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Abstract. It is shown that ^(Φ)2-Gibbs states in the sense of Guerra, Rosen and
Simon are given by a specification. The construction of the specification is based
on finding a proper version of the interaction density given by the polynomial 0>.
The existence of this version follows from the fact that all powers of the solution
of a Dirichlet problem for an open bounded set U with boundary data given by a
distribution are integrable on U. As a consequence the Martin boundary theory
for specifications can be applied to ̂ (Φ)2-random fields. It follows that any
^(Φ)2-Gibbs state can be represented in terms of extreme Gibbs states. In
certain cases the extreme Gibbs states are characterized in terms of harmonic
functions. It follows, in particular, that for any given boundary condition
introduced so far the associated cutoff ^(Φ)2-measure has a representation as an
integral over harmonic functions.
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1. Introduction

The aim of this paper is to construct "specifications" (cf. [F, PI]) for ̂ (Φ)2-random
fields. These are known as basic non-trivial continuous models in Euclidean
quantum field theory. Here 9 is a semibounded polynomial of one variable, Φ is the
"field" and the index indicates 2 dimensions (cf. below and [S, Gl/J] for the precise
definition). These models, which are usually realized as probability measures on a
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space of distributions like 2' or £f\ have been studied extensively (see the references
in [Gl/J]). They are constructed starting from an underlying (mean zero) Gaussian
measure Pθ9 called the free field, which is associated with the differential operator
Δ-m2, meU2, on R2 (cf. Sect. 2 below). In [G/R/S 1,2] Guerra, Rosen and Simon
study ^(Φ)2-theory within the framework of statistical mechanics (cf. also [Fr/S])
and define a ^(Φ^-random field to be a Gibbs state P in the following sense:

P is a probability measure on {β'\&\ $8 being the σ-field generated by the
coordinate mappings Φ(g\ ge®, defined on &'. P is locally absolutely continuous
with respect to Po (cf. 5.5) and it is a local Markov field (cf. 5.2) with conditional
probabilities given by

EPo(XQχp(-λj:0>(Φ)(x):dx)\σ(dU))

EP(X\σ(dU)) = υ- , P-a.s., (1.1)

EPo(cxp(-λ^(Φ)(x):dx)\σ(dU))

for every bounded, σ( Immeasurable function X on 2' and every bounded open
subset U of U2. Here dU and Ό means topological boundary respectively closure of
U; σ(V) for V c 1R2, V open, denotes the σ-field generated by Φ(g\ ge9, supp g c V,
and we set for an arbitrary A c ίR2,

σ(A)= Π σ(n (1.2)
A<zV
Fopen

Furthermore : : means Wick ordering with respect to P o (cf. Sect. 3) and λ^O is a
coupling constant.

(1.1) is referred to as the "DLR-equations" for P (cf.[D,L/K]). Since (1.1)
depends on local P0-zero sets, it only makes sense for measures which are locally
absolutely continuous with respect to F o .

The aim of this paper is to formulate DLR-equations and to define Gibbs states
independently of P0-zero sets. This is done by constructing an appropriate family
(πt>)ι/ of probability kernels, called a "specification," to replace the right-hand side of
(1.1). Before we give the definition of a specification, let us recall that a probability
kernel π(Ψ, A), Ψe@\ Ae@ on (β'\$) determines an operator acting on bounded,
^-measurable functions X and an operator acting on probability measures P on
{&\0&\ We denote the images under these operators by πX respectively Pπ.
Furthermore, for A a U2 we set Ac = U2\A.

Definition. L e t ^ be a family of open subsets of IR2 and for each UG<%1, let πυ be a
probability kernel on {β'\ $). The family ( π ^ ^ is called a (σ(Uc))Ue^ -specification
if for every UE<WX,

πυX is (τ( Immeasurable for every bounded, ^-measurable function X. (1.3)

("Consistency") For each F c ^ with UcV, nv{ZπυX) = πv(ZX) (1.4)

for every bounded ^-measurable function X and every bounded σ(l/c)-measurable
function Z.

If °Uγ consists of bounded sets, then (πυ)UeV is also called a family of local
characteristics (cf. [F]). (1.4) is the analogue of the Chapman/Kolmogorov-
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equations for the transition function of a Markov process. It is equivalent to saying
that for each Ψe& the expectation with respect to the probability measure πv( Ψ, )
conditioned by σ(Uc) is given by πv. Indeed, specifications for ^(Φ)2-random fields
have the same advantages as transition functions in the theory of Markov processes.
We will describe the consequences below. We start with a summary of the
construction:

We recall that it is possible to construct new specifications from a given one using
additive functionals (cf. e.g. [P2]). The proper definition in our situation is the
following:

Definition. Given a (σ(ί/c))[/e^1-specification (π ι /) [ / e^ i a family (au)Uj^i of
^-measurable functionals on Q)' is called an additive functional for (nu)u^ι if given

For every Ve%γ with U c V there exists a σ(ί/c)-measurable function ay such
that for each

av = av + aly πκ( *F, )-a.s., (1.5)

πυ(e~λav){Ψ) < oo for all Λe[0, oo[ and each Ψe2>'. (1.6)

Given (nv)Ueϋiί and (av)u&ξί as above, then the family ( π ^ ^ of probability
kernels defined by

is again a {σ(Uc))Uey -specification (with coupling constant λ).
The ^(Φ)2-specifications will be constructed according to this scheme.
We start with a specification ( π ^ associated with the differential operator

A — m2, meU. It is a special case of those already constructed in [R3] and it is called
free specification. For Ψe& the measure πv(Ψ, ) is the translation of the free
measure Pυ with Dirichlet conditions on Uc. The translation is given by a
distribution Hv{ Ψ) which is the solution of a Dirichlet problem for U given Ψ as
boundary data. In Sect. 2 we recall all basic notions and results from [R3].

In Sect. 3 and 4 we construct the additive functional which is formally given by

Φe®'.

Of course, the integrand makes no sense in general. But by approximating Φ by
functions it is possible to define aυ as an ίΛlimit with respect to Po or Pυ (cf. [S],
[Gl/J]). The Wick ordering : : and the fact that we are in a two dimensional
situation, are essential to prove this convergence. In view of (1.7), however this
definition of av up to Po- or P^-zero sets is not sufficient for our purpose. In fact, it
can be proven that the measure πv(Ψ, \ Ψe<2>\ is in general not absolutely
continuous with respect to P o and is either equal or singular to Pv even when
restricted to σ(U) (cf. 7.2). So we have to construct a proper version of the "limit" aυ.
Since the Wick ordering : : is taken with respect to the free measure Po (i.e. we
consider the so-called "Half-Dirichlet" case, cf. Sect. 3) we need to restrict ourselves
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to the class L of all open bounded sets satisfying condition (2.5). This condition
which is essentially "log-normality" in the sense of [S, §VΠ 3] holds for all sets with
"reasonable" boundaries.

The key fact for the construction is the following result (cf. 2.5):
For every U e I the Dirichlet solution Hv( Ψ) is p-integrable on U for every p ^ 1

and "sufficiently many" Ψe$)'.
Indeed, HV(Ψ) will play a major role throughout this paper and methods from

potential theory will be applied. In the conclusion of Sect. 4 we will see that the
^(Φ)2-specifϊcation (πΐj)Uel constructed this way can be interpreted as a pertur-
bation of the usual "half-Dirichlet boundary conditioned cut-off ^(Φ)2-measures"
(cf. [S, Sect. VII. 3]).

In Sect. 5 we study the Gibbs states for (πu)Uel which are defined as follows: Let
ί/elL, λ j£ 0 and P a probability measure on {β'\SS) such that

EP(X\σ(Uc)) = πλ

v(X) P-a.s. (1.8)

for every bounded, ^-measurable function X. Then we set PeGλ(U) and call P a
(local) U-Gibbs state. Furthermore, we call

Gλ=f)Gλ(U), (1-9)
Uel

the set of (global) Gibbs states for (πv)UeL. We denote the extreme point of these two
convex sets by dGλ(U\ dGλ respectively.

Equation (1.8) is the reformulation of the DLR-equations (1.1) that we
mentioned earlier. It follows from the special form of (πjj)Uel that every measure in Gλ

is locally Markovian (cf. 5.7), but the following result is more subtle (cf. 5.6):

Every PeGλ is locally equivalent to P o .
This implies that the set of (global) Gibbs states in the sense of GRS is equal to Gλ

(cf. 5.4), i.e. the GRS-Gibbs states are defined by the reformulated DLR-equations
(1.8) and all a priori restrictions can be dropped.

It is well known that for every λ^O there exist global GRS-Gibbs states
(cf. [Fr/S, Theorem 7.2]) and therefore we have that Gλ φ φ. In Sect. 6 we give a new
proof of this fact. Instead of the Bochner/Minlos theorem for nuclear spaces we
apply (directly) a version of Kolmogorov's existence theorem generalized to
inductive limits of standard Borel spaces (cf. [Pa, Theorem 4.2, p. 143]). The method
is due to Preston (cf. [P2]) from whom we also learned the suitable compactness
condition (cf. 6.3). This condition is satisfied in our situation because of inequality
(6.2) due to Frόhlich and Simon (cf. [Fr/S]).

In Sect. 7 we study Martin boundaries for (πl)Uel. The Martin boundary theory
of random fields was developed by Dynkin [Dyl,2] and Follmer [F] for an
arbitrary specification on a standard Borel space with a non-empty set of (global)
Gibbs states. (For a complete presentation see [PI, Chap. 2] and also
[Bl/Pf and Ng/Z] for special cases). Using our specification we can apply this theory
to ^(Φ)2-random fields and obtain the following results (cf. 7.4 and 7.5):

Any global GRS-Gibbs state can be represented in terms of extreme Gibbs
states. More precisely, there exists a measurable space (Jί\srf) called "Martin
boundary" for ( π ^ ) ^ , and a bijection between Gλ and the probability measures on
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(«,#; stf) which maps dGλ bijectively to the point masses on {M\ $t\ Any PeGλ can be
represented as an integral over Jί.

"Locally" it is even possible to characterize the extreme Gibbs states. The
particular form of (πv)Uel implies a one to one correspondence between the measures
in dGλ{U) restricted to σ(U) and Jfo(U\ where for U c R2, U open,

JΊfo(U) = {h:U->R:h is harmonic on U and p-integrable
on U (with respect to dx) for every p ^ 1}. (1.10)

As an immediate consequence we obtain (cf. 7.3, 7.7 (ii), and also (7.9)):
All boundary conditioned cutoff ^(Φ)2-measures in the sense of [G/R/S 2] (like

e.g. "Dirichlet," "Neumann," "periodic," "free" boundary conditions) on U can be
represented as an integral over J#Ό(U).

"Globally" the characterization of the extreme Gibbs states is a more difficult
problem. We have a complete solution only in the case λ = 0 (cf. 7.8):

The global Martin boundary for {πυ)υst is equal to the set of all harmonic
functions on U2.

In the general case l ^ O w e prove the following partial result (cf. 7.10):
Let PeδGλ, then there exists a unique harmonic function h on U2 such that

P{Φe^ ' : iV(Φ) = /i} = l, (1.11)

where the map Φ H > H R 2 ( Φ ) , ΦE9\ is defined to be the locally uniform limit of
Hυ(Φ\ l/el, as U / U2 (cf. Sect. 2). Furthermore, given a harmonic function h on
R2, any PeGλ satisfying (1.11) can be represented in terms of elements in δGλ

satisfying (1.11).
It is not clear yet whether for some λ > 0 the correspondence between dGλ and

harmonic functions on (R2 is one to one. One might hope that this is true for small λ.
This would solve an open problem in ^(Φ)2-quantum field theory, namely: which
"condition at infinity" implies that there is a unique global Gibbs state satisfying this
condition (cf. [G/R/S 1] and [Fr/S]). This problem will be the subject of further
study.

The results of this paper confirm that it is useful to consider ^(Φ)2-fields from a
potential theoretic point of view which was already done earlier by
Alveverio/Hoegh-Krohn in [A/H-K.], Dynkin in [Dy3,4] and the author in
[Rl,2,3].

Apart from Sect. 6 all results of this paper can immediately be extended to more
general symmetric, second order elliptic differential operators, essentially those for
which the associated harmonic structure is a self-adjoint harmonic space in the sense
of Maeda [M 1,2]. Also most arguments in Sect. 6 remain valid, except inequality
(6.2). In its proof Euclidean invariance of Δ—m2, meU, has been used. This
invariance is anyway necessary to construct the physically relevant, Lorentz-
invariant Wightman field theories from ^(Φ)2-fields. It is therefore important to
investigate invariance properties of our ^(Φ)2-specifications and their Gibbs states.
Because of the length of this paper we do not include these considerations here. They
will be presented elsewhere.
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2. The Free Specification (πv)Uel

Let us fix some basic notations.
Let 2' be the space of distributions on R2, i.e. the topological dual of

2 = CQ(U2\ the space of all infinitely differentiable functions on U2 with compact
support equipped with the usual inductive topology (cf. [R3,Sect. 3]). Let
<, >: 2' x 2 -• R be its dualization. For ge2we denote by Φ(g) the evaluation map
on 2' given by gt->(Φ,g}9 Φe2f.

For notational convenience we will not distinguish between Φ(g) and < Φ,#> if
there is no confusion possible. The σ-field S& generated by {Φ(g):ge@} is equal to the
Borel σ-field associated with the topology generated by Φ(g), ge@, on 2f. Given a
sub σ-field 3F of Sb and given an J^-measurable function X on 2' we also write Xe#"
and Xe^b if it is in addition bounded.

Given an arbitrary measurable space (βC\ stf) we denote the set of all probability
measures on (%Ίs/) by P(9C\s4). Given ?eΨ{β'\SS) and Xsύβhi let
EP(X) = P(X) = j X(Φ) P(dΦ) be the expectation of X under P and for a sub σ-field
J^ of J* let Ep( \lF) denote the conditional expectation with respect to P given # \

We denote the system of all open, respectively relatively compact open subsets of
IR2 by %9 respectively %c.

Consider the differential operator L = Δ — m2, meU, on U2. For Uetf/ let Gv

denote the (Dirichlet-) Green function of L on U extended to IR2 x U2 by zero. There
is a family {Pv)Ue<% of Gaussian, mean zero measures on (β'\ Si) associated with
(Gu)uev> t ' i e ^ r covariances being defined by

$Φ(g)Φ(f)Pu(dΦ) = ttGu(x,y)f(x)g(y)dxdy, (2.1)

Ue%9f9 ge@. Here dx denotes the Lebesgue measure on U2 and "Gaussian" means
that each Φ{g), gzΘ, has a Gaussian distribution under Pv. If U = (R2, we set

Po is called the free field of mass m. By simple transformation arguments we may
restrict ourselves to the case m = 1. From now on all potential theoretic notions are
meant with respect to the harmonic space given by Δ — 1. Given Όetfl we define for

<f,0>E.u = H GΛx, y)f(x)g{y)dxdyt and || / H ^

We set ( , > £ Ξ O ^ 2 and || | | £ = || ||£tR2.

The definition of the free specification is based on the solution Hυ( Ψ) of a
Dirichlet problem for Ue% with boundary data given by a distribution Ψe2'. We
recall its main properties (cf. [R3,Sect.6]).

2.1 Theorem. Let Uetf/. Then there exists a linear subspace Ω(U) of 2' such that

(i) Ω(U)eσ(U%
(ii) PV(Ω(U)) = 1 for every K e ^ , U a V, and a linear map Hυ\ Ω{V)->9' such

that for each ΨeΩ{Ό\
(iii) Hv( Ψ) is represented on U by a harmonic function.
(iv) HV(Ψ)= Ψ onint(Uc).
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(v) IfU is bounded, regular and Ψ is represented by a continuous function, then
ΨeΩ(U) and Hυ(Ψ) is the ordinary solution of the Dirichlet problem with boundary
data Ψ.

(vi) // Ψe& is represented by a harmonic function on U, then ΨeΩ(U) and
Hυ(Ψ)= Ψ. In particular,

ifVeq/,UaV,ΨeΩ(V).
(vii) For every ge@ the map Ψ^(HV{Ψ),g> is σ{Ucymeasurable ifH^Ψ) = 0

for ΨG2J'\Ω{Ό) and

) = EPv(Φ(g)\σ(Uc))(Ψ),

Pκ-a.s. in Ψe@' for every Ve<%, UaV.

2.2 Remark, (i) Because of the properties listed in 2.1 Hυ(Ψ) can be interpreted as the
balayage of the distribution Ψ on Uc.

(ii) For a different approach to construct a solution for a Dirichlet problem for
U with boundary data given by a distribution if U is a rectangle, see [D/Mϊ].

(iii) Note that, in particular, Hui is a map from Ω(U2) onto all harmonic
functions on 1R2.

For l /e^ c , let μ^,xeΌ, denote the associated harmonic measures (cf. [C/Co]).
As in [R3] we denote for ΨeΩ(U) the harmonic function representing Hυ( Ψ) on U
byxH/ιJ(!P), and set μ"{Ψ) = 0, if xeU2\U or Ψe@'\Ω(U).

Given a sub σ-field J* of £8 and Fe&, we denote by σ(^, F) the σ-field generated
by !F and F. The following has been proven in [R3, Sect. 4]:

2.3 Proposition. Let UG^C and xe U. Then the function Φ\-^μ^(Φ), Φe9', is σ(σ(dU),
Ω(U))-measurable and

j \μv

x(Φ)\2dP0(Φ) = Gμv

x(x) = ί Gμυ

x{z)dμυ

x{2),

where Gμu

x(z)^\G(z,y)μυ

x{dy).
For the purposes of this paper we need a slightly modified version of the

specification constructed in [R3] in the case of A — 1. The reason is that the
boundary behaviour of μυ\Ψ) is essential for the construction of the additive
functionals. In fact, integrability properties turn out to be sufficient. Hence we define
the linear space

Ω0(U)ΞΞ{Φ€Ω{U):$\μ"{Φ)\pdx< oo for every p^ 1}. (2.2)

We shall prove that Ω0(U) is sufficiently large. We know by 2.1 (i) and 2.3 that

ΩΌ{U)eσ{σ{dU), Ω(U)) c σ(Uc). (2.3)

For Ue<% define M(17) to be the set of all PeP(@';&) such that for every p ^ 1
there exists a constant cp > 0 such that

(J I Φ(g)\ HP)^ ^ cv{\ I Φ(flf)|2dP0)
1/2( = II9 WE) (2.4)

for every ge@(U). Here for Ue°ll we set Θ(V) = {#E£^:supp# c U).
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Furthermore, define I to be the set of all Ue°Uc such that

<π. (2.5)

for every p ^ 1.

2.4 Remark, (i) Let Ue% and PeP(@';&) such that Φ(g\ ge@(U)9 has a Gaussian
distribution under P and that the function M(g) = J Φ(g)dP, ge@(U), is continuous
with respect to || | | £ on βf(JJ). Assume furthermore that there exists a function c on
IR+ bounded in a neighbourhood of 0 such that

for every g£@>(U). Then standard arguments (using Laplace transforms) imply that
PeM(U). In particular, PveM(U), for all F e ^ , 1/ C K

(ii) Condition (2.5) is satisfied by all sets in °HC with reasonable boundaries. The
following considerations show that it is always satisfied by the "log-normal" sets
introduced in [S,§VII3], in particular by circles or rectangles. (Recall that "log-
normality" is needed in order to define half-Dirichlet states; cf. [S] and Sect. 3. Note
also that

Gμu

x(x) = lim(G(x,y) - Gv(x,y)\ xeU;
y->x

cf. e.g. [Rl, Sect. 2]): Let g: U-^U+ such that

g(\x-y\) = G(x,y); x9yeR2

9

where | | denotes the Euclidean norm on IR2. Then

Gμυ

x(x) = J G(x, z)dμu

x(z) ^ g(d(x, dU))9

where d(x,dU) = inf \x-z\. We recall that g has only a logarithmic singularity at 0.
zedU

Now we are prepared to prove that ΩQ(U) is "sufficiently large," if 1/eL This will

be the key fact for the construction of our polynomial additive functional in Sects. 3,

4:

2.5Theorem. Let Uel and PeM{U) such that P(Ω(U)) = 1. Then P(Ω0{U)) = 1.

Proof. Let p ̂  1. Since x ι-> μx(Φ) is continuous on U for every Φ eΩ(U) we can use
Fubini's theorem to obtain that

Since μx(Φ) is by construction a limit of coordinate functions Φ(gn), gne@(U\ (2.4)
and 2.3 imply that

l\μυ

x(Φ)\*dP(Φ) ^ c(Gμu

x(x)Y'\ xεU,

for some constant c independent of x. The fact that Uel now implies that

hence P(ΩO(U))=1. •
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2.6Remark. Let Uel and PeM(U). Assume that there exists a constant c>0 such
that for every feQ)

(!Φ(f)2dP)112 Sc

Then P(Ω(U)) = 1. This is a consequence of Minlos' theorem and the construction of
Ω(U). Therefore, P(Ω0(U)) = 1 by 2.5.

Let us define for l/e<8fc,

&0{U) = {Φe@': Φ is represented on (7 by a harmonic
function which is p-integrable on 1/
for every p ^ 1}. (2.6)

For ί F e ^ ' let 7V 0 ' - + 0 ' be defined by Tψ(Φ) = Φ + Ψ, Φe®'\ and let TΨ(P)
denote the image measure of PeP(®'\SS) under 7V Now 2.1, (2.3), 2.4 i) and 2.5
imply:

2.7Corollary. Let Uel.
(i) IfΨe#0(U), then T^Ω0{U)) = Ω0(U).
(ii) Theorem 2.1 (modified in the obvious way) remains true if Ω(U) and °U is

replaced by Ω0(U\ L respectively.
Now we are prepared to give the definition of the free specification (πu)υel and

summarize its main properties.
We change the definition of Hυ outside Ω0(U) for Uel by setting

= 09 if Ψe&\Ω0(U).

For Uel define the probability kernel πv on (2'\8) by

M ^ O ^ T ^ ^ P ^ ) , Ψe&. (2.7)

Clearly, for each Ψe9' the measure π^Ψ,-) is Gaussian with Fourier transform

πv(Ψ,') is not an element of M(U) in general, but because of 2.7 we have that

We should mention that the definition of πv differs from that given in [R3], since
Ω0(U) is replacing Ω(U). But 2.7 implies that 7.4 in [R3] remains true:

2.8Theorem. (πv)Ueί defined by {2.7) is a (σ(Uc))UeCspecification such that Th(P0) is a
Gibbs state for {nu)ϋelfor every harmonic function h on U2. It is Markovian in the

following sense:

If Uel and Zeσ(U)bi then πv(Z)eσ(σ(dU\ Ω0{U))b. (2.8)

Furthermore, it is "local" in the following sense:

πu{πu{Z)X) - KviZ^viX) for all Z, XGΛb. (2.9)

Because of 2.8 we call ( π ^ ) ^ the free specification.
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3. A Perturbation Formula

At the beginning of this section we want to recall briefly the definition and basic
properties of Wick monomials of generalized random fields (cf. e.g. [S,§V.l] and
[Gl/J, Chap. 8]).

Throughout this section let ne N be fixed. The nth Hermite polynomial Hn(t), teU,
is defined by

-ir*nmf-2m, (3.1)
ro = O

where

n!
nm (n-2m)\2mm\'

We define the following regularization for a distribution Φ eQ)'\ Let de£&, d^O,
Jφc) dx = 1 and d(x) = d(-x) for every xeU2. Define for keN,

dk,x(y)Ξ 22kd(2k(x - y)); x,yeU2. (3.2)

Then, set

Φk(x) = iΦ9dktXy; xeU2, keN.

For Uetfί the nth Wick power ofΦk(x\ xeM2, keN, with respect to Pυ is defined
by

'^^USΛ V — IΛ'ί/jfcvV/ 11n\*"U,k\-x/ ^* f̂clΛ//>

where

In the case of U = U2 we simply write : : instead of : :R2.
For geLP(R2,dx% p > 1, with compact support define for

! (3.3)

Then (:Φn

k{g)'u)ke\ converges in I}(3f\Pυ) (cf. e.g. [Gl/J, Proposition 8.5.1]).
Here U(β',Pυ\ q>0, denotes the space of (classes of) g-integrable functions on 2'
with respect to Pv. The limit is P^-a.s. linear in g.

The following theorem summarizes the main results on the "change of Wick
ordering" (cf. [S,§VII. 3] and [Gl/J, Sect. 8.6]). This theorem is relevant for us since
we want to construct our additive functional {au)UeL corresponding to the so-called
"Half Dirichlet" case, i.e. the Wick order is taken with respect to Po.

We need the following notations: For geLP{U2,dx\ p>0, we set as usual

and for ί / e * and XeU(9\Pυ\ q>0,

\\X\\ϋ.q =

Define for Ue% cv(x) = Gμ%(x), xeU.
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Furthermore, every function defined on a subset A of ίR2 is considered as a
function on U2 which is zero outside A. Every locally (dx-) integrable function on U2

is identified with its associated element in $)'.

3.1 Theorem. Let p>l,q^l,andUel. Then (:Φl{g):)keN converges in I3{β', Pv)for
every geU{U2,dx) with compact support. For the limit :Φn(g): we have that

[n/2]

:Φ"fo):= Σ Znm Φ^Λi-evTgϊv iVa.s.. (3.4)
m = 0

In particular, g\-+:Φn(g): is P^-a.s. linear.
Furthermore, ifK a U2, K compact, then there exist constants a, y ̂  0 and koeN

such that for every geLP(U2,dx) with support in K

q P (3.5)

and for all k^.k0,

k*\\β\\p' ( 3 6 )

Proof. It is easily checked that (3.4) is true for: Φn

k{g)\ if cv is replaced by cui k — cυk

(cf. e.g. [S,1.20b]). Since UeL, elementary arguments show that (cu2tk — cUtk)keN

converges to cv in LP(U, dx) for every p ^ 1. Now one uses the fact that there exist
α, γ ̂  0 and koeN such that for every geLp(U2,dx) with support in K

\V.Φn{g) υ\\υ,q^y\\g\\p (cf IG/R/S2, Lemma III.7),

and for all k^.k0,

\\'Φn(gyυ-'ΦnMυ\\u,q^y2-kΊ\g\\P (cf. [Gi/j,

Theorem 8.5.3]), and the assertion is a consequence of Holder's inequality. •

3.2 Remark. In the preceding theorem: Φn(g): as an element of U(β', Pv), depends on
U. But (3.6) and the Borel-Cantelli Lemma imply that the function

Φι->lim sup Φn

k{g)\ is a version of: Φn(g): for every UeL From now on :Φn(g)\ shall
fc-*oo

denote this particular version. So we can avoid to express the ̂ /-dependence in the
notation.

The main step to construct our ^(Φ)2-additive functionals is the following
theorem:

3.3Theorem. Let UeL, p> 1 and geLP(U,dx). Then there exists a version a{β]g of
:Φn(g): such that a%]g is σ{U n supp g)-measurable and for every heJ^0(U),

n / n \

a(v,g{φ + h)= Σ lΦm{hn~mg):, P^-a.s. in Φe®'. (3.7)

Remark. Because (3.7) says that for every heJΊfo(U)

aftg(Φ + h) = €ίffg(Φ) + "Σ (n\φm(hn-mg):, Pv-a.s. in Φe®',
m = o\mj

it can be interpreted as a perturbation formula.
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The rest of this section is devoted to the proof of 3.3. It is based on a series of
lemmas. We start with the following two facts: The first is a simple formula about
Hermite polynomials and the second is a well-known theorem about harmonic
functions.

3.4Lemma. For ί, seU,

m = 0 '

Proof This is easily seen using Rodrigue's formula for Hermite polynomials. •

Theorem 3.5 Every set of uniformly bounded harmonic functions on an open set is
equicontinuous.

Proof [C/Co, Theorem 11.1.1]. •

Let (Kj)jeN be an exhaustion of U by compact sets, i.e.

KjCzint{KJ+1),

and

such that for every jeN9

μuχκdx^2-\ (3.8)

For keN and hejeo(U\ set

Furthermore, we define for geL2(U,dx) as usual

where the closure is taken with respect to the Euclidean topology on U2.

3.6 Lemma There exists a subsequence (kt)leN of(k)keN such that for eachjeN there
exists l{j)sN such that for each meN and every harmonic function h on U,

x)-Λj;;(x)|smz ' sup

for all I ̂  /(/).

Proof It is, of course, enough to show the existence of this subsequence for a fixed
jeN, because then, the usual "diagonal argument" yields the assertion. So, fϊx eN.
Define

Jfi = {h:U->U:h is harmonic on U and \h\ ̂  1 on Kj+2}.

By 3.5 for every leN there exists a (52>O such that whenever x, yeKj+1 with

x - y\ ^ δh then \h(x) - h(y)\ ̂  2~ι for each
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Thus we can select a subsequence (kt)leN of {k)keN such that for each xeKj, each
i and

and thus for every meN, \hm(x) — /^(x)! ^m2~ι. Now the assertion follows by
homogeneity. •

From now on we consider the subsequence (kt)le^ of 3.6. Changing (3.2) we write
again {dktX)keN instead of (dkuX)kN, xeU2, and do the same with :Φ£(:>c):, cυk etc.

Now we can define the proper version of: Φn(g):. Given geLP(U, dx\ supp g a U,
define

α(&(Φ) s l i m sup ΦJfe):, Φe@\ (3.9)
fc->oo

and then for arbitrary geLP(U,dx%

< y φ ) = lim sup<>,.(Φ), Φe@\ (3.10)

where g} = \κ g. Since (Kj)jeN is an exhaustion there is no ambiguity in the definition

Remark. (3.5), (3.6), (3.8) and the Borel-Cantelli Lemma assures us that the "limsup"
in (3.9) and (3.10) is a limit P^-a.s. in ΦeΘ' and that dζ]g is a version of :Φ\g)\.

It is clear that a^]g is σ(U n supp ^-measurable; so it remains to show (3.7), which
will be a consequence of the following lemma.

3.7 Lemma. Let j , meN^q^ 1. Then there exist constants α, γ > 0 and koeN such that
for every heJίfo(U) and every geLP(U,.dx) with suppg cz K^

||:Φ"(ΛMflf):-:ΦKA^):|lι;.^ ym^UWp sup \h(x)\m

9

for every k^k0.

Proof. By (3.5) and (3.6) we can find α, γ > 0 and koeN such that for all k^k0,
and geIf(Kpdx\

: Φn(hmg): -: Φfflίΐg): \\v« ̂  ||: Φn((hm - K)g): \\ϋ

sup \h(x)\m

9

χeKj+2

where the last inequality follows by 3.6. Π
Now let gel?(U,dx\ s u p p l e U. By 3.7 and the Borel-Cantelli Lemma it

follows that for heJfo(U)9

) - Σ (H\φm(hn-mg):
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Pv-a.s. in ΦeS>'. Furthermore, by (3.3) and 3.4 we have that for every

:(Φ + hγk(g):= f

Hence (3.7) follows for such g because of definition (3.9). Because of definition
(3.10) the case of an arbitrary geLP(U, dx) can easily be reduced to the one treated
above using (3.5), (3.8) and Holder's inequality. Thus the proof of Theorem 3.3 is
completed.

4. Polynomial Additive Functional for ( π ^ ) ^ and the
^*(Φ ̂ -Specifications {πi,)UGL

From now on let 0> be a fixed lower bounded polynomial,

N

0>(t)= £ bnt\ teU, bneU.
n = 0

Using the results of Sect. 3 we can now define the additive functional for (πv)Uel

associated with the polynomial ^\
Given 1/eL, define for geLp{U,dx), p > 1,

where a^]g is the version of 3.3.

(4.1)

g

If g — lw, W a Borel subset of U, we set aυw = aUtlw and

αu = αVιU. (4 .2)

Symbol ica l ly , α ι / ( Φ ) = " f : ί

4.1 Theorem. (av)UeL defined by (4.2) is an additive functional for (nv)UeV Furthermore,
aυeσ(Ό) for every 1/εL

Proof At first we show (1.5): Let U, Vel with U a V. By definition of av we have

that for all Φ,

Hence it follows by (3.7) that for each

n=0 \m=ί

+ Σbn( Σ
n =0 \m =

= av{Φ + HV(Ψ)) + aκ

Pκ-a.s. in Φ (cf. also 3.2). Hence (1.5) follows by the first part of 3.3, which also implies
the last part of the assertion. Property (1.6) is again a consequence of (3.7) by
[Gl/J, Theorem 8.6.2]. •
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Now we define (njj)UeL9 λ^O by (1.7) using the additive functional (au)Uel

constructed above for our given polynomial ^ , i.e.

4.2 Remark. Let f e ^ ' . By (2.9)

As pointed out in the Introduction, 2.8 and 4.1 imply the following theorem:

4.3 Theorem. (π^)ϋ e L is a (σ(Uc))Uel-specification. It is Markovian in the following
sense:

IfUel and Zeσ(U)b, then π^(Z)eσ(σ(dU\Ω0{U)). (4.4)

Furthermore, (nij)Uel is "local" in the following sense:

πλ

υ(%λ

υ(Z)X) = 4(Z)π£(X) for all Z, XeΛb. (4.5)

(4.5) follows by (2.9) and (4.4) is an immediate consequence of (2.8), since aυeσ(U),
Uεl. We call ( π j ^ , λ ̂  0, 0>(Φ)2-specifιcation.

If we assume the "Continuum Hypothesis," polynomial additive functionals for
(πu)uei c a n a l s o b e constructed using Mokobodzki's "medial limits" (cf. [De/Me]).
But it turns out that in order to prove the required "convergence in measure" for all
relevant measures one has to use similar arguments as those in this and the
preceding section. Thus the construction is not essentially shorter. In addition, we
can avoid the "Continuum Hypothesis."

We conclude this section with another consequence of our perturbation formula
(3.7):

4.4 Remark. Let ί/eL, λ ̂  0 and gsSf. Then, if Ψe@\

(piΦ(9)p-λQv(μV(Ψ))p-λav\

where

= Σ Γ
o

m=o

Qυ{μυ.{Ψ)) is a "polynomial in Φ" of one degree less than 0>. Therefore, by the
formula above π^{Ψ, ) can be treated as a perturbation of the <(halfDirίchlet
boundary conditioned cut-off 0>(Φ)2-measurέ\ i.e. the measure e~λa^?υl?v{e~λa^\

5. The Gibbs States for (πέ) U e L

Fix λ ̂  0. Let {πi,)U€ι be defined by (4.3). In this section we want to study the relation
between the associated Gibbs states Gλ(U\ Uel, Gλ (now defined by (1.8) and (1.9))
and the local respectively global Gibbs states in the sense of Guerra, Rosen and Simon
(cf. [G/R/S 1,2]). We start with a proposition that summarizes useful properties of
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Gλ(U) and Gλ. The proof is an immediate consequence of the definitions and the
"consistency property" (1.4) (cf. also [R3,7.5]).

5.1 Proposition. Let I/el and PeΨ(β'\0&\ Them
(i) Pn^eG^U).
(ii) PeGλ(I/), if and only ifP = Pnλ

υ.
(iii) If Vet with U cV9 then Gλ(V) c Gλ(U). In particular, if(Un)neN is a sequence

in I such that for every Vel there exists neN with V czUn, then

Gλ=f]Gλ(Un).

(iv) IfPeGλ{U\ then P{Ω0(U))=L
Now we want to recall the definition of GRS-Gibbs states (cf. [G/R/S 1, p. 240

and also Theorem VIL2]).

5.2 Definition. Let Ue^c. An element PeP(&; 0&) is called Markovian with respect to
I/if

EP{X\σ(Uc)) = EP(X\σ(BU)) P-a.s.

for every Xeσ(U)b. P is a local Markov field or has the local Markov property, if P is
Markovian with respect to each Uetfίc.

For more details on Markov properties for generalized random fields see

[A/H-K,D3 and Rl, 2].

5.3 Definition. Let JJe°Uc and PeΨ{β'\ J>). Then P is called U-Gibbsian in the sense of

GRS, if
(i) P lσ{ϋ) (i.e. the restriction of P to σ{0)) is absolutely continuous with respect to

()
(ii) P has the local Markov property.
(iii) For every Xeσ(U)b,

P is called a GRS-Gibbs state, if it is I/-Gibbsian for every Ue%c.

Remark. In [G/R/S 1] the authors consider in (5.1) an arbitrary version of the

L2(P0)-limit of (j:^(Φ fc(x)):ί2x)^, whereas we take the particular version aυ
u

constructed in Sect. 4. To be precise we should mention that in the original
definition GRS use closed set instead of open sets. But by (3.5) we can always replace
U by U as long as dU has Lebesgue measure zero. Furthermore, since every \Je°lίc

can be exhausted by a sequence in I and because of the martingale convergence
theorem, we may replace ύllc by I in the second part of 5.2 and 5.3 as well (cf. also
[G/R/S 1VII. 3]).

As mentioned in the introduction (5.1) is referred to as the "DLR-equations for
^(Φ)2-random fields." But in this formulation the local Markov property has
already been incorporated, and since the right-hand side of (5.1) is determined only
up to P0-zero sets, one has to assume 5.3 (i). Our definition of Gibbs states based on
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the "reformulated DLR-equations" (1.8) is independent of P0-zero sets, so the a
priori assumptions (i) and (ii) can be avoided. An interesting fact is that because of
the special form of our specification (πl)UEl, every element in Gλ satisfies (i) and (ii)
automatically. Therefore, we will be able to prove the following theorem:

5.4 Theorem. Let PeP(@f;&). Then P is a {global) GRS-Gibbs state if and only if
PeGλ.

For the proof we introduce the following notion:

5.5Definition. Let Ue<% and Pί9 P2eΨ>(2'\&). Pλ is called locally absolutely
continuous with respect to P2 on U if for every K aU,K compact, P^ is absolutely
continuous with respect to P 2 f . P1 and P2 are locally equivalent on U if, in
addition, also P2 is locally absolutely continuous with respect to P x on U.

The proof of 5.4 is an immediate consequence of the following three theorems to
be proven below.

5.6Theorem. Let Uel and PeGλ(U). Then P, P o and Pv are locally equivalent on U.
In particular, every PeGλ is locally equivalent to P o on R2.

5.7 Theorem. Every PeGλ is a local Markov field.

5.8Theorem. Lei Uel and PeΨ(β'\0&\ If P is a local Markov field and locally
absolutely continuous with respect to P o on R2, then (5.1) and (1.8) are equivalent.

In order to prove 5.6 we need some preparations. For the rest of this section fix
Uel.

5.9 Lemma. Let /, ge3>. Then

£Pϋ(exp(iΦto) + Φ(/))) = exp(i(||/||I iϋ-||flf| |I i l /)

Proof We may assume that | | / | |£ t l / 5̂ 0. Set

E,U

Then <0χ, 02 )E,u = <92>f>E,u = ° > a n d t h u s &(0i)is independent of Φ(g1) and Φ(f)
(since (,}EtU is the covariance of Pυ and Pυ is Gaussian). It follows that

= ^^^

, f . D

Let H . i be the Sobolev space of order —1, i.e. the space of distributions
obtained by completing 3ι with respect to || | |£. For an element feH_x and a
closed set A c= IR2, define fΛ to be the balayage of/on A, i.e. the projection of/onto
the closed subspace of all elements in H _ j with support in A. We recall that the map
G defined on 3ι by Gf(x) = J G(x, y) f(y) dy, fe@9 extends to an isometry between
H_! and the Dirichlet space given by Δ — 1, i.e. the space of all ueL2(U2,dx) such
that their distributional derivatives du/dxi9 i = 1,2, are again in L2(U2, dx) (see [Fu]
for more details). We also recall that every element in this Dirichlet space has a
quasi-continuous version ύ. We refer to [Fu, Chap. 3] for the precise definitions.
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5.10Proposition. Let Vref with V c U and Ψe<3' such that there exists fe<3 such
that for every ge3)(V\

Then TxJPjX and PIJt are equivalent.
ψ y UJ\σ(V) U\σ(V) γί

Proof, Define X: 9' -* U by

Then for every ge@{V), we have by 5.9 that

gJ)E,u)

/I'e>£) (cf.[R3,5.2])

Similarly it follows that if

y ( Φ ) Ξ Ξ e x p ( - Φ ( / ) +

then

jQχp(iΦ(g))YdT^Pv) = £Pϋ(expiΦto)) for every ge®{V). Π

The following corollary is the key point for the proof of Theorem 5.6. It is based
on 5.10 and the fact that a harmonic function can locally be represented as the
difference of two potentials. Since we restrict ourselves to the case of L = A — 1, we
can do this in an explicit way (cf. also [H/St] for a special case).

5.11 Corollary. Let Ψe@'. Then Pυ and π ^ ϊ V ) are locally equivalent on U.

Proof. By (4.3) we may assume that λ = 0. Let K be a compact subset of U. Let
κe@(U) such that κ=l on an open neighbourhood V of K. Define / =
— L(κHv( Ψ)). Note that since Hv( Ψ) is represented by a harmonic function on U we
have that fs2(U).

Because of 5.10 it remains to show that for every

(5.2)

So let ge2>(V). Since for an arbitrary fγe2), we have that

we conclude that

and furthermore, that

J GiΓc)gdx = J Gfdgυ' = J κHv( Ψ)dgυ° = 0.

This proves (5.2). D
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5.12 Remark. We will prove below (cf. 7.2) that on σ{Ό\ however, the measures Pυ

and π\j{ Ψ, ) are either singular or equal. Furthermore, π^( Ψ, ) is in general not
absolutely continuous with respect to P o on σ{U) (cf. 7.2). By 5.8 it follows that Gλ(U)
is strictly bigger than the set of (7-Gibbsian states in the sense of GRS.

Now we are prepared to prove 5.6.

Proof of 5.6. Let X be a compact subset of U and Neσ(K). Assume PV(N) = 0. Then
by 5.11 for every Ψe®\ π£( f, iV) = 0, hence

P(N) = J πλ

v( Ψ, N)P(d Ψ) = 0.

Conversely, if P(N) = 0, then there exists a ΨeQ)' such that π&( Ψ, N) = 0. Hence, by
5.11, Pv(N) = 0.

By 2.8 we know that PoeGo(U). Hence, the first part implies that Po is locally
equivalent to Pυ on U and everything is proven. •

Remark. The fact that Po and Pυ are locally equivalent on U is, of course, well
known (cf. e.g. [S, Theorem VIII2]). The proofs in the literature so far were done by
analytical methods. The new proof given above is of probabilistic nature.

Proof of 5.7. Let Xe@b. Assume first that Xeσ(U)b. We know that

ni(X\ P-a.s..

By (4.4) we have that πί(X)eσ(σ(dU\ Ω0(U)), and by 5.1 (iv) it follows that P{Ω0(U))
= l.Thus

Now a simple argument using monotone class theorems extends this to
Xeσ(σ(U\σ(δU))b.

Let K be a compact set in U2 such that U cz int K. For a sub σ-fϊeld si of M and a
probability measure F on (β'\08) we define jrfKP to be the σ-field generated by si
and {Neσ{K): F(N) = 0}. By a slight modification of [R3, 5.4 and 5.5], it is easy to
see that

σ{σ(U\ σ(dU))κ<Po = σ{U)κ<Po,

and hence by 5.6,

Thus,

EP{X\σ(Uc)) = EP(X\σ(dU)) P-a.s.

for every Xeσ(Ό)b. •

Before we prove 5.8 we introduce the following algebra of sets. Let

^= U σ ( y ) (5-3)
Ve#c

^ is called the algebra of local observables and an element Xe<£ is called locally
measurable.
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We note that though we assume the local Markov property for P, the
equivalence of (5.1) and (1.8) is not clear. One problem is to show that up to P-zero
sets & = σ(σ(U\ σ(Uc)). Since we are dealing with a measure space of distributions
such a "sharp" decomposition is always difficult to prove. The proof of 5.8 is
somewhat technical and based on the following three lemmas. Their proofs are all
direct consequences of the construction of Hυ in [R3]. We only indicate the main
ideas and refer the reader to the corresponding details in [R3]. The arguments are so
complicated since Ω0(U) is not locally measurable.

5.13 Lemma. There exists a countable dense subset Q)γ ofΘ such that for each
one can find a real function Zgeσ(U) such that <Φ —Hυ(Φ\g)> = Zg(Φ) for each
ΦEΩ{U).

Proof This is a direct consequence of the construction of Hv (cf. Sect. 6 in [R3]). The
main reason is that

HV{Φ) = φ on 0(int UC)

(cf. 2.1 (iv)). •

5.14Lemma. Let PeP(@Ί&) which is locally absolutely continuous with respect to
P o . ThenP(Ω0(U))=l.

Proof Since for every xeU there exists a map μ%: 3)1 -• U which is σ(<3 Immeasurable
such that for every Φe@' the map x-^μ^(Φ) is harmonic and μ£(Φ) = μ,(Φ) for
every ΦeΩ(U\ xeU (cf. [R3,4.8(v)]), it suffices to show P(Ω(U)) = 1. This follows
from the construction of Ω(U). •

5.15Lemma. Let Xe^, X^O. Then there exists Ze<£, Z ^ 0 , such that πv(X)(Ψ)
= Z(Ψ) for each ΨeΩ0(U).

Proof Applying the usual monotone class theorems, we may assume that X = 1F

with

where neM;g1,... ,gne^ and Bλ,... ,Bn are Borel subsets of U. For every ΨeΩ0(U\
we have by definition that

M l F ) m = J Π lBJίΦ(gd + <Bυ(Ψ),gι»Pυ(dΦ).
i = l

But by construction of Hv and ΩQ(U) there exist Zjeif, l ^ i ^ n , such that
< Hv{ Ψ), gi > = Zf( Ψ) for every ΨsΩ0(U). Hence the assertion follows by one part of
Fubini's theorem. Q

Proof of 5.8. Case 1: Assume first that Xeσ{Ό)b, X ^ 0. Let A\ = X and X2 = 1. Then
by 2.8 and the local Markov property of P o , we have that

EPo(X,e-*°v\σ(dU)) = n^Xfi-^), P0-a.s..

By 5.15 there exist ZfeJSf, Z{ ^ 0, such that π^X^-^) = Z f on Ω0(U). Therefore,
since P0(Ω0(U)) = 1 (cf.2.5) and Z^Se, (5.1) is equivalent to
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EP(X\σ(dU)) = ^- P-a.s.. (5.4)

Since P(Ω0(U)) = 1 by 5.14, it follows that (5.4) is equivalent to

λ P-a.s.. (5.5)

Now the Markov property of P implies the equivalence of (5.5) and (1.8) for every
Xeσ(U)b. But then (1.8) also holds for l e t

Case 2: Assume Xe@b9 X^O. Let 9>x be as in 5.13 and ge3f1. Let Zgeσ(U) be as
in 5.13, then it follows that P-a.s. in

EP(εxpiΦ(g)\σ(Uc))(Ψ)

= expi(Hu(Ψ)ig}EP(expi(Φ(g)-(Hu(-\gy)\σ(Uc))(Ψ)

= expi(Hu(Ψ\g)EP(expiZg\σ(Uc))(Ψ) (by 5.14)

= exp i < H^ Ψ\ g > πftexp iZβ){ Ψ) (by Case 1)

= e x p K 5 ϋ ( n ^ > π έ ( e x p ϊ ( Φ t o ) - < / ? ϋ ( ) ^ » ) ( ^ ) (by 5.1(iv))

= π£(expiΦ(g))(Ψ) (by [R3, (7.7)]).

Now the assertion follows by monotone class theorems. •

5.16 Remark. The proof shows that the assumption in 5.8 can be weakened. Instead
of the "local absolute continuity," it is enough to assume that: P ^ is absolutely
continuous with respect to P0lσ{ϋ) and P(Ω0(U)) = 1. Furthermore, it is enough to
have the Markov property only for U.

6. Existence of Gibbs States

In this chapter we are concerned with the question whether Gλ contains at least one
element for any given λ ^ 0.

It is a well known fact that there are GRS-Gibbs states for every λ ^ 0. This was
first established for small coupling using a result of Newman [cf. [G/R/S 1, Remark
1, p. 243], [JV]) and then for general λ ^ 0 by Frohlich and Simon in [Fr/S,7.2].
Since we know by 5.4 that Gλ is equal to the set of all GRS-Gibbs states, we have the
following theorem:

6.1 Theorem. Gλφ φ for every λ^.0.
Since this result is very important and the proof is not at all obvious, we want to

describe a new approach to prove this theorem using ideas of Preston [PI, Chap. 3]
and [P2, Chap. 4]. The main difference to former proofs is that instead of applying
Minlos' theorem we use directly Kolmogorov's existence theorem generalized to
inductive limits of standard Borel spaces (cf. 6.9 below). So fix λ ^ 0.

First we need the following notions:

6.2 Definition. Given P, PneP{&; @\neN, {Pn)neN is said to converge £fb-weakly to P,
if for every



126 M. Rδckner

Since (πΐj)Uel is a "local" specification in the sense of 5.15, this notion of
convergence is appropriate for our purposes.

6.3 Definition. A set P1 c P(<3f; $) is called locally uniformly (absolutely) continuous if
Vs°llc and ε > 0 for there exists a probability measure Pε on (@'9σ(V)) and δ > 0
such that if Feσ(V) with Pε(F) < δ then P(F) < ε for all PePι.

Set for L, ί > 0,

and flLit = flϋt.

The proof of 6.1 is an immediate consequence of the following three theorems.

6.4Theorem. Let P, PneP{9'\@\ neN, such that:
(i) (p

n)neN converges ^b-weakly to P.
(ii) For each UeL there exists n(U)eN such that PneGλ(U) for every n ^ n(U).
Then PeGλ.

6.5 Theorem. For every L, f,

and there exist Lo, t0 ^ 0 such that

is locally uniformly continuous.

6.6 Theorem. Let Px a P(β'\ £%) be locally uniformly continuous. Then every sequence
in Pi has a ^b-weakly convergent subsequence.
Proof of 6 A. Since by (ii) and 5.6 each Pn is locally absolutely continuous with respect
to Po on every Ueί. such that n ^ n(U), we conclude by (i) that Pis locally absolutely
continuous with respect to P o . Hence it follows by 5.14 that

P(ΩO(U))=1 for each UeL (6.1)

Now let Uel and Xe^b. By 5.15 we can find Ze^b such that πλ

υX = Z on
Ω0(U). Hence by (6.1) and 5.1 (iv) we conclude that

Pπ&X) = P(Z) = lim Pn(Z) = lim Pnπ
λ

v(X) = lim Pn(X) = P(X).
n~+co n~> oo n—* ao

Now the usual monotone class theorems and 5.1 (ii) imply the assertion. •
The proof of 6.5 is done in several steps. By [Gl/J, Theorem 8.6.2] the first part of

the assertion is contained in the following proposition as a special case which is
called the case of "free boundary condition" (cf. [S,§V.l]). In Sect. 7 we will apply
this proposition to the most general "boundary conditions" in the sense of
[G/R/S2] (cf. 7.3 below).
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6.7Proposition. Lei UeL

(i) Let σ ^ - A, PeGλ(U) and peσ{Vc\ p > 0, such that

Then

In particular, we may take p = πu(e'~{λ+σ)av)/πu(e λav).
(ii) There exists a one to one correspondence between G0(U) and Gλ{Ό) given by

Proof. It suffices to prove (i). Let I e J f c , then

Hence e-σav/p-PeGλ + σ{U). Since nλ

υ{e~σaυ) = πυ(e~{λ + σ)a^)lπυ{e~λa^\

also the second part of assertion (i) follows. •
In order to prove the locally absolute continuity we need the following result due

to Frόhlich and Simon. For the proof see [Fr/S] (in particular, Lemma 7.1 and the
proof of Theorem 2.3).

6.8 Proposition. Let Vetfίc and q>4. Then there exist constants c, t0, Lo ^ 0 such that
for every Feσ{V)b and every L^LOi ί ^ ί0,

(6.2)

Proof of 6.5. Let VeWc and p = (1 - q~ι)~ι. Define

= £Po(exp(-AαL>f)lσ(K))
Put £P o(exp(-λαL f ί)) '

Then we know by 6.8 that {pLt:L, ί^O} is uniformly bounded in
(Lp(<3\c(y)\ || ||R2jP) for L ^ L 0 , ί ^ ί 0 . Using the Banach/Alaoglu-Theorem
(cf. e.g. [Re/S, Theorem IV, 21]) and the Dunford/Pettis-Theorem (cf. e.g.
[Me, Chap. II, T23]) we conclude that {pLΛ: L ^ Lo, ί ^ ί0} is uniformly integrable.
Now the second part of 6.5 follows immediately (cf. e.g. [B,20.7]). •

Theorem 6.6 can be found in an unpublished manuscript of Preston
([P2, Chap. 4]). For completeness we present the proof here. First we recall the
following version of Kolmogorov's existence theorem.

6.9Theorem. For every VeWc, let PveP(@';σ(V)). If(Pv)v&vc

 is consistent, i.e.

PV(F) = PV{F) for all V c V\ Feσ{V),
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then there exists a probability measure P on [β'\ @) such that

P(F) = PV(F) for all VeWc, Feσ(V).

Proof. See [Pa, Theorem 4.2, page 143]. We note that for each K e ^ c the measure
space {β'\ σ(V)) is standard Borel and that its atoms are just of the form,

A{Ψ) = {Φe3)'\Φ = Ψ on 9(V)}9

where ΨeΘ'. Hence the condition in [Pa, Theorem 4.2] concerning the atoms of

(@';σ{V))is satisfied. Π

Proof of 6.6. Since {β'\ σ(V)) has uncountably many atoms, we can use the following
fact which is an immediate consequence of the main representation theorem for
standard Borel spaces (see e.g. [Pa,p. 133]):

There exists a countable algebra g(V) generating σ(V) such that if P\δ(V)-* 1R+

is bounded, then P is a measure (i.e. countably additive) if and only if it is finitely
additive.

Now let {Vn)neN be a sequence in °UC such that for each neN, VnaVn+1 and

Let

and (Pn)neN be a sequence in Px.
Since si is countable there exists a subsequence {nk)keN such that

k
fc-*oo

exists in 1R for every Festf. Clearly Q^{V) is finitely additive, hence countably
additive, and thus (by Caratheodory's theorem) extends uniquely to a measure Qn on
σ(Vn).

Now we want to apply 6.9. There is no a priori reason for supposing that (β,,)^ is
consistent, but in fact this is implied by the local uniform continuity:

We claim that for all neN and Feσ(Vn%

Qn=lhnPnk(F). (6.3)
k-+aθ

Fix neN and Feσ(Vn). Let ε > 0, then there exists a probability measure Pε on
(β'\ σ(Vn)) and δ > 0 such that if Feσ(Vn) with PE(F) < δ, then Pnk(F) < ε for all keN.
Since /(Vn) generates σ(Vn\ we can find AeS{Vn) such that Qn(AΔF)<ε and
Pε(AΔF)<δ, and therefore Pnk(AΔF)<ε for every keN, where AΔF
= (A\F)u(F\A). Thus

\Qn(F)-PJF)\ ^\Qn(A)~ΛJΛ)| + Qn{AΔF) + Pnk(AΔF)

^\Qn(A)-Pnk(A)\ + 2ε

and (6.3) is proven.
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Equation (6.3) implies the consistency of (Qn)neN, and extending this sequence in
the obvious way we get a consistent family (Qv)Ve% such that Qn = QVn for all neN.
Now 6.9 and (6.3) imply the assertion. •

7. Martin Boundaries for ̂ (Φ)2-Random Fields

Since our Gibbs states are described by means of a specification, we can apply the
Martin boundary theory for random fields which was developed by Dynkin and
Fόllmer (cf. [Dy 1,2], [F] and also [PI]) to our situation. That means essentially: we
can represent an arbitrary Gibbs state in terms of extreme Gibbs states. In the case
λ = 0 it is even possible to give a characterization of the extreme (global) Gibbs states.
In the more interesting case of λ > 0 this is much more difficult. We have a "partial"
result also in this case. "Locally" the characterization of the extreme Gibbs states is
an almost immediate consequence of the definition of our specification (nfj)Uel. This
will be the contents of our next theorem. First we need the following notations:Fix
A^Oand C/eL

Given a measure space (#*; sί)9 a set T and a map T: % -• W, define

= {F c T\ T" \F')est}.

And if PeP (β£\sd\ we denote by T(P) the image measure of P under T defined on
(3Γ: T(srf)\ Furthermore, we set for Uel,

7.1 Theorem, (i) // Ψe@'9 then

4 ( ¥ V ) = nλ

υ{Hυ{ n ) (7.1)

and

πλ

υ{Ψ,{ΦeΘ>:Hυ{Φ) = Hu{Ψ)})=\. (7.2)

Furthermore,

In particular, the map h^π^(h,') is a bijectionfrom <&0{U) to dGλ(U).
(ii) Hv induces a bijection from Gλ(U) to Pv. Under this map the point masses on

(Jfo(ί7),Jffί7(σ((7c))) correspond to the extreme elements in Gλ(U).
(iii) PeGλ(U) if and only if there exists a (unique) PePυ (in fact: P = HV(P)) such

that

P = Pπλ

v, (7.3)

where π^: Jfto(U) x $ -» [0,1] is a probability kernel which is just the restriction ofπ\j
to J^0{U) (in the first variable).

Proof (i): (7.1) and (7.2) are consequences of 2.1 (vi) and [R3,8.7 (ii)], since πλ

v( Ψ9 ) is

by definition absolutely continuous with respect to πv( Ψ, •) for every Ψe&. Now let
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. Let Pl9 P2eGλ(U) such that

By (7.2) it follows that P2({HU = HU(Ψ)}) = P2({Hu = Hv(Ψ)}) = 1, hence by 5.1
(ii) and (7.1),

Thus, πb(Ψ,-)edGλ(U). Let PedGλ(U). Since ZPeGλ(U) for every Zeσ{Όc) with
F(Z) = 1, it is easy to see that P is trivial on σ(Uc). Hence for a dense countable subset
3)γ of ® we can find *Pe^ ' such that for every ge@l9

π^exp iΦ(g)) = πftexp ?Φ(^))( <P) P-a.s..

Since Pπλ

v = P, it follows that P = πfj(Ψ,) and (i) is proven.
(ii) + (iii): We have to show that the mappings P^>Pπλ

υ, PePv and P^R^P^
PeGλ(U) are inverse to each other.

So let PePy. Since {n^)VsL satisfies (1.4), we obtain that Pn^eG^U). Using
[R3,(7.7)] it follows for XeHv{σ(Uc))b that

\Hu)dP = \XoHυdP (by [R3,(7.7)])

= $XdP. (by 2.1 (vi)).

And for PeGλ(U) and Xe^b, we have that

\Xd{Hυ{P)πλ

υ) = l{πλ

υX)oRυdP = \πλ

υXdP = \XdP. D

7.2 Remark. At this point we want to consider some properties of the measures
π^(*P, •) when restricted to σ(U). It is easy to see that if Zeσ(U)b9 then (7.1) can be
rewritten as

(7.4)

According to the construction in [R3, Sect. 4] we can change the definition of μυ.{Φ)
for Φ e2'\ΩQ{U) in such a way such that the new version μv

x{Φ) is still harmonic as a
function of x on (7, but also σ((7)nσ(5(7)-measurable in Φ e ^ ' . If we set
Mh = {ΦeS)t\μυ.(Φ) = h} for heJ?0(U\ then by [R3,4.8(v)]

Mheσ(U)nσ(dU). (7.5)

Clearly, MhnMh, = φ if hfeJf0(U)\{h}. Let Ψe®'. By (7.3) and the fact that
πλ

v(Ψ,Ω0(U)) = 1, (cf. 5.1 (iv)) it follows that

} l (7.6)

Hence on σ(U) the measure πέ(*P, ) is either equal to π^(Φ, ), Φe®', namely if
μx(Ψ) = μυ

x(Φ) for all xsU or singular to it otherwise.
Now we want to show that for ΨeQ)' the measure π^(Ψ,•) is in general not

absolutely continuous with respect to P o . By (7.4) we may assume that
Ψ = heJ^0(U). Of course, it is enough to consider the case λ = 0.

Assume that nv(h, •) is absolutely continuous with respect to P o on σ(U). Then by
(7.6) we know that P o (M Λ )>0. Therefore, there are at most countably many
measures πυ(h,-) which are absolutely continuous with respect to P o .
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It is also easy to see that Po is not absolutely continuous with respect to πv(h, •)
on σ(U). Because, if this were the case, then by (7.6), P0({μV( ) = h})= 1. Therefore,
by 2.8, (7.4) and 5.1 (iv) for every Zeσ(U)b9

P0(Z) = j \{βU,)^h}πu(Z)dP0 = πv(Z){h).

Therefore, /ι = 0, hence PO = PU on σ(U\ which is impossible (consider the
corresponding Fourier transforms!).

One of the main consequences of 7.1 is that all "cut-off ^(Φ)2-measures" (with
Wick-ordering with respect to Po) can be represented in terms of basic ones. More
precisely:

7.3Theorem. Let PeP(<3';&) which corresponds to a {QJ}-boundary condition
Gaussian field on U in the sense o/[G/R/S 2], i.e. P is the Gaussian measure on (β'\ 0$)
with mean

and covariance

J Φ(f)Φ(g)dP = J Φ(f)Φ(g)dPu + Q(fdu, gδu\

/, ge@, where I is a bounded linear functional on (H-l91| ||£) and Q is a bounded,
positive definite quadratic form on ( H _ 1 ? || | |£). Let peσ(Uc\ p > 0 , such that

f dP=l, then PeGλ(U).
p p

In particular, e~λau/p P can be represented in terms ofπy(h,'), heβ?0(U) in the sense of
7.1.

Proof By 6.7 it suffices to prove that

PeG0(U). (7.7)

Let Kel, V a U, then PeM(V) by 2.4 (i). Furthermore, it is clear that we can find a
constant c>0 such that for every feQ),

(ί Φ{f)2dPγ'2 ^ c || / 1 | £ = c(j Φ(f)2dP0)U2.

Hence by 2.6

P(Ω0(V))=L (7.8)

Therefore, by [G/R/S 2, Theorem II. 2], [G/R/S 1, Theorem VII. 2] and 5.16

PGG0(V)

for all Vεl with V a U. Hence (7.7) follows by (7.8) and [R3,8.7(i)]. •

Remark, (i) For the connection between {Q, /}-boundary condition Gaussian
measures on U and Gaussian measures associated with H — 1 for certain self-adjoint
extensions H of Δ \2(U) see [G/R/S 2 Theorem II 6].

(ii) The main reason that we were able to establish Theorem 7.3 is, of course, that
contrary to the GRS-definition of "[/-Gibbsian" (cf. 5.3(i)) an element in Gλ(U) is not
necessarily absolutely continuous with respect to Po on σ(U) (cf. 7.2).
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(iii) From the point of view of statistical mechanics, Theorem 7.3 is, of course,
not surprising, since a "local" Gibbs state in statistical mechanics is understood to
represent the most general "boundary conditions."

(iv) We note that what is usually called "Dirichlet boundary condition" in the
literature now corresponds to "zero boundary condition," since for

Pv(Xe-λav)

Now we want to consider the global situation. We set

Λ o o ^ Π ^ O . (7.10)
Uel

08 ̂  is called the tail σ-field.
As mentioned above the general Martin boundary theory for random fields can

now be applied. Therefore, we have the following theorem.

7.4 Theorem (Dynkin/Follmer). Let λ ^ 0. Then there exists a probability kernel π^
on iβ'\ 0ί) such that

(i) π^(X) is & ̂ -measurable for each
(ii) IfPθGλ and Xe&b, then

= πi(Xl P-a.s..

(iii) J/PeP(®';#), then:

PeGλ if and only if Pπi = P.

(iv)
and if

then Δ(Ψ)e^00 and πλ

00(Ψ,Δ(Ψ))= 1.

Proof For a detailed proof see [PI, Chap. 2] D

7.5Corollary. Let Jί = {Δ(Ψ):
(i) The map Δ\3)Ύ->Jl induces an affine bijection between Gλ and

V>{M\Δ{β^)\ Under this map the point masses on {Jέ\Δ{β^)) correspond to the
extreme elements of Gλ.

(ii) Let π^ : Jί x ^->[0,1] be the probability kernel defined by

Then PεGλ if and only if there exists a unique PeΨ{Jί\Δ{β^) (in fact: P = Δ(P))
such that

P = Pπi (7.11)

Proof [PI, Proposition 2.4] •

7.6 Definition. The space (Jί\ Δ (^O0)) is called the Martin boundary for ( π j ) ^ (or Gλ).
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7.7Remark, (i) (7.11) is just the representation of a PeGλ as an integral over the

Martin boundary Jί.

(ii) If we restrict all involved probability measures to σ(U\ we can now interpret

Theorem 7.1 analogously by saying that:

If C/eL, then Jtfo{U) is the "local" Martin boundary for (π$)v^ on U.

(Here we identify Δ(Ψ) with μυ.{Ψ), Ψe@f).

This characterization of the local Martin boundary is also true globally, if λ = 0.

This is just a special case of Theorem 8.6 in [R3] (cf. also [H/St] for a proof using the

GRS-definition of Gibbs states and without constructing the associated

specification).

7.8 Theorem. The Martin boundary for {nv)υeL is the set of all harmonic functions on) υ e L

2

An immediate consequence is the following "uniqueness result":

7.9 Corollary. Let h be a harmonic function on R2. Then

In particular, Po is the unique measure in Go supported by {HU2 = 0}.

7.8 shows that Gλ, λ ^ 0, contains in general more than one element and that

(even for λ = 0) an additional "condition at infinity" is needed to obtain uniqueness

(see also [G/R/S1]). The following considerations show that the condition

fJu2 = const. P-a.s., which implies uniqueness in the case λ = 0, is also at least

necessary for uniqueness in the case λ ^ 0. In order to state the corresponding

theorem which will be the last of this paper we introduce the following notation:

Let λ ^ 0. For a harmonic function h on IR2 we define

GλM = Gλn {PeP{&; @)'.P{{HU2 = Λ}) = 1}.

7.10 Theorem. dGλ is the (pairwise disjoint) union ofdGλth9 h harmonic on (R2, and each

PeGλh can be represented in terms of elements in dGλh.

Proof. Let Ψe&. Then Hui{Ψ) is harmonic on U2 and we may consider the m a p

x^HRi(ψ)(χ)9 xeU2. Let PedGλ, then we know by [ P I , Theorem 2.1 (1)] that for

every fie^, P(B)e{0,1}. Since by [R3,6.12] the map Ψ^Hu2(ψ)(x) is i m -

measurable for every xeU2, we conclude that for F-a.e. Ψe@\

Hu2(Ψ)(x) = EP(Hu2()(x)\@J = EP(Hu2( )(x)).

Since U2 is separable, we can therefore find a harmonic function h on IR2 such that

HU2 = h, P-a.s.. Furthermore, we have

The second part of the assertion is an immediate consequence of 7.4(iii) and 7.5.

D

If λ > 0, but small, then one might hope that the reverse of Theorem 7.10 is also

true (as in the case λ = 0). This would again lead to a complete characterization of the

Martin boundary of ( π ^ ) ^ . But this seems to be extremely hard to prove. The
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reason is the fact that the interaction (i.e. λ > 0) produces in a sense a non-linear
situation whereas the map Hui is linear. This problem will be the subject of future
study.
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