B. In this case ω determines φ uniquely and
we call φ canonically associated to ω.

2. We do not explicitly write to which algebra S(φ,ψ) refers and always
understand this expressed by the states φ and φ.

3. Since S(λφ, λip) = λS(φ, ψ) the convexity (3) is equivalent to the subadditivity
in both arguments:

4) Since the natural inclusion is completely positive, (4b) says in particular the
monotonicity for subalgebras B C A

II. Entropy Defect of a Completely Positive Unital Map

Let A, B be unital C* algebras and P \A^B a completely positive unital map. The
transpose P* maps the state space Σ(B) to Σ(A) by P*μ = μoF. When B is
commutative, i.e. B = C(X) for a compact space X, it is equivalent to give a
completely positive unital map P : A-+B or a weakly continuous map x-»PJ of X
to Σ(A) [15].

Let then μ be a state on B, i.e. a probability measure dμ(x) on X. For each x e X,
PJ is the state on A defined by J dμ(x)P*(A) = μ(P(A)) = P*(A). The relative entropy
S(P*μ,P*) is a well-defined positive real number, lower semicontinuous as a
function of x e X. We put

εμ(P)= ίS(P*μ9P*)dμ(x). (Π.l)
x
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From now on we shall assume the algebras to be finite dimensional. Then the
entropy of a state φ over A, defined by [10]

S(φ)= sup εμ(P)
φ = μoP

is finite and

εμ(P) enjoys the following properties which can be deduced from (I.I):

Proposition Π.2. a) εμ(λ1P1 + λ2P2)^λ1εμ(P1) + λ2sμ(P2) for λl9λ2^Q,λ1+λ2 = lL.
b) εμ(P)^S(P*μ). IffP* is pure a.e. then εμ(P) = S(P*μ).
c) Let y-.A^-^A be a completely positive unital map, then εμ(P°γ)^εμ(P).

Equality holds if y is a conditional expectation.
d) One has εμ(P)^S(μ) for any P.

μ2(P) for λl9 A2^0, λ,+λ2 = L

Definition II. 4. The entropy defect sμ(P) of the completely positive unital map
P:A-^B is the positive real number

sμ(P) = S(μ}-εμ(P).

The prototype of a completely positive map with zero entropy defect is the
conditional expectation E from the algebra A of n x n matrices to a maximal
abelian subalgebra B of the centralizer of a given state φ on A with μ = φ\B.

Proposition II.5. a) sμ(λ1Pl + λ2P2) ^ V/PI) + λ2sμ(P2) for λl9λ2'^09λί-\ λ2 = L
b) // P is an extreme point of completely positive unital maps, then sμ(P) = S(μ)

-S(μoP).
c) sμ(P o γ) ϊ> sμ(P) with equality if y:Aί->A is a conditional expectation.
d) For each subalgebra B1 of B let PBl be the composition with P of the

conditional expectation from B to B^ canonically associated to μ, then

where Bl v B2 is the subalgebra generated by B1 and B2.

Proof. a)~c) follow from Proposition II.2.
d) Let us label the minimal projectors of B1 by ΐ e { l , ...jf^}, of B2 by

je{l, ...,n2}
 and ofBj v B2 by(ij). We can assume that B = B x v B2, and let Et be

the conditional expectation of B onto Bt determined by μ. Let λt j = μ(i, j) be the
value of μ on the minimal projectors (i,j), then one has, with obvious notations:

f= Σ Vίί

If we let ψiJ = λitjPftj9 \p\ = Σ Ψij> Ψj= Σ Ψtj, we §et

j ί
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where ψ = P*μ. Similarly

sμ(PBl) = - Σ S(ψ, φ,1) , sμ(PBJ = - Σ S(ψ, ψj) .
i

One has Σs(ψ>Ψi,j)-s(ψ*>Ψi,j) = S(ψ,Ψ*) so that
i

Σ S(ψ, Ψl,j) - Σ S(φ, Ψ?) = Σ S(V,2, Vu) ̂  Σ S ( Σ V,2, Σ Vί. j] =
ij J iJ i \J J J i

using the joint convexity of the relative entropy. Π

III. The Function Hφ(yl, ...,yn) for Completely Positive Maps

In this section we shall extend the function Hφ of [11], defined there for arbitrary
finite dimensional subalgebras to a more general and more manageable situation,
where the subalgebras are replaced by completely positive maps. Let A be a unital
C* algebra and recall [15] that there is a natural bijection between completely
positive maps θ : Mn(C)-+A and positive elements of Mn(A). The positive element
associated to θ is the matrix (χy) = θ(etj)9 where etj are the matrix units in Mn(C).
The condition 0(1) = 1 means that Σxu = l This correspondence insures the
existence of plenty such completely positive maps, while in general A does not
contain any finite dimensional subalgebra. The following is based on the result of
Choi and Effros [16]:

Proposition TILL Let Abe a nuclear unital C* algebra. There is a sequence (θv)veN

of completely positive unital maps A-+A such that
1. For each v there exists a finite dimensional C* algebra Av and unital

completely positive maps σv:A-^Av, τv:Av-*A such that θv = τv°σv.
2. For any xe A, lim ||0v(x)-x||=0.

v — >• oo

The construction of the function Hφ is done by comparison with the abelian
situation in which the ambient C* algebra is commutative. Let us start from a C*
algebra A, a state φ and n completely positive unital maps y l 5 ...,yn from finite
dimensional C* algebras Al9 ...,An to A.

Definition III. 2. An αbeliαn model for (A, 0,y1? ...,yπ) is given by
1. An abelian finite dimensional C* algebra £, a state μonB and subalgebras

Bl9...,BnoΐB.
2. A completely positive unital map P:A->B with φ = P*μ.

For each j = 1,2, ...,n let Ej .B^Bj be the canonical conditional expectation
(associated to μ), then ρ7 = Ej ° P o y. is a completely positive map from A 3 to Bj.

We define the entropy of the abelian model as

%lvB,)-ΣΛ(βj), (πι.3)
j

with ρjμ = yJP*μ = yJφ = φ°yjWQ can express this quantity in terms of entropies
as follows:

L3) = S(μ\ v B) - Σ S(μ\Bj) + Σ {$(Φ ° Jj) ~ ί dμ\Bj(x)S((φ

^ Σ
7=1
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The last inequality comes from the subadditivity S(μ|vβj)^ Σ,S(μ\Bj). Note that
this bound does not depend on the abelian model. j

Definition III A. Hφ(yl9 . . ., γn) is the sup of the entropy of the abelian models for

Remarks 7/7.5. 1. For any finite dimensional C* algebra A there exists a matrix
algebra Mn(C) containing A as a subalgebra and a conditional expectation
Mn -^+ A. Thus Proposition III.6 will show that to compute Hφ(yl9 . . ., yp) one can
assume that all γ/s are maps from a matrix algebra to A. Moreover, completely
positive unital maps from Mn(C) to A correspond exactly to elements aik of
Mn(A)+, Σau:=:^E^' Letting M^(A) be the increasing union of the algebras

i
Mn(A\ with maps

we see that we can consider 77φ as a function defined on all finite subsets X of

2. If A is abelian and the Ai are finite dimensional subalgebras of A, yt the
inclusions we may take

n

B= V Ai> βί = idU and μ = Φ\B
i = l

Then ρ,.*^ is pure, thus with Proposition II. 2b,

Thus the entropy defects vanish and we have the classical definition

3. Let At be subalgebras of A and yt the inclusion. An abelian model is
characterized by the minimal projections Qt in Bp the minimal projections β^...^
in B and the map

P is a completely positive map iff $(ί) are states over A. φ ~ P*μ corresponds to

Thus an abelian model is in this case in one-to-one correspondence with a
decomposition of the state φ. In the GNS-construction such a decomposition can
also be represented in terms of positive elements xί5 X xf = 1 of the commutant

ί
π(A'). φ(A) = Σ Φ(Xi A). Thus the definition of 77 can then be written in the
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following equivalent ways:

η(x) =-xlnx9 £ φiίmmΛn = φik, φ

fixed

^= sup l»i(0(o(l))+ Σ

= sup
(i) l)

n

+ Σ
k=l ik

= sup (Σίί(0(χ(£))+ Σ

= sup

n

+ Σ
fc=l

The main properties of Hφ are the following:

Proposition III.6. a) Let θj'.A'j-^Aj be completely positive unital maps, then

Equality holds if AjCA'j is a conditional expectation for all j.
b) If Θ:A-^ A are completely positive unital maps with φ°θ = φ, then

Equality holds if the θ are automorphisms.
c) Hφ(γl9...9yn) depends only upon the set {y^...9yn}=X9 that is H(y,y) = H(y)

and so on.
d) With the notations ofc) one has max{Hφ(X\

+ Hφ(Y).
e) Concavity:

f) Hφ(λy, + (1 - λM, ...9λγn + (l- λ)yf

n] ^ λHφ(γl9 . . ., y J + (1 - λ)Hφ(γ'l9 . . ., y'n}.

Proof. Note first that the notion of an abelian model just depends upon the pair
(A, φ) and the integer n but not the y/s.
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a) follows from Proposition II.5c.

b) Hφ((θ o 7ί-)) = sup \S(μ) - X sμ(Ej o P o θ o y.)]
μ°P = φ L j J

= sup

^ sup

c) One has to show that Hφ(yl9 y2> >7n> yn) = Hφ(y^ y2> >Tn) Given an
abelian model (B, μ, (J^ ), P) for n we get one for n +1 taking Bn +1 = C. Then

n+l n

\/ B = \/ BV nj V nj>

and since any map to C has zero entropy defect we get the first inequality ^. To
prove that Hφ(yl9 ...9yn9 yn)^Hφ(yl9...,yn), let (B,μ,(Bj)9P) be an abelian model for
n + l. Put B'j = Bj for 7 = 1, ...,n—1 and B'n = Bn vBn + ί, so that (B5μ,(β}),P) is an
abelian model for n. One has

n n+l

y n - y i ,.
thus the answer follows from Proposition II.5d.

d) One has to show that

But given an abelian model for fc + p, (B, μ, (£,-), P) one gets one for k by taking
7'e{l,...,/c} and for p by taking 7 e {/c + 1, . . . , fc + p}. The inequality then follows
from

e) Concave side. Let

ĵ̂
optimize H^^V!, ...,yw), respectively,

Then we use for Hλφl + (l__λ)φ2 the abelian model B = B(1) + B(2\ B
P = P(1) + P(2\ and the state μ = λμ1+(l—λ)μ2 In this case we have

and similarly for S(μ\B). Concavity of the entropy tells us

and finally

Using these relations in (III.3) we conclude
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-λ)S(μ2lB(2))J

- λ In λ - (1 - λ) m(l - λ)} + £ {λS(φ1 ° y,) + (1 - W2 ° 7, )
J

- λ J dμB^S((φ1 o y.)J - (1 - A) J dμBwS((φ2 o χ.) J}

= ΛH^y1/...,yJ + (l-Λ)J^

Convex Side. Suppose £, P, μ are the optimal model (within c) for

#λ</>ι4-(i-λ)φ2(7ι> •••̂ 2)- To J° and μ there corresponds a decomposition

(i) (0

where

x,^eπΛAY x, ,>0 V γ . , ^ 1 (ςee TTT 5 1)(i) ώV"^/ ' (i) ^~ ' / 1 •Λ'(ϊ) — -*- i ov/t/ i.JL.L.v-'} *}j,

(0

To this decomposition we associated the decompositions

(0 {l} 2 a) 2 (l)

which define abelian models (#, P(1), μ(1)) and (B, P(2), μ(2)), where μ$ = φa(x(i)) such
that μ = λμ(ί) + (ί -λ)μ(2}. According to (III.5, 3) we have

Σ
Z=l i

+^ Σ
1=1 ίι 1=1 iι

£λHφl+(ί-λ)Hφ2-λ]nλ-(\-λ)]Ά(l-λ).

Here we used the short hand notation ^ι(x, °y) for the state (^jX o
=<^ι|XiV(^4)|^ι>, where φl is the vector in the GNS-construction such that
= (Φι\A\φιy and similarly for φ2.

f) Suppose B, P, μ are the optimal model for ̂ ((̂  + (1 -%,')). Then

Σ ί S((P

due to the convexity of the relative entropy. Π
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IV. Continuity of Entropy in the Norm Topology

In this section we investigate the continuity of the function Hφ(γί,...,γn) with
respect to the norm topology on the y's,

| |y-/||= sup ||y(x)-/(x)||.
l l * l l ^ ι

Lemma IV.I. Let Abe a finite dimensional C* algebra of dimension d, and φ, ψ be
states on A, ε=\\φ — ψ\\. One has:

Proof. One has, with η(s)= —slogs, the equality

thus if we let Tr be the trace on A which is equal to 1 on any minimal projection and
ρφ, ρψ be the density matrices assigned to φ and ψ, we get:

S(φ) - S(ψ) = Trfo(ρφ) - η(ρv)~) = Tr f - - + -- + * dt .
~ --

By construction the integrand is for each value of t an operator of norm less than
one. Thus one has for any δ>Q:

dt

whose || || j is the norm Γ^Tr|T| on A. One gets

Taking δ = ε/d yields the result. Π

Lemma IV.2. Let A, B be finite dimensional C* algebras, with B abelίan and
d = dimA. Let μ be a state on B. Then for any completely positive unital maps ρ,
ρ':A->B one has

1)), where ε=l|ρ-ρ'|l

Proof. \Sμ(ρ) - Sμ(ρ')\ = \εβ(ρ) - eμ(ρ')|, and one has

Bμ(Q) = J S(ρ*μ, ρ*)dμ(x) = S(ρ*μ) - J S(ρ*)dμ(x) .

Furthermore ||ρ*μ — Q'*μ\\ ^ε, for any state μ and therefore also \\ρ% — Q'*\\^ε.
Thus the result follows from Lemma IV.I. Π
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Proposition IV.3. Let AbeaC* algebra, φ a state on A and Aj9j=l9...9n9 be finite
dimensional C* algebras, γj9 y'j be completely positive unital maps from Aj to A. Let d
be the max of the dimensions of the A s and s= max| |y/ —y}||?then

j

l#4yA =ι,..,«)-#φ((y^
Proof. With the notations of Definition III.2, QJ = Ej°P° yp Q'. = Ej°P° y'j. As Ej

and P are contractions, one has \\QJ- ρ}|| ^ε for all j and hence:

\sμ(Qj) ~ sμ(Qfj}\ = 6ε(i + l°g(l + rfε ~1))

Thus the respective entropies of any abelian model differ by at most 6nε(^
+ log(l +dε~1J). Taking the sup over all models one can find for each model for
Hφ(y') one for Hφ(y') within the stated margin. Q

V. Entropy for Automorphisms of Nuclear C* Algebras

Let A be a (unital) C* algebra, φ a state on A and θ an automorphism of A which
preserves φ.

For each completely positive unital map y : M^A from a matrix algebra to A9

the following limit exists by Proposition IΠ.όb) and d):

λφιfl(y)= Iim-/ίψ(7,0o ?,...,0»-io7).
n-+ oo n

Definition V.I. The entropy hφ(θ) is the supremum of hφtθ(y) for all possible y's.

Of course to be able to compute hφ(θ) it is necessary to have an analogue of the
Kolmogorov-Sinai theorem for the ordinary entropy of automorphisms. This is
achieved in the present context by the following use of Proposition III.l:

Theorem V.2. Let τn be a sequence of completely positive unital maps τn\An-*A such
that for suitable completely positive unital maps σn :A ^An one has τn o σn ->id^ in the
pointwise norm topology. Then:

Proof. Let B be a finite dimensional C* algebra and y : B-+A a completely positive
unital map. We just have to show that lim/i^ ̂ θ(τ^^hφ tθ(y). Let yn = τn°σn°y, then
lim \\yn — y \\ =0, since the yn's are contractions which converge pointwise in norm

/J-+00

to y on the finite dimensional algebra B. Thus Proposition IV.3 shows' that
lim \hφtθ(γn)-hφtθ(γ)\=0. Next by Proposition IΠ.όa) one has hφ9θ(γJζhφtθ(τJ9

n~* GO

so that lim hφt θ(τn) ̂  hφt θ(y). Π

Remark V.3. Thanks to Proposition IΠ.όa) it is irrelevant whether we restrict, in
Definition V.I and Theorem V.2, to matrix algebras instead of arbitrary finite
dimensional C* algebras.

The simplest example of a sequence (τn) to which Theorem V.2 applies is that of
an AF algebra, i.e. a C* algebra which is the norm closure of an increasing union
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00

(j An of finite dimensional unital subalgebras. In that case we let τn: An-*A be the
i

homomorphism of inclusion, which we take unital. For σn\A->An we choose an
arbitrary projection of norm one, the existence of such projections is clear since An

is finite dimensional. Of course we cannot require that this projection preserves φ
but this is not needed. Since σn\An = id^n? one checks that for any such choice of σ's
one has τnoσn(x)->x in norm for any xeA, and we can state:

Corollary V.4. Let A=\JAnbe an AF algebra, then for any state φ on A and
automorphism θ e Aut(,4, φ), one has

hφ(θ) = \imhφ,θ(An).
«->oo

We always take the convention that a subalgebra A±tA is standing for the
(completely positive unital) inclusion AV^A.

VI. Continuity of Entropy in the Strong Topology

In this section we sharpen the results of Sect. IV to the fact that the function
Hφ(yι> •• ?y«) is continuous even with respect to the following distance on the y's:

| |y-/||φ= sup \\y(x)-γ'(x)\\φ,1 1 * 1 1 * 1

where for any xεA, \\x\\φ = (φ(x*x))112.
We fix a matrix algebra Md so that y f, i = 1, . . ., n, is a completely positive unital

map from Md to A (III. 5, 1 shows that this is not restricted). We define the size of an

abelian model (#, μ, (Bj), P) for (A, φ, (y7 )) as sup dim^ .
j=l,...,n

Given ε > 0, let r(d, ε) be the minimum number of balls of radius ε/2 needed to
cover the state space of Md(C).

Lemma VI.l. There exists an abelian model with size smaller than r(d, ε) and entropy
larger than Hφ(γl9...,γn) — nεί9 where e1 = 3e(|-h log(l + dε~1)).

Proof. Let (B, μ, (57), P) be an abelian model for (A, φ, (y7 )). We can assume that
n

B= V BJ so that if Xj is the spectrum of Bj then elements in X = $pB are
1 n

parametrized by Y[ Xjt Let (Ut)iel be a partition of the state space Σ of Md in

subsets with diameters less than ε. We can assume that / has r(d, ε) elements. For
each j = 1, . . ., n, the map ρf, where QJ = E j o p o yp yields a map from Xj to Σ and
hence to /, which we call α,-. Thus, if r, s e Xp

The transpose of oc7 maps C(T) to C(Xj) = Bp and we let Bj = αjC(/) C Bj. Clearly
(B, μ, (Bj), P) is an abelian model with size r(<2, ε).

Let EJ be the conditional expectation of B onto B'j. Since B'jCBj one has
Ej = Fj°Ej, where Fj'.Bj-^B'j is the conditional expectation associated to the
restriction of μ. Thus ρ'j = E ' j ° P ° y j is equal to ^/°£/ To each αei, there
corresponds the minimal projector α}(α) in B'p and therefore a state over B'j which
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we denote by α. The state (ρ})*(α) = α ofv 0 Q. is the average of the states ρj(s\ s G XJ9

for the normalized measure v,- = Ff(κ) which is supported by {s E Xp α7 (s) = α}. Thus
one has:

\\QT(*)-ρf(s)\\<ε9

and Lemma I V.I shows that

Since ρfμ = ρ'fμ, one gets that |ε^(ρ7 ) — εμ(ρ'j)\ ^είϊorj = ί,...,n. Now the entropies
of the two abelian models are:

...
7=1

v...vB5)- Σ S(μ}Bj)+ Σ
7=1 7=1

Thus it remains to show that:

%| v B>) ~ Σ S(μm) ^ %, v BJ) -

Let μ be the measure on ΠXj which is the product of the μ^B and F the conditional
expectation Bj-+B'j. Then the inequality is equivalent to

which also holds according to (I.1.4c). Π

Lemma VI.2. Let B be a commutative algebra with dimB = r, ρ, Q' be completely
positive maps from Md(C) to B and μ a state on B. Then, if ||ρ —ρ'||μ<ε one has

\sμ(ρ) — sμ(ρ')\ ^ δ(r, d, ε) with lim δ(r, d, ε) = 0.

Proof. sμ(ρ)~sμ(ρ')= — εμ(ρ) + εμ(ρ'), and since \\μ°ρ — μ°ρ'\\ ^ε, we just need to
evaluate:

f (S(ρx) - S(ρ'*))dμ(x), where X = Sp B.

n Λ ί ,, 1 1 u rLet ε, >0 and A , = <xeX,μ(x)^. -ε, X then tor x G A i one has:
r

for any a G Md. The hypothesis of VI.2 implies

By Lemma I V.I we have

J S(ρ*) — S(ρfχ
X ι

Moreover

j |S(ρ*)-S(ρ?
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Taking ε1=ε2/3r1/3, we get ε2 = ε2/3r1/3, and hence:

x

Thus finally

and we can take

Theorem VI.3. For any d<co and α > 0 there exists ε > 0 such that for any C*
algebra A with state φ, any n and completely positive unital maps y7 , y'f. Md(C)-+A
such that \\γj — γ'j\\φ^ε Vj = !,...,«, one has

Proof. Let (B, (£,-), μ, P) be an abelian model, then note that with ρ7 = Ej o P
= Ej°P° y' one has

This inequality follows from the Schwarz positivity of Ej o P, since μ7 ° E7 ° P = μ ° P
= φ and (ρ7 - ρ}) = (Ej ° P) o (jj — yty. Now given d < oo and α > 0, ε0 such that 3ε0(^
+ log(l +ε^"1d)) = α/3? and then choose ε>0 such that with the notation of
Lemma VI.2, one has <5(r(d,ε0), d, ε)^α/3. Assume \\γj — y}||^,^ε Vj=l,...9n. By
Lemma VI.l, to prove the inequality VI.3 we just have to show that for any abelian
model of size r, the two entropies differ by at most nα/3. But this is exactly the
content of Lemma VI.2, since

Corollary VI.4. // the θi are completely positive unital maps with φ^θ—φ, then
again due to Schwarz positivity \\θioyi — fyoy'J^ ||y. — y.\\φy and under the hypo-
thesis of VI. 3,

VII. Entropy for Automorphisms of Hyperfϊnite von Neumann Algebras

In this section we shall use the estimates of Sect. VI to show that the entropy of an
automorphism θ of a nuclear C* algebra A with invariant state φ determines the
entropy of the corresponding automorphism of the von Neumann algebra
πφ(A)" = M, the weak closure of A in the GNS construction of φ.

Let us start with a von Neumann algebra M and a normal state φ. When we
deal with completely positive unital maps Md(C)^->M there is no special
assumption to make. Moreover note that for any abelian model (B, μ, (B7 ), P) for
(M, φ, (y7 )), with B finite dimensional, the map P satisfies μ°P — φ, so that P is
necessarily normal if μ is faithful. We can always reduce B by the support of μ so
that we may assume that μ is faithful. This shows that all properties of the function
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Hφ(yι> j yn)
 aPPty ^n ̂ e von Neumann algebra context and involve only normal

completely positive maps.
In particular, as in Sect. V, hφtθ(y) makes sense for any φ-preserving automor-

phism θ of M, and we take:

Definition VI Li. Let M be a hyperfinite von Neumann algebra, φ a normal state
on M, and θ e Aut M, φoθ = φ. Then the entropy hφ(θ) is the supremum of hφί θ(y)
for all completely positive unital maps of a matrix algebra to M.

We shall shortly see that we just need to consider subalgebras of M instead of
arbitrary completely positive maps. A need not contain finite dimensional
subalgebras, but its entropy is determined by those of M = πφ(A)". For the time
note that we cannot apply Theorem V.2 since M is not nuclear as a C* algebra.
[For instance <£(2tf\ dimJ f = oo, does not have the approximation property.]

Our first task is to compare the C* algebra and von Neumann algebra
definitions :

Theorem VII.2. Let Abe a nuclear C* algebra; φ a state onA,θe Aut .4, φ°θ = φ.
Let M = πφ(A)"9 φ, θ the natural extensions of φ, θ to M, then

It should be remarked [16] that A being nuclear, we have a hyperfinite M = πφ(A}".

Proof. Since any abelian model for (A, φ) gives one for (M, φ), it is clear that for any
completely_positive unital map Md-

2-^A one has hφ θ(y) = hφ ~θ(y). This shows that

Next, since (Remark III.5) completely positive maps Md-*A (respectively M)
identify with Md(Af (respectively Md(M)f) it follows that for any completely
positive unital map Md—^M one can find a sequence (Xn) of completely positive
unital maps: Md—^-+A such that lim \\γ — γn\\φ = Q. Then Theorem VI.3 shows

n-» oo

that hφf -θ(yn) -> hφ> -θ(y) when n -> oo . Π

Our next step is to show that we have

Lemma VII.3. Let M, φ, θ be as above, then sup hφfθ(y) = sup hφίθ(N) where N runs
y N

through all finite dimensional subalgebras of M.

Proof. There exists an increasing sequence of finite dimensional subalgebras Nj
CNj+1 of M and normal conditional expectations Ej : M-*Np EjEj+ 1 = Ep such
that for any xeM one has Ej{x)-+x strongly in the representation πφ.

Now let ij'.Nj-^M be the homomorphism of inclusion. We just have to show
that for any 7, completely positive and unital, y:Md-+M one has:

Let then y. = τ j ° E j ° y . One has yj(x)-*y(x) strongly for any xeMd and hence
\\7j-y\\φ-*Q when -^oo. Thus, by Theorem VI.3 one gets hφ,θ(y) ^ >hφtθ(γ),
but by Proposition IILόa) one has: 7^°°
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Since for finite dimensional subalgebras the present definition of the Hφs
coincides with the one of [11] (see IΠ.5.3), so does hφtθ(N] for von Neumann
algebras.

It is clear that Lemma VII.3 contains implicitly a Kolmogorov-Sinai theorem,
but we shall get a better such result, not invoking the conditional expectations Ejt

Theorem VΠ.4. Let M be a hyperfinite von Neumann algebra, φ a normal state in
M, θeAutM, φ°θ = φ. Let Nk be an ascending sequence of finite dimensional
von Neumann algebras with \J Nk weakly dense in M, then:

k

yβ)= lim VβWt).
/c-> oo

Proof. Let N C M be a finite dimensional subalgebra. We have to show that hφ> Θ(N)
^ lim hφ,θ(Nk).

fc-»00

For each k we shall construct a completely positive unital map yk:N-+Nk in
such a way that for any xeN one has yfc(x)-»x in the strong topology where
yk = ikoyk and ik is the inclusion JV fc— >M. It then follows from Theorem VI.3 that

hφ,θ(N)= lim hφtθ(yώ
fc-» 00

By Proposition IΠ.όa) hφίθ(yk)^hφtθ(ik), thus the conclusion. To construct the yks
one starts from matrix units (e^) in N, where the label q comes from the center of AT
and for each q, the indices z, j vary from 1 to nq. Now if ε is small enough and k so
large that the unit ball of N is contained in the unit ball of Nk up to ε in the metric
\\x-y\\$=(φ((x-y)*(x-y) + x-y)(x-y)*))l/2 one can (cf. [8]) construct a
system of matrix units (fff) in Nk such that

where c)(ε)->0 when ε->0. Now it is not true in general that £ /f? = 1, but Q=
i,q

is a projection, and thus we can define yk by:

where θ is the homomorphism sending e^ to f $ . Now yk is completely positive,
unital, and since φ(l — Q)-*Q when fc-κx), one has yh(x)-^x strongly for any

. Π

Properties of the Entropy of an Automorphism VI 1. 5. i) Covariance: hφ(θ)
= hφoσ(σ~1θσ) for all automorphisms σ of A (respectively M).

ii) Additivity in θ : hφ(θn) = \n\h(θ) \fn e N.
iii) Affinity in φ:hλφί + (1^λ}φ2(θ) = λhφί(θ)^(l-λ)hφ2(θ)VO^λ^l.

Proof, i) Since Hφβσ(σ~iγl9...9σ~'1γ^Hφ(γί9...9γk)9 we have

1y,...,(σ-lΘσ)k~ί«σ-1y)=Hφ(y,θ°y,^

Taking fc-»oo and sup gives i).
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ii) From Πl.όd) we can infer the monotonicity

Suppose y gives, within some ε, the sup for h(θn), then

On the other hand, since M was supposed to be hyperfinite, we have seen in the
Proof of VII.4 that V<5 > 0, α e N, i = 0, . . ., n — 1, there exists a finite-dimensional B
and f ' . f f N - ^ B such that

and thus, because of the invariance of φ under θ,

φί(θί+ka*-θky\a*))(θί+ka-θkyί(a))-]<δ Vί,(Ki^n-l, and V f c .

These are the conditions under which VI. 3 tells us

We have for AT optimizing

h(θ)-ε= lim—Fφ(]V,θ]V,...,θn/c-1JV)-ε
fe-^oo ^/C

^ lim — H (̂5, β"B, - , θ(k~ 1)nB) ̂  - h(θ") .
fc-> oo fl/C W

iii) Using first ii), then Πl.όe), we have

θn}-λhφl(θn)-(\ -λ)hφ2(θ")\

Letting n go to infinity gives iii).

Remark VI 1. 6. If θ is the modular automorphism of φ, so is σ~1θσ for φoσ:

φ(AθtB) = φ(Bθi _ tA) o φ(σAσσ ~ 1 θtσB] = φ o σ(Bσ ~lθ^ tσA) .

Hence the entropy coincides for conjugate modular automorphisms. Since for
hyperfinite 11̂  -factors the entropy of a modular automorphism may assume any
value ^0, this illustrates the discontinuity of θ-*hφ(θ\ since they are all
approximately conjugate [17].
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VIII. Estimate of HΦ(N19 ..., Nk)

Combining Theorem VII.2 with Theorem VIL4 the difficulty in computing the
entropy hφ(θ) of an automorphism of a nuclear C* algebra is reduced to the
estimation oΐHφ(Nί9 . . ., Nk\ where the ΛΓ/s are finite dimensional subalgebras of a
hyperfinite von Neumann algebra M. A useful and straightforward upper bound is
obtained by Proposition IΠ.όa) and c):

Lemma VIII.l. // Nl9 ...,Nk are subalgebras of a finite dimensional subalgebra
NCM, then: Hφ(Nl9...,N^S(φ{N).

Proof. Hφ(N^ . . ., Nk] ^ Hφ(N9 ...9N) = Hφ(N) ^ S(φ]N). Π

When φ is a trace, one has the following lower bound for Hφ, which allows to
compute it in many cases:

Proposition VIII.2 [8]. Let Ai be pairwise commuting abelian subalgebras of M and
A the algebra they generate, then, if φ is a trace

This statement is no longer true, even for rc = 1, when φ is not a trace. For instance,
if M = M2(C), φ is a pure state and A is an abelian subalgebra of M such that φ\A is
not pure, one has:

[One has Hφ(A) = 0 because
It is however tempting in the setup of Proposition VIII.2 (with φ non-tracial) to

construct an abelian model (cf. Definition III.2) where Bj = Ap B is the abelian
algebra generated by the A/s and μ is the restriction of φ to B. What is missing still
is the completely positive map P from M to B. The inclusion γ : B-+M is completely
positive, but we need also a completely positive map from M to B. Given two
von Neumann algebras M1? M2, with faithful normal states φl9 φ2 every unital
completely positive map γ : M1 ->M2 such that φ2°y

 = Φι has a canonical adjoint
<yt:M2-^M1, uniquely determined by the equality:

(φ^xφi12) o y = φ\/2yϊ(x)φl12 Vx e M2 .

Here we have used the following notation, given a von Neumann algebra M, a
faithful normal state φ and an xeM, we let ψx = φi/2xφll2eM^ be the linear
functional on M such that:

ψj(y) = Φ(y°φ- i/2 W) = Φ(*σ - i/2(y)) Vy e M ,
where σf, ίeR is the modular automorphism group of φ. By [18] the map
x-*φί/2xφ1/2 is a completely positive bijection of M with the linear span of the face
of φ in M^. Thus:

Proposition VIII.3. a) Let y : Ml — »M2 be completely positive unital with φ2 ° y = φ l 5

then its adjoint y t:M2^ M1 is completely positive unital with φ{ °y^ = φ2-
b) One has (y°yry = y'^°y\ y^ = y.
c) // y is the inclusion of a von Neumann subalgebra M1CM2 and σf2(Mx)

= M1 VίelR, then y1" is the canonical conditional expectation of M2 on Mj.

Proof. Cf. [18]. D
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Coming back to the above discussion we can now consider the completely
positive map P = y f from M to J3, where γ is the inclusion y:B-+M. Then B, μ=φ\B,
Bp P = y^ is an abelian model. For each j, £/ = iJ, where z,- is the inclusion Bj-*B.
Thus Ej°P = (i] oγ*) = (γo ij)^ = y t and Ej°P° y7 = y] ° y/. Thus we get :

Proposition VIII.4. Let Ab i=l, ...,n, be pairwise commuting abelian subalgebras
of M and A the algebra they generate. Then

Hφ(Aι, . . ., An) ̂  S(φ{A) - Σ sφ]Aj(y] o 7j) ,

where y^A^M is the inclusion.

Let us now compute sμ(y^ ° y)? where γ is the inclusion of the finite-dimensional
abelian algebra A in M and μ = φ\A. Let eί9...,ek be the minimal projections of A.

Lemma VΠI.5. Let μij = (φίl2eiφ
ll2)(ej), μj = φ(e ). Then

i » j J

Proo/ One has by VΠI.Sa) μ^y^y — μ. Thus sμ(y ^ °y)=Σ S(ψj)μp where ψj is the
composition of the pure state μ(ej-}lμj with y^ °γ. Furthermore,

μjψj^) = μ(e/(eί)) = (μ^y^e^2) (ej) =(φ^eiφ^2) (βj) = μtj .

Thus:

s(vj)=ΣίW^) and ^(y toy)=Σ^u)-Σ^). π

Corollary VIΠ.6. a) L^ί N CM be a finite dimensional subalgebra which is invariant
under the modular automorphism group σf, ίeR, then Hφ(N) = S(φ\N).

b) Let N CM be a finite dimensional subalgebra, let Mφ be the centralizer, i.e. the
set of elements of M which are invariant under σf, assume that NnMφ contains an
maximal abelian subalgebra of N, then

Proof. It is enough to prove b) since, if σf(N) = N Vί eR, the centralizer of φ\N is
Mφr\N. Let then AcMφπN be maximal abelian in N. One has AcNψ, where
ψ = φ\N, and hence S(φ\N) = S(φ\A). Thus μij = δίjμj and by Lemma VIII.5 one has
sφ(yf ° y) = 0, where y : A C M is the inclusion. The conclusion follows from VIII.4.

Remark VIII.7. Given a finite dimensional subalgebra N of M, the difference
δφ(N) = S(φ\N) — Hφ(N) is a positive convex function of φ. In particular,
{0, <5φ(JV) = 0} is a convex set which contains all states for which the hypothesis of
VΠI.όb) holds.

Corollary VIII.8. Let Nί9..., Nk be finite dimensional subalgebras of M and assume
that they contain abelian subalgebras Aj C NjπMφ pairwise commuting and such that
A = \/Aj is maximal abelian in the algebra N generated by the Nfs. Then:

Proof. One has S(φ\N) = S(φ\A\ since A C Mφ, thus Proposition VIII.4 applies, with
sφ(γ] o jj) = 0 since Aj C Mφ. Π
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In realistic situations however Mφ is often trivial and it becomes crucial to
estimate sφ(y t ° y). By Lemma VIII. 5 it is a measurement of the lack of commutativ-
ity between A and φ.

We shall now estimate Hφ(Nί9 ...,Nfc) in the following situation, the JV/s are
pairwise commuting matrix algebras NjCM with the same dimension d9 and each
Nj contains a matrix subalgebra MjCNj9 dimMj = d' satisfying the following
condition of commutation with φ:

one has \\σt/2(σφjί/2(x))-x\\ ^ε\\x\\ , where φj = φlNj.

Proposition VIII.9. Under the above hypothesis, one has

HΦ(N19 ...,Nk)^ S(φlA) - 6Mέ + log(dε ~ *)) - 2k log(d/d') ,

where A = \J Aj is the algebra generated by maximal abelian subalgebra Aj of the
centralizer of φj in Nj.

Proof. First Hφ(Nl9...9N^Hφ(Ml9...9Mk) and we just have to prove the
inequality for the latter. We construct an abelian model as follows, B = A, Bj = AJ9

μ = φ^B and the completely positive map P is the adjoint of the inclusion yB : B-+M.
Now for each j the expectation Ej : B-+Bj is the adjoint of the inclusion Bj c B, so
that Ej°P = (yBj)\ where yB.:Bj-*M is the inclusion. Let yM.\Mj-^M be the
inclusion, we need to evaluate the entropy defect of (yBj^ JM^^P an<l then use:

Let γ'Bj9 y'M. be the inclusions in NJ9 so that:

We claim first that \\(yNj)* ° 7^- ° TM,- ~ /M,!! ̂ ε This follows from

Lemma VIII.10. Let NcM be a von Neumann subalgebra and ψ = φ\N, y.N-*M
the inclusion. Let xeN be in the domain of σf/2 with σ^i/2(x) in the domain of σf/2,
then:

\ \ y ϊ ° y ( x ) - x \ \ ^ \ \ σ t l 2 ( σ < L i / 2 ( x ) ) - x \ \ .

Proof. For any yeN one has: ψll2yψ1/2(y^y(x)) = (φί/2yφ1/2)(x) and

(ψ^y^2) (x) = y(yσ«L i/2(x)) = φ(yσ<L l/2(x» = (φ^yφ1'2) (σf/2σ>L l/2(x)) .

Thus for y^O one gets:

Thus by Lemma IV.2 one has:

It remains to estimate sμ(y'^ ° y^^ where now everything takes place inside Nj.
This follows from:

LemmaVIΠ.ll. Let PcN be matrix algebras, φ a state on N9 yP:P-*N the
inclusion, A an abelian maximal subalgebra of N in the centralizer of φ. Then

", where d" = dimN/dimP.
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Proof. Let μ = φ\A, tt = y\°yp- One has:

Since AcNφ, y\ is the conditional expectation of AT onto A. Thus

sμ(α) = S(φ) - S(φ o γp) + j S(ωx

where ωx is a pure state on N for each x e Sp(/l). Since for matrix algebras P C N
implies N = P®P\ subadditivity [7] tells us \S(φ)-S(φ\P)\^S(φ}P>)<^\ogd" and
S^ip^Sicuj-jp^logd", because ωx is pure for N in the optimal
decomposition. Π

IX. Entropy of Space Translations for the Gibbs State of a One-Dimensional
Quantum System with Finite Range Interaction

We shall adopt the notations of [19]. Thus we represent the lattice points by Z and
for each lattice point j we have a matrix algebra (Aj) = Mq(C), where q is finite

independent of 7. To each subset /CZ we associate the C* algebra A(I)= (x) A(j).
jel

We let τs(ri), n e Z, be the automorphism oΐA(Z) given by the lattice translation by
n. As in [19, 2.12] we let Φe/4([0,r]) be the contribution of one lattice site to the
interaction, and r the range of the interaction. The Gibbs state φφ for the infinite
system is invariant under the generator θ = τs(ί) of space translations, and our aim
is to evaluate the entropy hφ(θ).

Theorem IX.l. Assume to every Γ = [0, n\ and ε > 0 there exists anI=\_ — N,
such that, with ψ the restriction of φ to A(ΐ)

and lim N/n = 0. Then hφ(θ) is equal to the mean entropy
«->• oo

hφ(θ) = S(φ)= lim
I/I-* oo μ|

The mean entropy is introduced in [4], where it is shown to converge and, in
fact, to be an infimum. Examples where the above condition is satisfied will be
discussed in the Appendix.

The inequality hφ(θ) ̂  S(φ) is obvious, since by Corollary V.4 one has hφ(θ)

= lim hφ θ(A[0,h]) and the algebra generated by the θsA([Q,ri]), s = 0, 1, ...,fc, is
w~* oo

equal to A([Q,n + k]) so that by VIII. 1:

j[ Hφ(A(lO, n]), . . ., Λ4([0, n]), ̂  J S(0M([0,n+w) .

When fc->oo, the right-hand side of the inequality converges to S(φ). To prove the
other inequality we just have to find, given ε>0, intervals /, J such that hφ^θ(A(I))

^ — S(φ\A(J)) — ε. In order to exploit Proposition VIII.9, we choose / of the form:

[-N,n + N] for rceN, NeN. We let /; = [0,n].
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Lemma IX.2. Let /, /' as above, ψ be the restriction of φ to A(I) and ε > 0 such that:

Let C0CA(I) be an abelian maximal subalgebra of the centralizer of ψ, let m^n
+ 2N and Ck = θkmC0; C the abelian C* algebra generated by the Ck, /c^O, and φc

the restriction of φ to C. Then

Proof. For any /c, let Nk = θmk(A(I)) and Mk = θmk(A(Γ)). Then Nk, Mk satisfy the
hypothesis of Proposition VIII.9. Moreover log(dimNk) = (n-\-2N)\ogq while

,̂ thus with obvious notations:

o,...,k])-6kε£ + logε-ί+(n + 2N)\ogq)-4kN\ogq.

N o w ι l 1 / 1
— hφfθm(A(I)) = lim —j-Hφ(N0,...,Nk)έi — ( lim -S(φ|C[0j>>>)fc]'
?77 /c~^oo fflK/ m \k~~*ιx> *^

,
- 6s - -- logg .

\ m J m

We now have to evaluate the entropy hφc(θm) of the one-sided shift on the
abelian C* algebra C. Note that the entropy of the restriction of φ to C0 is equal to
S(Φ\A(i)\ since C0 is an abelian maximal subalgebra of the centralizer of φ.

Lemma IX.3. Let l>η>0 be such that, with m^.n + 2N as above,

for any Ql eA(Γ\ Q2^A( (J (I + mk)\. Then with the above notations one has:
ι

Proof. Let X be the spectrum of the abelian C* algebra C[1>00[5 i.e. the algebra
generated by the θmk(CQ) = Ck for fc^l. Then the disintegration of φc on
C = C0 x C is of the form φc — j (ωx x εx)dμ(x), where each ωx is a state on C0 which
by the above inequality IX.3 is such that \\ ωx — φ\Co \\ ̂  ηVx e X. The entropy of the
shift is [1]

and by Lemma IV. 1 one has:

S(φlCo)- I S(ωx)dμ(x]
X

where d = dimC0 = qn + 2N. Thus:
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Let us now show that the hypothesis of Lemma IX.3 is fulfilled for a given η > 0
as soon as m — (n + 2N) is sufficiently large.

Lemma IX.4. Given η>Q, there exists p e N such that

for any β^^Q-oo, -p}\ 22e^([p, +oo[).

Proof, φ satisfies the Gibbs condition, which tells us, that the interaction W
between the right and the left can be removed by the factor

Γ1 1
G-Texp lσ*yWdγ\,

LO J

such that Q-*φ(GQ) is a product state for A(] — oo, 0[) x ^4([0, + oo[). As shown in
[19] G is a bounded essentially local operator. From the uniform clustering
property of φ [19, (8.41)] it follows:

\φ(Q)-φ(GQ)\£η\\Q\\ Vβ

For β^Q-oo, -p]), Q2eA([p, +ooD one has with

thus:

Appendix

It remains to discuss in which physical situations the conditions of Theorem IX. 1
are satisfied.

We have to estimate

^-1/26 is a bounded operator belonging to A(I). If we are dealing with a one-
dimensional lattice system with finite range interaction, it is shown in [19, 4.28],
that all local operators are analytic with respect to time automorphism, therefore,
the above norm is bounded, If we are considering a more than one-dimensional
lattice system with short range interaction, a corresponding statement is only
available for temperature above a critical one [20].

Lemma A.L Assume that A= (x) Aj and the time evolution is given by a

Φ e A([Q, r]). Let HI = Σ Φ(J) an^ HI ̂ e ̂ e operator that implements the modular
Jel

automorphism of ψ = φ\A(iγ Then

W = exp[ff J/2] exp [ - Hj] exp [£ΓJ/2] ,

and W is a bounded operator concentrated on the boundary of /, i.e. W=W± + W2,
and \\W2\\<ε(N).
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Proof. This follows from combing the estimates in [19, 20], If we can use the
Campbell-Baker-Hausdorff formula, i.e. if the temperature is high enough so that
the series converges, we can obtain

#, = //,+ 7,

with V located on the boundary such that

p/2 Ί
exp[#//2] exp[- #I/2] = Γexp J τyVdy

L o J

gives the following desired bound:

Lemma A.2. Under the assumptions of (A.I) there exists a critical temperature
β~ 1 < oo such that for β < βc, with φ a ί/β KMS state, there exists Vε > 0, an N, such
that with\ = A - + 9

For quasifree states it is easier to control Hj such that we obtain the estimate
for all temperatures:

Lemma A3. Let φ be a quasifree interaction. Then j8c=oo.

Proof. Let ax be a fermionic destruction operator at a lattice point xe Z, {ax, a*}
= δ X t X , and α(/) = £ axfx, f e /2(Z). The time evolution is governed by h e B(l\Z)\

We have for the KMS state ω (with temper ature^l)

1
ω(α(/)*β(g)H { f

Denote by θl (respectively 0/c = 1 — 07) e £(P(Z)) the projection operators onto
/CZ (respectively its complement Γ). The modular automorphism τl of ω]yll is
generated by hj

τta(f] — a(eihltf], / e P(7), (A.4)

which is determined by

with hj = θjhjθj, hjc = θlchlcθlc. Thus

1

and similarly for Γ. Together these relations say

e"'+hl' = eh- θ^θjc - θ,ce"θI - θ^θ^θ^ί + e*)θ/e] ~
!

- θ^θjlθ^l + e^θj-] ~1 θ^θjc. (A.5)
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We want to estimate ||σf/2(σ%2(β))-β|| <ε||Q|| VQe4Γ. We are looking for an
operator that implements σf/2σ^i/2Q for QeA, thus an operator that satisfies

where ew = (l-θr)e-υ(i-θr) + θr and therefore e

wf = e~w*f = f for all / with
supp/e/'.

We write evew = evι = eιseρ in its polar decomposition, i.e. 5 = s*, ρ = ρ*. Then 17
can be written in the form

Thus

We observe

eχp(*Σα*5

0-l|| + | |exp(iXa*5a)-l | |^g | l e l l l -l+^ l | s | | l -l.

If \\eQ — 1 | |ι<ε< ε0, this implies ||Q||1<2ε if ε0 is sufficiently small, and equiva-
lently if || β || 1 < ε < β0, then || ββ - 1 1| 1 < 2ε. Further

thus we only have to estimate
With eyι = 1 + D, we have

(-DT

So what remains to show is that ||D|| 1? and therefore ||D|| go to zero i f / and /' are
sufficiently separated. For this purpose we have first to construct

to use VIII. 10.
To extract its square root we employ the integral representation

/—— /- °° α2 1

and hence

Ί2 , 1
exp( - Λ/s) expίiίftj + ΛJβ)) -1 = J dα exp( - Λ/2)

with

_ b = θjehθlc + θjehθlc[θlc(\ + eh}θlc~] ~ 1θ/^
hθ/

This gives the bound
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Observing eh + b = Qxp(hf + hlc) > 0 and h bounded from below, we note

α2

Furthermore b is of the form b = clθIC + c2θlce
hθI with cl and c2 bounded

operators. What remains is an estimate of

1
and

For these trace norms we use the inequality

I|M||^

1
..2 i „/!

where the e, are any orthonormal basis. We shall use as basis the vectors |x> which
are 1 at the site x and zero otherwise. If h is in Fourier space multiplication with
ε(p) e C2([0,2π)), then in this basis we have the matrix elements

1 2π

x) = j dp
o (

1
J dpeίp( χ-y)

Γ β
IV+

for x^y and ^2π/(l + α2) for x = y. Altogether this shows

/ Φ)
2 for xφy

1-χ-yl

with J dαc(α) = c<oo. Now i f/ c ={-
o

for x = j;

^ — N} and Γ = (0 ̂  x ̂  «}, then

00

J doc
0

1
τc n

2 h ' *£α +e

00

< I da
1 0

n
<r f

n / -N

Σ Σ/_j I /— i
*=ι \y=-«>

1

l/2

3/2 =

With our assumption on h we also have <x| eh |y> ̂  c/(\x ~ y|2), and a similar bound
can be worked out for the other term in b.

Combining these estimates, (A.3) follows. Π
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