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Abstract. It is shown that 2(®),-Gibbs states in the sense of Guerra, Rosen and
Simon are given by a specification. The construction of the specification is based
on finding a proper version of the interaction density given by the polynomial 2.
The existence of this version follows from the fact that all powers of the solution
of a Dirichlet problem for an open bounded set U with boundary data given by a
distribution are integrable on U. As a consequence the Martin boundary theory
for specifications can be applied to #(®),-random fields. It follows that any
P(D),-Gibbs state can be represented in terms of extreme Gibbs states. In
certain cases the extreme Gibbs states are characterized in terms of harmonic
functions. It follows, in particular, that for any given boundary condition
introduced so far the associated cutoff Z(®),-measure has a representation as an
integral over harmonic functions.
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1. Intreduction

The aim of this paper is to construct “specifications” (cf. [F, P1]) for Z(®),-random
fields. These are known as basic non-trivial continuous models in Euclidean
quantum field theory. Here £ is a semibounded polynomial of one variable, @ is the
“field” and the index indicates 2 dimensions (cf. below and [S, G1/J] for the precise
definition). These models, which are usually realized as probability measures on a
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space of distributions like 2’ or &', have been studied extensively (see the references
in [G1/J]). They are constructed starting from an underlying (mean zero) Gaussian
measure P, called the free field, which is associated with the differential operator
A—m?, meR?, on R? (cf. Sect. 2 below). In [G/R/S 1,2] Guerra, Rosen and Simon
study 2(@),-theory within the framework of statistical mechanics (cf. also [Fr/S])
and define a 2(®),-random field to be a Gibbs state P in the following sense:

P is a probability measure on (2'; #), # being the o-field generated by the
coordinate mappings @(g), g€, defined on 2'. P is locally absolutely continuous
with respect to P, (cf. 5.5) and it is a local Markov field (cf. 5.2) with conditional
probabilities given by

Epy(X exp(—A[: P(®@)(x):dx)|a(0U))
Ex(X|6(0U)) = v , P-as, (1.1)
Epo(exp(—/lg:g’(dﬂ(x)z dx)|a(0U))

for every bounded, o(U)-measurable function X on 2’ and every bounded open
subset U of R2. Here dU and U means topological boundary respectively closure of
U; a(V) for V = R%, V open, denotes the o-field generated by @(g), ge 2, suppg < V,
and we set for an arbitrary 4 c R?,

od)= () o(V). (1.2)

Furthermore : : means Wick ordering with respect to P, (cf. Sect.3) and 120 is a
coupling constant.

(1.1) is referred to as the “DLR-equations” for P (cf.[D,L/R]). Since (1.1)
depends on local P(-zero sets, it only makes sense for measures which are locally
absolutely continuous with respect to P,,.

The aim of this paper is to formulate DLR-equations and to define Gibbs states
independently of P,-zero sets. This is done by constructing an appropriate family
(n})y of probability kernels, called a “specification,” to replace the right-hand side of
(1.1). Before we give the definition of a specification, let us recall that a probability
kernel n(¥, A), Y eP', Ac# on (2'; #) determines an operator acting on bounded,
#-measurable functions X and an operator acting on probability measures P on
(2'; 8). We denote the images under these operators by nX respectively Pm.
Furthermore, for 4 = R? we set A° = R?\ A.

Definition. Let %, be a family of open subsets of R? and for each Ue%,, let n, be a
probability kernel on (2'; #). The family (Tv)yen, is called a (a(UC))UEq,l-speciﬁcation
if for every Ue%,,

nyX is 6(U¢)-measurable for every bounded, #-measurable function X.  (1.3)

(“Consistency”) For each V « %, with U < V, n(ZnyX)=n/(ZX) (1.4)

for every bounded #-measurable function X and every bounded o(U¢)-measurable
function Z.

If %, consists of bounded sets, then (my)ye,, is also called a family of local
characteristics (cf.[F]). (1.4) is the analogue of the Chapman/Kolmogorov-
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equations for the transition function of a Markov process. It is equivalent to saying
that for each ¥ €2’ the expectation with respect to the probability measure 7, (¥, )
conditioned by a(U°) is given by 7. Indeed, specifications for 2(®),-random fields
have the same advantages as transition functions in the theory of Markov processes.
We will describe the consequences below. We start with a summary of the
construction:

We recall that it is possible to construct new specifications from a given one using
additive functionals (cf. e.g. [P2]). The proper definition in our situation is the
following:

Definition. Given a (0(U°))ye,-specification (ny)ye,, a family (ap)ye,, of
#-measurable functionals on 2" is called an additive functional for (ny)yey, if given
Ue,:

For every Ve, with U < V there exists a ¢(U¢)-measurable function ay such
that for each Y e2',

ay=ay+ay w,(¥,)-as., (1.5)
nyle ") (YY) < oo for all Ae[0, co[ and each WPe2'. (1.6)

Given (my)yey, and (ap)yeq, as above, then the family (n{‘,)Ue,y,l of probability
kernels defined by

ny(1 467 0)(F)

TC{}( ¥, A)= W,

YeP', Ae4, (1.7)
is again a (a(U‘))Ue%-speciﬁcation (with coupling constant A).

The 2(®),-specifications will be constructed according to this scheme.

We start with a specification (ny)y associated with the differential operator
A—m?, meR. It is a special case of those already constructed in [R3] and it is called
free specification. For ¥ e€2' the measure ny(¥,-) is the translation of the free
measure P, with Dirichlet conditions on U The translation is given by a
distribution H,(¥) which is the solution of a Dirichlet problem for U given ¥ as
boundary data. In Sect.2 we recall all basic notions and results from [R3].

In Sect. 3 and 4 we construct the additive functional which is formally given by

ay(®) =“[: P(P)(x):dx”, PeP'.
v

Of course, the integrand makes no sense in general. But by approximating @ by
functions it is possible to define ay, as an L?-limit with respect to P, or Py, (cf. [S],
[G1/J]). The Wick ordering : : and the fact that we are in a two dimensional
situation, are essential to prove this convergence. In view of (1.7), however this
definition of ay up to P,- or Py-zero sets is not sufficient for our purpose. In fact, it
can be proven that the measure ny(¥, ), Ye€2', is in general not absolutely
continuous with respect to P, and is either equal or singular to P, even when
restricted to a(U) (cf. 7.2). So we have to construct a proper version of the “limit” a,,.
Since the Wick ordering : : is taken with respect to the free measure P, (i.e. we
consider the so-called “Half-Dirichlet” case, cf. Sect. 3) we need to restrict ourselves
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to the class L of all open bounded sets satisfying condition (2.5). This condition
which is essentially “log-normality” in the sense of [S,§VII 3] holds for all sets with
“reasonable” boundaries.

The key fact for the construction is the following result (cf. 2.5):

Forevery Uel the Dirichlet solution H (%) is p-integrable on U forevery p > 1
and “sufficiently many” ¥Ye2'.

Indeed, H,(¥) will play a major role throughout this paper and methods from
potential theory will be applied. In the conclusion of Sect.4 we will see that the
P(D),-specification (nf),., constructed this way can be interpreted as a pertur-
bation of the usual “half-Dirichlet boundary conditioned cut-off 2(®),-measures”
(cf. [S, Sect. VIL. 3]).

In Sect. 5 we study the Gibbs states for (n}),,, which are defined as follows: Let
Uel, 420 and P a probability measure on (2'; %) such that

Epx(X|o(U%) = n}(X) P-as. (1.8)

for every bounded, #-measurable function X. Then we set PeG,(U) and call P a
(local) U-Gibbs state. Furthermore, we call

G,=()G,U), (1.9)
Uell
the set of (global) Gibbs states for (n}),.,. We denote the extreme point of these two
convex sets by 0G,(U), 0G, respectively.

Equation (1.8) is the reformulation of the DLR-equations (1.1) that we
mentioned earlier. It follows from the special form of (n),., that every measurein G,
is locally Markovian (cf.5.7), but the following result is more subtle (cf.5.6):

Every PeG, is locally equivalent to P,.

This implies that the set of (global) Gibbs states in the sense of GRS isequal to G,
(cf. 5.4), i.e. the GRS-Gibbs states are defined by the reformulated DLR-equations
(1.8) and all a priori restrictions can be dropped.

It is well known that for every A=0 there exist global GRS-Gibbs states
(cf. [Fr/S, Theorem 7.2]) and therefore we have that G, # ¢. In Sect. 6 we give a new
proof of this fact. Instead of the Bochner/Minlos theorem for nuclear spaces we
apply (directly) a version of Kolmogorov’s existence theorem generalized to
inductive limits of standard Borel spaces (cf. [ Pa, Theorem 4.2, p. 143]). The method
is due to Preston (cf. [P2]) from whom we also learned the suitable compactness
condition (cf. 6.3). This condition is satisfied in our situation because of inequality
(6.2) due to Frohlich and Simon (cf. [Fr/S]).

In Sect. 7 we study Martin boundaries for (nf),,, . The Martin boundary theory
of random fields was developed by Dynkin [Dy1,2] and Follmer [F] for an
arbitrary specification on a standard Borel space with a non-empty set of (global)
Gibbs states. (For a complete presentation see [P1,Chap.2] and also
[BI/Pfand Ng/Z] for special cases). Using our specification we can apply this theory
to 2(®),-random fields and obtain the following results (cf. 7.4 and 7.5):

Any global GRS-Gibbs state can be represented in terms of extreme Gibbs
states. More precisely, there exists a measurable space (/;.«/) called “Martin
boundary” for (nf),., , and a bijection between G; and the probability measures on
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(.#; o) which maps 0G, bijectively to the point masses on (.#; «/). Any PeG, can be
represented as an integral over /.

“Locally” it is even possible to characterize the extreme Gibbs states. The
particular form of (nf),., implies a one to one correspondence between the measures
in 0G,(U) restricted to o(U) and # o(U), where for U = R%, U open,

H o(U)= {h:U - R:h is harmonic on U and p-integrable
on U (with respect to dx) for every p > 1}. (1.10)

As an immediate consequence we obtain (cf. 7.3, 7.7 (ii), and also (7.9)):

All boundary conditioned cutoff 2(®),-measures in the sense of [G/R/S 2] (like
e.g. “Dirichlet,” “Neumann,” “periodic,” “free” boundary conditions) on U can be
represented as an integral over (V).

“Globally” the characterization of the extreme Gibbs states is a more difficult
problem. We have a complete solution only in the case 4 =0 (cf. 7.8):

The global Martin boundary for (ny)y, is equal to the set of all harmonic
functions on R2.

In the general case A = 0 we prove the following partial result (cf. 7.10):

Let PedG,, then there exists a unique harmonic function h on R? such that

P{®eP Hp(®)=h} =1, (1.11)

where the map @ — H (@), @€/, is defined to be the locally uniform limit of
Hy(®), Uel, as U » R? (cf. Sect. 2). Furthermore, given a harmonic function h on
R?, any PeG, satisfying (1.11) can be represented in terms of elements in 9G,
satisfying (1.11).

It is not clear yet whether for some 4 > 0 the correspondence between dG ; and
harmonic functions on R? is one to one. One might hope that this is true for small A.
This would solve an open problem in 2(®),-quantum field theory, namely: which
“condition at infinity” implies that there is a unique global Gibbs state satisfying this
condition (cf. [G/R/S 1] and [Fr/S]). This problem will be the subject of further
study.

The results of this paper confirm that it is useful to consider 2(®),-fields from a
potential theoretic point of view which was already done earlier by
Alveverio/Hoegh—Krohn in [A/H-K.], Dynkin in [Dy3,4] and the author in
[R1,2,3].

Apart from Sect. 6 all results of this paper can immediately be extended to more
general symmetric, second order elliptic differential operators, essentially those for
which the associated harmonic structure is a self-adjoint harmonic space in the sense
of Maeda [M 1,2]. Also most arguments in Sect. 6 remain valid, except inequality
(6.2). In its proof Euclidean invariance of A —m? meR, has been used. This
invariance is anyway necessary to construct the physically relevant, Lorentz-
invariant Wightman field theories from 2(®),-fields. It is therefore important to
investigate invariance properties of our Z(®),-specifications and their Gibbs states.
Because of the length of this paper we do not include these considerations here. They
will be presented elsewhere.
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2. The Free Specification (),

Let us fix some basic notations.

Let 2’ be the space of distributions on R?, ie. the topological dual of
9 = CZ(R?), the space of all infinitely differentiable functions on R? with compact
support equipped with the usual inductive topology (cf.[R3,Sect.3]). Let
(019 x 2D — R be its dualization. For ge 2 we denote by @(g) the evaluation map
on 2’ given by g <{(D,g>, ®eP'".

For notational convenience we will not distinguish between @(g) and {( @, ¢ if
there is no confusion possible. The o-field 4 generated by {@(g): ge Z} is equal to the
Borel o-field associated with the topology generated by @(g), g€, on Z'. Given a
sub o-field # of # and given an & -measurable function X on 2’ we also write X €&
and Xe#, if it is in addition bounded.

Given an arbitrary measurable space (¥'; o/) we denote the set of all probability
measures on (%;«/) by P(X;«/). Given PeP(2';%4) and Xe4%,, Ilet
ExX)=PX)= jX(@) P(d®) be the expectation of X under P and for a sub o-field
F of A let Ep(-|#) denote the conditional expectation with respect to P given £.

We denote the system of all open, respectively relatively compact open subsets of
R? by %, respectively %,.

Consider the differential operator L= A — m?, meR, on R2 For Ue let Gy,
denote the (Dirichlet-) Green function of L on U extended to R? x R? by zero. There
is a family (Py)y., of Gaussian, mean zero measures on (2'; #) associated with
(Gy)yes- their covariances being defined by

[ 2(@@(f)Py(d®) = || Gylx, y) f (x)g(y)dxdy, 2.1)

Ue, f, ge 2. Here dx denotes the Lebesgue measure on R? and “Gaussian” means
that each @(g), g2, has a Gaussian distribution under P,. If U = R?, we set

G =Gy and Py = Pp2;

P, is called the free field of mass m. By simple transformation arguments we may
restrict ourselves to the case m = 1. From now on all potential theoretic notions are
meant with respect to the harmonic space given by A — 1. Given U e we define for

f, 9€2,
r9deu=[[Gux, 0 f(x)gdxdy and | fllge= LS DD

We set <,>E = <’>E,IR2 and Il ”E = ” ”E,RZ' _

The definition of the free specification is based on the solution Hy,(¥) of a
Dirichlet problem for Ue% with boundary data given by a distribution ¥ €2'. We
recall its main properties (cf. [R3, Sect. 6]).

2.1 Theorem. Let Ue%. Then there exists a linear subspace Q(U) of &’ such that

(i) QU)ea(U°).

(i) Py(R2(U))=1 for every Ve, U =V, and a linear map Hy: Q(U)— D’ such
that for each ¥ ef2(U),

(ili) Hy(W) is represented on U by a harmonic function.

(iv) Hy(¥)= ¥ on int(U").
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(v) If U is bounded, regular and ¥ is represented by a continuous function, then
¥ eQ(U) and Hy(P) is the ordinary solution of the Dirichlet problem with boundary
data V.

(vi) If WeD' is represented by a harmonic function on U, then ¥ eQ2(U) and
Hy(¥)= Y. In particular,

HU(HV( ‘P)) = HV( ‘I/);

ifVeld, UcV, Pe(V)
(vii) For every ge2 the map W { Hy(¥),g) is 6(U°)-measurable if H,(¥)=0
for Ye2"\Q(U) and

CHY(Y),9) = E; (®(9)|a(U)(F),
P,-as.in YeD' for every Ve, Uc V.

2.2 Remark. (i) Because of the properties listed in 2.1 H(¥) can be interpreted as the
balayage of the distribution ¥ on U“

(i) For a different approach to construct a solution for a Dirichlet problem for
U with boundary data given by a distribution if U is a rectangle, see [D/Mi].

(iii) Note that, in particular, Hgz2 is a map from 2(R?) onto all harmonic
functions on R2.

For Ue%,,let u¥, xeU, denote the associated harmonic measures (cf. [C/Co]).
Asin [R3] we denote for ¥ e 2(U) the harmonic function representing H(¥) on U
by x - ul(¥), and set pY(¥) =0, if xeR*\U or ¥e2'\2(V).

Given a sub o-field # of # and Fe4%, we denote by (%, F) the o-field generated
by & and F. The following has been proven in [R3, Sect.4]:

2.3 Proposition. Let Ue%,and xeU. Then the function @ +— uY(®), ®€Z', is a(a(6U),
Q(U))-measurable and

[ @)17dPo(@) = Gui(x) = [ Gpi(2)du(2),

where GuY(z) = [ G(z, y)ul(dy).

For the purposes of this paper we need a slightly modified version of the
specification constructed in [R3] in the case of A — 1. The reason is that the
boundary behaviour of uY(¥) is essential for the construction of the additive
functionals. In fact, integrability properties turn out to be sufficient. Hence we define
the linear space

Qy(U) = {@eQ(U): | |pd(®)Pdx < oo for every p = 1}. (2.2)
U

We shall prove that 2,(U) is sufficiently large. We know by 2.1 (i) and 2.3 that
2,(UV)ea(a(0U), Q(U))<a(U°). (2.3)

For Ue% define M(U) to be the set of all PeP(2’; %) such that for every p > 1
there exists a constant c, > 0 such that

([1@(g)IPdP)"? < ¢, ([ | D(g)|*dPo)/*(=llg lI£) (24)
for every ge2(U). Here for Ue we set 2(U) = {geP:suppg < U}.
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Furthermore, define L to be the set of all Ue%, such that
[ (GuZ(x))Pdx < co. 2.5)
U

for every p= 1.

2.4 Remark. (i) Let Ue% and PeP(9'; %) such that @(g), ge 2(U), has a Gaussian
distribution under P and that the function M(g) = j @D(g)dP, ge2(U), is continuous
with respect to | ||z on 2(U). Assume furthermore that there exists a function ¢ on
R* bounded in a neighbourhood of 0 such that

(f(@(g) — M(9))?dP)'"> < (1| g )

for every ge 2(U). Then standard arguments (using Laplace transforms) imply that
PeM(U). In particular, P,eM(U), for all Ve#, U < V.

(ii) Condition (2.5) is satisfied by all sets in %, with reasonable boundaries. The
following considerations show that it is always satisfied by the “log-normal” sets
introduced in [S,§VII 3], in particular by circles or rectangles. (Recall that “log-
normality” is needed in order to define half-Dirichlet states; cf. [S] and Sect. 3. Note
also that

Guy(x) =1lim (G(x,y) — Gy(x,y)), xeU;

y—x

cf. e.g. [R1, Sect. 2]): Let g: R— R™* such that
g(lx—yl)=Glx,y) x,yeR?%
where | | denotes the Euclidean norm on R2 Then
Guy/(x) = [ G(x, 2)dp(2) < g(d(x, 0U)),
where d(x, 0U) = inf |x —z|. We recall that g has only a logarithmic singularity at 0.

zedU
Now we are prepared to prove that Q,(U) is “sufficiently large,” if U L. This will

be the key fact for the construction of our polynomial additive functionals in Sects. 3,
4:
2.5 Theorem. Let Uel and PeM(U) such that P(Q2(U)) = 1. Then P(2,(U))=1.

Proof. Let p 2 1. Since x> uY(®) is continuous on U for every @ €2(U) we can use
Fubini’s theorem to obtain that

JJ I(@)rdx dP(®) = | [ |14(®)PAP(@)dx.

Since uY(®) is by construction a limit of coordinate functions @(g,), g,€2(U), (2.4)
and 2.3 imply that

J1ud(@)[PdP(@) < c(Guy(x))"?,  xeU,
for some constant ¢ independent of x. The fact that Uel now implies that
[§11%(@)PdxdP(®) < oo,
U

hence P(2,(U))=1. O
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2.6 Remark. Let Uel and PeM(U). Assume that there exists a constant ¢ > 0 such
that for every fe2

(J@(f)?dP)"* < ([ @(f)*dPo)"".

Then P(£2(U)) = 1. This is a consequence of Minlos’ theorem and the construction of
2(U). Therefore, P(2,(U)) =1 by 2.5.
Let us define for Ue%,,

Ho(U)={@eP": @ is represented on U by a harmonic
function which is p-integrable on U
for every p = 1}. (2.6)

For WeZ'let Ty: @' — 2’ be defined by Ty(@) = @ + ¥, @ eP'; and let Ty(P)
denote the image measure of PeP(2'; #) under Ty. Now 2.1, (2.3), 2.4 i) and 2.5
imply:

2.7 Corollary. Let Uel.
(i) If ¥ eH(U), then T {2,(U)) = 2,(U).
(i) Theorem 2.1 (modified in the obvious way) remains true if 2(U) and % is
replaced by Q2,(U), L respectively.
Now we are prepared to give the definition of the free specification (n),,, and
summarize its main properties.
We change the definition of Hy outside £2,(U) for Uel by setting
Hy(¥)=0, if ¥Ye2'\Q,U).
For Uel define the probability kernel =, on (2'; #) by
1(¥,) = TyyufPv), PeP'. 2.7)

Clearly, for each ¥ €2’ the measure ny(¥,) is Gaussian with Fourier transform

ny(exp i@(g))(¥) = exp(iKH(¥), 9> —3llglz0), 9e2.
ny( ¥, ) is not an element of M(U) in general, but because of 2.7 we have that
(¥, 2¢(U)) = 1.

We should mention that the definition of n; differs from that given in [R3], since
£2,(U) is replacing 2(U). But 2.7 implies that 7.4 in [R3] remains true:

2.8 Theorem. (ny),,, defined by (2.7) is a (a(U°)),-specification such that T,(P,) is a
Gibbs state for (ny)y. for every harmonic function h on R2. It is Markovian in the
Sfollowing sense:

If Uell and Zea(U),, then n(Z)ea(o(dU), 2(U)),. (2.8)
Furthermore, it is “local” in the following sense:
ny(ny(Z)X) = nZ)ny(X) for all Z, X e%B,. 2.9)

Because of 2.8 we call (n),,, the free specification.
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3. A Perturbation Formula

At the beginning of this section we want to recall briefly the definition and basic
properties of Wick monomials of generalized random fields (cf. e.g. [S,§V.1] and
[Gl/], Chap. 8]).

Throughout this section let ne N be fixed. The n* Hermite polynomial H,(t), teR,
is defined by

[n/2]
H)= ), (= 1) o,t" ", (3.1)
m=0

where

n!
Oom = (0 = 2m) 2"ml

We define the following regularization for a distribution ®e€%": Let de 2, d = 0,
fd(x) dx =1 and d(x) = d(—x) for every xeRZ Define for keN,

dy (y) = 2%%d(24(x — y)); x, yeR?. (3.2)
Then, set
O (x)=<(D,d,.>; xeR? keN.

For Ue the n Wick power of ®,(x), xeR?, keN, with respect to Py is defined
by

1 D(x):y = (cy (X)) H ey ox) "2 Dy(x)),

where
cyX) = [ (Py(x))*Py(d D).
In the case of U= R? we simply write : : instead of : 1.
For ge”(R? dx), p > 1, with compact support define for Ue%,

(DYg)y = [ PHx)pg(x)dx, keN, (3.3)

Then (:@¥(g):y)n converges in L2, Py) (cf. e.g. [Gl/J, Proposition 8.5.1]).
Here LY(2', Py), g > 0, denotes the space of (classes of) g-integrable functions on 2’
with respect to Py. The limit is Py -a.s. linear in g.

The following theorem summarizes the main results on the “change of Wick
ordering” (cf. [S,§VII. 3] and [Gl/J, Sect. 8.6]). This theorem is relevant for us since
we want to construct our additive functionals (ay),, corresponding to the so-called
“Half Dirichlet” case, i.e. the Wick order is taken with respect to P,,.

We need the following notations: For ge LP(R? dx), p >0, we set as usual

lgll,=(flglPdx)"",
and for Ue# and XelX9',Py), ¢ >0,
1 X llyq=([1X*dPy)".
Define for Ue#, cy(x) = Gu¥(x), xeU.
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Furthermore, every function defined on a subset 4 of R? is considered as a
function on R? which is zero outside 4. Every locally (dx-) integrable function on R?
is identified with its associated element in &'

3.1 Theorem. Let p>1,q =1, and Uel. Then (: @i(g): ),y converges in L', Py) for
every geIP(R?,dx) with compact support. For the limit : @"(g): we have that

[n/2]
L D"(g): = Zo Oyt D"~ 2(—cp)"g)y Py-ass.. (3.4)

In particular, g :®"(g). is Py-a.s. linear.
Furthermore, if K = R?, K compact, then there exist constants «, y 2 0 and k,eN
such that for every geLP(R? dx) with support in K

I:@"9):llvqa=vlgl, (3.5)
and for all k = k,,

I:@"(g):—: P9 llv.g < ¥27 1 gl (3.6)

Proof. It is easily checked that (3.4) is true for : @}(g): if ¢, is replaced by cg2, — ¢y,
(cf. e.g. [S,1.20b]). Since Uel, elementary arguments show that (cgz, — cyien
converges to ¢y in LP(U, dx) for every p = 1. Now one uses the fact that there exist
a, =0 and kyeN such that for every geP(R?, dx) with support in K

I:@"g)ullug=vlgll, (cf. [G/R/S2, Lemma IIL.7),

and for all k = k,,

I:@™g)y — : PiG)ullua =27 *lgl, (cf [GI],
Theorem 8.5.3]), and the assertion is a consequence of Holder’s inequality. [

3.2 Remark. Inthe preceding theorem : @"(g): as an element of LYZ’, P,;), depends on
U. But (3.6) and the Borel-Cantelli Lemma imply that the function

@ — lim sup @}(g): is a version of: @"(g): for every Uel. From now on : ®@"(g): shall

k—
denote this particular version. So we can avoid to express the U-dependence in the

notation.
The main step to construct our 2(®),-additive functionals is the following

theorem:

3.3Theorem. Let Uel, p> 1 and geL”(U,dx). Then there exists a version afy, of
:®"(g): such that a), is o(U nsupp g)-measurable and for every he # o(U),

a (® + hy= 20(31);@"'(;1"—'"9):, Py-as. in P 3.7)
e

Remark. Because (3.7) says that for every hes# ,(U)
n—1
aP (D +h)=al (D) + Y (;):tb"‘(h"""g):, Py-as.in ®e2,
m=0

it can be interpreted as a perturbation formula.
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The rest of this section is devoted to the proof of 3.3. It is based on a series of
lemmas. We start with the following two facts: The first is a simple formula about
Hermite polynomials and the second is a well-known theorem about harmonic
functions.

34 Lemma. For t, seR,

H(s+1t)= io (;)Hm(s)t"—m.

m=

Proof. This is easily seen using Rodrigue’s formula for Hermite polynomials. [

Theorem 3.5 Every set of uniformly bounded harmonic functions on an open set is
equicontinuous.

Proof. [C/Co, Theorem 11.1.1]. dJ
Let (K ),y be an exhaustion of U by compact sets, i.e.

K;cint(K;;,), jeN
and

U=k,

2
such that for every jeN, ]

) 1U\;<jdx <274 (3.8)
For keN and hes# (U), set

h(x) = [ h(y)d (y)dy, xeR?

Furthermore, we define for ge L?(U, dx) as usual

suppg = {g #0},
where the closure is taken with respect to the Euclidean topology on R2.
3.6 Lemma There exists a subsequence (k;),.y 0f (K)o Such that for each jeN there

exists I(j)eN such that for each meN and every harmonic function h on U,

sup|h™(x) — hi(x)| =m2~" sup [h(x)"
xeK; xeKj 4o
for all 1 = ().

Proof. It is, of course, enough to show the existence of this subsequence for a fixed
jeN, because then, the usual “diagonal argument” yields the assertion. So, fix jeN.
Define

#1={hU—R:his harmonic on U and [h| <1 on K, ,}.

By 3.5 for every leN there exists a d,> 0 such that whenever x, yeK;,, with
|x —y| £6,, then |h(x) — h(y)| £ 27" for each he#,.
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Thus we can select a subsequence (k) of (k),. such that for each xe K, each
hes# | and leN,

|h(x) = By, (x) < [11(x) = hx + Y)|dy, o(V)dy <27,

and thus for every meN, |h™(x) — hj(x)| S m2~". Now the assertion follows by
homogeneity. O
From now on we consider the subsequence (k;),., of 3.6. Changing (3.2) we write
again (d, ),y instead of (d;, )n, X€R?, and do the same with : @}(x):, ¢y, etc.
Now we can define the proper version of : @"(g):. Given ge LP(U, dx), suppg < U,
define

agy(®@) = limsup:Difg), Pe2, (3.9)
and then for arbitrary ge»(U, dx),

afy(®) = lim sup af, (P), P, (3.10)

Jj—
where g; = 1 g. Since (K ),y is an exhaustion there is no ambiguity in the definition
of a{y),.
Remark. (3.5),(3.6),(3.8) and the Borel-Cantelli Lemma assures us that the “limsup”
in (3.9) and (3.10) is a limit Py-a.s. in @ €2’ and that af?, is a version of : @"(g)..
Itis clear that a{}’, is 6(U nsupp g)-measurable; so it remains to show (3.7), which
will be a consequence of the following lemma.

3.7 Lemma. Let j,meN, g = 1. Then there exist constants o, y > 0 and kyeN such that
for every he # o(U) and every ge L*(U,.dx) with suppg < K,

I:@"(h"g): —: PUMLG): lly o < ym2™* |l g ||, sup [A(x)I™,

xeKjyo
for every k = k.

Proof. By (3.5) and (3.6) we can find a, y >0 and k,eN such that for all k= k,,
he# (U) and gelf(K;, dx),

I:@"(h"g): —: Dihgg): ly,qa = I: (™ — B)9): llu g
+ 1 @"(hYg):—: Pihg): lluq
SyIG™ —mgll, +v27 kg,

SOom27 +y27") gl sup [h(x)|",

xeKjy s

where the last inequality follows by 3.6. O
Now let geI?(U,dx), suppg = U. By 3.7 and the Borel-Cantelli Lemma it
follows that for he s ,(U),

lim 3 (;):cp;"(h:-mg):= io(::l):d)'"(h"‘"‘g):

k=oom=0

m=
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Py-as. in @e2'. Furthermore, by (3.3) and 3.4 we have that for every ®e2’,

(@ + h{g): = i0<:1>:q),¢’(h;—mg);.

m=

Hence (3.7) follows for such g because of definition (3.9). Because of definition
(3.10) the case of an arbitrary geLP(U, dx) can easily be reduced to the one treated
above using (3.5), (3.8) and Holder’s inequality. Thus the proof of Theorem 3.3 is
completed.

4. Polynomial Additive Functionals for (7)., and the
P(®),-Specifications (n}),.,

From now on let £ be a fixed lower bounded polynomial,
N
Pt)= ) bt", teR, b,eR.
n=0

Using the results of Sect. 3 we can now define the additive functional for (7).
associated with the polynomial £.
Given Uel, define for geL”(U,dx), p > 1,

N
ay (@) =aj ()= Y ball (D), DeZ, 4.1)
n=0
where a{?, is the version of 3.3.

If g=1,,W a Borel subset of U, we set ay y =ay,;,, and
ag=ayy. 4.2)
Symbolically, a,(®@) = “ljjzg’(@)(x):dx”.
4.1 Theorem. (ay),,, defined by (4.2) is an additive functional for (), - Furthermore,

ayeo(U) for every Uel.

Proof. At first we show (1.5): Let U, Vel with U < V. By definition of a, we have
that for all @, Ye2',

(@ + H/(P)) = ay(® + ¥ ().
Hence it follows by (3.7) that for each Y2,

m=0

+ ) bn( i (H>I‘D'"((MV(9’))"_'"1V\U)1>
n=0 m=0\M
= ay(@ + HAF)) + ayy (@ + Hy(¥)),

P,-a.s.in @ (cf. also 3.2). Hence (1.5) follows by the first part of 3.3, which also implies
the last part of the assertion. Property (1.6) is again a consequence of (3.7) by
[Gl/J, Theorem 8.6.2]. |

N n
ay(® + H,(¥)) = ;Ob,,( y (;):d)“((uV.(?’))”“"'lu):>
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Now we define (n})y, 4=0 by (1.7) using the additive functional (ay)ye
constructed above for our given polynomial £, i.e.

ny(1 4e7*)(P)
nyle= ") () ’

4.2 Remark. Let Ye2'. By (2.9)
nH(P, A) = ny(1 e 0(myle )T )(P), AR

(P, A) = YeP, AeB. 4.3)

As pointed out in the Introduction, 2.8 and 4.1 imply the following theorem:

4.3 Theorem. (n}),., is a (6(U))yq-specification. It is Markovian in the following
sense:

If Uel and Zea(U),, then nf(Z)ea(a(0U), 24(U)). 4.4
Furthermore, (nf),. is “local” in the following sense:
tH(ri(Z)X) = n}(Z)n{(X) for all Z, X € B, 4.5)

(4.5) follows by (2.9) and (4.4) is an immediate consequence of (2.8), since ayea(U),
Uel. We call (n})yq, 4 2 0, 2(®D),-specification.

If we assume the “Continuum Hypothesis,” polynomial additive functionals for
(my)ya can also be constructed using Mokobodzki’s “medial limits” (cf. [De/Me]).
But it turns out that in order to prove the required “convergence in measure” for all
relevant measures one has to use similar arguments as those in this and the
preceding section. Thus the construction is not essentially shorter. In addition, we
can avoid the “Continuum Hypothesis.”

We conclude this section with another consequence of our perturbation formula
3.7

4.4 Remark. Let Uel, 120 and ge%. Then, if Ye2',

; U
U(el D(9)p —le(u-('P))e—lau)

(e PP) (W) = Mo P
pU(e—AQU(uVW))e—Aau)

where

ot =3 (5 ”):ar"«ﬂ'f(%)"""lu))-
n=0 o\m

m=

Qu(u¥(¥)) is a “polynomial in @ of one degree less than 2. Therefore, by the
formula above n{(¥,') can be treated as a perturbation of the “half-Dirichlet
boundary conditioned cut-off P(®),-measure”, i.e. the measure e “VPy/P (e~ ).

5. The Gibbs States for (z),,

Fix 4 2 0. Let ()., be defined by (4.3). In this section we want to study the relation
between the associated Gibbs states G,(U), Uel, G, (now defined by (1.8) and (1.9))
and thelocal respectively global Gibbs states in the sense of Guerra, Rosen and Simon
(cf. [G/R/S 1,2]). We start with a proposition that summarizes useful properties of
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G,(U) and G;. The proof is an immediate consequence of the definitions and the
“consistency property” (1.4) (cf. also [R3,7.5]).

5.1 Proposition. Let Uell and PeP(D'; B). Then:

(i) PrnfeGyU).

(i) PeG,(U), if and only if P = Pr},.

(ili) If Vel withU < V, then G (V) < G,(U). In particular, if (U ), is a sequence
in L such that for every Vel there exists neN with V c U, then

G,= ﬂ G(U,)
nz1
(iv) If PeG,(U), then P(2,(U))=1.
Now we want to recall the definition of GRS-Gibbs states (cf. [G/R/S 1, p. 240
and also Theorem VIL2]).

5.2 Definition. Let Ue%.. An element PeP(2'; #) is called M arkovian with respect to
U if

Ex(X|o(U)) = Ex(X|6(0U)) P-as.
for every X ec(U),. P is a local Markov field or has the local Markov property, if P is
Markovian with respect to each Ue%,.

For more details on Markov properties for generalized random fields see
[A/H-K,D3 and R1, 2].

5.3 Definition. Let Ue%. and PeP(2'; #). Then P is called U-Gibbsian in the sense of

GRS, if
(i) Py, (i.e. the restriction of P to o U))is absolutely continuous with respect to

ota(D)*
(i) P has the local Markov property.

(iii) For every Xea(0O),,

Ep,(Xe=t|o(2U))
Ep (e *w|o(dU)) ’

P is called a GRS-Gibbs state, if it is U-Gibbsian for every Ue%,.

Ep(X|0o(0U)) = P-as.. (5.1)

Remark. In [G/R/S1] the authors consider in (5.1) an arbitrary version of the
LX(Po)-limit of ([:P(®(x)): dx),.y, Whereas we take the particular version ay
U

constructed in Sect. 4. To be precise we should mention that in the original
definition GRS use closed set instead of open sets. But by (3.5) we can always replace
U by U as long as 0U has Lebesgue measure zero. Furthermore, since every Ue,
can be exhausted by a sequence in L and because of the martingale convergence
theorem, we may replace %, by L in the second part of 5.2 and 5.3 as well (cf. also
[G/R/S1VIL 3]).

As mentioned in the introduction (5.1) is referred to as the “DLR-equations for
2(®),-random fields.” But in this formulation the local Markov property has
already been incorporated, and since the right-hand side of (5.1) is determined only
up to P,-zero sets, one has to assume 5.3 (i). Our definition of Gibbs states based on
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the “reformulated DLR-equations” (1.8) is independent of P,-zero sets, so the a
priori assumptions (i) and (ii) can be avoided. An interesting fact is that because of
the special form of our specification (nf),,, every element in G, satisfies (i) and (ii)
automatically. Therefore, we will be able to prove the following theorem:

5.4 Theorem. Let PeP(2'; B). Then P is a (global) GRS-Gibbs state if and only if
PegG,.
For the proof we introduce the following notion:

5.5 Definition. Let Ue# and P,, P,eP(2';%). P, is called locally absolutely
continuous with respect to P, on U iffor every K < U, K compact, P, - is absolutely
continuous with respect to Py, . P, and P, are locally equivalent on U if, in
addition, also P, is locally absoiutely continuous with respect to P, on U.

The proof of 5.4 is an immediate consequence of the following three theorems to
be proven below.

5.6 Theorem. Let Uel and PeG,(U). Then P, Py and P, are locally equivalent on U.
In particular, every PeG, is locally equivalent to P, on R

5.7 Theorem. Every PeG, is a local Markov field.

5.8 Theorem. Let Uell and PeP(2';B). If P is a local Markov field and locally
absolutely continuous with respect to P, on R?, then (5.1) and (1.8) are equivalent.

In order to prove 5.6 we need some preparations. For the rest of this section fix
Uel.

5.9 Lemma. Let f, ge9. Then
E, (exp(i®@(g) + @(fN)=expG(Il fIEv—1g1E0)+i{g.f Dr.v)
Proof. We may assume that || f||z , #0. Set
gyi= <f>ng,U
I f &0

Then<g1,9,)ev=<92,f Dev = 0,and thus @(g,) isindependent of @(g,) and P(f)
(since {, )y is the covariance of Py and Py is Gaussian). It follows that

and g,:=9g—4g;.

E, (exp(id(g)+ <1>(f)))=Epu(expiai(gz))EPU(exp((imwt 1><D(f)>>

IfIEo
=exp[3(I f1Zv—llglE ) +i{fi9>E0] O
Let H_; be the Sobolev space of order —1, i.e. the space of distributions
obtained by completing 2 with respect to | ||g. For an element feH _, and a

closed set A = R?, define f“ to be the balayage of f on A4, i.e. the projection of f onto
the closed subspace of all elements in H _ ; with support in A. We recall that the map
G defined on 2 by Gf(x) = [ G(x,y) f(y)dy, f€2, extends to an isometry between
H_, and the Dirichlet space given by A — 1, i.e. the space of all ue L*(R?,dx) such
that their distributional derivatives du/0x;, i = 1,2, are again in L(R?, dx) (see [Fu]
for more details). We also recall that every element in this Dirichlet space has a
quasi-continuous version #. We refer to [Fu, Chap. 3] for the precise definitions.
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5.10 Proposition. Let Ve# with V < U and ¥ e’ such that there exists feD such
that for every ge2(V),

/'\{c
JG(f =f")gdx=<¥,g).
Then T,,(PU)W) and PUram are equivalent.
Proof. Define X: 2" >R by
X(@)=exp(@(f) -1 fIE0), PeT.
Then for every ge2(V), we have by 5.9 that
Epu(exp(i(b(g))X) =exp(—3lglv+i<g:f Drv)
=exp(—3llglEv+i<g.f—f"Dp) (cf [R3,5.2])
=exp(—$lglo +if GU=T")gdx)
=exp(—3lglzv+i{¥.9>)
= [exp(i®(9))dT o(Py).
Similarly it follows that if
Y(®@)=exp(—@(f) +<{ ¥.f > =3 fEv) PeZ,
then
[exp(i®(g))YdT {Py) = E, (expi®(g)) for every ge (V). O

The following corollary is the key point for the proof of Theorem 5.6. It is based
on 5.10 and the fact that a harmonic function can locally be represented as the
difference of two potentials. Since we restrict ourselves to the case of L= A4 — 1, we
can do this in an explicit way (cf. also [H/St] for a special case).

5.11 Corollary. Let ¥ €2'. Then Py and n{('¥,") are locally equivalent on U.

Proof. By (4.3) we may assume that A=0. Let K be a compact subset of U. Let
keZ(U) such that k=1 on an open neighbourhood V of K. Define f=
— L(xH ,(¥)). Note that since H( ¥)is represented by a harmonic function on U we
have that fe2(U).

Because of 5.10 it remains to show that for every ge 2(V),

/\ﬂ _
G —f%)gdx = CH(P), 9. (52)
So let ge2(V). Since for an arbitrary f, €9, we have that
/\/
G(—-Lf))=f, dx-ae.,
we conclude that
| Gfgdx = [ Hy(¥)gdx,
and furthermore, that
TN _ .
[G(fY)gdx = [ Gfdg"" = [ kH ,(¥)dg"" = 0.
This proves (5.2). O
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5.12 Remark. We will prove below (cf. 7.2) that on o(U), however, the measures Py,
and n{('¥,") are either singular or equal. Furthermore, nj(¥,-) is in general not
absolutely continuous with respect to P, on a(U) (cf. 7.2). By 5.8 it follows that G ,(U)
is strictly bigger than the set of U-Gibbsian states in the sense of GRS.

Now we are prepared to prove 5.6.

Proof of 5.6. Let K be a compact subset of U and Nea(K). Assume Py(N) = 0. Then
by 5.11 for every ¥ e2', n}(¥,N) =0, hence

P(N) = [n{('¥Y,N)P(d¥)=0.
Conversely, if P(N) = 0, then there exists a ¥ €2’ such that nf( ¥, N) = 0. Hence, by
5.11, Py(N)=0.

By 2.8 we know that P,eG(U). Hence, the first part implies that P, is locally
equivalent to Py on U and everything is proven. O

Remark. The fact that P, and Py are locally equivalent on U is, of course, well
known (cf. e.g. [S, Theorem VIII 2]). The proofs in the literature so far were done by
analytical methods. The new proof given above is of probabilistic nature.

Proof of 5.7. Let X e€%,. Assume first that X eo(U),. We know that
Ep(X|o(U%)) =n}(X), P-as..

By (4.4) we have that n{(X)ea(a(0U), £2,(U)), and by 5.1 (iv) it follows that P(2(U))
= 1. Thus
Ex(X|0(U%)) = Ep(X|a(0U)), P-as..

Now a simple argument using monotone class theorems extends this to
Xea(a(U),a(0U)),.

Let K be a compact set in R? such that U < int K. For a sub o-field .« of # and a
probability measure P’ on (2'; #) we define /%" to be the o-field generated by &/
and {Nea(K): P'(N) = 0}. By a slight modification of [R3, 5.4 and 5.5], it is easy to
see that

o(a(U), a(0U))*P = o(O)*,
and hence by 5.6,
a(a(U), a(0U))¥P = g(T)KF.
Thus,
Ex(X|a(U%)) = Ex(X|0(0U)) P-as.

for every Xea(U),. |
Before we prove 5.8 we introduce the following algebra of sets. Let

L= aV) (5.3)

Ve,

& is called the algebra of local observables and an element X e % is called locally
measurable.
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We note that though we assume the local Markov property for P, the
equivalence of (5.1) and (1.8) is not clear. One problem is to show that up to P-zero
sets = o(o(U), o(U°)). Since we are dealing with a measure space of distributions
such a “sharp” decomposition is always difficult to prove. The proof of 5.8 is
somewhat technical and based on the following three lemmas. Their proofs are all
direct consequences of the construction of Hy in [R3]. We only indicate the main
ideas and refer the reader to the corresponding details in [R3]. The arguments are so
complicated since 2,(U) is not locally measurable.

5.13 Lemma. There exists a countable dense subset 9, of D such that for each ge 2,
one can find a real function Z,e0(U) such that (@ — Hy(®),g> = Z(®P) for each
DeQ(U).

Proof. Thisis a direct consequence of the construction of H (cf. Sect. 6 in [R3]). The
main reason is that

Hy(®)=® on (intU)
(cf. 2.1 (iv)). O

5.14 Lemma. Let PeP(Z'; #) which is locally absolutely continuous with respect to
Py. Then P(Q2,(U)) = 1.

Proof. Since for every xe U there exists a map iY: 2’ — R which is 6(0U)-measurable
such that for every @2’ the map x — iY(®) is harmonic and F%(®) = pY(®) for
every @eQ(U), xeU (cf. [R3,4.8(v)]), it suffices to show P(2(U)) = 1. This follows
from the construction of Q2(U). O

5.15Lemma. Let Xe.&, X 2 0. Then there exists Ze ¥, Z = 0, such that ny(X)(¥)
= Z(¥) for each ¥ e,(U).

Proof. Applying the usual monotone class theorems, we may assume that X =1,
with

F={®eP'":®(g,)eB,,...,D(9,)eB,},

where neN; g,,...,9,6€2 and B,,...,B, are Borel subsets of R. For every ¥ e£2,(U),
we have by definition that

my(1p)(P) = ljl 1 (@(g) + CHY(F), 9:)Pyld D).

But by construction of Hy and Qy(U) there exist Z,e%, 1 <i<n, such that
CHY(¥),9:) = Z{¥)forevery ¥ e,(U). Hence the assertion follows by one part of
Fubini’s theorem. O

Proof of 5.8. Case 1: Assume first that X ea(U),, X 2 0.Let X, = X and X, = 1. Then
by 2.8 and the local Markov property of P, we have that

Ep(Xe~*v|a(0U)) = ny(X,e ), Py-as..

By 5.15 there exist Z;e.¥, Z; 2 0, such that 7y (X,e~*v) = Z; on 2,(U). Therefore,
since Po(2,(U)) =1 (cf. 2.5) and Z;e %, (5.1) is equivalent to
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Ep(X|0(0U)) = 2— P-as.. (5.4)

2
Since P(2,(U)) =1 by 5.14, it follows that (5.4) is equivalent to
Ep(X|0(3U)) = n}(X), P-as.. (5.5)

Now the Markov property of P implies the equivalence of (5.5) and (1.8) for every
Xea(U),. But then (1.8) also holds for Xe%:

Case 2: Assume X €%,, X 20.Let 2, beasin 5.13 and ge 2, . Let Z,ea(U) be as
in 5.13, then it follows that P-a.s. in ¥Ye%’

Ep(exp i®@(g)|a(U))(¥)
=expi{Hy(¥),g) Ep(expi(@(g)— {Hy("),9>)|a(U%))(¥F)
=expi{Hy(¥),9) EplexpiZ,|a(U%))(¥) (by 5.14)
=expi{Hy(¥),g>ni(expiZ,)(¥) (by Case 1)
=expi{Hy(P), 9> nilexp i(D(g)— {Hy("),g)))(¥) (by 5.1(iv))
=mng(expi®@(g))(¥) (by [R3, (7.7)]).

Now the assertion follows by monotone class theorems. O

5.16 Remark. The proof shows that the assumption in 5.8 can be weakened. Instead
of the “local absolute continuity,” it is enough to assume that: P, is absolutely
continuous with respect to Py, , and P(€2,(U)) = 1. Furthermore, it is enough to
have the Markov property only for U.

6. Existence of Gibbs States

In this chapter we are concerned with the question whether G, contains at least one
element for any given 4= 0.

It is a well known fact that there are GRS-Gibbs states for every A = 0. This was
first established for small coupling using a result of Newman [cf. [G/R/S 1, Remark
1, p. 243], [N]) and then for general A = 0 by Frohlich and Simon in [Fr/S,7.2].
Since we know by 5.4 that G, is equal to the set of all GRS-Gibbs states, we have the
following theorem:

6.1 Theorem. G, # ¢ for every A= 0.

Since this result is very important and the proofis not at all obvious, we want to
describe a new approach to prove this theorem using ideas of Preston [P1, Chap. 3]
and [P2, Chap. 4]. The main difference to former proofs is that instead of applying
Minlos’ theorem we use directly Kolmogorov’s existence theorem generalized to
inductive limits of standard Borel spaces (cf. 6.9 below). So fix 1= 0.

First we need the following notions:

6.2 Definition. Given P, P,eP(2'; ), neN, (P,),. is said to converge £ ,-weakly to P,
if for every Ze %,

lim | ZdP, = | ZdP.

n—aoo
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Since (n})yq is @ “local” specification in the sense of 5.15, this notion of
convergence is appropriate for our purposes.

6.3 Definition. A set P, = P(2'; %) is called locally uniformly (absolutely) continuous if
Ve, and ¢ > 0 for there exists a probability measure P, on (2’,06(V)) and 6 >0
such that if Fea(V) with P(F) < then P(F) <¢ for all PeP,.

Set for L, t >0,

U, ={(s)eR* || < L/2;|s| <t/2} and aL.=ay, .
The proof of 6.1 is an immediate consequence of the following three theorems.

6.4 Theorem. Let P, P,cP(2'; ), neN, such that:
(i) (P,),.n converges & -weakly to P.
(i) For each Uel there exists n(U)eN such that P,eG,(U) for every n= n(U).
Then PeG,.

6.5 Theorem. For every L, t,

e Ly
P O(e - A”L,r)

and there exist L, to = 0 such that

e‘iaL.t
Esymre— O:LgLo,tgto

PoeG,(UL,),

P
Po(e_lal.,r)
is locally uniformly continuous.

6.6 Theorem. Let P, = P(2'; B) be locally uniformly continuous. Then every sequence
in P, has a & ,-weakly convergent subsequence.

Proofof6.4. Since by (ii) and 5.6 each P, is locally absolutely continuous with respect
to Pyonevery Uel such that n = n(U), we conclude by (i) that P is locally absolutely
continuous with respect to P,. Hence it follows by 5.14 that

P(R2y,(U))=1 foreach Uel. 6.1)

Now let Uel and Xe.%,. By 5.15 we can find Ze.%, such that n}X =Z on
02,(U). Hence by (6.1) and 5.1 (iv) we conclude that

Pri(X)=P(Z) = lim P,(Z) = lim P,n}(X) = lim P(X) = P(X).

n—oo n— oo n—

Now the usual monotone class theorems and 5.1 (ii) imply the assertion. O

The proof of 6.5 is done in several steps. By [Gl/J, Theorem 8.6.2] the first part of
the assertion is contained in the following proposition as a special case which is
called the case of “free boundary condition” (cf. [S,§V.1]). In Sect. 7 we will apply
this proposition to the most general “boundary conditions” in the sense of
[G/R/S 2] (cf. 7.3 below).
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6.7 Proposition. Let Uecl.
(i) Let 0= — A, PeG,(U) and pea(U°), p >0, such that

I

e—o‘au

dP =1.
Then

e—dﬂu

PeG, (V).

In particular, we may take p = ny(e**)/m (e~ ).

(i) There exists a one to one correspondence between Go(U) and G,(U) given by
—Aay
Ty(e )
Proof. 1t suffices to prove (i). Let X e4%,, then

Go(U)eP PeG,(U).

cay

fm* "(X)e‘p dP = [n" (X)mgle=**)p™ 'dP = [ny(Xe~*v)p™*dP
=[Xe "vp~'dP.
Hence e“’“U/p'PEGl_ka(U} Since ﬂ{}(e_‘mu) = nu(e—(1+q)au)/nu(e—lay)’

also the second part of assertion (i) follows. |

In order to prove the locally absolute continuity we need the following result due
to Frohlich and Simon. For the proof see [Fr/S] (in particular, Lemma 7.1 and the
proof of Theorem 2.3).

6.8 Proposition. Let Ve, and q > 4. Then there exist constants ¢, ty, Lo = 0 such that
for every Fea(V), and every L= L,, t 2 t,,

—Aay,,
Epo(e - ‘\aL,t)
Proof of 6.5. Let Ve, and p=(1—q~*)"!. Define

E —A 1%
P = po€Xp(—4ay )| o( )), L.t>0.

Ep,(exp(—4aL,))

Then we know by 6.8 that {p,,:L,t=0} is uniformly bounded in
(X2, 0(V), |l gz, for LzL,, t=t,. Using the Banach/Alaoglu-Theorem
(cf. eg. [Re/S,TheoremIV,21]) and the Dunford/Pettis-Theorem (cf. e.g.
[Me, Chap. I1, T23]) we conclude that {p, ,;:L = L,,t 2 t,} is uniformly integrable.
Now the second part of 6.5 follows immediately (cf. e.g. [B,20.7]). O

Theorem 6.6 can be found in an unpublished manuscript of Preston
([P2,Chap.4]). For completeness we present the proof here. First we recall the
following version of Kolmogorov’s existence theorem.

6.9 Theorem. For every Ve,, let P,e®(D';o(V)). If (Py)yeq, Is consistent, i.e.
P,(F)=Py.(F) for all V< V', Fea(V),

[F dP,| < || F g2, 6.2)
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then there exists a probability measure P on (2'; ) such that
P(F)= Py(F)for all Ve%,, Fea(V).

Proof. See [Pa, Theorem 4.2, page 143]. We note that for each Ve%, the measure
space (2';6(V)) is standard Borel and that its atoms are just of the form,

AP)={DPeP":® =¥ on 9(V)},

where ¥ e2'. Hence the condition in [Pa, Theorem 4.2] concerning the atoms of
(2';6(V)) is satisfied. O

Proof of 6.6. Since (2'; 6(V)) has uncountably many atoms, we can use the following
fact which is an immediate consequence of the main representation theorem for
standard Borel spaces (see e.g. [Pa,p. 133]):

There exists a countable algebra &(V) generating 6(V) such that if P:&(V)->R*
is bounded, then P is a measure (i.e. countably additive) if and only if it is finitely
additive.

Now let (V,),.n be a sequence in %, such that for each neN, V, < V,,, and

UV,=R2
nx1

Let

and (P,),.n be a sequence in P, .
Since &/ is countable there exists a subsequence (1), such that

Q(F) = lim P,,(F)
k—

exists in R for every Fes/. Clearly Q,,,, is finitely additive, hence countably
additive, and thus (by Caratheodory’s theorem) extends uniquely to a measure @, on
a(Vy).

Now we want to apply 6.9. There is no a priori reason for supposing that (Q,), is
consistent, but in fact this is implied by the local uniform continuity:

We claim that for all neN and Fea(V,),

Q,= lim P, (F). (6.3)
k— o0

Fix neN and Fea(V,). Let ¢ > 0, then there exists a probability measure P, on
(2;0(V,)) and > 0 such that if Fea(V,) with P(F) < 6, then P, (F) < ¢ for all keN.
Since &(V,) generates a(V,), we can find Ae&(V,) such that Q,(44AF)<¢ and
P(AAF)<é, and therefore P,(AAF)<e for every keN, where AAF
= (A\F)U(F\A). Thus

|Q.(F)— P, (F)| £1Q,(A4) — P, (A)| + Q,(AAF) + P, (AAF)
S10,(A) — P, (A) + 2¢

and (6.3) is proven.
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Equation (6.3) implies the consistency of (Q,),.» and extending this sequence in
the obvious way we get a consistent family (Qy),,, such that @, = Q,, for all neN.
Now 6.9 and (6.3) imply the assertion. O

7. Martin Boundaries for 22(®),-Random Fields

Since our Gibbs states are described by means of a specification, we can apply the
Martin boundary theory for random fields which was developed by Dynkin and
Follmer (cf. [Dy 1,2],[F] and also [P1]) to our situation. That means essentially: we
can represent an arbitrary Gibbs state in terms of extreme Gibbs states. In the case
A=0itis even possible to give a characterization of the extreme (global) Gibbs states.
In the more interesting case of A > 0 this is much more difficult. We have a “partial”
result also in this case. “Locally” the characterization of the extreme Gibbs states is
an almost immediate consequence of the definition of our specification (), - This
will be the contents of our next theorem. First we need the following notations: Fix
A20and Uel.
Given a measure space (4; <), a set £" and a map T: £ - 2", define

T(A)={F <% T Y(F)ed}.
And if PeP (Z; /), we denote by T(P) the image measure of P under T defined on
(2" T(«)). Furthermore, we set for Uel,
Py =P(#oU); Hy(o(U))).

7.1 Theorem. (i) If W e, then
(¥, ") = ni(Hy(¥),") (7.1)
and
TH W, {PeD Hy®)=Hy¥)})=1. (7.2)
Furthermore,
G, (U) = {n{(¥, ): YeD'}.

In particular, the map hvs ni}(h,-) is a bijection from #y(U) to 0G,(U).

(i) Hy induces a bijection from G,(U) to Py,. Under this map the point masses on
(#o(U), Hy(a(U°®))) correspond to the extreme elements in G,(U).

(i) PeG,(U) if and only if there exists a (unique) PePy, (in fact: P = Hy(P)) such
that

P = Pii};, (7.3)

where 7i;: # o(U) x B — [0, 1] is a probability kernel which is just the restriction of n},
to # o(U) (in the first variable).

Proof. (i):(7.1)and (7.2) are consequences of 2.1 (vi) and [R3, 8.7 (ii) ], since n( ¥, *) is
by definition absolutely continuous with respect to n,( ¥, *) for every ¥ e2'. Now let
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YeP'. Let Py, P,eG,(U) such that
np(¥, ) =3P, +3P,.
By (7.2) it follows that P,({Hy=Hy(¥)})=P,({Hy=Hy(¥)}) =1, hence by 5.1
(i) and (7.1),
P, = Pnjy=ny(¥,")=P,n=P,.
Thus, n{(¥, )edG,(U). Let PedG ,(U). Since Z-PeG,(U) for every Zeo(U*) with

P(Z) = 1,itiseasy to see that P is trivial on a(U¢). Hence for a dense countable subset
2, of @ we can find ¥e2' such that for every ge%,,

nh(expi®@(g)) = nilexpi®@(g))(¥) P-as..
Since Prj, = P, it follows that P = n{( ¥, ") and (i) is proven.
(ii) + (ii)): We have to show that the mappings P Piij;, PeP, and P+ H(P),
PeG,(U) are inverse to each other.

So let PePy. Since (nf),,, satisfies (1.4), we obtain that PijeG,(U). Using
[R3,(7.7)] it follows for X e H (a(U®)), that

[ XdH(Pr}) = [ (X Hy)dP = [ XoHydP (by [R3,(1.7)])

= [ XdP. (by 2.1 (vi)).
And for PeG,(U) and Xe4%,, we have that
[ Xd(H(P)7i}) = [(n{X)e HydP = [ n;XdP = | XdP. O

7.2 Remark. At this point we want to consider some properties of the measures
n{ (¥, ) when restricted to a(U). It is easy to see that if Zea(U),, then (7.1) can be
rewritten as

iy 2)(P) = 2) i (¥)), YeZ. (7.4)

According to the construction in [R3, Sect. 4] we can change the definition of pY(®)
for @ e2'\Q,(U) in such a way such that the new version i¥(®) s still harmonic as a
function of x on U, but also a(U)no(0U)-measurable in @€2’. If we set
M,={®eP":i%(®@)=h} for he #y(U), then by [R3,4.8(v)]

M,ea(U)na(dU). (7.5)

Clearly, M,n M, = ¢ if We#(U\{h}. Let Ye2'. By (7.3) and the fact that
i (¥, 2,(U)) =1, (cf. 5.1 (iv)) it follows that

(PR = nU(P))) = 1. (7.6)

Hence on o(U) the measure =¥, ") is either equal to a(®@,-), Pe2’, namely if
wI(¥) = uY(®) for all xeU or singular to it otherwise.

Now we want to show that for ¥ €2’ the measure nj(¥,-) is in general not
absolutely continuous with respect to P,. By (7.4) we may assume that
¥ = hes# o(U). Of course, it is enough to consider the case A1 =0.

Assume that my(h, ') is absolutely continuous with respect to P, on o(U). Then by
(7.6) we know that Py(M,)> 0. Therefore, there are at most countably many
measures 7,(h,-) which are absolutely continuous with respect to P,.
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It is also easy to see that P, is not absolutely continuous with respect to wy(h, )
on a(U). Because, if this were the case, then by (7.6), Po({(-) = h}) = 1. Therefore,
by 2.8, (7.4) and 5.1 (iv) for every Zea(U),,

Po(Z)= j 1{QQ(~)=h}nU(Z)dPo = ny(Z)(h).

Therefore, h=0, hence P,= P, on o(U), which is impossible (consider the
corresponding Fourier transforms!).

One of the main consequences of 7.1 is that all “cut-off 2(®),-measures” (with
Wick-ordering with respect to P,) can be represented in terms of basic ones. More
precisely:

7.3 Theorem. Let PeP(2'; %) which corresponds to a {Q,l}-boundary condition
Gaussian field on U in the sense of [G/R/S 2], i.e. P is the Gaussian measure on (2'; %)
with mean

f@(f)dp=1f"), fe,

and covariance

[@(N)D(9)dP = [ @(f)P(g)dPy + Q(f*, g%),

f, g€ D, where l is a bounded linear functional on (H_,,| | ) and Q is a bounded,
positive definite quadratic form on (H_,,| |g). Let pea(U°), p > 0, such that
e—,{au —Aay

dP =1, then

J

In particular, e=*v/p P can be represented in terms of nj(h, ), he # o(U) in the sense of
7.1.

Proof. By 6.7 it suffices to prove that
PeGy(U). (7.7

Let Vel, V < U, then PeM(V) by 2.4 (i). Furthermore, it is clear that we can find a
constant ¢ > 0 such that for every fe2,

(f@(fPdP)'2 <c| fllg=c(f P(f)?dPo)!'2.

‘PeG (V).

Hence by 2.6
P(Q2,V))=1. (7.8)
Therefore, by [G/R/S 2, Theorem II. 2], [G/R/S 1, Theorem VII. 2] and 5.16
PeGy(V)
for all Vel with ¥ < U. Hence (7.7) follows by (7.8) and [R3,8.7(i)]. O

Remark. (i) For the connection between {Q,[}-boundary condition Gaussian
measures on U and Gaussian measures associated with H — 1 for certain self-adjoint
extensions H of A [ 9(U) see [G/R/S 2 Theorem II 6].

(i) The main reason that we were able to establish Theorem 7.3 is, of course, that
contrary to the GRS-definition of “U-Gibbsian” (cf. 5.3(i)) an element in G,(U)is not
necessarily absolutely continuous with respect to P, on o(U) (cf. 7.2).
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(i) From the point of view of statistical mechanics, Theorem 7.3 is, of course,
not surprising, since a “local” Gibbs state in statistical mechanics is understood to
represent the most general “boundary conditions.”

(iv) We note that what is usually called “Dirichlet boundary condition” in the
literature now corresponds to “zero boundary condition,” since for X €%,,

Py(Xe %)
HX)(0) = ——— 7.9
w00 =5 s (7.9)
Now we want to consider the global situation. We set
Bo=()o(UO). (7.10)

Uell

A, is called the tail o-field.
As mentioned above the general Martin boundary theory for random fields can
now be applied. Therefore, we have the following theorem.

7.4 Theorem (Dynkin/Follmer). Let 4 > 0. Then there exists a probability kernel n’,
on (2'; #) such that

(i) ni(X) is B -measurable for each X €A,

(i) If PeG, and X%, then

EnX|B,)=1%(X), P-as..
(ili) If PeP(2'; B), then:
PeG, if and only if Pr = P.
(iv) 0G, = {ni(¥,):¥eP'},
and if
AP)={0eP:n’ (¥, )=14(D,")}, ¥eZ,
then A(W)eAB.,, and n*(¥,A(¥))=1.
Proof. For a detailed proof see [P1, Chap. 2] O

7.5 Corollary. Let # = {A(¥): ¥ e2'}.

(i) The map A:2—.# induces an affine bijection between G, and
P(A; A(# ). Under this map the point masses on (#; A(%,)) correspond to the
extreme elements of G,.

(i) Let ©4: .# x 9 — [0, 1] be the probability kernel defined by

7t(A(¥W), F)=nl(¥,F), ¥Ye2, FeA.

Then PeG, if and only if there exists a unique PeP(#; A(%.,)) (in fact: P = A(P))
such that

P=Prt. (7.11)
Proof. [P1, Proposition 2.4] O

7.6 Definition. The space (#; A(#,)) s called the Martin boundary for (ng),. (or G,).
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7.7 Remark. (i) (7.11) is just the representation of a PeG, as an integral over the
Martin boundary /.

(i) If we restrict all involved probability measures to o(U), we can now interpret
Theorem 7.1 analogously by saying that:

If Uel, then 5#y(U) is the “local” Martin boundary for (n}),., on U.

(Here we identify A(¥) with uY(¥), ¥e2)).

This characterization of the local Martin boundary is also true globally, if A = 0.
This is just a special case of Theorem 8.6 in [R3] (cf. also [H/St] for a proof using the
GRS-definition of Gibbs states and without constructing the associated
specification).

7.8 Theorem. The Martin boundary for (ny),., is the set of all harmonic functions on
R2.
An immediate consequence is the following “uniqueness result”:
7.9 Corollary. Let h be a harmonic function on R2. Then
Gon{PeP(Z'; B):P({Hgz=h})=1}={ng(h,)} = {Ty(Po)}

In particular, P is the unique measure in G, supported by {Hg2=0}.

7.8 shows that G,, 1 =0, contains in general more than one element and that
(even for A = 0) an additional “condition at infinity” is needed to obtain uniqueness
(see also [G/R/S1]). The following considerations show that the condition
Hg2 = const. P-as., which implies uniqueness in the case A=0, is also at least
necessary for uniqueness in the case 4= 0. In order to state the corresponding
theorem which will be the last of this paper we introduce the following notation:

Let A2 0. For a harmonic function 4 on R? we define

Gn=G,Nn{PeP(D';B):P({Hg2=h})=1}.

7.10 Theorem. 0G, is the (pairwise disjoint) union of 0G, ,,, h harmonic on R?, and each
PeG, , can be represented in terms of elements in 0G, .

Proof. Let ¥e2'. Then Hy2(¥) is harmonic on R? and we may consider the map
x> Hp2('P)(x), xeR2. Let PedG,, then we know by [P1, Theorem 2.1 (1)] that for
every Be#,,, P(B)e{0,1}. Since by [R3,6.12] the map ¥+ Hyp(P)(x) is B -
measurable for every xeR?, we conclude that for P-a.e. Y2,

Heo( W) (x) = Ep(Hga(")(x)| B) = Ep(Hga()(x)).

Since R? is separable, we can therefore find a harmonic function 4 on R? such that
Hg2 = h, P-as.. Furthermore, we have

0G,,=0G,n{PeP(2';B).P({Hg2=h})=1}.

The second part of the assertion is an immediate consequence of 7.4(iii) and 7.5.
O

If 2> 0, but small, then one might hope that the reverse of Theorem 7.10 is also
true (asin the case 4 = 0). This would again lead to a complete characterization of the
Martin boundary of (nf), . But this seems to be extremely hard to prove. The
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reason is the fact that the interaction (i.e. A > 0) produces in a sense a non-linear
situation whereas the map H_: is linear. This problem will be the subject of future
study.
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