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Abstract. We investigate the mass spectrum of a 2+1 lattice gauge-Higgs
quantum field theory with Wilson action 4, + A4y, where A4 ,(Ay)is the gauge
(gauge-Higgs) interaction. We determine the complete spectrum exactly for all
p, >0 by an explicit diagonalization of the gauge invariant “transfer matrix”
in the approximation that the interaction terms in the spatial directions are
omitted; all gauge invariant eigenfunctions are generated directly. For fixed
momentum the energy spectrum is pure point and disjoint simple planar loops
and strings are energy eigenfunctions. However, depending on the gauge group
and Higgs representations, there are bound state energy eigenfunctions not of
this form. The approximate model has a rich particle spectrum with level
crossings and we expect that it provides an intuitive picture of the number and
location of bound states and resonances in the full model for small 5, A>0. We
determine the mass spectrum, obtaining convergent expansions for the first
two groups of masses above the vacuum, for small §, A and confirm our
expectations.

1. Introduction

We continue our investigation of the energy-momentum spectrum of lattice gauge
theories in the Euclidean formulation. For previous results see [ 1-7] and for an all
statistical mechanics approach to particle spectrum see [8, 9]. For spectral results
in the time-continuous Hamiltonian version of these models see [10]. For
numerical results see [11, 12].

Here we consider a lattice gauge-Higgs theory with Wilson action A; the
Boltzmann factor is formally given by

e “=cxp {ﬁ % Rey(g,)+1 " yZ> Reg +(X)Dy(gxy)¢(y)} (1.1)

(see [13, 14] for notation) where =0, 1=0. The sums occurring in (1.1) are over
non-oriented plaquettes P and bonds b of the lattice. y is the character of the
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irreducible representation Dy of the gauge group. The representations Dg(Dy) of
the gauge group in the pure gauge (gauge-Higgs) action may differ. For simplicity
of analysis and presentation we restrict our attention to a 2+ 1 lattice (x = (x, X4,
x,)=(xg,X) € Z*) and the gauge group SU(2) with spin 3 (4 and 1) for the gauge
(Higgs) representations. In this case y is real. Also we take the Higgs field to have
unit length, i.e. |¢(x)|=1. Similar methods apply in the general case.

The statistical mechanics and associated quantum field theory of the model are
related by the Feynman-Kac formula,

(FG(xq, X)) =(F,e HixolgipxG) . (1.2)

F, G are gauge invariant functions finitely supported in the x, =0 hyperplane and
G(x,,x) denotes the translation of G by x=(x,, x). The left side of (1.2) is the
normalized ({1)=1) infinite lattice expectation in the Gibbs ensemble with
Boltzmann factor given by (1.1) and measure du(g)d¢, where du(g) is the product of
Haar measures of the gauge group, one factor for each bond, and d¢ is the product
of invariant measures on |¢(x)| = 1, one for each site. The left side of (1.2) is used to
define the Hilbert space 2 [with inner product (-,-),.], the vectors F, G e # and
energy-momentum operators H, P on the right side; for this connection see [2,
13-15]. Actually it is the positive self-adjoint semi-group T'*!, 0< T<1, that is
well-defined, and if T>0 then T can be written T=e¢ ¥, H>0. {-) is well-defined
for small f, 4, using the polymer expansion of [14], is translation invariant and
independent of boundary conditions. We use the Schrodinger representation, i.e. F
and G in (1.2) are supported on the zero time hyperplane.

An intuitive picture of the energy-momentum spectrum can be obtained by
considering an approximate model obtained from (1.1) by dropping the interac-
tion terms in the spatial (horizontal) directions, such as maintaining only terms
with vertical plaquettes and bonds. In this approximation and for any dimension,
gauge group and >0, 1>0, the model is solved exactly in Sect. II. Our method
produces the spectrum and all gauge invariant eigenfunctions of the “transfer
matrix” T directly. For fixed momentum p € (—n, 7]? the energy spectrum is pure
point and the dispersion curves are flat. Disjoint planar simple loops and strings
are gauge-invariant eigenfunctions. However, depending on the gauge group and
Higgs representations, there are gauge invariant bound state eigenfunctions not of
this form involving, for example, 3 —j symbols [16]. In addition to mass spectrum
occurring at n-particle thresholds there is other spectrum occurring above the two-
particle threshold. It is well known [17, 18] that in a pure SU(2) gauge theory with
action in the spin 1/2 representation, Wilson loops in the spin one representation
have perimeter decay for small > 0. It is expected therefore that dynamical Higgs
fields in the spin one representation are screened, and dressed single Higgs
particles should appear in the spectrum. We verify this expectation explicitly in this
paper.

In the full model for small 5, A we expect the approximate model to give the
correct intuitive picture of the number and location of strongly-bound bound
states and resonances. It is expected that as the horizontal interaction is turned on
the mass spectrum above the two-particle threshold (and not corresponding with
n-particle thresholds) disappears and corresponds with resonances. However, we
do not understand, as yet, the precise spectral mechanism by which this may occur.
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We point out that similar considerations can be applied to scalar and multi-
component lattice spin models to give a unified picture of bound states and
resonances.

For the full model with f, 4 small in Sect. I1I we obtain, using the decoupling of
hyperplane, Euclidean subtraction and expansion methods of [1-7], convergent
expansions for the first two groups of masses above the vacuum and confirm the
above expectations. In order to obtain additional masses below the two-particle
threshold further complications arise. One has to make additional Euclidean
subtractions which introduces new spurious poles in the complex energy plane
whose relation with the spectrum becomes increasingly more complex.

In Sect. IV we obtain decay properties of correlation functions, convolution
inverse and related functions which enter in the arguments of Sect. III. Section V
provides the missing proofs of theorems in Sect. III.

In Sect. VI we make some concluding remarks. The mass expansions obtained
here and in previous work result from finding a suitable implicitly defined function
whose n'? derivative is given recursively (the classical implicit function theorem).
We give in an appendix an explicit formula for the n'® derivative of the implicit
function which may be useful in the numerical evaluation of masses employing the
mass expansions given here and in [4-7].

II. Spectrum and Energy Eigenfunctions for Approximate Model

In this section we obtain the full energy-momentum spectrum of the model without
horizontal plaquettes and bonds. For clarity we deduce the eigenvalues and gauge
invariant eigenfunctions of the T operator (“transfer matrix”) explicitly for the case
of a 2+ 1 SU(2) theory with the gauge (Higgs) field in the spin 4(1) representation.
Pure temporal gauge models in the same approximation are considered in [13]
with the purpose of testing specific ideas concerning the continuum limit. In [13] it
isshown that [T D{. (g,) are eigenfunctions ([ | denoting the product over distinct

ipjv

b
bonds and o, the representation) of the temporal gauge transfer matrix (see

[2, 14]). To obtain the eigenfunction expansion in the gauge invariant sector one
applies the corresponding projection operator (which is an integration over all
gauge transformations) to linear combinations of functions of the form above. We
emphasize that in our diagonalization procedure all gauge invariant eigenfunc-
tions are obtained directly.

In Figs. 1 and 2 for small 8, A we present graphs of the particle spectrum up to
the two-particle threshold with the gauge (Higgs) in the spin 4(1) representation as
well as the case with the gauge and Higgs both in the spin 3 representation.

Recall (see [2]) that in the full model T=E, U(1) [ #, where U(1) is the unitary
time translation operator by one unit (x,=1) in the Euclidean Hilbert space &, i.e.

(w, U1)g)s = <Pp(xo=1)>,
and E, is the orthogonal projection on the time zero hyperplane (conditional
expectation) defined by
. Jwe Mdu/(g)dp
E ,9)= lim —————— 2T
OW(g ¢) AITI?3 j‘e AAd/J/(g)d¢/
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where ' means omit the time zero variables and A denotes a finite hypercube. E,p
only depends on the time zero variables. For ¢ € # and of finite support A, then

Jp(xo=1)e "2dp/(g)dg’
Je~44du/(g)dg’
Now dropping the horizontal plaquettes and bonds we obtain partial cancellation

of the numerator and denominator integrating over the horizontal bonds not in
the support of ¢ and ¢(x,=1) to obtain

[9(xo=1) e "ordp"(g)dg"
fe~#d(g)dg”

where ” means integration over variables in the support of ¢(x,=1) and vertical
bonds between x,=0 and x,=1 emanating from the support of ¢(x,=1), and

e Aoi— I ePrap) I el(tﬁx,D“)(gxy)d)y), 2.2)
pcCAg (x,y)CAg

T¢(g, ¢)= lim
4123

Tg(9,4)= (2.1)

with the products running through vertical plaquettes and bonds between the
planes x,=0 and x,=1 whose bases belong to A, Now we use the expansions

PO 3 cBale):  lB)= [y, (0)dute),

where y,, is the character of the spin n/2 representation of SU(2), and with
v=D"g,,)d,,

RGN ARYAL)
(}') Z lm(¢x)D(l) (gxy) (¢y)

"MS

8

= 2 1) (Y(4). D%g,,)Y(4,)),

1
where dy(A)=2n | e*P,(x)dx; P-) is the I'" Legendre polynomial and Y,,, is the
-1

spherical harmonic. Substituting the expansions into (2.2) we obtain

—Ao1
’ Y (,,5[ C"pxnp/z(gp)>
(1, (5,602,090 )%6,). 23

Now we insert (2.3) into (2.1) and perform the calculation of the numerator by first
integrating over the vertical gauge bonds.
Each term of the sum in (2.3) has the form

(Fens) (T16) (S D 000D 0D (a1 D1 )

1/2n, 1/2n,

( IT (Y(4), D9 )Y, ((/5;))), 24)

XE¢
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where vertical plaquettes and bonds are parametrized by their bases (a bond and a
site, respectively). In general each vertical bond in A4 will share five D’s and the
associated integral is

1213, , 1/2n3, .

I ID L|+ lL; ( —I)D L2+OCL2 ( _1)D
D, @D, (9)dg

where I, etc. are the bonds containing x as an endpoint. Using unitarity and
D(g~')=D(g)" !, we can rewrite I as

I/Zn,”,

Lla

(9

1203, , 1/273, 1/2n3,
I= ID Lf;j;/m ( )D LG;Lu(g)DaL’ffl:fo-(g)
2 2
1/2an

Ix
D" @)D, (9)dg.

where D" denotes the complex conjugate of the representation D®. The integral
can be evaluated by reducing the tensor product

G, )®GHL,, ) ®GH, )®GnL, )R,

into irreducible components. Let
y G 8. 8L,
be the unitary matrix implementing this reduction. Then,
_ 47,.)®... 8L =47, )®... 8,
I= kzl Va‘ OCLz aLx aLz m, k a/lLi‘Aa"L%arzLT—a/zLi‘-m;;ka

where N [(G7i ¢, )®...®1] is the number of times the identify representation is

contained in the decomposition, and the index k is a convenient parametrization
for some particular values of (aki+, ..., m,).

Thus, after performing the vertical integrations, (2.4) becomes

(11 ) (T ) (1T Dy g L)D”Z”L(gL))

LCAy xCAg
G673, )®...Ql,
( ].—[ lemx(¢x)lemx(¢ )> Z H V;%i‘fal{ﬁaéf-alii‘—mx; kx;

xedy {kx} xedy

— (37 ,)® .®l, ,
Vo ( I1 c,.L)( I1 d,x) Y 9 0@ D) B 00 8D

s Ky LCAg xedg
where we deﬁne
1/2n;

1P{nl,} ey} = < I1 DocLocL( gr) (xH szmx(¢x)>>

(z"z.,)@ ®l

.xg.p Vali_)l‘ alz O‘Iif aZ mx’ k (2.5)
Notice that the set of functions (2.5) is orthogonal, i.e. (tp{np} Ly W(n,,) ., =0 unless
{n,} ={n,}, {l,,} ={l,,} and {k;} = {k,}. The orthogonality is obvious if {n,} # {n,}

or {I }=*{l}. If {n,} ={n,} and {I;,} ={l,,}, then
: 1 167, ®..®L)

Wl awn Vsl =< IT T) ITv, .laL,a
L/ x x5 41

LCAg edy

1, )®... 8, 1
pu) =< n d_> T b scs
L

,
ot Tmg K LCAg xedg

.my
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verifying the assertion where d; is the dimension of the representation in;.
Furthermore, the y’s are gauge invariant.
The numerator of (2.1) has the form

2 2 < [T Cnp>< I1 dzxy> {kZ} (w?,i’;%axy}, ¢)V’gﬁ§§{z,¢y}-

{np} {lxy} \PCAgp xyCAg
In the denominator we continue the integration over the horizontal bonds in the
Xxo=1 plane. In (2.3) only ¢, =0 can occur; integrating over the vertical gauge
bond xy only I,,=0 can occur. Thus the denominator is just ( I c0>( IT do).
In this way we obtain the spectral resolution given by \?<“¢ Ao

Theorem IL1. T¢ has the eigenfunction expansion
¢ d, ( 1
To=> > <1—I—"’L)<H—"¥> IT
{np} {Ixy} [\PCA4g Co xyCAg dO \LCA¢ dL
. Ak} Ak}
{kZ) (U’{n,,} {Lyh? ¢))1P(np} {Lay} >
where Pty =wixty Wil are a complete set of gauge invariant ortho-
normal energy eigenfunctions with eigenvalues

Cnp | (17 %) (17 L
<1;[ Co><lx—yI do)(lzldL)

Let F(4;),j=1,2 be the spectral family associated with the translation operator e
then d|F (A,)p|> =dA;, such as p has a uniform momentum distribution on (—m,n]>.

iP;
b

Remarks. 1. The uniform momentum distribution follows by multiplying
(1p, €™ *p) = (Py(x)) by f(x), summing over x and noting that {ipy(x)>=0 for
x=+0. In this way | f(Md|FM)p|?> =] f(M)dA{Pyp> =] f(M)dh for all smooth f so
that d|[F(L)y|*> =d\.

2. To see that disjoint simple planar loops and strings are eigenfunctions we
refer to the claculations of [1, 2], where it is seen that the integral over a vertical
bond where only two oppositely oriented bonds in the same representation
overlap removes it and gives a factor of 1/r, where r is the dimension of the
representation.

3. A non-loop bound state eigenfunction occurs in the case of seven vertical
plaquettes with the base of six forming an elementary rectangle and the base of the
seventh dividing the rectangle two plaquettes. If D; is the spin 1 representation
(but not spin 1/2) then the integral over the vertical bond with 3 overlapping bonds
is non-zero. The integral over the six vertical bonds gives rise to the eigenfunction
with asymptotic eigenvalue ~ —71np.

4. A non-string particle occurs, for example, when the gauge (Higgs) is in the
spin (1) representation. It arises from the integration of four vertical plaquettes
whose base is a plaquette and a vertical bond along one edge. The eigenfunction
has one Higgs fields, four gauge bonds and is given in Sect. III.

5. Related to Remark 3 by a direct calculation we obtain the inner products
(X0 xr) >0, (xo»x5)>0, where ygp(|lxgll=1) is the elementary 2x1 rectangle
eigenfunction, yg(|lxgll=1) the bound state eigenfunction of Remark 3 and
%o(llxoll = 1) is the product function x(g,)x(g,), where P and P’ are plaquettes with
one bond in common. Thus the spectrum, up to the two particle threshold —e,



Mass Spectrum of 2+ 1 Gauge-Higgs Lattice Field Theory 575

associated with the functions y,, x(g,) and their translates and rotates is the same as
the spectrum of the full model, such as all correlation functions.

6. A candidate for a resonance comes from a 3 x 1, 8-sided rectangle with a
ninth plaquette inside again with the spin 1 representation. The asymptotic
eigenvaue is —91Inp for 1=0.

7. Although loop masses depend on f we see that the mass ratios are
independent of f for 1=0.

We depict the mass spectrum in Figs. 1 and 2 for small § and 1. The asymptotic
mass is plotted as a function of o~ ! (or y ~*), where A= %= A"). The solid (dotted)
lines correspond to the mass of the model with the gauge, Higgs representations 3,
1(3,3). We have also indicated the two-particle thresholds although we emphasize
that in the approximate model for fixed momentum there is no continuously
varying energy typical of two asymptotically free particles. Some of the associated
eigenfunctions are represented pictorially with a single line indicating a gauge
bond in the spin 4 representation and a double line indicating a gauge bond in the
spin 1 representation; the degeneracy is determined by the number of distinct
configurations (not related by translation) that can be produced by rotation about
the x, axis. A dot indicates a Higgs field. The heavy line of the insets indicates the
region of the 8, A plane displayed on the graph. The physical Hilbert space s# can
be written # = H#,® A, where H#(H) contains an even (odd number of Higgs
fields, and we display the spectrum separately for 5, and ..

Some of the interesting features of the graphs are the abundance of particles,
level crossings and the fact that some particles are stable in one region but unstable
in another. Furthermore we see the existence of dressed single Higgs fields as
particles.
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Fig. 1. Mass spectrum for small 8,1 in the even Higgs subspace J#, for the gauge group SU(2)
with no magnetic interaction. The solid (dotted) lines are for the pure gauge in the spin 1/2
representation and the Higgs in the spin 1 (spin 1/2) representation. The solid (dotted) cross
hatch indicates the corresponding two-particle thresholds. The inset indicates the region
depicted. Associated eigenfunctions are represented by a single (double) line for a spin 1/2 (1)
gauge bond, a circle for a Higgs field

Fig. 2. Same as Fig. 1 but in the odd Higgs subspace #;

ITIL. First Two Mass Groups of Full Model

In this section we state the theorems which give the particle structure and
convergent expansions for the first two groups of masses above the vacuum for 3, 4
small in the full model. Correlation function (hereafter abbreviated cf) decay
properties and the missing proofs of the theorems of this section are given in
Sects. IV and V, respectively. The results are in agreement with the mass spectrum
obtained in the previous section (displayed in Figs. 1 and 2) for the approximate
model. Different regions of the f8, 4 plane are treated separately. We restrict our
analysis to the case of the gauge (Higgs) interaction in the spin 3(1) representation;
the case of spin 4(3) can be handled similarly. We consider zero momentum states
and work within a definite Z, (discrete angular momentum) sector as in [3] which
serves to reduce degeneracy and simplify the analysis.

In part A we treat the region of Fig. 1 (4., A< f*) and show that the first two
groups of masses arise from the plaquette and elementary rectangle (window) cf’s. a
result similar to the pure gauge case treated in [3, 7]. We give detailed arguments
here as our method is new, simplifies that of [3] and generalizes to the degenerate
case of part B.

In part B we treat the region of Fig. 2 (#,, A < %) and the identity sector of Z,;
the masses obtained are in agreement with those displayed in the figure. Here the
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spectral problem for the determination of the second mass group has a new aspect
as this group is triply degenerate. However, a spatial coordinate reflection (parity)
symmetry is used to further reduce the degeneracy. Other regions of the f, A plane
(B, A small) and representations of Z, can be treated similarly (see Sect. VI).

We let Gy, (x,B,4) denote the truncated ¢, vy cf, G¢w(x0, B, A)
=2 Gy (x=(xy,X), B, 4) the zero space momentum cf and

Gop: B 1) =2 e” PG (X, B, 2),

p-x= Z pixi(G¢w(p07 .B’ j') = G¢w(p0a p :0a B, /1)) ’

the Fourier transform. We also consider G, (x—y) (Gw(xo ¥o)) as kernels of
convolution operators on 1,(Z?) (I,(Z)). The above cf’s are analytic for  and A
small, and we suppress the f, A dependence when no confusion can arise. In what
follows pos1t1ve constants will be denoted by ¢;; ¢, , dmn refer to coefficients in the
Taylor expansion of various cf’s and their values are given in Sect. I'V. ¢ will denote

a strictly positive constant which may depend on f, but s(ﬁ)ﬂ;OO. Throughout our
results hold for all sufficiently small 8, 1 unless stated otherwise. GNW(pO), [Repol
<m, admits the spectral representation formally given by

sinh 4,
oS —cospe e s OO EGO)F()p).r

Gyp(Do) = (j)
(see [15] for a precise statement). Spectral results follow from analyticity
properties of G~¢¢(p0) Note that from the spectral representation GW(Po) is
analytic for Rep, +0. Points of p, non-analyticity (Imp, =0, Rep,=0) are in the
energy (or mass) spectrum. We use the same notation as [3] regarding the Z,
group, R denotes rotation about the x, axis by n/2 and {P;} denote the projections
on the irreducible representations.

A. Here we work in #,. As in [3] we denote by y(y;, 1 £i<4) the plaquette
function (the horizontal 1 x 2 rectangle (window) function in the representation i of
Z,). We first consider the spectrum in the subspaces generated by y;, i=3,4. That
there is no mass spectrum in [0, — (1 —¢)In %) follows from

Theorem IIL.1. GNXixl(po), i=3,4 are analytic in 0<Impy, < —(1—¢)InpE.

Now we consider the subspace generated by y,. We let —
convolution inverse of G,,,,(x,). We have

Theorem II1.2. (po) is analytic on 0<Imp,< —(1—¢)Inps.

X212

xm(xo) denote the

From Theorem II1.2 and the spectral representation for me(po) we see that
xm(Po) has at most one zero. Xm(po) does indeed have a zero at p,=im,
~ —i61np and a convergent expansion for m, is obtained by setting A= 0<a
<1, o fixed (a procedure which we use for the expansions in this section), and

writing the § Taylor expansion of I’ as

Lyogs
+ 17

X2x2°

r.,=rt

xX2X X2X2
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where [, = —2+cg6f%e 7. The zeroes of I'* ., determine the correct singular
and constant term in the expansion for m,. After making a non-linear transfor-
mation from the variables p,y, f to w= —2+cgsB% 7°, B the analytic implicit
function theorem [19] applies to find the zero of the function H(w, §), where

H(w= —2+cgef% 0, f)=I(p,, f). In this way we obtain

Theorem IIL3. m,= —Inp° +1n— +r(p), where r(f)=In(1 +w(p)) is analytic at
p=0 and r(0)=0.

Passing now to the subspace generated by y we let fm(xo) denote the
convolution inverse of —G,,(x,). We have

Theorem I1L4. I,(p,) is analytic on 0<Imp, < —(1—&)InB°.

By the same technique as used in arriving at Theorem IIL3. we obtain a mass
my as the zero of I,(p,) given by

Theorem IIL5. m,= —Inp*+Incy, +7o(f), ro(B) analytic at =0 and r,(0)=0.

As in [3] to go up in the spectrum we look for additional zeroes of fxx
Introduce

=G, +G, .G 3.1

Zin X1X1 X1X XX XKL

which is expected to subtract out the physical pole contributions to le 2 That it
does subtract out the m, pole contribution is seen in

Theorem IIL6. F

X1X1

(po) is analytic in 0<Impy,< —(1—¢)InB°.
We denote by —
Theorem IIL7. &

X1X1

We show below that @Xl », has precisely one zero at po=ig~ —iln B®, that this
zero is a pole of F 1« and this is the only singularity of I;, in —In B> <Imp,
< —(1—¢)Inp®. We then obtain an equation for I, and a zero of F close to ¢
which corresponds to a mass m.

To find the zero of (5 . Write the B Taylor expansion as

b, =& —i-cD’ where &9 = —2+4ceefCe 70,

X1x1 X1X1 X1X1? X1X1

(x,) the convolution inverse of F,  (x,) and we have

Xle X1X1

(po) is analytic in 0<Imp,< —(1—e¢) InBE.

the zero of which determines the correct singular and constant term of p.
Proceeding as before one obtains an expansion for g. As we do not know of a
spectral representation for F,, or&, . aRoucheargumentisused to show that
is the only zero of &. We have

Theorem IIL8. (pmxl(l’o) has one zero in 0<Imp,< —(1—e¢)Ilnp® given by
2

0= —1nﬁ6+lnc— +7,(B), where r,(B) is analytic at =0 and r,(0)=0.
66

We now rewirte (3.1) to obtain an equation for fxx [formally obtained by
multiplying (3.1) on the right by — and on the left by I, ]. Define

1111

L,=r.G,9% L.,=9%,.,6,.5

XX1 XX XX XX x1x = F s Tt xx
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and

~ ~

G, o

XXy ™ X1x1*®

it

M:

T ax
We have
M=F, L, F, L

XX17 X1X1—x1x

That [, =L, F,,L,,+M is analytic in 0<Impy<—(1—¢) In 8% except at

XX17 X1X1
the zero of @, , follows from a) and c) of

X1X1
Theorem IIL.9. a) iul, L, , are analytic on 0 <Imo,< —(1—¢) In B8,

b) f‘Nul(iQ):f‘xu(iQ):':O,
¢) M is analytic on 0<Imp,< —(1—¢)Inf®,
d) M(py)#0 for —(1—¢)Inp’<Impy,< —(1—¢)Inpe.

We rewrite f“ as

I, :_~M_[<5

o~ M7 Ly Ly (3.2)
X1x1
That p,=ig is indeed a simple pole of [, follows from Theorem IIL9b and c.

Next, we obtain a zero m; (near g) of

5xnxn—M-1Lx11L11x’ (3.3)
the term in brackets in (3.2). That p,=im, is a zero of fxx(po) and hence in the
spectrum follows from Theorem I11.9d. The zero of (3.3) is obtained by the same
method as used previously; here we separate out &¢ , , the zero of which gives the
correct singular and constant term of m,. The result is

Theorem I11.10. m; = —6Inf+1n (—:—2— +r(B), where r,(p) is analytic and r (0) =0.
66

From the spectral representation G~” is strictly monotonic in an interval of
analyticity. Thus I, can only have one zero in an interval of analyticity. Since
my <o, we have m, > ¢ and m, is the only zero of I, in ¢ <Imp, < — (1 —¢) In .
Finally we point out that the spectral results obtained here extend to all J# using
the methods in [3].

B. Here we analyze the spectrum in J#, in the identity sector of Z,. Referring to
Fig. 2 in the approximate model of Sect. II, the first mass group is given by a single
Higgs with four gluons and the second by a single Higgs with six gluons. In Fig. 2,
we have labelled by t one of the energy eigenfunctions of the first group and by ¢°,
o', 0? three of the eigenfunctions of the second group. These gauge invariant
functions are obtained by integrating over appropriate vertical gauge bonds as
explained in Sect. II. As these and related functions enter in the cf’s to be analyzed
we begin by giving their explicit form. We have (where we choose a counter-
clockwise orientation for gauge bond loops)

T= ¢AmDI/Z(QABQBCQCDQDA)UM?};
QO = ¢AmDllz(gABgBCgCDgDEgFG)ijMZ" .
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o' and ¢? are obtained in the obvious manner from @° by a relabelling of the gauge
bounds. Here M is the matrix which block diagonalizes the tensor product
representation, i.e. M(D'*(g)®@D'*(g))M* =D°(g)®D'(g) and is related to the
3 —j symbols. In Lemma IV.14 in part B of Sect. IV it is shown that the effect of
reversing the orientation of the gauge loop is to change the sign of the above
functions.

Now we consider the effect of an x, coordinate reflection (parity) denoted by P.
Specifically if the rotation R is R(x, x,)=(—X,, X), then P(x;, x,)=(—Xy, X,).
We find that P,P=PP,, P,P=PP,, but P,P=PP; and P,P=PP,.

In particular as P,P = PP, the reflection provides us with another selection
rule in the identity representation of Z,. We now show that this naturally breaks
the triply asymptotically degenerate level into a non-degenerate and doubly
degenerate level. With the same letter P denoting the action on functions P,
=1(1 4 P) are the projections on functions with + parity. Taking into account the
change of sign of 1, ¢° ¢! under loop orientation reversal we have

G¢PQ0= _G¢92, G(ﬁPQl: —G¢Ql s GA¢Pt= _GA¢R,‘.
We also obtain G¢PRt= — Gd:n G¢PR2t = — G¢R3t and G¢PR31 = G¢R29 GA‘I,PRMZ — G¢Pot
which implies, letting 1o =Pot, Gyp, ., =0, Gyp_.,= Gd,P_,O. Welet g4 El/iPigO
1 ~
= —Z(QO—T—QZ), oy E]/EP—l_—Ql, 0% =Poo+ and 6% =P% .. Thus as G0 =0, we

are led to consider, for positive parity, the cf, GQQ 29> and for negative parity the cf’s

G" G"= Gg(_)gg GQQGQ
N = A~ A .
foro Gyo,0 Guo,0

The analysis of the singularities of G, ,¢ is similar to that of G, ., of part A. We

have, letting —I,9 (x,) denote the convolution inverse of G,o,0(x,),

Theorem II1.10. o

2200(0) is analytic on 0<Imp,< —(1—¢)Inp®A.

[0,0(po) has a zero at p, =im, m= —In $°1 and a convergent expansion for m s
obtained as in Theorem IIL.3. We have

Theorem IIL.11. m= —1n/5’6/1+1ni +7(B), where r(f) is analytic at f=0 and
r(0)=0. dss

The determination of the spectrum in the negative parity sector is similar to
that of the identity sector in part A except that the excited level of mass ~ —In %A
is doubly degenerate and we use a matrix generalization of Egs. (3.1-3). We let
— I ..(xo) denote the convolution inverse of G, (x,). We have

Theorem IIL12. I}, (p,) is analytic on 0<Impy< —(1—¢)InfoA.
fmo(l’o) has a zero at p,=im,, my~ —InB*A and the mass is given by

Theorem IIL13. m,= —Inp*A+1n8/d,, +r(B), where r(B) is analytic at f=0 and
r(0)=0.

Define the 2 x 2 matrix-valued function

F=Gp)+ G, T .00, (34)
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where

We have
Theorem IIL14. F(p,) is analytic on 0<Imp,< —(1—¢&)In o

Let — & denote the 2 x 2 matrix-valued inverse of F. The analyticity properties
of & are given by

Theorem I1L.15. &(p,) is analytic on 0<Imp, < —(1 —e)In A,

We show below that the only possible singularities of I} I, on —(1—¢)lnp>2
<Imp,< —(1—¢)Inp8iare glven by the zeros of det @. That there are at most two
simple zeroes or one double zero is shown by separating out the term det $¢=(—8
+dg®Ae”79)? from det & and using a Rouche argument; a convergent expansion
for the zero or zeroes is obtained by making a non-linear transformation on p,,
and using the Weierstrass preparation theorem [20] to obtain det &(p, =ig ;) =0,
where

Theorem I11.16. 9. = —InBeA+1n8/dss+7 4 (B); ¥+ (B) are analytic in B*/* or B and
r. (0)=0.

Remark. We are not claiming that ¢, are distinct.

We now rewrite (3.4) to obtain an equation for I I, Define
=L, 6B, L,=8C, L,
and M by
M=I, —LC°FL,,.

Analyticity properties of I'°, L, and M are given in a) and c) of

Theorem I11.17. a) [, L. are analytic on 0<Imp, < —(1—¢)Inp84,

b) Lo(ig+)+0 and Lm(lQ+)*0

¢) M is analytic on 0<Impy,< —(1—&)Inp8A and M+0 on —(1—¢)Inp32
<Impy< —(1—¢)Inp8a.

Writing F= — &' = ¢&/detd we see from a) and c) of Theorems II1I.17 and
I11.16 that
&

[ +M 3.5
det(DL (35)

al To
I—‘;oto = L

is non-singular for ¢, #ig .. Using the spectral representation for Gto,o(po), we see
that roto(po) can have at most two zeroes in (minf{g,, ¢_}=<Imp,
< —(1—¢)InB8A. Rewriting (3.5) as

~

~

— M B A 1Tod T
I—;oto = m [det@+M Lo Lro] 5 (36)



Mass Spectrum of 2+ 1 Gauge-Higgs Lattice Field Theory 583

we see that the only possible zeroes of I} . are given by the zeroes of the term in
brackets. By separating out det & from det®+ M ~'[°¢'L_ , making a change of
variables, and using the Weierstrass preparation theorem [20] we obtain

Theorem IIL.18. a) det<5+M_ 'Eo@'L, (po=imi)=0, where mf=—Inpi
+1n(8/dss) + 7L (B); ri () are analytic in B'* or B and r£(0)=0.

b) mi are the only possible points in the spectrum in —(1—¢)InB°A<Imp,
<—(1—¢)lnpBi

Theorem II1.18b follows by a Rouche argument.

The number of distinct zeroes and spectral points in Theorem I11.18, which
based on the results of Sect. II we expect to be two, can be determined by
calculating the first non-vanishing terms in the differences of the remainders rf
and r*. This requires calculation of additional terms in the expansion of ¢f’s which
is considerally more involved than the previous ones because of continuum state
contributions.

We point out that it is possible to establish the existence of precisely two nearly
degenerate masses by making the following reasonable hypotheses:

1) the full spectrum is determined by the spectrum of the scalar quark two-
point function, and

2) spectral points have multiplicity one.

IV. Decay Properties of Correlation and Related Functions
and their Convolution Inverses

In this section we obtain estimates on the decay properties of cf’s, related functions
and their convolution inverses. These estimates imply analyticity properties of the
Fourier transforms and are used in Sect. V where the missing proofs of the
theorems of Sect. III are given. The estimates are obtained for a finite lattice A by a
decoupling of hyperplane method (see, for example, [1-7]) and are uniform in A;
they extend without change to the thermodynamic limit and are independent of
boundary conditions by the polymer expansion of [14].

We use a finite lattice approximation to the action, with complex coupling
parameters {w,}, z, {u,}, v, given by

AA—ZW 2 X(gp)+z 2 19+ Zu > (), D (g:)d()

pePg (i, ))eQq

+ov X (¢(),D! (gu)¢(1)) (4.1

(i,))eQ

In (4.1) P(Q;) denote the plaquettes (Higgs bonds) parallel to the time (x,)
direction between the planes x,=q and x,=q+ 1; P*(Q*) denote the plaquettes
(Higgs bonds) perpendicular to the time direction. For a function ¢ of the gauge
fields {g;;} and Higgs fields {¢(i)} we define averages by

() 40w (g}, 2,0)=Z5 " [ pe*dg sy,

where Z , is such that (1) ,= 1. From the polymer expansion [ 14] {¢#) , is analytic
in all variables if {|w,|}, {lu,l}, |z|, [v| < Bo, Bo sufficiently small independent of A.
Furthermore the thermodynamic limit exists, is translationally invariant and
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coincides with (¢ when {w,= B} {u,= 4}, z=B,v=A.Inaddition, given ¢ and y of
finite support, there exists an m,>0, independent of {w,}, ...,v and 4, such that

K (1)> 4= <> 4D sl Segpe™ 71 (4.2)

In (4.2) p(x) is y translated by x € Z% and C4y 18 @ constant depending only on ¢, y.

In the sequel it is to be understood that our results hold for all sufficiently small
values of f, 4, {w,}...v and different constants may be denoted by the same letter.
We also suppress the dependence on parameters when no confusion can arise. We

define _ _
Gy(x, y5 D)= L)Y (V) 4 — LX) 4 W) 45

and adopt periodic conditions in the spatial direction letting

G¢w(x0, Yos A)E 2 de(x: y; /1) )
y
Due to (4.2)
|G¢w(x05 Yo; A= c¢we""0|xo—yo| .

Decay properties follow more easily by writing G,,, in terms of duplicate variables,

ie.

1 e T ’ ’ ’

Gy, y3 )= 53§ (F(x) = ¢ () () —w'(y)) e+ *2dg 4dg s dpsy
A

— N¢w(x’ Vs A)

= 4.3)

and typically are obtained by a double Taylor expansion in w,, u,. Although we
consider here a double expansion many of the calculations are similar to those in
[3] so that only the results will be stated. However, some estimates simplify as we
only consider the gauge group SU(2) in the fundamental representation. Also as
Gy,(x, ¥, 4)=0 if #(y) depends on an even (odd) number of Higgs fields, it is
convenient to consider these cases separately. The even (odd) case being treated in
part A(B). Each part is further divided into two subsections where in subsection 1)
decay of Gw is established for general ¢y and in 2) properties of Gw for specific, ¢,
y, related functions and their convolution inverses are established. From now on
we only consider ¢, p in G, that are supported in x,=0.

A.1) We begin by analyzing the Taylor series expansion of G, in w,, u,. The
simplification resulting from the spin 1/2 representation of SU(2) (even number of
Higgs) are given in Theorem 4.1a(b) below. By considering the Taylor series
expansion in w,, u, of the numerator and denominator of G, for small w,, u,
(dependent on A) we easily arrive at the structure of the Taylor series expansion for
small w,, u, (independent of A). We have, writing

m—1n—1

= T % Gowi,+RE

Theorem 4.1.
a) GI'(x,y, 4)=0, m odd,
b) G3."(x,y, 4)=0, n odd,
) Gw(x ¥, /1) G?¢00+Gq22 2 2+Rq44
&) Gortoe . A)= GHowe 1 Gash L R << <y,
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Proof. a) As the pure gauge action has the spin 1/2 representation of SU(2) only an
even number of plaquettes in P, can contribute. b) In the A Taylor expansion of the
Higgs exponential only an even number of Higgs can contribute. ¢) The absence of

G420 and G%? follows from cancellation of volume dependent terms in the
numerator and denominator, d) follows from using Peter—-Weyl on the gauge
bonds in P;.

Let é, be the unit vector along the positive time direction. Recall that y,(y,)
denotes the elementary rectangular loop function with long axis along x;(x,).
Below ¢4, >0, cg6>0, ¢4 are combinatorial constants. The G4t°w; and G40ws
terms in Theorem 4.1 d are calculated in [3] and we have

Theorem 4.2. Let x,<q<y,. Then
Gyp(X, y, A)=Cyy tZ Gyy(x, 1, NG, (t+eo, y, D)Wy
0=4
+ C46 tz Gq&x(x’ t9 A)sz(t+ €0, ), A)Wg
0=4q

oo X X Gy (X1, MG, (1o, y, WS+ RE?Z,

j=hvto=q
where the G... on the right side are evaluated at w,=u,=0.
For the partial Fourier transform we have

Theorem 4.3. Let xo <q<y,. Then

Gw(xo» Vo, )= 044G¢X(Xo> q, A)wa(q +1,y0, AWy
+C46G¢x(x0a q, A)wa(q +1, yo, A)w,?
s 3 Gon 504 MG(g+ 1 yor AWg+RE?,
where the G... on the right side are evaluated at w,=u,=0.

Taking into account the finite lattice Z, symmetry using the definitions y,
=Pidn 2= sz,, and the fact that P;y,=P,y,=0, x,= Ry, we have (suppressing
the arguments in G...)

2

Py A A

2
Z thlexJ'w: ; jz=:1 G¢PiXhGijw+ . 2 G¢PinGPunlP'

j=h,v i,j=1

As P,y,=P,Ry,=P,x, and P,y,= —y,, we have

C);

2
z G¢XJ XJW =2

J=hv

X XzW

Therefore éd,w has the structure given in

Theorem 4.4. Let x,<g<y,.
a) If ¢=Pp, y=Pp, i=3,4, then

Gd,w(xo, Yo, A)=R%?2.
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b) If $=P,¢, p="P,y, then
GAqw(xo, Vo, A)= c66é¢xz(x07 q, A)zew(q +1, yo, A)Wg + R‘é)?pz .
c) If $=P,¢, =Py, then
G¢w(x0’ Yos A) = C44G¢x(x0’ q, A)wa(q + 15 Yos A)W:
+ c46G¢x(x0’ q, A)wa(q + 1’ Vo> A)Wg
+ C66G¢x1(x0’ q9 A)leu)(q + 1’ yO’ A)Wg + R‘é)?pz 4
where the G... on the right side above are evaluated at w,=1u,=0.

In the rest of this part we assume || <[], {Ju,| <|w, |’} [v|<|ul*. Iterating the
above argument for all ¢, x,<q,<y,, and using a Cauchy estimate we have

Theorem 4.5. Let x,<q<y,. )
a) If §=Pip, =P, i=3,4, then |G4,(xo, yo, D < cB|* 7!,
b) If ¢="P,p, w="P,yp, then |Gy, (xo, Yo, D = ¢'|cfl0 7.
o) If ¢=P¢, =Py, then |G, (X0, Vo A)éc’|c‘5|4lxo—yl'

Proof. We bound G wiu; by the Cauchy estimate

a-q
IGﬁ’sz’uslz —1— § aw’d ’M "
N (62 ) e T I TR e

so that for [w,|= B, |u,|=4, B\ /)
Ggowatty écw(ﬂ) <E> :

Assuming < f8,/2 and /< B3, part (a) follows from the above estimate applied to
each R;? after noting that G§,?=0. Parts (b) and (c) are proven similarly.

2) Concerning G,,,,(Xo, Yo, 4) and its convolution inverse —1I,, (Xo, Yo, A)
we have

TheorelIl Iv.6.
a) zexz(xO’ X0s A) =% + 0(132) 5

G0 X0+ 1, M) =heaeB®+O(B%),
|G12xz(x0’ J’o, A)l é c’lcﬁlﬂxo—}’ol .
b) Gmm=pxuz[1 +px_2;2(Gszxz—plzxz)] 2
szxz(xo’ yO) = Gszz(xo’ yO)éxoyo N
é_l =[1+P;1(Gzz—ﬁ2)]‘1ﬁ;1

C) f)'6212=_ xX2X2
= ;0(_1)" [}52*1(@22_152)]"]32‘1,

d) Iizlz(xo’ X05 A) =—2+ O(BZ) »
1;2)(2(XO’ X+ 1, A) = C66ﬁ6 + O(ﬂs) )
If;gzxz(xo’ Vo> A)Igc/,cﬁwlxo_ml s |X0—y0|>l .

I, is analytic in f, A.



Mass Spectrum of 2+ 1 Gauge-Higgs Lattice Field Theory 587

fu(xo, Yo, /), the convolution inverse of — G”(xo, Vo, A), 1s defined in a manner
analogous to Theorem 4.5. We have

Theorem 4.7.

a) Gxx(x0>x05 A) = 1 + O(ﬁZ), Gxx(xm Xo + 19/1) = C44ﬁ4 + 0(68)’ lGxx(x09 y0> A)I
< cf,cm‘tlxo—yol’

b) Fxx(xo’ Xos A) =-—1 + O(ﬁz)’ [;‘(x(XO: Xo + 1: A) = C44ﬂ4 + O(ﬁs)’

L (X0s Yo, DS [BIPFO71, [xg—pol > 1.

is analytic in f, A.

A

I

XX
Gml and its convolution inverse — I, (defined as in Theorem 4.5) satisfy the
same bounds as G ,and I}m respectively. The behavior of Gm, iz, and Fxm

given in

Lemma 4.8.
a) me(xo’ anA) ﬂ+0(52)
b) xm(XO» xo»A)—z +0(ﬂ2)
©) Ly (xos X0, )= —2+0(ﬁ2) and I, is analytic in B, J.

We define FX‘%‘ =G, + G,y L34 G - The properties of F,,, and its convo-

lution inverse —®, . are given in

Theoreql 4.9. A
a) qum(xO’ xO’ A) =% + O(ﬁ)’ F)(l;u(an xO + 1: A) 2%06666 + 0(ﬁ7)a

IFX,Z1(XO,J’05A)|§C/IC/3|7a [Xo—yol>1.
~F;L =[1-T,,.G,,I,G,1 'L,

b) ,,11){1 xun XX,

C) (pxlxl(xo’ x09 A)_' _2+0(ﬂ) X1X1('x0’ xO"I-1 A) c66ﬁ6+0(ﬁ7)
|¢x1x1(x0,y0,A)’éc”cﬂ,”xﬂ")’(ﬂ’ IxO_yO'>l .

F,.,, and &, . are analytic in f, .

~ We define L,,, =r,G,.$,,.ad L, =&, G, I, . Their properties are
given in

Theorem 4.10. L., is analytic and
a) Lxm(xo’an A) 2ﬂ+0(ﬁ2) Lx;“(xo» x0+ 1 A) cﬁ8+0(ﬁ9)
b) |L,,, (X0 o, DI B0 7%l |xcy— yo| > 1; the same for L.,

Multlplymg the expression defining F , on the right by dﬁx 1, and on the left
by XX1’ we Obtaln F LXXIFXIXILXIX ZXG)!111¢X1)(1 Let M I;XGlllld;Xlll
M has the properties glven in

Theorem 4.11. M is analytic in B, A
a) M(XOa X, A)= —14-0(B), M(x¢, X0+ 1, A) =c44f* +O0(B?).
b) [M(xg, yo, DI SCeBIPFo770, [xg—yol > 1.

B.1) Some properties of the Taylor expansion coefficients of G¢w in w,, A, are
given in

X1X1
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Theorem 4.12.

a) G""’”(x y, A)=0, m odd.

b) G w (X0, Vo, ) =0, n even, xo =q<y,.

vl G¢"”(x0, Yo, 1) =0, X £q<yo.

d) GW (X05 Y0, 1) =0.
Proof. The proofs are based on an analysis of the expansion of the numerator and
denominator of G¢w(x, ¥, A). a) There is an odd number of P; spin 1/2 bonds. b)
Higgs bonds are uncoupled between x, < g and y, > ¢ and there is an odd number
in x, < q. ¢c) Expanding in 4, if there are an even number of spin 1 bonds then there
are an odd number of Higgs in x, < ¢; if an odd number then the integral over the
bonds in Q7 vanishes. d) If x, <g<y,, there is a free bond in P, or Q; which by
P—W gives zero. If x,<q, y, <4, there are an odd number of Higgs in x,=<q.

Thus Gq,w has the structure given in
Corollary 4.13. Let xo<q<yo. Then
G (X0 Yor A) = G wiu, + GI8 wlu, + R3 .

We calculate the above derivatives G’l41 and G4%' by integrating over the gauge
variablesin g < x,<g+1to get, lettmg =11 —R‘ro 0<i<3and =R/, 0<i
£2,0=j=3,

Theorem 4.14. Let xo<q<y,. Then

G¢w(x03 Vo> A) = d44 l:z G¢t'(x0’ q, A)G‘Eilp(q + 1’ Yo» A):l W:;uq

w

3 ~
+d46 '§0 Gdni(xo’ q, A)Gtiw(q + 1’ Yo, A)jl Wguq

2 3 N
+ d66 |:ZO ‘ZO G¢gif(x0, q, A)Ggifw(q + 1> Yoo A):| Wguq + Rlﬁf’ 5
i=0 j=

where dyy >0, dgg>0 and d,e are combinatorial constants.

We now incorporate the Z, and x, coordinate reflection symmetries into the
above expansion. But first we prove that the effect of loop orientation reversalin z,
0%, 0%, 0% is a sign change, a fact used in Sect. ITL.B.

Lemma 4.15. 1, °, o', 0 change sign under loop orientation reversal.
Proof. It is enough to consider 7=(¢ ,),,D"'*(¢ 4pcp);;M7;. Where we recall that

Dl/z(g)ilile/z(g)l413= i114:Lm1UL(g)m1mz(M )Lm2:izl39

where U'(g) = U(g) is the real spin 1 representation and we set M};=M;.,,. Thus
multiplying the above by U(g),,,.., and integrating over the group, we have

lelz(g)lule/z(g)l‘;u U(g)mlmzdg 1 M1114 12135n1m15n2m2 .

We denote by v =(44),D"*(gupcpa)i;M}; the function with the loop orientation
reversed. Now ©'=(¢,),,D""*(g apcpa)ijM}; and from [16] DY and D' are
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unitarily equivalent, i.e. D/?(g)=CD'*(g)C~*, where CT= —C. Thus v/ =(¢ )
D'"(g spcpa)uCijMTiC,,. To determine the last matrix we compute

C,C, MM, = C,,C, 3 [ DY2D,U,.dg .
Since C,;D}/* = —D;/*C,;, we have

C,,,CuiMiMy = 3C,,Csjj D”ZD”2 U,mdg = — C,iCstﬁ.Tfi ,

where J§; are proportional to the usual 3—j symbols in [16]. In matrix notation

(CM™C™ Dy M= —(CI")y(J"C ™),
Thus

(CM™C™ M) /(CT)y= —(J"C™ 1),/ M= A=const,

or CMC™'=ACJ. Therefore M=AJC, MT=,CTJ=—1CJ, so that CMC™*!
= —MT, and it follows that

T=— (¢A)mlj I/Z(QABCDA)HM 0=

Recall that P, =%(1 + P) is the projection operator on functions with 4 parity
under x; coordinate reflection and P,, 0<i=<3, denote the projections on the
representations of Z,. Define

= OZL 0__ 52 =1/2 o:L 0 2
0+=]/2P0 1/5@ 0®), o-=|/2P_¢ I/E(Q +0?),

so that P,go, =904, Pro+=0. We have
Theorem 4.16. Let ¢ =P, Pop, =P, Poyp and xo <q<y,. Then

A 1F¥1
Gw(xo’ Yo, A)= ( > d44G¢z(xo’ Q)er(q +1 J’O)W

171\ 4
+ <T> d46Gd)t(x0’ q)Gt(p(q + 1’ yO)WJ?/lq

+d6v6G¢Qi(XO> q)GAin(q_i_ 1’ yO)W(?/{q

1F1
+d6,6< )G‘,)Ql(xo, DGoi(a+ 1, yo)wgl, +RE
where the G... on the right side are evaluated at w,=4,=0.

As in arriving at Theorem 4.5 we have

Theorem 4.17. Let x, < g <Y,.
a) If =P Pyp, p=P ., Pyy, then |G¢w(x0,y0, )| L' |efo Aol
b) If ¢=P_Pyp, w=P_Pyp, then IG¢w(x0’y0, A |epraxo~ yol
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2) I,,,., the convolution inverse of —G, ,,, is defined as in Theorem 4.6 and
we have
Theorem 4.18.

a) GQ+Q+(x07 X0, A) - 1/8 + O(ﬁ/{) GQ+Q+(XOS Xo + 1 A) - d66ﬁ6l+ O(ﬁ7}')

b) ﬁg+9+(x03 Xg, A)= =8+ 0(BA), g+g+(x0’ Xo+1, A)—d66ﬂ6/1+0(ﬁ7/1) )
1Ly (Ko Yo, DI S LefTA 1 |xg—yg| > 1.
Proof. b) From Theorem 4.16 we have for x,<g<y,,
Q+g+(x0’y07A) 0 Oénés
and
Gging,(an yOv A) = d66ég+g+(XO> qO, A)GQ+Q+(q + 1: yOa A)lwq=uq=0 .
From Leibniz’s formula
ot m=t/m\ o [o* o™ ..
= — ——GI'|,
owgdl, ,.;0 <n> 0, [éw; owy ™ ]
and the above we obtain, for x,<g<y,,

0" L (x, o, A))OWEOAghw, = 5,0 for 0<m=<5

and
a714()(:09 Yos A)/awgallqleI: =07 d665xo,q511 +1,v0"

By a Cauchy estimate the result follows. We now consider negatlve parity

functions. Note that P_Py,t=Py1. Let 1=Pyt and let —I; . denote the
convolution inverse of G, ... We have
Theorem 4.19.

2) Goeo(X0s Yoo D) =§ + O(B2), Gryo(X0, X0 + 1, A)— 54/1+0(ﬁ6/1)

b) f;.-oro(xm X, A)= —8+0(BA), toro(XO’ Xo+1,4)= d44ﬁ4/1 +0(B>4),

I peo(X05 Vo, ISP R)1¥o e,
Proof. b) Similar to Theorem 4.18. Here we use, for x,<g<y,,

G?g,lo(xo, Yo, 1)=0, 0=n=3
and

Gg;})(xo’ Yo, A)= d44éfofo(x0’ q, A)Gtoto(q +1, yo, A)IWq=/1q= 0-
We obtain, for x, <g<y,,
[ (xo, yo, A)=0, 0=n<3,

and
F541(xo, o, A) =d448(x0, 9)5(q+1, yo) .
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We have, for

¢ GQQQ— Ga»m 3 A e A Ge“r
— ~ . (;To — . 1 — R 07to .
G <Gﬂ - Q - GO’ -0 ~ >, (Grogo ’ GIOQO) ’ G‘[O < Geétg
Lemma 4.20.
a) G(x0: Xo, A) :% +O(ﬁ/l)>
A 1.
b) G %o, 4) = (ﬁ : 1) P roun,

9 6ot = (V) o

We define the 2 x 2 matrix function F =G +G, I . G®, and let —® denote its
matrix convolution inverse. We have

Theorem 4.21.
L . 1 ,
a) F(x0> Xo0» A):%—*_O(ﬁl)s F(XO,Xo‘I' IBA)=d66mﬁ6A+O(:B7)'),

IF(xo, yo, DI S c'lefOAe 7l |xg—yol>1,

b) D(x, X0, A) = —8+0(BA), B(xo, xo+ 1, 4)=desf°A+0(B74),
IB(xo, yo, D S€lefTH7l, g —yol>1,

and & is analytic in B, A.

Proof. a) We calculate w,, u, derivatives of F(xq, yo, A). First we have, for x,<q
<Yo,
G™*! (o, Yo, A) =daaG8°(x0, 4, GG +1, yo, 4),
Gq61(x0a Yo, A)= d46ég(?0(x0’ q, A)(‘;roqoo(q +1,¥0, 4)
+ds6G™°(x0, 4, A)G1°%(q+ 1, yo, A)
GE (X0, Yo, A) =44 G (x0, 4, MGG+ 1, o, A);
G181 (X0, Yor A) = dysG12(x0, 4, A)GA2(q+ 1, yo)
+desG1 (X0, 4, 4) - G(q+ 1, y0, 4,
Gt (x, Yo, A)= d44Gi’3£,(xo, g, 4)- G°%(q+1, Yo 4),
and
G*1%* (x, o, A) = d46@3§r‘3,(xe, 4, )G*°%(q+1, yo, A)
+dssG™°%(x0, 4, 4) - G°%g+ 1, yo, A) .

We need, in addition to the derivatives in the proof of Theorem 4.19b,
Eﬁ?ol(xm Yo, A) =dy60(x0, 9)0(q+ 1, y)
+ d66(f‘;g?00GAm) (x09 q9 A) (égSquOO) (Q+ la yO) s

ToTo
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valid for x,<g<y, Using the above results we find, for x,=<g<y,,
Fa™(x0, ¥0, A)=0,0<n<5,0<m= 1 from which the decay follows by a Cauchy
estimate.

b) From Leibniz’s rule and the properties of F in part a) we have, for x,<q
<Yo» P (x5 ¥, A)=0, 0<n<5. For x,<q <y, a lengthy computation gives

F191(xo, Yo, A) =dsF1°(xo, ¢, A)F°°(q+ 1, yo, A)
and as
B (xo, yo, A4) = (F1°°F4°1 61°°) (x, yo, 4)
we have
B9 (x0, Yo, A) =d8(X0> ))3(q+ 1, yo)

from which the decay follows.
We define

A Py

[e=rI,G°d and L, =9G,

To

Theorem 4.22.
. 1
a) L°(xq, X, A)=4p (— : 1) +0(p?).
/2
1

. /2
b) L‘L’o(xO? x0> A)=4ﬂ({) +0(132)
¢) [ E°(xo, yos A)| S ¢’[cBEAIF0 7L, [xo— yo| > 1 and similarly for L.,

Proof. c) Using the properties of the derivatives of 1“r o G* and & obtained in the
proceeding proofs we find, for x, < g < y,, E°‘1’”"(x0, Yo, A)=0for n=1,modd and
0=m<5,0=n=1. Also a lengthy computation gives

quél(xo Yo, A)= dse( Gto) (%0, g, A) [G God

+G¢+I] (q +1a yO:A)qu=uq=0'

T0T0 7o~ ToTo

But
G L, Gd+Gd+1=(G,L, . G°+G-F)d=0,

so that, for x,<g<y,, %% (x,, o, 4) =0 from which the decay follows.
Define M=I, , —[*°F L.,

7070

Theorem 4.23.
a) M(xo, X, 4)= —8+0(p).
b) ]V{(xo» Xo+ 1, A)=dy4f*A+ds6foA+ OB 7).
¢) IM(Xo, yo, DS [cBEI 7L, [x— yol> 1.

Proof. b) and ¢) For x,=¢g<y, MP™(x0, V0, A)=0 for m=0 or n=0 and
M (xy, o, A)=0 if 0<m<3. Also, for

Xo=q<Yos Mq41(x0, Vo, A) =dy40(x0, 9)0(q+1, o),

To~ ToTo



Mass Spectrum of 2+ 1 Gauge-Higgs Lattice Field Theory 593

and we find
qu(xo’ Yo, A)
=d460(x0, )G+ 1, ¥0) +de6([140,G™) (X054 A) (GooLigee) (441, Voo Dly,=ug=0
— 3 Eo(xo, g, A)dgsF (U, 4, DF(q+ 1,00, A)Le (06, Yo, Dlwg=ug=0-

From L ,G°® and L, =9G, [

L. we have [°F=—T, G* and FL,_
=—G,TI

Wthh implies, for X0 £q<Yo» M1} (x0, Yo, A) = d‘,,6 5(x0, q)o(q + 1)

70 tofo’

V. Missing Proofs of the Theorems in Sect. 111

Here we give the missing proofs of Theorems in Sect. ITI. Analyticity results in p, of
the Fourier transform of cf’s and their convolution inverses follow from their
corresponding decay properties given in Sect. IV. To find zeroes, corresponding to
masses or to singularities of related functions, the technique used, in most cases, is
that explained in arriving at Theorem III.3; the method also gives a convergent
expansion. As this argument is used repeatedly throughout we give the proof of
Theorem II1.3. We also give the proof of Theorem III.10. which uses a variation of
the argument, and a proof of Theorem IIL.16. which uses the Weierstrass
preparation theorem [20]. Typically, after obtaining the zero, we want to show its
uniqueness in the region of analyticity of the function. If the function has a spectral
representation then the zero is simple and unique. This is the case except in
Theorems II1.8, 16, and 18; in the proof of Theorem IIL.8 below a Rouche
argument is used to give uniqueness. The multiplicity part of Theorems I11.16 and
18 is proved similarly using the estimates in Sect. IIIB. A Rouche argument is also
used to prove Theorems II1.9 and 17.

Proof of Theorem I11.3. For notational simplicity drop the y,x, indices from I,
write its f=0 Taylor series separating out terms up to and including order f8°, and
take the Fourier transform to get

[(po, B)= —2+ Ir1(xo=0, B)+ (e~ "7+ €"°)c
+ X ﬁR7(x0=n’ B) (e_ip°"+eip°"),
n=2

where I,,(I) denotes the Taylor series of I' from m to oo (0 to n) and we have used
Theorem 4.6. Making the non-linear transformation to the variables w= —2
+ceefle”Po=T" B we obtain the function H(w,f), where H(w= —2
+cesf%e ™70, B)=TI(p,, B). Using the falloff of I’ given in Theorem 4.6d, H(w, f) is

jointly analytic for w,  small, H(0,0)=0 and Z—fvl (0,0)=1. The analytic implicit

function theorem [197] applies and gives a unique analytic w(f3), w(0) =0, for small
B such that H(w(B), f)=0. Thus for B>0, w(f) = —2+ceeB°e™®.

Proof of Theorem I11.8. Dropping the y,x, indices we show,; using Rouche’s
theorem, that & has exactly one zero in the region R={p,||Rep,|<n, 0<Imp,
< —(1—¢)7Inp}. We write &= G+ G, %= —2 + 4% 0. It is easy to see that
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|&%(p, € OR)|>3/2 for all |p| sufficiently small and we now show that |$ | <3/2 on
OR. This follows directly for all terms except for

3 Bralro=n) (e” 7" -¢") =y

Using Theorem 4.9c we find |$4(p,€dR)] 259 uniformly on JR.

Proof of Theorem I11.10. We find a zero of <5)m“—]\71_1L~,mf4xUC near p,=im,

m~ —61npf. For notational simplicity drop the indices y, and y. We obtain the
correct singular and constant term of m by transforming to the variables w= —2
+cgfle Po=d¢ . We let M’, &, I denote M, &, L, respectively written in
terms of the w, f§ variables. Now, using Theorem 4.9 and 4.11, we can write

F=wign ). 90,0=0, 2(0,0=0,
pEM’ = 2;# +h(w,B), h(0,0)=0.
66

Using Theorem 4.10 in addition, we see that [is jointly analytic as are g and h and
that (B*M")~! has a Taylor expansion beginning with a constant. Let

F(w, p=&'— B*LA(B>M) ™" =w+g(w, B)— L (B*M) "

. . F
As F(w, ) is jointly analytic, F(0,0)=0, Z—W

theorem gives a unique analytic w(f), F(w(f), f)=0 and w(0)=0. Thus for
B> w(B)=—2+cecfe™P.

Proof of Theorem I11.16. The =0 Taylor series of ¢
@, is, using Theorem 4.21b,

(5ij= (—8+dgePohe™0);;+ dgeBCAeP0,;+ gﬁijm(xo =0)

(0,0)=1 the analytic implicit function

ij» the i, j matrix element of

+ 2 éin7(x0 =n) (e~ Po"e'Pom)
n=1

Make a transformation to the variables w= —8+dgsf°4e~7°, B and introduce a
2 x 2 matrix function H(w, ) such that

H;j(w=—8+dgefhe 70)= ‘51','(170» B).
Using Theorem 4.21b we find, letting F(w, f)=detH(w, B), F(w, f)=w?+g(w, B),

g OF oF
where ¢(0,0)=0 and o (0,0)=0. As F(0,0)=0, w (0,0)=0, but e (0,0)=2the

Weierstrass preparation theorem [20] applies to give w (f), analytic in /2 or S,
w4 (0)=0 and F(w(B), f)=0. Thus for B>0, w,(B)= —8+dgsf°Lel*.

VI. Concluding Remarks

In this paper we have explicitly analyzed the first two groups of masses in the
region A< 3 The same techniques apply to other open regions, taking into
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account the degeneracy of the masses as given in the approximate model. The
regions where there are intersection of lines and the degeneracy of masses is
increased (see for example Fig. 1) can be treated by including this degeneracy in a
suitable matrix of correlation functions. The problem of how to analyze mass
groups beyond the second is currently being investigated.

In the increased region of convergence of the polymer expansion determined in
[13], i.e. arbitrary 8 with A large, the question as to the complexity of the mass
spectrum also arises and has bearing on continuous models. In the case of the Z,
gauge group we can show by a direct analysis, using methods similar to [15] or
by duality, that the particle spectrum has the same complexity in this region as in
the small 8, 4 region. Similar results are expected for continuous groups.

Some interesting open problems are the inclusion of Fermions and the study of
resonances. Also for the Hamiltonian version of these models it would be
interesting to develop a convergent perturbation theory in the magnetic coupling
parameter along the lines of [21]. We point out that for the Euclidean model the
results of this paper imply a convergent perturbation theory in the magnetic
coupling parameters.

Appendix
1 47/ (0)

nl dz*
the analytic function f(z), implicitly defined by F(f(z),z)=0, where F(w,z) is

Here we deduce an explicit formula for f,= the n'™ Taylor coefficient of

jointly analytic, F(0,0)=0 and (0 0)=0. We point out that from the theory of

Lie series [22] the non-autonomous ordinary differential equation obeyed by f(z),
df(z)  F*'(f(2),2) mn _0"""F(w,2)
&z T () L A=
has a convergent series solution for small |z| given by

_ 37 o 0_ __(Z_Wi
f@= Z P Whmzmo, D=1, D=5 =5 sy

so that 1
f _(an)w z= O_'n-[ [Dn W] ]w z=0"

Here we obtain a formula for f, starting from the integral representation [19],

woF(w, z)/0w [

f(2)= 2mf—————F(W’ SRR
We need the following two elementary power series lemmas.

§ . (A.1)

lwl=¢

Lemma A.l. If h(z)= Z h,z", ho=*0, then h(z)"'= Z dyz*, where

4= 3 (=1 5 < " >h’{'1...hkmkh5"”+”.
m=0 k k ml...mk
{m} X m=m, 3 Im=k
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Lemma A.2. If Fw,0)/w= Y aw', a;=F"*120,0)/i+1)!, then
i=0

(F(w,0)/w)~ 1 = i bw*, where
k=0

k
b= 2 (=" > m A A gy D
m=0 k ko my...ny
{m}, X m=m, gljmj:k
with
A0=F1’0(0,O)l+15a6+1,
I+1 lo L1 l
A= 2 <1011...1s> agay...as -

(S h—1+1, % rl,=s
r=0 r=1

The formula for f, is given by
Theorem A.1.
n (p\ k 1 -1
h=Z, (k) DI (w)

3
Iy, b, 13 > =1
u=1

d"Pf ds (F(w,0)\ ¢+V
l1+1,n—k l s
LFutL 0 =
where F ©.0 dw" o )w=0 dWl3< w w=0
ki FOY(w, z)\
Powa=(-) ¥ ,( c )>
{p;} Pi:-.- Dx: 1!
'=i1 =l _éjpj:k
(FO2(w,2)) \P*  (FOKow, 2) |

' 2! k! ’
d"Pt . oo
%l—z—(w, 0) is given by Leibniz rule and the last factor by Lemma A.2.

w=0

Proof. Applying Leibniz’ rule to Eq. (A.1), we obtain

d'f(z) » (n) 1 o d* _
T —k;)(k)%IFl k(w,z)[yF(w,z) 1:lwdw

n k 1
=2 (") 2 Tm-fFl,n—k(w,Z)P{‘(w,z)F(W’Z)—(tH)WdW,

k=0 k =0

using Lemma A.l1. Write F(w,0)”“*Dw=(F(w,0)/w) “*Yw~! and use
(2mi) [ K(w)w ™~ ™* Vdw = K™(0)/m! with m=1—1 to obtain

nny & 1 dTt K —@+1)
L= 2 IZ (l_—l—)!Ziw_"—l{F, (w, 0)P;(w,0) (F(w, 0)/w) Hw=0-

k=0 \k/ 1=0

Using Leibniz’ rule again gives the result.
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