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Abstract. We illustrate the mechanism producing the dipole phase in a two
dimensional Coulomb system by a detailed analysis of a hierarchical model.
We prove the analyticity of the pressure and of the correlations for
oc2 = βe2 > 8π (i.e. right above the usually conjectured value for the Kosterlitz-
Thouless phase transition). We find also a power law decay for the correlations
with exponent α2/2π as the hierarchical distance goes to infinity.

1. Introduction

The renormalization group theory of the ultraviolet stability for scalar fields [1-3]
hinted that the same techniques could be employed in the analysis of the two
dimensional Coulomb gas of identical charges ± e even, and particularly, in the
regime of the Kosterlitz-Thouless phase. The latter was rigorously established [4]
for low temperatures, i.e. for βe2 = α2 ^> 8π, β being the inverse temperature and the
Coulomb potential being normalized as

F(x-y)~—logix-yΓ1 as \x-y\-+co (1.1)
2π

and regularized at short distance.
This paper is a continuation of the program started in [3] and continued in

[5-7] to study the problem of the molecules formation in the two dimensional
Coulomb gas and the related structure of the transition from the plasma phase to
the dipole phase (Kosterlitz-Thouless transition).
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The arguments leading to the Kosterlitz-Thouless phase transition establish
that the transition point is α2 = 8π, in the zero density limit. The new phase appears
to have various properties, among which

1) power law decay of the correlations,
2) the free energy and all the other thermodynamical quantities are analytic in

the density at ρ = 0.
In [4] it was shown that the correlations decay as a power law for α2 > 8π. Here

we show, in a hierarchical model, that this holds for α2 > 8π and at the same time we
show the analyticity of the pressure at zero density.

In [1-3, 5-7] it has been abundantly shown that the understanding of the
hierarchical model is a preliminary step to the solution of many field theory or
statistical mechanics problems: the "missing details" to understand the real
physical problem are usually rather lengthy but trivial and not too interesting. In
this case we are not perhaps in the same situation, but we hope that our techniques
yield at least a key to the understanding of the ordinary two dimensional Coulomb
gas with ultraviolet regularization, even if it turns out to have different analyticity
properties in the activity.

From a technical viewpoint this paper relies on the new proof in [8] of the
convergence of the Mayer expansion for the Yukawa gas.

2. The Model

We suppose the reader familiar with the sine-Gordon representation of the two
dimensional Coulomb gas used in [5] : see [10, Sects. 1 1 and 15] for a review of the
formalism.

Let yl be a finite box enclosing the system: then we consider the grand
canonical partition function Z for a neutral system of charges σe, σ= ± 1, with

activity - and temperature β'1 such that βe2 = a2, interacting with a potential

V — Γ —Γy — ^ x ^

C -x~

where g>ί and gκ is an infrared regularization, while C(0) = l and C(p)-»0, as
p->oo, fast enough to act as an ultraviolet regularization (necessary because
otherwise the Coulomb system would be unstable for α2 ̂  4π).

The Coulomb gas partition function Z can then be written as

. α2

Σ ~Q2Re 2 °° ί :e ι σ α φ*< R ):<
σ=±1L Λg~R

(2.2)
where φ{

ξ

<R) is a gaussian random field with covariance

^-d2p. (2.3)
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For a derivation of the (2.2), (2.3) see [5] (or [10, Sect. 15, (15.19)] with N = -1, i.e.

no ψ-fϊeld). l-q~2R

One gets a possible model by choosing, see [5,10], C(p)= —~—— so that
P +1

-R\ R-i ( i 1 \ R~1 -
— V I \= y C(a~Jn}a~2j (24\

Λ ^ \ 2 I 2 j 2 I 2(J+1) / ^ ^Λt7 V)Ό V^ " V

This is a useful decomposition because it shows that φ(<R) in (2.2) can be realized as

where φ^ are independent gaussian fields "living on scale g J": φ^ has the same
distribution as φ(^x. Moreover, by direct calculation

C0 0=—-logg. (2.6)

The hierarchical model replaces (2.5) by a sum of the same type but with new
fields φW which are defined to be

φ(j} = zΔ if xεA, (2.7)

where A is a square of side size g ~j extracted from a pavement Qj oϊR2 with squares
of size g~J, g is an integer and Qj+ ί is obtained from Qj dividing each tessera A e Qj
in g2 tesserae.

The ZA are gaussian random variables independently distributed and with
covariance

Λ(z%=— logβf. (2.8)
2π

The hierarchical Coulomb gas is by definition given by (2.2) with φ(<R} given by
(2.5) and φ(j} given by (2.7). This amounts to replacing the potential Vxy between the
charges into the function given by (2.1) with Cxy given by

CW=^r~l°g# Σ l = -z—lQgdh(g~Rx,g~Ry), (2.9)
2π A: 2π

Δ=>g Rx,g Ry

where d\u, υ) is the "hierarchical" distance between u and v, i.e. dh(u, v) = g~h(u'v^
with h(u, v) being the largest integer h such that there is a A e Qh containing both u
and v. One can also define in a natural way a "hierarchical" distance d(x, y)
between two points x, y belonging to the original physical space, by the formula

d(x.>y) = g . (2.10)

Then one can write the "hierarchical" Coulomb potential in the following form

y). (2.11)
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The potential (2.1 1) differs from (2.1) because it is not translation invariant in a
rather substantial way. Nevertheless one expects that it produces a model rather
similar in many respects to the true Coulomb gas: in particular one expects for this
model the kind of phase transitions of molecule formations which lead from a
plasma phase at small α2 to a dipole phase at α2 ^> 8π.

The correlation functions can be easily expressed as functional integrals. For
instance the n-charges truncated correlation functions are

xexplY Σ y2"^* ί :eW*>:dx} (2.12)
L \ σ = ± l ^ Λg-κ J

The (2.2), (2.12) show that the Coulomb gas problem can be interpreted as an
ultraviolet stability problem with an ultraviolet cutoff at scale g~R if gR is the
infrared cutoff in the original problem. Since the model is rather simple it can be
studied rather well with the methods of field theory.

3. Recursion Relation for the Coefficients of the Mayer Expansion

The integral over φ(<K) can be performed by using the renormalization group
technique of integrating successively out the high frequency components of φ(<R\
ίe.φ(<R-l\φ(<R-2\φ(<R-*\...

It is well known that this is a very efficient algorithm [11].
Calling V( < R} the function of φ( < R} in the exponential in (2.2), we define V(=fc) for

fc = 0,1, ...,£ — 1 recursively as

(3.1)

where the function ev(~k) is a function of

k

φ(^V— ^ φ(j}. (3.2)

The function F(-fe) is easily expanded in terms of a formal series:

00 1
-1 .ΛiT1 /•-rτt<'L MΛ\ -r -rί <Z Is 4- 1 K / O 1 \

t
where S'k+ί denotes the integration with respect to the field φ(k+i} and

(3.4)
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Fig.l

From (3.3) it is easy to deduce an expression for V(-k} by just iterating it, see [5,
(6.10)]. As the reader can check immediately, the iteration of (3.3) leads to an
expression of V(-k) in terms of trees:

7 n(y) '

where y is a tree with n endpoints 1,2, ...,n and some (possibly none) non-trivial
vertices v, w and one "root" r.

Moreover
1) each vertex v carries a "frequency index" hv= — 1,0, 1,2, ..., so that hr = k

and hv grows by one unit at a time as one climbs the tree from r upwards until it
reaches the value R — 1 at the last inner vertices.

2) each vertex v, except the root r, with frequency index hv and out of which
emerge sv branches, represents a truncated expectation $£v of order sv: if the vertex
v is trivial, i.e. no true bifurcation takes place at v9 then it symbolically represents an
ordinary expectation.

3) the factor n(y) is φ) = Hsυl (3.6)
V

4) the endpoints represent the function

V 4 f l(
2~£)R ί :eίσ«φ(*<R):dx. (3.7)

σέϊι29

Therefore V(y) has a rather complicated expression. However, since

it follows easily (see [5], or [10, Sects. 11 and 15] for details) that V(y) must have
the form of an integral of a kernel V(y, σ , x ) depending on y, on σ = (σl9...,σn),
σt= ±1, and on x — (xl5 ...,xn)eR2n, n^|y| being the number of endpoints of y,
times :expiα^(-fe)(x,σ):, where

^(-k)(x,σ)=Σ^*)σ ί, (3.9)
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x e V(γ)=Σ ί dx1...dxmΫ(γ,σ,x):ex.pίaφl*>l\¥,σ) .. (3.10)

To discuss the structure of V(γ, σ, x) it will be convenient to think (7, σ, x) as a
tree y with labels x1? OΊ attached to the first endpoint, x2, σ2 to the second, etc.

In this way it will be natural to think that each non-trivial vertex v of γ
represents a cluster x(u) of charges σ(v): such cluster consists of the point charges
(xf, σf) which label the endpoints z e v, i.e. the endpoints of y which can be reached
by climbing the tree from υ upwards. The charge of the cluster associated with v e γ
is defined as

Q, = Σσt. (3.11)
i eυ

With the above notations and using the properties of gaussian integrals and the
elementary relations

where « „
t/ ( < f e )feσ)^Σ Σ^ C^, (3.12)

one realizes by induction (see [5, (6.5)] or [10, Sect. 11, (11.4)-(11.7) and Sect. 15],
for more details) that, if y has at least one non-trivial vertex and if υ is the first non-
trivial vertex of 7, with frequency label fc, followed by s vertices vl, v2, ...,vs (either
non-trivial or endpoints), then

Trf \ I T-fV(γ,σ,x) = [ Π

where y 1?..., ys are the s subtrees growing out of the vertex v thought of as a new
root and σf ΞΞ σO^ ), XJΞΞX^).

If y has no non-trivial vertex, it is:

o / α 2 \

V(y,σ,χ )=-i2~^>R. (3.14)

Clearly (3.13), (3.14) allow us to find an explicit formula for V (see [5] or [10,
(11.5H11.7) and (15.9H15.22)]); if hr= -1:

r// x r-rV(γ,σ,x)= Π
v non-trivial

f)*Ί"J
- v x t , , g y - ^ , g u

- Π \e 2 F(υ)
v non-trivial

P.I5)
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where the last product is over the endpoints i of 7, v' is either the non-trivial vertex
immediately preceding v or the root when such a vertex does not exist, ht is the
frequency of the non-trivial vertex to which the z'-th endpoint is attached, F(v) is a
shorthand symbol for the truncated expectation in (3.13) and we used the
definitions: U( < 0) = 0 = C( < 0) = φ( < 0).

The key problem remaining before us is to find what to do with the truncated
expectations in F(v): we have two convenient representations of F(v). Namely
(see [10, Eq. (C23)]):

1F(V)= Σ Π \β v(^',σv',xv",σv")_^_

λeτ

x logΓ Σ (TKAexp-α2 Σ C(h«\x0i9σ0iιx0j9σ0)]9 (3.16)
[_/£{!,.. .,sv}\iel J ί<j;i,jel J

where λ denotes a pair v',v"e{vί9 ...,vSv} of vertices among the sv that follow
immediately u, &c

υ denotes the family of all connected Mayer graphs with vertices
{v υ } and, if x = (x , . . . ,x), σ = (σ ,σ ) x==(x , x )

Σ Σ σ^C?^. (3.17)
ί=l j = p + l

This is the mutual electrostatic energy of the clusters (x, σ) and (x', σ"): notice that

Σ C^\xVi9σVt;xVj9σVj)=U^((} xVi, U σ0\ - Σ U™(x0i,σv)9 (3.18)
i<j,i,jel \ίel iel J iel

where ί/(Λ)(x, σ) is the electrostatic energy of the charges (x, σ) with the potential
C(h\ see (3.12).

So far we did not use the structure of the hierarchical model, i.e. the special form
ofC ( h ):

(Λ) _ J 0 , if x, y are not in the same Δ e Qh
xy \\OZQ ( }

υ otherwise.
I 2π

In this case the following simplifications occur :
1) F(v) — 0 unless all points in the cluster x(u) are inside the same box A of size

g-\
2) F(v) = 0 unless all the charges of the largest subclusters vl9...,vSυmυ, i.e. the

subclusters associated with the vertices immediately following y, are non-zero:

3) m<

4) C(hv\xυiί

Furthermore we shall use:

Σ C ^ ^ - Σ h ^ - ί Σ nv(hv-hv,) + nhr}, (3.20)
endpoints i ^7C i £71 \vn.i. J

Σ (v-!) = «„-1, (3.21)
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where nv is the number of endpoints that can be reached by climbing y from v, i.e. is
the number of charges in the cluster x(v); here n.t. means "non trivial."

Collecting the above four properties, (3.20), (3.15), and calling u0 the first non-
trivial vertex of 7 we find

Σ* ί γ
σ,γ,hr=-ί Λg-R 11 V

v

,., ,,,,, - ,„ ,

Πg 4π 4π M 0 , (3 22)
υn.t.

where Σ* means that the sum is restricted to the charge configurations σ such that
QϋΦO if v >υ0. Equation (3.22) is the Mayer series for our Coulomb system.

The property 1) oίF(v) strongly restricts the variability of x1? . . ., xn forcing x(υ)
to be made of particles all in the same box of size g~hv: this allows us to calculate
the integrals.

Let F*(v) be the value ofF(v) when x(v) are all inside the same box A of size g ~hv

[see (3.16) and the property 4)]:

=Σ Π (g~aι"-ί. (3.23)
r λ = (Όi,Vj)\

Then, using the mentioned property 1), one finds

l imy^i ί dXl...dXnUF(v) = g-2RUF*(v)g-2(s"-1)H\ (3.24)
Λ^oo \Λ\ Λg~R v t n.t.

where the convergence in (3.24) is dominated in the sense that the right-hand side is
always larger or equal to the left-hand side.

The (3.24) gives with (3.22) the following bound on the n-th order coefficient
α2

μn , n> 1, of the Mayer expansion: if α= - -- 2,
4π

x Σ* n^^Q^"V>+^MA"'%'2("""1)(ft""V)^7^1(3.25)

having used the equality immediately following from (3.21) (recall our convention

V V

To estimate F*(ύ) we use the second of (3.16) and properties 3), 4):

(log Σ

where we used the shorthand QΌI = Σ QVi.
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^Q2

Therefore, by changing Cj-»ζ$4π ' =Cί, we find

and we choose integration contours with \ζ^\ = s/sv to get

ε
- +1
s

T- Σ

where β and Dί are suitable constants. This will be considered together with (3.24)
and

nR= Σ nv(hv-hv>) + Σ (R-hά-n, (3.30)
v>r,vn.t, endpointsί

where υ' is again the non-trivial vertex preceding immediately v in y, (v' = r and
hv> = — 1 if no such vertex exists) and h{ is the frequency label of the first non-trivial
vertex of y to which the z'-th endpoint is attached.

/ α2 \
The (3.25), (3.29) yield the bound, [a=- -- 2 :

4π

α2

xsupΣ* Π [g~^Q2v(hv~hv'~1}g^nv(hv~hv'}g^ (3.31)
θ,g he υn.t.

where ,yΓ is the number of trees with n distinguished endpoints without counting
the different frequency labels and X* is the summation over the ways of putting

be
frequency labels hθ on a "tree shape" (unlabeled tree y), i.e. Σ* is the sum over all

he

the tree shapes θ of a tree 7 such that Qv φ 0 if v > v0, v0 being the first non-trivial
vertex of y, and QVQ = ®.

A simple counting argument gives

, Σ sυ^2(n-ί) (3.32)
i n.t.

so that, using (3.30)

v>VQ, t>n.t .

for a suitable constant D2 This proves that the Mayer expansion is uniformly
convergent in A with radius of convergence bounded below by 1/(D2(1 — 0Γβ)~ *).

Making use of the extra factor g 4π v° v° present when QVo Φ 0, one can also
show that the "non-neutral trees" give a vanishing contribution to μn as R-+CO.
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4. The Correlation Functions

We can use (2.12) to find an explicit expression for the truncated correlation
functions in terms of the kernels V(y9 σ, x). One can in fact think that the expression

( " α2

in the exponent of (2.12) is simply a=- 2
\ 4π

σ = ± l 2 Λg-*[_ j=ί J σ<Tj JJ

so that we see that the calculation of the integral (2.12) can be performed via (3.22)

replacing λ by λ 1+ Σ Q~ 2Rδ(x — g~Rx^)δσσjωj and retaining only the terms of

first order in ω l5 ...,ωfc. We find

x ί n + ( ™ , (4-2)
(0- RΛ)n-k Il5t; ! t n.t.

v
(«,*,g)

where Σ means that the sum is over the trees with n endpoints, between which
there are the "frozen vertices" x1 ?..., xk with charges σl9...9σk;yl9...9yn-k are the
positions of the other endpoints.

The fact that in (4.2) there are less integrations (and less g~2hv factors) than in

(2.12) is overcompensated by the factor g~2Rk, so that, up to a kl I 1 factor, one
\kj

can do the same estimate as in Sect. 3, thus proving the convergence of the Mayer
expansion for the truncated correlation functions.

In order to study the decay properties of the correlations, one needs a more
accurate bound, which takes exactly into account the missing g~ 2hv factors and the
constraints related to the positions of the frozen vertices. Given a tree y9 we define
its "skeleton" γ as the tree which is obtained from γ by eliminating all the branches
which are not needed to connect the frozen vertices to the root. Proceeding as in
Sect. 3, one can show that the contribution of γ to ρτ(x, σ) is bounded by (hυ = Riϊv
is an endpoint)

(cλ)n Σ* 0~2(*~hw°Y Π 0-β ( f c"-V )VΠ <Γ2<*-*<^-1Λ, (4.3)
{hv}vn.t. \ V>VQ I y y 9 r n . t . J

\t?n.t. or endpoint /

where sv is the number of vertices following immediately v in 7, c is a suitable
constant and X* means that there is, for any vey, the constraint

hv^hv(x) = max{h\3AeQh such that g'^eΔ, ^xtEx(v)}. (4.4)

In order to bound (4.3), we need another definition. Let γ, the "superskeleton"
of y, be the tree which is obtained by adding to the skeleton γ some lines of γ,
starting in a non-trivial vertex v e γ or in vQ and ending in an endpoint, so that, for
any veγ9 the number s of vertices following immediately it in y is equal to sυ.
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Fig. 2

Let Lv/v be a line of the superskeleton y joining the vertex ι/ and the vertex v
immediately following it (in f). Such line, thought of as a line in y, contains other
non-trivial vertices vv<v2< ... <vr.

It is easy to see that we can decompose the expression (4.3) so that to the line
Lv v is associated the factor

Γ Σ /

(hv}v^Vi I
[_ vn.t. \vn.t. \vn.t.or endpoint

_n-a(hv-h υ') ΓT Γ V / FT n~a(hv-hv>)'

«ΏLL.(. fl, β

|_ ι?n.t. \ί; n.t. or endpoint

(4.5)

SV'V is easily estimated by noticing that to each non-trivial vertex v^vb i = 1,..., r,
one can associate (in a non-unique way) a line starting in # and ending in an
endpoint and that one can collect the g~a^~h^ factors so that each line carries a
factor g-a(R-h*\ Then

(4.6)

and (4.3) can be bounded by

(cλγ Σ* g~2(R-h
π

vey,v>VQ
v n.t. or endpoint

Ί-a(hv-hΰ>)\ ( TT ^-2(R-Λ υ)(Sυ-l)'

B f n . t .

(4.7)

where z;' is the vertex immediately preceding v in y.
The bound (4.7) implies very easily that in the expansion (4.2), if λ is small

enough, the leading terms are those with the minimum number, say nθ5 of
endpoints sufficient to satisfy the neutrality constraint QVQ = 0. Of course

(4.8)

If fe = 2 and σ^ + σ2 = 0, there is only one leading tree and one can easily show,
using (4.4), that

lim (4.9)

is different from zero and finite, if the hierarchical distance rf(x1? x2) is defined as in
(2.10).
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For increasing values of fc, one could obtain similar results with increasing
work. In any case (4.7) implies immediately at least the upper bound

i(x) 4π , (4.10)

where d(x) = min {d(xb x,-), i Φj}.
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