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Abstract. We generalize the notion of "ground states" in the Pirogov-Sinai
theory of first order phase transitions at low temperatures, applicable to lattice
systems with a finite number of periodic ground states to that of "restricted
ensembles" with equal free energies. A restricted ensemble is a Gibbs ensemble,
i.e. equilibrium probability measure, on a restricted set of configurations in the
phase space of the system. When a restricted ensemble contains only one
configuration it coincides with a ground state. In the more general case the
entropy is also important.

An example of a system we can treat by our methods is the g-state Potts
model where we prove that for q sufficiently large there exists a temperature at
which the system coexists in q + \ phases; ^-ordered phases are small
modifications of the q perfectly ordered ground states and one disordered
phase which is a modification of the restricted ensemble consisting of all
"perfectly disordered" (neighboring sites must have different spins) configur-
ations. The free energy thus consists entirely of energy in the first ̂ -restricted
ensembles and of entropy in the last one.

Our main motivation for this work is to develop a rigorous theory for phase
transitions in continuum fluids in which there is no symmetry between the
phases, e.g. the liquid-vapour phase transition. The present work goes a certain
way in that direction.

1. Introduction

In 1936, Peierls [1] invented an argument to show that the Ising model on a
d-dimensional lattice, d ̂  2, with nearest neighbor ferromagnetic interactions has
spontaneous magnetization at low enough temperatures. The system can exist in
either a + or a — phase: the signature of a first order phase transition. Dobrushin
[2] and Griffiths [3] later made the argument mathematically precise. This
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argument has been extended and new methods have been invented, to prove phase
coexistence, i.e. first order phase transitions, in a great variety of systems.

These methods fall into various categories. Most require however that, like in
the original Ising model, the different phases be related by a symmetry of the
Hamiltonian. This includes Ruelle's [4] extension of the Peierls' argument to the
symmetric continuum Widom-Rowlinson model. An outstanding exception is the
Pirogov-Sinai theory [5] and its extensions [6-15]. This theory applies to general
lattice models of the following type: The system is described by occupation (or
spin) variables which can take on a finite number of values at each site of a
d-dimensional regular lattice, d^2. The particles interact with arbitrary finite
range periodic potentials, e.g. an Ising system with one, two, and three spin
interactions. The Hamiltonian of the system Ho has n periodic ground states, n
finite, and there is a non-zero minimum energy per unit interface, or "contour,"
separating two ground states: the Peierls' condition.

Pirogov and Sinai study the structure of the phase diagram of the
Hamiltonian Hn,

* n-ί

ί=ί

in the n — 1-dimensional parameter space of "chemical potentials" μί9..., μn _ 1. The
Ht are perturbations which lift the degeneracy of Ho and produce, in μ-space, the
following topological structure of the ground states of Hμ\ There are n-lines
emanating from the origin on which Hμ has n — 1 periodic ground states, two
dimensional surfaces bounded by pairs of these lines on which there are n — 2
ground states, etc.

The theorem then states that, at sufficiently low temperatures, the phase
diagram perfectly mimics the above structure. There is a point μ(0) at which there
are n periodic phases etc.

This paper as well as our previous work [12] is an extension of Pirogov-Sinai
theory having as its primary goal the understanding of phase transitions in
continuum fluids in which there is no symmetry between the phases, e.g. the liquid-
vapour phase transition. While we have not yet succeeded in doing this we believe
that the present work goes a certain way in that direction; see discussion at end.
Other generalizations, some of them closely related to our work, have been carried
out recently by various authors [11,13-15]. In particular Imbrie has extended the
work of Glimm, Jaffe, and Spencer on phase transitions in quantum field theories
by making a powerful generalization of Pirogov-Sinai theory to such systems [7].

Example. A simple example illustrates the kind of extensions of the Pirogov-Sinai
theory we make here. Consider a lattice (or continuum) gas with 3 species of
particles: A, B, and C. The interaction consists simply of a hard-core of radius R
between an A particle and a B or C particle. There are no other interactions
between the particles. There is thus a trivial B — C symmetry. The species have an
activity zA9 zB, and zc. From the point of view of the Pirogov-Sinai theory the limit
zA = zB = zc-+oo leads to an infinity of ground states given by either the
configuration ωx = A Vx, or by the set of configurations where ωxe{B, C} Vx.

Since there is an infinite number of "ground states" the standard theory does
not apply. It is intuitively clear however that for large activities, there will be a
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separation between an ^-dominated phase and a B — C dominated phase but no
separation inside the B — C mixture, since there is no interaction to induce it. This
suggests that it may be possible to group an infinity of degenerate ground states
into a finite set of classes with each class giving rise to one equilibrium state (phase)
at low temperatures.

In fact our extension of the Pirogov-Sinai theory consists in the replacement of
the notion of ground states by measures over suitable subsets of phase space called
"restricted ensembles": * In the above example these are the single configuration
ωx = AVxeΈd (which is a ground state in the usual sense) and the Gibbs measure
(with no interactions) over the set of configurations

{ω\ωxe{B,C} MxeΈd).

For large zB, zc and suitable zA we shall have two phases whose typical
configurations will belong to one of these two subsets with small islands of the
opposite set (and of empty regions).

Moreover, the value of zA where this occurs is asymptotically (zβ, zc-> oo) close
to the values where the free energies of the restricted ensembles are equal:
zA = zB + zc. Thus we have the same picture as in the usual Pirogov-Sinai theory:
restricted ensemble-• pure phases. The correspondence is as follows: in the
Pirogov-Sinai theory all ground states have the same energy per unit volume; here
the requirement is that the different restricted ensembles have the same free energy
per unit volume. Then, for nearby values of the parameters specifying the
Hamiltonian H^ we find a number of phases corresponding to the number of
restricted ensembles. One then also obtains a complete phase diagram in the
vicinity of this point.

General Framework. Let us now describe the general framework in which this
example fits. First of all, it is not necessary that all configurations oϊB — C mixtures
have the same energy. There can be interactions between the B — C particles
themselves. What we require about their restricted ensembles is a diluteness
property. By this we mean that if we look at the system restricted to such an
ensemble it has to be in a single phase and satisfy (very) strong clustering
properties. Such properties usually follow from existence of convergent expansions
in a small parameter characterizing the "dilute" concentration of defects hence the
name.

In the case of a restricted ensemble being a single configuration (i.e. a ground
state) these properties are trivial, so our restricted ensembles properly generalize
the notion of ground state. The B — C mixture in the example above is also dilute,
since the B and C particles are independent, but there could be some weak
interactions between them without destroying the diluteness property. We prove
this for our example as well as for other models that we treat by means of some
convergent expansion (Mayer, high-temperature, etc.). However, one can formu-
late the general theory by assuming clustering properties in the restricted
ensembles that, although they are hard to check, should hold beyond the radius of

1 A similar idea was introduced in Field Theory [7] when a contour expansion was combined
with an expansion around each minimum of the potential. The set of field configurations close to a
minimum corresponds to our notion of "restricted ensemble"
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convergence of these expansions. They are probably true generally for systems in
the one-phase region away from critical points.

In addition to the diluteness hypothesis, we have to assume a suitable Peίerls'
condition: consider a set of configurations such that in one region Λί the system is
in one restricted ensemble and in a different region Λ2 is in a different restricted
ensemble. Then we assume that Λ1 and Λ2 have to be separated by a region, called
contour, where the system is in none of the restricted ensembles. Moreover, the
free energy of the system, given this specification, is higher than the one of the
system which is in the same restricted ensemble everywhere by an amount equal to
the size of the contour times a large constant.

Finally, we assume that one can find a point in parameter space where the free
energies per unit volume of the different restricted ensembles coincide. Then we
also want a set of perturbations that completely "lifts the degeneracy of the
restricted ensembles." Free energy degeneracy of restricted ensemble is thus similar
to ground state degeneracy in the Pirogov-Sinai theory.

An interesting example that we can analyze, where the entropy is essential, is
the g-state Potts model (on Zd, d^2) studied by Kotecky and Shlosman [16] using
reflection positivity methods. Here for q large we have q + 1 restricted ensembles q
of them are "ordered," each corresponding to a single configuration with all spins
equal and the (q + l) th ("disordered") consists of all configurations where all pairs of
adjacent spins are unequal. All these restricted ensembles have the same free

energy for β approximately equal to -log^. For the ordered ensemble this free
a

energy is just their energy (one configuration = 0 entropy) while for the disordered
one it is a pure entropy factor. Moreover, for q large, all these ensembles are dilute
and Peierls' Condition holds: that is, all intermediate situations between total
order and total disorder have a higher free energy.

Technically the main idea of the Pirogov-Sinai theory is to realize the
distribution of "outer contours" with the help of a suitable "contour model." In the
original theory the contours in this model are characterized by one body potentials
and interact only by hard core exclusion, i.e. they cannot overlap. In our case
however we have to consider contour models with interactions and we use the
diluteness hypothesis to prove that these models enjoy all the usual properties of
contour models.

Outline. In Sect. II we state the theorems that we can prove. We consider first
particular models (Widom-Rowlinson models, Potts model) and then the general
framework outlined above. Next, we prove our results, starting with the general
formulation and then showing that the models are special cases of it. In the last
section we discuss an alternative approach to our general results and indicate some
extensions.

II. Models and Main Results

We start by listing several models for which we shall prove the coexistence of
phases. These include both continuum and lattice models. We then develop a
general framework which extends the Pirogov-Sinai theory and in which all
previous models fit. We always assume that the space dimension d^2.



Extension of Pirogov-Sinai Theory 505

A. Models

1) A — B — C Model on a Lattice. As described in the Introduction, we associate to
each site x e ί a "spin" variable ωx taking four values, A, B, C, and 0, where ωx = 0
means there is no particle at site x e TLά. The set of configurations is denoted by Ω
and the restriction of ωeΩ to X<zΈd by ωx.

The interaction consists of two parts: 1) A hard-core interaction with radius R
between an A-particle and a B or C particle.

2) A finite range interaction between B and C particles given by

HΛ(ω)= Σ Jχ(ωx), \X\>2, (2.1)
XQA

where «/ = {«/χ( )}χczd> *s a n interaction which satisfies,
i) J is periodic,

ii) J is finite range, i.e. Jx = 0 if dmm(X)^R,
iii) Jx(ωx) = 0 unless ωxe {B, C} for all xeX.
We denote the fugacity of ^[-particles by zA and the fugacity of B and C

particles, taken equal for simplicity, by z0. We prove the phase coexistence of an
^4-ρhase and a B — C mixture phase when β is sufficiently small and zA, z0 are large.
The "restricted partition functions" ZA(A)9 ZB'C(A), corresponding to Gibbs states
in the restricted ensembles, are given by

ZB

R'C(Λ) = ZW • Σ e x p { - β H Λ ( ω ) } ,
B,C

where, in Σ , we sum over all ωΛ e ΩΛ such that ωx e {B, C} for all xeA.
The restricted free energies fA and fBC are given by

fΛ=\nzA, fBtC= \imd~\nZB

R-c(Λ).

We now note that, by employing the high temperature expansion (see
Appendix 1), we have, for sufficiently small β,

lnZB

R>c(A) = \A\(lnz0 + h(β)) + A(β, A), (2.2)

with \A(β,Λ)\£g(β)\dΛ\, g(β)^0 as β^O, and h(β) = ln2 + O(β).
Hence fA = fB,c ^zA = zoQXP(Kβ)) Our results about phase coexistence can

now be stated as follows:

Theorem 1. There exists β and z0 such that, for each /?, z0, β<β, zo>zo, and for
some zA(β,z0), close to zoexp(h(β)), at least two different extremal Gibbs states
pA(') and pB'c(-) coexist. The typical configurations of pA (respectively pB'c)
consists of a sea of A particles (respectively B or C particles) with small islands of
B or C particles (respectively A particles).

2) A — B — C Model in the Continuum.
1 °) In this version of the A — B — C model, there are A, B, and C particles with

fugacities zA, zB, and zc in the continuum. There is a hard core interaction with
radius Ro between an A and a ΰ o r a C particle. In addition we have four types of
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pair interactions φAiA, φB,B, φc,c, and φBC, all of which satisfy the following
condition:

Condition A. φaβ(r) has finite range R and either φaβ(r) = oo for r ̂  raβ and is

bounded for r > raβ or φaβ(r) = 0.

Notice that in both cases φaβ(r) satisfies the following strong stability
condition: there exists 0 < £ < o o such that for any admissible configuration
{Xj}nj=i, i.e. compatible with the hard core condition, and any is {1,2, ...,n}, we
have

Σ φaβ(Xi-Xj) £B<co. (2.3)

Theorem 2. Assume that the φ's satisfy condition A. Then there exists c<co such
that for each zA^c there exists β0 and r0 with the property that, if 0 ^ β < i β 0 and
raβ^r0, we can find values zB(β) and zc(β) for which at least two different extremal
Gibbs states pΛ( ) and pB>c( ) coexist. The typical configurations of pΛ, pB'c are as
in Theorem 1.

Remark. Contrary to the situation in Theorem 1, β0 and r 0 here depend on zA. The
larger zA the smaller β0, r0. This is necessary in order to satisfy our diluteness
hypothesis in the restricted ensemble.

2°) We may consider another version of this model, in which there is
coexistence between an ̂ 4-rich phase and a J3-rich phase each of which contains a
small number of C-particles. There is a hard-core interaction between A and B
particles and pair interactions between all other pairs of particles φAtA, φB^B, φc,&
φAtc, and φBC all of which satisfy condition A.

Under the above assumptions on interactions we have the following result.

Theorem 3. There exists c< oo such that, for zA^c, there exist β0, rθ9 and z0 with
the property that, if Q^β ^β0, 0 ^ z c ^ z o and raβ^ro, we can find a value
zB(β, zA, zc) for which at least two different extremal Gibbs measures pA( ) and pB( )
coexist.

3) r-State Continuum Widom-Rowlinson Model with Interactions. Here we con-
sider the same framework as in [12] but now allow some interactions among
particles of the same type. There are r species of particles with fugacities z α , α e S
= {0,1, ...,r— 1}. The interaction between α and β particles is via a hard-core

1 i f MS-* _
otherwise.

The pair interaction φa a among particles of type α satisfies condition A for each
oceS.

Let us fix the fugacity z 0 sufficiently large, put

and consider the parameter space:

[7(zo,β) = {z6

where z(O) = (z 0,..., z0) and \z\ = Max \zt\.



Extension of Pirogov-Sinai Theory 507

The following result is the extension of the main theorem of [12].

Theorem 4. Under the above hypotheses, there exists anε>0 and ac<oo such that,
for zo^c, there exist β0, r0 with the property that, if O^β^β0, and r α α ^ r 0 for
α = 0, ...,r— 1, the phase diagram in U(zo,ε) is as follows:

1) There exists a point z0 e U(ε, z0) for which at least r different extremal Gibbs
states coexist.

2) There exist r lines ya, a = 0,..., r — 1, starting from z0, for which at least r — 1
extremal Gibbs states {pt}, ieS\{a}, coexist.

3) In general, there exist k-dimensional open surfaces y^CC/(ε,z0), ACS,
# A = k, the boundary of yA consists of yA\{^ usA, and at least r — k extremal Gibbs
states {pι\, ieS\A coexist on yA.
4) q-State Potts Model. This model is defined as follows: at each site x e Έd, d ̂  2,
there is a variable Sxe {1,2, ...,q}, and the Hamiltonian is given by

HΛ(S)=- Σ δsx,sy>
<χ,y>cΛ

where {x, y) is a nearest neighbor pair of sites in Zd.
By using reflection positivity Kotecky and Shlosman [16] proved the phase

coexistence between "ordered phases" and the "disordered phase." Here ordered
phases correspond to the configurations ω\ ί= 1, ...,q, given by

ω\t) = i for all teΈd,

and the disordered phase corresponds to the subset ΩD of Ω given by

ΩD = {ω: ω(ί) Φ ω(s) for all nearest neighbor sites (t, s)}.

Let us note again that the energy plays the central role in the ordered phase while
the entropy is all important in the disordered phase.

For this system we shall first prove the properties of contour correlation
functions by employing the Pirogov-Sinai method and then prove coexistence of
the corresponding phases. The advantage of our method is that it doesn't require
reflection positivity. We can obtain information about contour correlation
functions and asymptotic estimates on the transition temperature.2 One could
also consider more general interactions and more general phase diagrams,
including several perturbations; see also [14, 15] for alternative proofs of
Theorem 5.

Theorem 5. There exists a qQ such that for any q>qowe can find a value β(q) with

<O(q~{ί~ίld)) at which at least q+l different extremal translation

invariant Gibbs states p1( ) , ...,pq( ) and pD( ) coexist. /?'(•), ieS, and pD( )
satisfy the estimates:

pD(ω(t0) =j) = q x, all j , and \

where (ί0, ί j is any pair of nearest neighbor sites.

Related estimates have been obtained by R. Israel (private communication)
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B. General Framework

(1) Description of the System. We consider a system consisting of 5 species of
particles. We discuss it in the continuum but a simple modification of this scheme
allows us to cover the lattice case, too. We have pair interactions φatβ satisfying
condition A. More general many-body interactions, for which (2.6) below is finite,
can be included as well.

The grand canonical partition function in a volume AcWid is given by

= Σ ^ •••fι-hxpl-βH(x1

ni,...,xl)V(x1

nι,.. ,xs

n)dx1

nι ...dxs

ns,

where xι

ni = (x\, ...,x^) *s the configuration of the ith type of particles, and

β

The ... stands for the other many-body interactions and /(x^, ...,xjs) is the
restriction coming from the hard-core interactions:

O if there exist x\ and x{ with \x[ — xjl^r^,
o t h e r w i s e

We abbreviate ξ = (xjlίi ...,x£s) and define,

H(ξ) = βH(ξ)+ Σ Kna, (2.4)
α = l

/ια = logzα, and we write

dvΛ(ξ) = I(ξ)dvΛ(ξ), (2.5)

where vΛ(ξ) is the natural measure on (J Π Λ"α given by
{«α} α = l

Σ Πk!)" 1 ^,
{nα} α = l

The partition function can now be written as

Let the set of locally finite configurations compatible with the hard-core
conditions be denoted by Ω. We write ωΛ to denote the restriction of ω e Ω to A and
ΩΛ = {ωΛ\ω G Ω} for the configuration space in A.

We can introduce boundary conditions by fixing ωeΩj, A = ΊR.d\A. This
defines H(ξ\ω\ I(ξ\ω), and vΛ(ξ\ω).

We introduce a norm on H:

β (2.6)

s

where n(ξ) = Σ nM) ^s the total number of particles in ξ. The sup is taken over all

configurations with a finite number of particles that are compatible with the hard-
core conditions.
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In the sequel we shall assume that \\H\\ is finite.

(2) Restricted Ensembles. We cover ΊR.d with a grid Zd of lattice spacing 1 (i.e. we
choose this spacing as a unit of length) and we denote by Cb i e 7Ld the unit cell of

the dual lattice centered at ί: Ci = ί x e R d
max|xα — i j ^ i j . These cells will be

called "elementary cubes." We assume that ΩCo can be partitioned as follows:

ΩCo= U j o ,
β = i

and we define Ωf, Ωt as the set of configurations obtained by translating Ω§, Ωo.
The configurations in Ωf, <j= 1, ...,r will be our generalized ground states, while
the configurations in Ωt will enter implicitly into the definition of contours.

We define the sets of configurations in our restricted ensembles

Ωq = {ωeΩ\ωCιeΩqVieZd}, and Ωq

Λ = {ωΛ\ωeΩq}.

By an abuse of language we often refer to Ωq as the qth restricted ensemble.
Now we illustrate this notion with a few examples:

1°) I sing Model. Let C o consist of one site in ΊLd. Now we have two restricted
ensembles Ω1 and Ω"1 given by Ω1 = {ω+} and Ω~ί = {ω~}, where ω±(t) = ± 1 for
all t E ΊLd. Ωι is empty.

2°) Λ — B — C Model. For the lattice model, let C o be one lattice site. We have now
restricted ensembles ΩA = {ωA}, ωA(t) = A, VίeZ d , and ΩB c = {ωeΩ; ω(t) = B
or C for all teΈd}, and Ωt is the configuration with no particle at site i.

For the continuum model one chooses a box C o such that if there is one
^4-particle in C o we cannot put a B or C-particle in any box Ct with \i\ < 2. However,
an A particle is allowed in each Ct and if there is a B or C particle in Co, a B or a C
particle is allowed in each Ct. Then the restricted ensembles are given by

ΩA = {ω; there is at least one ^4-particle in each Q } ,

ΩB c — {ω; there is at least one B or C-particle in each C J ,

and

ΩCι = {ωeΩCi; there is no particle in Q } .

(3) Diluteness of the Restricted Ensembles. First of all, we define the restricted
partition function for the qth ensemble, ZR(Λ\ωq), with boundary conditions
ωqeΩq

Λ:

ZR(Λ\ωq) = ί dvΛ(ξ\ωq) exp( - H(ξ\ωq))χq

Λ(ξ),

where χq

Λ is the indicator function of Ωq

Λ. One can define similarly restricted
correlation functions.

Let .R be the maximal range of all the interactions in H and all the hard-cores in
/. Two elementary cubes C ί? Cj are R-close if d(Cu C3) ̂  R, where d(Cb C,-)
= inf{d(t,s): ί e C ί 5 seCj} and d is the Euclidean distance. A set of cubes is
R-connected if any two cubes of that set can be joined by a sequence of .R-close
cubes of that set.
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Now we state our diluteness hypothesis:

(Al) We assume that, for all Λ's that are union of elementary cubes and all ωq e Ω%
a real valued function ζ( \A, ωq) is defined on the set of K-connected sets of
elementary cubes in Λ, and satisfies the following properties:

i) ZR(A\ωq) = exp ( ~ K\Λ\ - Σ K(U ωq)\ Σ * Π C(GίlΛ ω*), (2.7)

where Σ r u n s o y e r *'s such that d(Cb A) ^ R, and Σ * runs over sets such that all Gt

i
are ^-connected and d(Gί? Gj)>R, iή=j.

ii) ((G|Λ, ω9) = 1 if G consists of only one elementary cube.
iii) ζ(G\ΛLωq) depends on ωq only via ωq

Λ{GR> where Λ(G, R) = {elementary
cubes C in A such that d(C,G)^K}. In particular ζ(G\Λ, ωq) = ζ(G) does not
depend on ωq, A if d(G, A) > R. However, ζ(G) may depend on q. Moreover, ζ{G) is
translation invariant (or periodic) under TLά.

iv) sup
ζ(G\Λ,ω«)

ΛG\
^ 1 for some ε0 that will be chosen to be small later. \G\ is

the number of elementary cubes in G.

v) K is independent of A, ωq, and K(i, ωq) depends only on ωq

Λ{C. R); they may

both depend on q. Moreover, sup \K(i,ωq)\<oo.

Remarks. 1) Formula (2.7) is the general form of most convergent expansions for
the partition function: Usually ε0 tends to zero when some parameters (tempera-
ture, fugacity) of the system approach their limiting values. Then, for these limiting
models around which we perturb, K is the bulk energy and Σ K(U co) the boundary

i

free energy. We assume in ii) that ((one cube) = 1 because we can anyway absorb
this into K.

2) Once we have an expansion of the form (2.7) for the partition function, we
obtain the expansion of the free energy from standard algebraic techniques (see
Appendix 1). As a result, the limit

) = - lim ±-AogZR{A\ωq)
M l * \ Λ \

A
\Λ\

exists, is independent of ωq, and the rate of convergence can be studied in detail.

(4) Peίerls' Condition. We start with the definition of contours. Given a
configuration ω, a cube Ct is regular if ωc. eΩq for some qe{l,...,r} and ωc.eΩJ,
with the same q, for all; such that d(Cb Cj)^R. All other cubes are irregular. The
set of irregular cubes of ω is denoted J(ω). We consider only configurations such
that I(ω) is finite, i.e. ω belongs to one of the restricted ensembles at infinity. We
decompose I(ω) into maximal (2# + l)-connected components Γ1? ...,Γn. By
definition, d(Γi9 Γ) ) > 2R + 1 for i Φj. A contour (Γ, ωΓ) is a pair made of such a
(2R + l)-connected component, together with the restriction ωΓ of ω, to it. [The
somewhat unusual 2R +1 constant will be useful later when we show that different
contours do not interact too much, e.g. in Eq. (A.14).] Γ is called the support of the
contour. However, we shall sometimes use the words "the contour Γ" instead of
"the support of the contour (Γ, ωΓ)." There is no ambiguity since Γ always denotes
the support of a contour.
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The complement of Γ is made of several connected components, one of which is
infinite. The latter is denoted ExtΓ, while IntΓ is the union of all the finite ones. On
the boundary of each component the configuration ω belongs, by definition, to a
definite restricted ensemble. We write o(Γ) for the restricted ensemble attached to

r

ExtΓ, and IntΓ is decomposed into (J IntwΓ according to the corresponding
ensemble. We write m = 1

= |IntΓ|, 0(Γ) = ΓuIntJ\ and ΓcΛ if d(Γ,Z)>2R + l.

We define Z(Γ\Λ9 ω
q) as the partition function obtained by integrating over all

configurations in ΩΛ having only one contour (Γ, ωΓ), whose support is Γ and
having specified restricted ensembles outside of Γ.

Peierls" Condition:

(A2) We assume that

(i)

for all ΛDΓ, ωqeωq

Λ and all q= 1, ...,r. ρ will be assumed later to be large.
We also assume that
(ii) there exist λ0 > 0 and c<oo such that

<QxpλnΓ( )>(Γ\Λ,ωq)^exp(λcρ\Γ\)} for 0<λ<λo.

nΓ(ξ) is the total number of particles in Γ, for the configuration ξ the expectation
value < }(Γ\Λ, ωq) is obtained by conditioning on configurations having only one
contour, whose support is Γ (as in the definition of Z(Γ\Λ, ωq)).

Remark. This is somewhat different from Peierls' condition in the Pirogov-Sinai
theory in two respects: First of all, (A2) (i) says that a contour has a higher free
energy (not just energy) than the restricted ensembles. Moreover, we shall assume ρ
to be large. But since β is absorbed here in the definition (2.4) of H, our ρ
corresponds to βρ in [5], in cases where restricted ensembles reduce to ground
state configurations. Part ii) means that contours do not contain too many
particles. It will be used later when we perturb Ho.

(5) Perturbations of the System. We start with a system with a given Ho, having r
restricted ensembles and satisfying (A1)-(A2). Moreover, we assume that the free
energies of the restricted ensembles are all equal:

(A3) f"(H0)=f(H0), q = l,2,...,r.

Now we introduce r — 1 perturbations, i.e. Hamiltonians Hί,..., Hr _ 1 like (2.4),
with the same range as Ho and with norm | |£y, (2.6), equal to one.

We write

H0+
rΣ

ι = l

with μ = (μu....ft.JeR'"1 and U(η) ={μe]R - 1
\μ\ = max | r t | gη
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We have to assume some smoothness properties for the perturbations:

(A4) The restricted partition functions, defined for the perturbed system H(μ),
have an expansion like (2.7) with coefficients K(μ), K(i,ωq,μ) and ζ(-,μ).
Moreover, there exists η > 0, and C < oo such that, for all μ e U(η), the derivatives
with respect to μ, |K'(μ)|, \K'(i, ωq, μ)\ are bounded by Cρ and

sup
clG|-2

From (A4) one concludes that the thermodynamic free energies f(q, μ) of the
restricted ensembles exist and depend smoothly on μ:

I, i = l , . . . , i - l , (2.8)

for all μeU(η% provided ε0 is small enough (see Appendix 1).
Our last assumption expresses the fact that the perturbations Hu ...,

completely lift the degeneracy of the free energies assumed in (A3):
For each μ e U(η) we define

where t(q, μ) = f(q, μ) - min f(k, μ).

t(μ) 6 Or, the positive octant in IRΛ

(A5) t maps U(η) into a neighborhood V of the origin in Or and t~x is Lipschitz
continuous on V with constant L:

This implies that for each subset Ac{l,...,r}, there is a /c-dimensional subset of
U(η) for which f(q, μ) reaches its minimum exactly on those q's that belong to A,
where k = r— # A

Now we state our main theorem.

Theorem 6. Assume that we have a system, specified by HQ and a set of perturbations
Hb ί = l , . . . , r — 1, satisfying (A1)-(A5). Fix all constants except ε0, ρ, and η.
Assume that ε0 and η are small enough and ρ large enough (depending on η). Then we
have a Pirogov-Sinaί phase diagram in U(ή)just as in the Theorem 4, i.e. one point
with r phases, r lines with r—\ phases etc.

Remark. The relation between η and ρ is discussed in Sect. 4 (Part 3).

III. Proofs

The proofs are divided into two parts: In Part A, we prove our main result,
Theorem 6. Then in Part B, we prove Theorems 1-5 simply by checking that the
hypotheses of Theorem 6 are satisfied in each case.
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A. Proof of Theorem 6. The proof is similar to the one of Pirogov-Sinai [5].
Therefore, we freely refer to their results and we indicate only the main
modifications. Moreover, we defer most of the technical parts of the proof to the
Appendices.

1. Recursion Relations. We start by showing that the physical model satisfies
recursion relations similar to those in Pirogov-Sinai theory. We define the
partition function with q boundary conditions as follows: Let ωq e Ω% and

Z{Λ\ω",μ) = l dv^ωηcxpi-H^ξlω^χUξ), (3.1)

where
(Ί if all contours Γ of ξ satisfy d(Γ, A)>2R + l,
[0 otherwise.

To each configuration is associated a family of contours and, in each such
family, we distinguish the outer contours namely those whose support does not lie
in the interior of any other contour of the family. We can evaluate Z(A\ωq) (leaving
out the index μ) by first integrating over all configurations with a given set of outer
contours and then over all possible sets of such contours:

Z(A\ωq) = Σ°ί d v * K ) Z ° K μ , ωq), (3.2)
dCΛ

where the sum Σ° runs over all sets d — {Γv ..., Γn} of supports of outer contours in
A9 such that d(Γb /}) > 2R + 1 , for i 4=7, and d(Γ9 A) > 2R +1, Γ e d.

Z°(ωe\A,ωq,μ) is the partition function (3.1), but restricted to those configur-
ations having (d9 ωd) as outer contours [leaving out the index μ in (3.2)]. Finally,

dv*(ωd)=ndv*(ωΓ), (3.3)
Γed

and rfv* is the restriction of v to contour configurations, namely those configur-
ations ωΓ G ΩΓ for which all cubes in Γ are irregular and which have an extension
outside Γ for which all cubes Ci9 with d(Ci9 Γ)^ί are regular. We notice that the
support of dv* does not depend o n ω e Ω | because the hard-core has a range at
most R and the distance between Γ and A is greater than JR. For the same reason,
dv*(ωd) can be factorized as in (3.3). Also, since the support of the contours are
"thick," the components of Γ decouple if we fix a contour configuration ωΓ.
Actually, we can write:

? ? ) l ,
J

\ Π Z(IntmΓ|ω??)l, (3.4)
Γed[_ m=l J

where θ(d) = [j Θ(Γ). In order to justify (3.4) we observe that, since the support of
Γed

the contours are thick, the exterior of the contours, Λ\θ(d) interacts only with that
part of the contours which is in the qth restricted ensemble. We denote this part of
the contour configuration by ωf. Therefore, we have a restricted partition function
outside θ{d). The same observation applies to IntΓ: For each m, we have m
boundary conditions on IntmΓ (but there the partition function need not be
restricted). Moreover, the support of the contours Γ' in IntmΓ satisfy

d(Γ/,IntmΓ)>2Λ + l,
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because the distance between support of contours satisfies such an inequality. This
justifies (3.4).

Now we define interactions between contours, and between a contour and a
configuration ω e Ω% We start with the definition of the proper weight ιp(ωΓ) of a
contour configuration. (This is similar to ψ(Γ) in [5].)

Define Z(ωΓ\Λ,ωq,μ) as the partition function restricted to those configur-
ations whose unique contour is (Γ,ωΓ). [Notice that this is different from
Z°(ωΓ\Λ, ωq, μ) because here (Γ, ωΓ) is the unique outer contour.]

We shall use later the formula, analogous to (3.4) but for this partition function
(we drop μ here):

Z(ωΓ\A ω«) = ZR(Λ\θ(Γ)\ω\ aή) exp(-ff(ωΓ)) y i ZR(IntmΓ\ωΐ) I. (3.5)

Let

ψ(ωΓ\Λ, ωq, μ)=- \nZ(ωΓ\Λ, ω\ μ) + \nZR{A\ω\ μ)

+ Σ (f(q,μ)-f(m,μ))\lntmΓ\.
m=ί

Notice that the last term in the right-hand side of (3.6) was added to cancel the
volume terms of {IntmΓ} and that they vanish for μ=0.

Peierls' Condition could be stated as follows:

Q(Γ\Λ, ωq) = J dv*(ωΓ) exp [ - ψ(ωΓ\A ω\ μ = 0)] ̂  exp( - ρ\Γ\). (3.7)

Now ψ allows us to extend Peierls' Condition to μ φ 0 (part c of the following
lemma).

Lemma 1. Under the hypotheses of Theorem 6,
a) lim ψ(ωΓ\Λ, ωq,μ) = ψ(ωΓ\μ) exists and is independent of ωq.

b) There exists c < oo such that -ψ(ωΓ\Λ,ωq,μ) ^n(ωΓ) + cρ\Γ\. This bound
dμi

holds uniformly in μs U(η), ωq, A, ωn and c does not depend on ρ.
c) Vμeϋfo),

Z(Γ, ψ) = J dv*(ωΓ) exp(-ψ(ωΓ\A, ™\ μ))^exp ί - | |Γ|J.

d) There exists λ>0 and c< oo independent of ρ, such that

Z(Γ9 ψΓ'l dv*(ωΓ) exp [An(ωΓ) - ψ(ωΓ\Λ9 ω\ μ)] ̂  exp(cρ|Γ|).

Proof. See Appendix 1.
Now we define the interactions between the contours. First of all, let

Φ(ωΓ\A, ωq, μ) = ψ{ωΓ\A, ωq, μ) - ψ(ωΓ\μ)

denote the interaction between the contour (Γ, ωΓ) and the configuration ωq e Ω%
Next, define

Y\ZR
Γed
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where |δ| = card(<9), and let

W(ωe\Λ, ωq) = W(ωd\Λ, ωq) + Σ Φ(ωΓ\Λ, ωq). (3.9)
Γed

Φ is a one-body interaction for ωΓ (or it can be viewed as a two-body interaction
between ωΓ and ωq) while W contains many-body interactions between outer
contours (and with ωq). Due to assumption (Al), all these interactions are weak (for
ε0 small) and rapidly decaying with the distance between outer contours. This will
imply that the contour models defined below enjoy all the properties of the one in
the Pirogov-Sinai theory (see Appendix 2).

Now we summarize our recursion formulas (3.2) and (3.4):
Define the dilute partition function for ωq e Ω%

Zd(Λ\ω\ μ) = Z(Λ\ω\ μ)/ZR(Λ\ωq, μ). (3.10)

(Dividing by the restricted partition function is the analogue of subtracting the
ground state energy in [5].) The crystal partition function for ωΓ, where ωΓ is a
contour configuration with o{Γ) = q, is given by

Zc{ωΓ\μ)

= exp(-ψ(ωΓ\μ)) Π [Z d(IntwΓ|ω^μ)exp((/(^,μ)-/(m,μ))|IntmΓ|)].
m = 1 (3.11)

This can be equivalently defined as

]im Z°(ωΓ\Λ9ω*,μ)/ZR(Λ\ω*9μ)
Λ-* oo

[use (3.4), (3.6), and Lemma la) for the existence of the limit].

Lemma 2. Let ωq 6 Ω% then

Zd{Λ\ω\μ)= ΣVv*(ωa)exp(-*nω,|Aω*)) Π Ze{ωΓ\μ).
dQΛ Λed

Proof. Insert (3.4) into (3.2) and use the definitions (3.6), (3.9H3.11) of ψ, W, Zd9 Zc.

2. Contour Models. We define now contour models: they do not necessarily
correspond to physical models but satisfy recursion relations similar to those of
Lemma 2.

Fix qe{ί,...,r} and let ^q be the set of contours with o(Γ) = q. A contour
functional Fq is a function defined on the set of contour configurations in (6q

satisfying: | J 7 β ( } |

sup — — , ' , < o o .
r,ωΓn(ωΓ) + \Γ\

A contour functional is called a τ-functional if it satisfies the two conditions:

i) J dv\ωΓ) exp( - Fq(ωΓ)) ^ exp( - τ\Γ\) (3.12)

for all contours in (€q.

ϋ) <expτ- ιn( )>(Γ, Fq) ^ exp(τ2 |Γ|). (3.13)

Here < >(Γ, Fq) is the normalized expectation whose normalization is the left-hand
side of (3.12).
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Remark. Due to Lemma 1, part c and d, ψ(ωΓ\A,ωq,μ) is a τ-functional with
τ = ρ/2, for all μeU(η) and ρ large enough [ρ^max(2/l~1,4c) with Λ,, c as in
Lemma 1].

Now we define the crystal partition function with τ-functional Fq:

fl Z{lntmΓ\F\μ),
m=ί

where Z(A\Fq,μ), the dilute partition function, equals:

Z{A\F\ μ) = Σ°ί dv*(ωd) exp( - W(ω0)]
dCA Γed

Here Σ° = sum over support of outer contours, and

W(ωd)= Km W(ωd\A,ωq) = lim PF(ωδμi, ω«) (3.14)
A-+ oo Λ.—• oo

(the existence of the limit and its independence upon ωq is proven in Appen-
dix 2). Z(ωΓ\Fq,μ) and Z(Λ\Fq,μ) depend explicitly on μ because W does.

The contour model is defined as the probability distribution for outer contours
given by

W , μ) = 2(ijf5) ^ <*v*(ωβ)exp(- W{ωd))T[Z(ωΓ\F\ μ).

We also define the dilute partition function Z(Λ\F,ωq,μ) with boundary
conditions ωq e Ω% as

Σ°ί dv*(ωa)exp(-^(ω,M,ω«)) Π Z(ωΓ\F,μ).
dCΛ Γed

Now, we can prove, for τ large enough and ε0 small enough, that these contour
models enjoy all the properties of the Pirogov-Sinai contour models. The main
difference comes from the interaction between contours and moreover, due to
these interactions, the contour models depend explicitly on μ. As we show in
Appendix 2, one can prove that

S{F\μ)= lim ±-\ogZ{Λ\F\ω\μ)
A-*co \Λ\

exists and is independent of ωq. The same limit is obtained with Z(Λ\Fq,μ).
Moreover,

)\^O(e-τ), (3.15)

and the boundary term

A(Λ\F\ ω«, μ) = \nZ{A\F\ ωq, μ) - S{F\ μ) \A\

satisfies

\Δ{A\F\ω\μ)\^O(e-τ)\dA\. (3.16)

One obtains also the existence of the thermodynamic limit for the correlation
functions of the contour model; the latter cluster exponentially and satisfy a
Peierls' estimate as in Propositions 2.1 and 2.2 of [5] (see Appendix 2).
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Finally, S(Fq, μ) depends smoothly on μ and F: Let F1,F2 be two τ functionals
(with the same q) and μ^μ2 e U(η): Then,

μ2\), (3.17)

where

= sup
Γ,ωr

n(ωΓ) + \θ(Γ)\
(3.18)

with δ(Γ) = diameter of Γ. Notice that we have replaced, for convenience, "α" in the
definition of the similar norm in [5] by τ/2 and that n(ωΓ) has been added.

3. Proof of Theorem 6. We start by defining contour models with a parameter

Z(Λ\F,b,μ)= Σ°™PφV(d))$dv*(ωδ)exp(-W(ωd))nZ(ωΓ\F), (3.19)
ecΛ red

where V(d)= Σ V(Γ), and one defines similarly Z(Λ\F,b,ωq,μ).

The main estimate concerns

Δ(Λ\F9 b9 ω\ μ) = lnZ{Λ\F, b9 ω\ μ) - S(F9 μ)\Λ\ - b\A\.

Note that, by the same proof as the one of Eq. (2.40) in [5], we have

Δ{A\F,b,ω\μ)^O{e-χ)\dA\. (3.20)

Lemma 3. Let F,F' be two τ contour functionals (same q), μ,μ!Έ U(η), b, fc'^0,
ω, ωf

 E Ω\:
\Δ{Λ\F9b9ω9μ)-Δ{Λ\F9b

f

9ω\μf)\

- %- + T-δ(Λ)j \Λ\ | | |F-F|||

(3.21)

Proof. See Appendix 2.
Given these contour models with parameters, one can set a one-to-one

correspondence between them and the real model, as in Proposition 2.6 of [5]:

Zc(ωΓ\μ) = exp(bqV(Γ))Z(ωΓ\F% μ),

where

bq = f(q,μ)-S(F%μ) + a9 (3.22)

and α is such that inffrβ = 0. Moreover, by Lemma 2 and (3.19) we have that

Zd(Λ\ωm,μ) = Z(Λ\F^bm,ωm,μ), Vm.

Fl is given by the equation:

F%ωΓ\μ) = ψ(ωΓ\μ) + T"(ωΓ\F, μ, b), (3.23)

where

T\ωΓ\F,μ,b)= Σ {Δ(hΛmΓ\F*,μ)-Δ(liamΓ\Fm,bm,a$,μ)}.
m = 1
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Now we shall show that the right-hand side of (3.23) defines a map from the set
of τ functional into itself, provided τ = ρ/4 and ρ is large enough: Indeed, (3.12)
follows from Lemma lc) and the estimate

[which itself follows from (3.16) and (3.20)], provided

ρ/2-O(exp(-ρ/4))^ρ/4

(which holds for ρ large enough). Moreover, (3.13) can be proven as follows, using
the bound

I V(ωΓ\F9 μ, b) - T«(ω'Γ\F, μ,b)\ύ O(ε0) \Γ\

[which itself follows from the 4th term in the right-hand side of (3.21)]:

<exp(4n/ρ)> (Γ, ψ + T) ̂  exp(2O(ε0) \Γ\ <exp λn> (Γ, ψ)

[by Lemma Id), provided ρ^

provided ρ is large enough.
On the other hand, one proves that T is a contraction in the space of τ

functionals equipped with the norm (3.18), just as in [5].
Moreover, we want to know that F is Lipschitz continuous in μ for the norm

|||F|||. This follows from (3.23): ψ is Lipschitz continuous by Lemma lb), and T
depends on μ directly and indirectly (via F and b). For the direct dependence, one
uses (3.21) and for the F and b dependence we follow [5, p. 65]. We know that
f(q, μ) depends smoothly on μ due to (2.8). One arrives at an estimate

^ ^ μ ' l (3.24)

for some constant C< oo.
Now we use boundary conditions as in [5] to construct the Gibbs states

corresponding to the restricted ensembles for which bq = 0. If bq = 0 and if we
choose ωqeΩ% then contours will have a small probability in A. Indeed, the
distribution of outer contours in the "physical" ensemble [defined by the partition
function Zd, see (3.10)] is equal to the one in a contour model, with b = 0, for which
a Peierls' estimate holds [see (A.29) in Appendix 2]. This implies that the typical
configurations of the thermodynamic limit of the Gibbs states in A with boundary
conditions ωq will belong to Ωq

c, for most Γs. Thus these Gibbs states will be
different for different g's (such that bq = 0). Moreover, the expansion for contour
models outlined in Appendix 2 (which relies on the diluteness of the restricted
ensemble) implies exponential clustering of correlation functions and extremality
of these Gibbs states in a fairly standard way.

To complete the proof of the main theorem, we still have to show that, for some
neighborhood V of 0 in the positive octant Or, and for any beV, one can find a
μ e U(η) such that Eq. (3.22) holds. This is proven almost as in [5], but we have to
take into account the non-linear dependence of f(q, μ) on μ.
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If S(F) were zero, then (3.22) would follow from our assumption (A5). So, define

G(μ) = r1\bq-S(F'>μ,μ)- min (b9S(F%μ))\

with t as in (A5).
If, given b e F, we can find μ 6 U(η) so that μ = G(μ) then we obtain a set of

equations equivalent to (3.22).
Let a(μ) = (aq(μ)l with

*β(μ) = bq - S(F% μ) - ™™{bq - S(F% μ)).

Then, since ί~1(0) = 0, and t~ι is Lipschitz continuous,

|ί" V(μ))l ^ L|flO*)| ^ 2L|f>| + 2L\S(F% μ)\ ^ 2L\b\ + 2LO(^ "τ)

by (3.16). This shows that G maps U(η) into itself if |b| is small enough. To prove
that G is a contraction, we write:

\Γ \a(μ)) - Γ \a(μ'))\ S L\a(μ) - α(μ')| S 2Lmax |S(FJ, μ) -

by (3.17),

by (3.24). This shows that G is a contraction for ρ large, since τ = ρ/4.

B. Proof of Theorems 1-5. As we explained in the beginning of this section, we
prove these theorems by checking in each case that the assumptions (A1)-(A5) hold
and then using Theorem 6 (or its straightforward extension when we discuss lattice
models).

Proof of Theorem L We have explained in Sect. II (B, 2, 2°) what the restricted
ensembles are in this case: Co contains one lattice site and one restricted ensemble
is just the configuration containing an A particle at each site, while the other
ensemble is defined by the condition that each site be occupied by a B or a C
particle. The restricted partition functions are:

ωx = B,C
xeΛ

where ωBC eΩ^0 and

HΛ(ωΛ\ωBC)= Σ Jχ(ωx\ωBC).

The diluteness of the A restricted ensemble is trivial.
We use the standard high temperature expansion to verify the diluteness of the

B — C mixture: Write

and expand the product over XnΛ^φ, in (3.25).
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It is obvious that ZR(Λ\ωBC) can be written in the form (2.7) with exp( — K)
= 2z0, K(i, ω5C) = 0. The G's are ordinary high-temperature graphs, i.e.
^-connected sets of lattice sites and

ζ(G\Λ,ωBC)=%™ Σ Σ Uί^P(βJXi((oXi\ωBC))-^, (3.26)
ωx = B,C {Xt,...,Xk} i = l

xeG

where the second sum is over all sets {Xl9...,Xk} of subsets of G such that

(]Xi = G.

All other conditions in (Al) are easy to check: ii) holds since we assumed in (2.1)
that Jx = 0 if X = one site, iii) is obvious from (3.26), with ζ(G) having the same
period as {Jx}; iv) holds because it is easy to bound (3.26) by (Cβ)k<,(Cβ)lG]IR for
some suitable constant C. We have k ̂  \G\/R because the interaction has a range at
most R and {Xl9 ...,Xk} covers G. Thus, εo = (Cβ)1/R. v) is trivial.

In order to check Peierls' condition, we first choose the values of zA, z0, and β
around which we perturb. Using this high-temperature expansion, and the
polymer formalism (see Appendix 1) we have, for β small,

\nZR(A\ωBC) = μ|(lnz0 + h(β)) + Δ(β9 A), (3.27)

with \Δ{β9A)\^g{β)\dA\9 h(β) = ln2 + O(β) and g(β)-+0 as
If we take

(3.28)

then the free energies of the restricted ensembles are equal [this verifies (A3)] and,
moreover, Peierls' condition is satisfied: due to the hard-core condition, the
support of any contour contains a number of empty sets proportional to \Γ\. Let us
check Peierls' condition in the form of inequality (3.7). Inserting (3.5) into (3.6) (for
μ = 0) and using the expansion (3.27) for \nZR(A\ωBC) with the explicit form of
Δ(Λ9 β) given in Appendix 1, Eq. (A.7) [with K(i, ω) = 0], one obtains a cancellation
of volume factors (outside and inside Γ) leading to a bound:

β(Γ|Λ ωBC) S exp [ - {zA # {empty sites in Γ} - 2g(β) |Γ|)]. (3.29)

This gives Peierls' condition with ρ £ zA.
Now, since we have two restricted ensembles we need one perturbation: take

zA = zAcxpμ. For all values of μ, the smoothness hypothesis (A4) is trivial: the
B — C restricted partition function does not depend on μ. Now we check (A5): for
μ>0,

t(A9 μ) = z^expμ -1), t(BC9 μ) = 0,

and, for μ < 0,

t(A9 μ) = 0, t(BC9 μ) = zA(l - expμ).

So, if b = (bub2)e029

The Lipschitz continuity of t~γ follows from this formula.
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Proof of Theorems 2, 3, 4. The proofs of these theorems are quite similar to each
other and to the one of Theorem 1 we discuss in detail the modifications for the
proof of Theorem 4; Theorems 2 and 3 are similar. We choose Co small enough so
that two particles of different species cannot be found in the same or in adjacent
elementary cubes. The restricted ensemble Ω^o consist of all admissible configur-
ations in Co containing at least one q-type particle. The diluteness of the restricted
ensembles follows from the convergence of the Mayer expansion, which holds
provided β and r0 (= the maximal hard-core radius between particles of the same
type) are small enough (depending on zφ so that βzq and zqr% are small). Note that
we perform a Mayer expansion not only for the interactions φqq but also for the
constraint, imposed by our definition of the restricted ensembles, that there is at
least one particle in each cube Cv However, for zq large, this is easily handled: the
weight of an empty cube in the expansion is exp(- zq) (since \Ct\ = 1). The form (2.7)
is unusual for a Mayer expansion but one can obtain it by inserting

n
Λ Ί Γ

α = l

into each Mayer graph (n is the number of particles in the graph, Ic. the
characteristic function of Q), and expanding the product. Then one gets a lattice
polymer expansion of the form (2.7). Alternatively, one can derive all results using
the ordinary form of the expansion and repeating the arguments of part A of this
section.

In any case, the Mayer expansion allows us to write:

for the free energies of the restricted ensembles, where \hq(β,zq)\^O(δzq), with
δ=meix(β,rd

0),

). (3.31)

This implies that, for fixed z0 and ε and for δ small enough, one can find a point
(zu...,zr^γ) in L/(zo,ε) for which all the free energies are equal: f(q,zq)=f

Thus, for this value of (zq\ (A3) holds and Peierls' condition also holds because
- due to the hard-core interactions the number of empty cubes in each contour

Γ is proportional to |Γ|,
- the empty cubes imply a loss of free energy of order exp[— /• |empty cubes|],
- using the Mayer expansion, one can cancel in (3.6) the volume terms exactly,

inside and outside Γ, leaving only a boundary term O(δzq)\Γ\.
Thus, the Peierls' constant ρ = z0, since / = z0 in (3.22), due to (3.30).
Now we take as perturbations of our system μu...,μr_1 with exp/^ = zjzq. II μ

is not too large, the Mayer expansion still converges, thus proving (A4).
Note that, with this definition of the perturbations, U(z0, ε) in Theorem 4 is, for

ε small enough, included in what we denoted by U(η) in the general framework.
Part (ii) of (A2) is trivial for lattice models but not here. Our argument is similar

r

to the proof of Lemma 5.2 in [12]. Write nΓ( ) = Σ n\( ) it is clearly sufficient to
q=ί
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bound each

<exp(24( ))> = ί <exp(AnK )) \y>P(y),

where in < |y> we condition on the location (y) of all particles of a species different
from q. But, since the particles of a different species interact with the qth species only
through hard-core exclusion, < |j/> is equivalent to the expectation value in the qth

restricted ensemble in a region ~Λq(y\ where the qth species is allowed, given y,

<exp(AnK • ))\y> = <exp(Anf< ))>i(>lβ0?)).

Now, since this latter quantity is an expectation value in a restricted ensemble
we can use the Mayer expansion to control it. But then, <exp/lrc> is just a ratio of
partition functions with activity z in the denominator and eλz in the numerator.

Thus we can bound this by

exp(O(λ)zq\Aq(y)\) ^ exp(O(λ)zq\Γ\),

but, since ρ = z0 and zq = z0, we have proven (A2)(ii) for small λ.
Now we come to (A5). In order to obtain t~1, we have to find zl9..., zr_ 1 such

that, given b e 0r

zq-zq+i = bq-bq+i-hq(β,zq)-hq+1(β,zq+1) (3.32)

for q = 0, . . . , r - 1 (with r identified to 0). By (3.31) the right-hand side of (3.32) is a
contraction for δ small enough. Moreover, the solution is Lipschitz continuous
in b.

Proof of Theorem 5. Our elementary cube Co will be an elementary cube of the
lattice (or a square here since we shall work in d = 2 for simplicity).

Our restricted ensembles are: Ωm, m = l , ...,q, corresponding to a configur-
ation Sx equal to m, Vx e Z 2 . These are the ordered ensembles. Ωf: all bonds <xy>
on the boundary of Ct are broken, i.e. Sx φ <Sr This is our disordered ensemble. The
diluteness of the ordered ensembles is trivial. For the disordered ensemble, we use a
large q expansion, similar to high-temperature expansions (q~x replacing β). The
restricted partition function, ZR(Λ\ωD) is just equal to the number of configur-
ations in A such that Sx φ Sy, V (xy}nΛ φ 0 (where Sy9 y e A is given by ωD). Indeed,
for all the disordered configurations, the energy is zero. We write

ZR(AωD)= Σ Π {l-δ{SX9Sy))9 Σ =q( Σ -Y (3.33)
Sx=l (xy}nΛ*0 Sx=l \SX=1 qj

Put K in (2.7) equal -Ing, and expand Π(l-<50Sχ,Sy)) i n (3 3 3 ) i n t o a Mayer
series. The result is a sum over sets of two by two disconnected graphs, as in (2.7),
with G = connected set of nearest-neighbor pairs

ζ(G)= Σ - Π (-δ(Sx,Sy))9 G = {x|3y,<xy>6G}.
Sx=l q <xy}eG
xeG

Due to the δ functions, ζ(G) is equal to ^~ ( l^ l"1 ). But for each G, | G | ^
\G\ = number of n.n. bonds in G. So, (Al) is satisfied.
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From (Al) and the expansion for the free energy (Appendix 1) we obtain /(D, q)

= \nq + 0 ( - I. On the other hand, /(m, β) is a pure energy term, equal to 2β (2
w

replaced by d in Έ\ Thus we can satisfy (A3) by choosing 2βo=f(D,q), i.e.

As perturbations, we shall only take β — β0 (we could introduce more
perturbations, thus getting a larger phase diagram). All the ordered phases are
treated as if they were only one phase using symmetry. Given this, (A4) and (A5) are
trivial to check.

Now we prove Peierls' estimate (A2). This was proven in [16] using Reflection
Positivity. Here we do not use this condition. The proof is somewhat technical but
the idea is easy: support of contours contain squares where not all bonds are
broken (Sx φ Sy) but not all are unbroken either. These configurations loose on the
energy side with respect to the ordered ones (unbroken bonds) and on the entropy
side with respect to the disordered ensemble (broken bonds).

Let Z(Λ\u,b) be the partition function in A where we sum over all configur-
ations for which the set u of unbroken bonds and the set b of broken ones are given.
Given u and b, let Ek = {sites with k u-bonds attached to them} (we use Ek also for
φEk). For d = 2,k runs from 0 to 4.

We claim that, for any given set u and b and β=^lnq,

Z(Λ\u, b) £ q(Eo+E<ψ{El +E2+E3). (3.34)

Assuming (3.34) we prove Peierls' condition as follows: Define a contour
square to be a square Cx such that some bonds on its boundary are broken and
some are not. With our definition of contours, it is clear that the support of each
contour Γ contains a number of contour squares proportional to \Γ\ (since our
contours are thick, all squares in Γ need not be contour squares). Now, all sites
contained in a contour square cannot belong to E0uE4. Thus, the number of sites
in £ 1 u £ 2 u £ 3 is again proportional to |Γ|, say larger than C\Γ\. There are at most
2 2 | Γ | ways of specifying which bonds are in u and in b, given Γ, since they are
automatically specified outside Γ. Finally, the partition function for the restricted
ensemble is, when β=^\ogq, equal to g |Γ | (up to boundary terms), so we get a
bound

Q(Γ\Λ,ω)S22mq~*(El+E2+E3)^2Wq~^n, (3.35)

which implies Peierls' condition. However, one has to add two remarks: we have to
use expansions in order to properly control the effect of the boundary conditions
on A. Moreover, β0 is not equal to ^Inq, but so close to it that it does not affect
estimate (3.35).

So we are left with the proof of (3.34). We evaluate the partition function by
assigning to each site in Ek an energy factor and an entropy factor in such a way
that the product of all these factors over all sites gives an upper bound [equal to the
right-hand side of (3.34)] on Z(Λ\u,b).

The energy factors are easy: Put qk/4 for each site in Ek (β=^lnq and each
w-bonds belongs to two sites). For the entropy factors, we give q to each Eo site
(since there are no w-bonds attached to those sites, the spin has no constraint), q112
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to each Eί and g1/4 to each E2: Indeed we have to allow for one factor of q for each
connected set of u bonds. It is an easy geometrical observation that in each
connected set of bonds

(The simplest cases are: two endpoints, i.e. Ei =2, E2 = 0 or a closed loop with at
least 4 corners, i.e. Eι =0 but E2 Ξξ4.) Multiplying together all these factors gives
(3.34).

IV. Alternative Formulation and Concluding Remarks

In this section, we discuss further the meaning of the hypotheses of our main
theorem and how they could be improved to give more general results.

1) We first formulate a more physical hypothesis which would replace (Al) and
be sufficient for our purposes. Unfortunately, the proof appears to be more
complicated with this hypothesis, so we used (Al). Although assumption (Al)
looks rather odd, it expresses, as we have seen in the proof of Theorems 1-5, the
general form of most cluster expansions. ΓWe remark that, in general, one cannot

avoid, in (2.4), the term exp ( — K\Λ\ — X K(i, ωq)\: It occurs already in the trivial

example where Ωq is reduced to one point.!

Our alternative hypothesis essentially requires strong clustering properties of
the correlation functions in the restricted ensembles. In order to state this
clustering property more precisely, let us define ρ(ωCί9...,ωCn\Λ,ωq) as the
probability density, in the qth restricted ensemble [whose partition function is
ZR{A\ωq)\ that ωCl, ...,ωCn are precisely the configurations in the elementary
cubes Cl9..., Cn, and the configurations in the other cubes are unspecified.

Let Al9...9Ak be sets of elementary cubes and ωA= {J ωc. The partially
truncated correlation functions are defined by: CCΛ

Qτ(ωAι,...,ωAk)=Σ(--ίΓ>-l)\ Σ Π ί K J - (4-1)
n ^ l πePn({l,...,fc}) αeπ

where Pn is the set of partitions of {1,..., k} into n elements, Aa = (J Ak, and we left
out the dependence on Λ,ωq. feeα

The assumption replacing (Al) can now be stated as follows: There exists m > 0
such that k

\ρτ(ωAi,...,ωAk)\^ Π Q(ωΛi)exp(-ml(Al9 ...,^)) (4.2)
i = 1

uniformly in Λ9 ω
q, provided d(AhΛ)^2R+l, Vi, and d(Ai9Aj)^2R+l if i+j.

Here l(Aί,..., Ak) is the minimal number of elementary cubes in a set JV such that
JVu.41u...u./4fc is connected (equivalently, it is the tree distance [17] between the
A's). In addition one would replace assumption (A4) by requiring (4.2) to hold for
μ £ U(η) with m independent of μ.
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We note that (4.2) can be derived from (Al), and thus holds for the models
considered in Theorems 1-5, by using the expansions as in Appendices 1 and 2.
Moreover, m is then of order |lnεo|. However, we expect (4.2) to hold quite
generally, with some m > 0, throughout the region in parameter space where the
system, in the restricted ensembles, lies in a single phase. This is therefore a much
less restrictive hypothesis than (Al). One could weaken this assumption by adding

k

a factor Π c1^1 o n the right-hand side of (4.2) at the expense of increasing ρ in
i=ί

Peierls' condition.
We sketch how (4.2) can be used to replace (Al). One of the main virtues of (Al)

is to provide a suitable expansion for exp(— PF(ωa|Λ., ωq)\ the interaction between
outer contours [see (3.8)]. We can easily relate exp(— W) to a ratio of correlation
functions: In the numerator and the denominator of (3.8) we have partition
functions with some boundary condition ωq in Θ(Γ); i.e., the configuration in the
elementary cubes of Θ(Γ) whose distance from Λ\Θ{Γ) is less than R belongs to the
qth restricted ensemble. Let Θ(Γ) be the region obtained by deleting these cubes
from Θ(Γ). Now multiply the numerator and the denominator in (3.8) by

Γed

ωf being the configuration in Θ(Γ)\Θ(Γ).
These transformations show that (leaving out ωq,Λ):

. (4.3)
Γeδ

Now, given (4.3), instead of expanding exp(— W) as we do in (A.22), we expand
ρ(ω|) in partially truncated correlation functions:

Q(ωί)= Σ Π β V ί , , . . . , ^ ) , (4.4)
πeP(d) {Γi}eπ

where the sum is over all partitions of d and the product over all elements of π.
Equation (4.4) follows from the inversion of (4.1).

Now, the reader can check that, if we insert (4.4) in (4.3) and then (4.3) in the
partition function of the contour models we obtain a suitable polymer expansion
for the latter. Moreover, using (4.2) one shows by techniques similar to the ones of
Appendix 2 that this polymer expansion converges.

2) Contrary to (Al), hypothesis (A2)(i) is fairly physical: it requires the presence
of a "free energy barrier" between typical configurations of different phases. This
condition cannot be relaxed too much, because something has to cause phase
separation. However, ρ presumably needs not be as large as we require it to be, and
Dinaburg and Sinai [14] have recently used a weaker Peierls' condition in their
analysis of ANNNI models.

3) Condition (A3) simply defines the point in parameter space around which
we perturb. One could say, in order to relate this framework to the one of Pirogov
and Sinai, that, instead of perturbing around zero temperature, we perturb around
any point where there is approximate phase coexistence, i.e. phase coexistence
would take place if the phases and the restricted ensembles would coincide. Of
course, this is most useful in cases (Potts or Widom-Rowlinson models) where the
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corresponding "low temperature," i.e. q-+oo or z->oo limit, is somewhat ill-
defined. Moreover, by (A5), we have a complete phase diagram in the neighbor-
hood of this point. However, a phase consists not only of one restricted ensemble
but also of bubbles, surrounded by contours, of other restricted ensembles: This
shifts the point of coexistence of the phases by an amount of order Le~ρ: the e~ρ

factor comes from the smallest contours and L enters in (A5): LΓx is roughly the
linear coefficient of the dependence of /(μ) on μ. Thus we want our set of
perturbations to be large enough: Typically η should satisfy:

Le~ρ<η<ρ. (4.5)

The upper inequality is necessary so that Peierls' condition [see Lemma lc)] is not
destroyed by the perturbation. Thus, if ρ-> oo, we can let η-* oo provided that (A4),
(A5) hold for those values of η. Of course, (4.5) can be satisfied, for fixed η, L, by
choosing ρ large but L, ρ, and η may be related in a natural way in more general
situations, and then condition (4.5) has to be kept in mind.

4) Conditions (A2)(ii) and (A4) are rather technical and could probably be
relaxed: (A4) could follow from an expansion in μ around the μ = 0 theory. Part (ii)
of A2 is used to control the derivatives with respect to μ of Hμ for the expectation
inside the contours (for the expectation in the restricted ensemble we can use A4)
but it could probably be simplified.

5) Within the context of the Pirogov-Sinai theory, there are two interesting
developments. Slawny [8] has given a method, rigorously justified, to compute the
asymptotes of the phase diagram and Zahradnik [9], using a different approach to
the theory, has proven the uniqueness part of the phase diagram: The phases
constructed by the Pirogov-Sinai method are the only ones. We expect that both
results can be extended to our situation but we have not checked this. If this is true,
one could presumably rigorously justify the asymptotic expansion, in q~ \ of β(q),
the transition temperature for the Potts model. Also, our results on the surface
tension [18] should be extendable to the present framework (see also [19]).

6) Finally, although we have not considered this case explicitly (it is studied
elsewhere [7, 11, 13, 15]), it is clear that our method allows an extension of the
Pirogov-Sinai theory to continuous spin models, at least for bounded spins. For a
class of ferromagnetic models of continuous bounded spins, a low temperature
expansion has been given in [20]. We think that the method of that paper could be
used here, too; in particular, the extension "around the ground states" in [20]
would provide the necessary condition (Al) here. For unbounded spins as well as
continuum models not satisfying condition A (see Theorems 2,3, and 4), we have to
generalize our main theorem to a situation where \\H\\9 defined in (2.6), is no longer
finite but where a one-sided bound holds (stability): H(ξ)^Bn(ζ).

Several technical complications enter here, e.g. when we estimate derivatives
with respect to μ, the boundary terms and so on. However, it does not seem that
there is an intrinsic limitation in our method that would prevent us from covering
these cases, too.

7) Coming back to our main goal, namely the understanding of the liquid-gas
transition in one-component fluids, we shall make two remarks. First of all we
consider a Widom-Rowlinson model with two kinds of particles, A and B. If there
is no interaction between the B particles, we can integrate explicitly over the B
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particles and we are left with a one-component fluid (of A particles) with many-
body interactions induced by the B particles [21]. Then the coexistence of A and B
particles becomes a liquid^ rich)-gas (B rich) coexistence. However, in the
symmetric case studied by Widom-Rowlinson the A particles were also non-
interacting and, consequently, the effective interaction induced by the 2?-particles
included infinitely many-body potentials. Here, however, we can allow a small
hard-core between the A particles, which implies that we have only finitely many
(B induced) interactions. However, this is still not a very realistic model.

If we consider two body forces, we can only offer the following picture, based on
the ideas of this paper: We take elementary cubes whose size is approximately the
range of the intermolecular potential. It may be useful to take this range to be large
so that we are "close" to the mean-field limit [22]. Define two restricted ensembles,
g and /, by demanding that the density in each elementary cube be roughly equal to
the actual gas density (for g) or liquid density (for /)•

Now we observe that the free energy, as a function of density, in a box of the size
of the intermolecular potential is approximately the van der Waals one: it is
minimum for the density being equal to the gas or the liquid one. That is, all other
densities "loose" to the gas one for entropy reasons and to the liquid one for
energetic reasons. Here we see the similarity with the Potts model. This fact should
be responsible for satisfying Peierls' condition (A2).

On the other hand, one can expect that a clustering like (4.2) holds in the gas or
the liquid phase. Since the conditions defining the restricted ensembles tend to
reduce correlations, (4.2) should hold a fortiori in our restricted ensembles g and /.
It may even be easier to prove. However, these ideas require a lot of further
investigations.

Appendix 1. Diluteness and Restricted Ensembles

In this appendix, we show how to use the diluteness hypotheses (Al) [and (A4)] in
order to prove the existence and smoothness properties (2) of the free energies
of the restricted ensembles. We also use this and Peierls' condition in order to
prove Lemma 1.

First of all, we apply the polymer or algebraic formalism [23] to (3.7). Let g be
the set of JR-connected sets G in Έd. Let X: g-*N be a multiplicity function on g we
define X! = Π X(G)! > suppX = U G. We assume that |suppX| is finite. X C A

G X(G)ΦO

means suppXc/L, and we write d(X,E) instead of d(suppX,£) for

Γl if X\ = l and if d(G,G')>R whenever X(G),X(G
ociX) — Λ Λ[0 otherwise,

G

Notice that φ(X\Λ, ω) depends in a non-trivial way on A, ω only if d(X9 A)^R [by
(Al)(iϋ)]. By (2.7) we can write,

Σ Φ(X\Λ9ω«). (A.I)
XCΛ
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Now, using the algebraic formalism, we can write:

Σ Φ(X\A ω«) = exp Σ ΦT(X\Λ, ωq), (A.2)
XCΛ XCΛ

where the truncated functions φτ are defined as usual:

φτ(X\Λ, ωη^Xiy1 Π ζ{G\Λ, α)f
G

with

= Σ (- i) w ,

where #(X) is a graph whose vertices are all G's such that X(G)φO (counting
multiplicities) and edges are drawn between any two incompatible G's
(d(G, G')^R); \y\ is the number of edges in γ and the sum is over all connected
subgraphs of g(X).

φτ(X\Λ,ωq) has the following properties:
- φτ(X\A, ωq) = φτ(X) is independent of Λ, ωq if d(X, A) > Λ,
- φτ(X\Λ, ωq) = 0 unless suppX is i^-connected,
- φτ(X) has the same periodicity under translations as ζ(G\

Σ1' sup \φτ(X\Λ, ωq) \so | x | / 2 ̂  O(ε0) for ε0 small enough, (A.3)
X Λ,ωi

where Σϊ is the sum over all X's such that the first elementary cube in suppZ is Ct.
x

This estimate (A. 3) is essential in all subsequent arguments. It follows in a standard
way from the combinatoric estimates:

)W (A4)

for some C independent of ε0, and the fact that φτ(X) = 0 if suppX is not
iί-connected. (See [23] where somewhat different notations are used.)

Using (A.I), (A.2) we can write

\nZR(Λ\ωq) = - K\Λ\ - Σ Kft ωq) + Σ ΦT(X\A ωq), (A.5)
i XCΛ

and therefore

f(q9 μ)=- lim —-logZκ(yl|ω)
^->Rd \Λ\

exists, and equals

f(q,μ) = K(μ)-Σ°φT(X) (A.6)
X

[assuming Zd-mvariance of ζ(G), hence of φτ(X); otherwise Σ° has to be replaced
by an average over the period of £(G)].

Moreover, the boundary term

is given explicitly by:

-ΣK(i,ωθ)+ Σ (Φτ(x\Λ,ωη-φτ(X))- Σ Σ' Φτ(*)- (A.7)
ί XCΛ CίCΛ X:XnΛ*0
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The second and the third terms in Λ(A\ωq, μ) are clearly O(ε0) \dA\, due to (A.3)
while the first is 0(1)|3ΛL| by assumption (Al)v). Now we give the

Proof of Formula (2.8). Using (A.6) and (A.3) one can easily bound -j—f(q,μ)
dμ{

—f(q9 μ) = K'(q, μ) - Σ° ~r~ (ΦT(X)) > \K\q9 μ)\ύCρ by hypothesis (A4),
dμt x dμ{

(A.8)

while

jφ(X) (XrΛX)Σ(X(G)ζ(G)ζ(G) π ζ ( G ) (A.9)
dμ{ G G'*G

(leaving out the A, ωq dependence).
Using assumption (A4) on ζ'(G) and Σ I^(G)| S \X\, one obtains a bound on

d
-φ\X) like (A.4) with \X\ replaced by \X\ - 2 (and with a different C). For small

dμi

ε0 this implies the convergence of the sum Σ° i n (A.8). However, the latter is not
x

O(ε0) but 0(1) because the smallest graphs, with |X| = 2, are 0(1). This implies
d ~ - ~— • *\ Which is (2.8).

Similarly, one can bound the derivatives with respect to μ of the boundary
term, using (A.7) and (A.4),

— A{A\ω\μ)
dμi

Now we turn to the

Proof of Lemma 1. First of all, we write explicitly ψ(ωΓ\Λ, ωq, μ), by inserting (3.5)
into (3.6) and then using the expansion (A.5) for all the restricted partition
functions entering the resulting formula and (A.6) for the corresponding free
energies. This gives:

ψ(ωΓ\Λ, ωq, μ)

= Hμ(ωΓ) + QnZR(Λ\ω*9 μ) - lnZR(Λ\θ(Γ)\ωq, ωq

Γ, μ) + f(q, μ) |Int Γ\)

|). (A.ll)

It is clear that the terms in the first and second parentheses can be written, using
(A.5), as a sum of terms of the form K(ί,ωΓ) for d{CbΓ)^R and of the form
φτ(X\Λ, ωq, ωΓ) with d(X, Γ) ̂  R. But then φτ(X\Λ, ωq, ωΓ) is independent of Λ, ωq

unless \X\ ̂  d(Γ, A) - 2R. Using (A.4), one sees that φτ(X\A, ωq, ωΓ) with such large
\X\'$ are exponentially small when d(Γ,A)-+ oo. This implies a).

Turning to b), we can bound the derivatives of the last two parentheses in (A.I 1)

in the same way as we bounded -—Δ(Λ\ωq,μ) in (A.10).
dμ{
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Moreover,
d

= |flΓ

ί(ωΓ)|^n(ωΓ), since 11̂ 11 = 1. Therefore,

d
ψ(ωΓ\Λ,ωq,μ)

dμt

for some constant c.
This proves b). It also implies c) because we can write

rZ} "/ d , ,

(A. 12)

17)Γ\Λ9 ω9, μ')dμ\. (A.1
i = i o dμi

Now we insert (A. 12) into (A. 13). We get

ί dv*(ωΓ) exp( - ψ(ωΓ\Λ, ωq, μ))

- l)cρ\Γ\) J dv*(ωΓ) exp( - ψ(ωΓ\Λ, ωq, μ = 0)) exp(*?(r - l)n(ωΓ)).

The first factor is less than exp(ρ/4|Γ|) for η small enough. We multiply and divide
the second factor by

j dv*(ωΓ) exp( — ψ(ωΓ\A, ωq, μ = 0)).

Then we use Peierls' condition (A2) in the form of Eq. (3.7) and condition (A2)(ii)
with λ = η(r— 1) and μ = 0 to bound the second factor by exp(—|ρ|Γ|), again for η
small enough.

d) is proven similarly.

Appendix 2. Interacting Contour Models

In this Appendix, we provide a convergent polymer expansion for the contour
models, thus proving formulas (3.15)—(3.17). Then we prove Lemma 3 (for contour
models with parameters). Our polymer expansion is fairly standard, given that the
diluteness hypothesis implies that the interactions between the contours (W) are
weak in a suitable sense.

1) Existence of W(ωd). We start with an explicit formula for W(ωd\Λ, ω) which will
also prove (3.14), i.e. the existence of W(ωd) when the limit Λ-*co is taken. Since
W=Φ + W, we start with W.

By definition

W(ωd\Λ9ω*)= Σ \nZR(Λ\θ(Γ)\ω%ωl)-lnZR(Λ\θ(d)\ω\ωl)
Γed

with |3| = card(5).
Inserting (A.5) into the above formula, gives

W(ωδ\Λ, ω") = Σ ( Σ ΦT(X\Λ, ω\ (φι(X, Γ)
XCΛ\Γeδ

- n(X, B)φτ(X\Λ, ω\ ωf) - (\d\ - ί)φτ(X\Λ, ω«), (A. 15)
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where
fl if XCΛ\θ(d)

n(X, o) = < Λv (0 otherwise

[so that n(X, d) = 0 whenever φτ(X\Λ, ωq, ωf) is not well defined]. Indeed, we
observe that in (A. 14) all the terms proportional to K or of the form ^K(i,ω)

_ i

cancel because, by definition, d(Γ,Γ)>2R + 1 for Γ9Γ'ed and d(Γ,A)>2R+l,
too. So we have only φτ(X) terms. Moreover, by inspection of (A. 15) one sees that
only those X's satisfying d(X, Γ) g R, and d(X, JΓ") ̂  R for at least two contours
Γ,Γ' ed give a non-zero contribution. Indeed, if d(Γ, X) > R, then, by assumption
(Al)(ϋi) φτ(X\A9coq,ωf) does not depend on ω9

Γ.
A similar formula can be derived for Φ(ωΓ\Λ, ωq\ where the only X's that can

contribute to Φ satisfy d(X, Γ) ^ R, and d(X9 A)^R [as we noticed in the proof of
Lemma la), Appendix 1].

From (A. 15) and the exponential decay of φτ(X) with \X\ [see Eq. (A.4)], we get

lim W(ωd\A,ωq)=W{ωd),
Λ-> oo

and its independence upon ωq. Actually, one has a bound of the form:

\S Σ
Γed

with M-Ό(|lnεo |), and
\Φ(ωΓ\Λ, ωq)\ S \Γ\ exp( - Md(Γ, A)).

Thus Φ->0 and W(ωd)=W(ωd).
Moreover, one can estimate the interaction between one contour and any set of

other contours as follows: Let Γed and d' = d\{Γ}, then,

sup I W(ωδ) - W{ωd)\ ̂  O(ε0) \Γ\. (A. 16)

This again follows easily from the bound (A.4) on the φτ(X) and the fact that the
left-hand side of (A.16) is bounded from above by sup

δ

Although (A. 16) is only used explicitly in the proof of the Peierls' estimate [see
(A.29) below] it is the basic bound that allows us to prove the convergence of our
polymer expansion: the interaction between a contour and the other contours is
bounded by \Γ\ times a small coefficient. But, by the definition of τ functionals,
every contour has a weight exp( —τ|Γ|) which controls the O(\Γ\) divergence in
(A.16).
2) Polymer Expansion for Contour Models. Now we give the polymer expansion
of Z(A\F). [Z(A\F, ωq) can be treated in a similar way and the independence of S(F)
on ωq follows easily from this expansion.] Writing explicitly the inductive
definition of Z(A\F), one gets:

Z(A\F)= Σ°ί <ίv*(ωe)exp(- W(ωd)) Π Z(ωΓ\F)
dCΛ Γeδ

= Σ ί dv*(ωa)exp(- W(ωg)) Π exp(-F(ω r )), (A.17)
dCΛ Γed

where the first equality is just the definition.
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In the second equality, the sum runs over all families d of contours with o(Γ) = q
for Γed, d(Γ, Γ) ^2R + l for Γ, Γ e 3, and not just over outer contours. W(ωd) is
defined as follows: we say that a contour Γ separates a set of contours d if there
exist two contours ΓUΓ2 in d that lie in different connected components of Γ. We
say that Γ surrounds d if 5 lies inside one connected component of IntΓ. Finally, we
say that a subset δ'Cd is a set of outer contours relative to d if there is no contour
Γ e d that separates d\ no contour Γ ed' that surrounds δ'\{Γ}, and if ΰf cannot be
enlarged while maintaining the first two properties (notice that a contour Γ e 3
may surround 8\ Then

W(ωd)= Σ W(ωd.)9

d'Cd

where the sum runs over all subsets d'Cd that are outer relative to d.
Now, using W(ωδ) = W(ωd) and inserting (A. 15) into (A. 18), we obtain,

W(ωd)=Σ Σ {Σ φτ(X\ωf)n(X,Γ)-φτ(X\ω(d\X)))n(X,d')-(m-l)φ
X δ'Cd [Γed' J

(A.19)

where

ω(d(X)) = {ωΓ\Γed(X)} and δ(X) = {Γ e d\ d(Γ, X) ̂  R}

[similarly for 3'(X)]. So d(X) are the Γ's in d on which φτ(X\ωe) can depend. We
abbreviate:

(A.20)

where ψ(X\ω(d(X)) is defined through (A. 19). Obviously, ψ(X\ω(d(X)) depends
only on ω(d(X)) and equals zero unless suppZ is R-connected and cardδ(X)>2.
Moreover,

for some constant C independent of ε0 [different from the one in (A.4)]. Indeed,
each φτ(X) entering into the definition of ψ satisfies such a bound; moreover, the
number of d' that give a non-zero contribution is at most 0(|X|) (because each d' is
outer relative to <3) and the number of Γ's in d' giving a contribution that is not
cancelled by one φτ(X) is O(|X|). These factors can be absorbed into C in (A.21).

Now we insert (A.20) into (A. 17) and expand:

= Σ Π
IXi Xm) i = l

where we write ψ(X) as an abbreviation for ψ(X\ω(d(X)).
Combining (A.22) and (A. 17) we obtain:

Z(Λ\F)= Σ Σ ίdv*(
dCΛ {Xlt...,Xm}

withF(ωθ)= Σ F(ωΓ).
Γed

(A.22)

(A.23)
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Define d = (J Γ and, for each term in (A.23), decompose
Γed

into maximal R-connected subsets. Thus d{Pb Pj) >Riϊί φj. The integral in (A.23)
factorizes over the contribution from the different P/s: if suppXcP;, then
ψ(X\ω(d(X))) cannot depend on ωΓ for ΓcPp jΦ i, because d(Ph Pj) is larger than
jR and therefore, d(X,Γ)>R, which implies Γφd(X).

The P/s will be our (new) polymers. The activity ξ(P) of a polymer P is:

m

ξ(F)= ΣPίrfv*(ωa)exp(-f(ωa)) Π ( e x p [ - ψ ( * M Φ O ) ) ] - l ) , (A.24)

where the sum Σ P runs over all δ's and all sets {X1?...,XW} of multiplicity
functions such that

If P = 0, ξ(P)= 1 and if m = 0 (empty set of multiplicity functions) in (A.24),
o

Π=i
ί=l

We may rewrite (A.23):

Z(Λ\F)= Σ Πξ(Pd, (A.25)
{ P i , . . . , P n } ί = l

where the sum runs over all sets of two by two "disjoint" polymers [P disjoint from
P' means d(P,P/)>R'].

We can estimate \ξ(P)\ as follows: Using \ez— l |^|z|e | z i, we have

F(ω,)) Π IvWIexp Σ IvWI (A.26)

Using (A.21) and the fact that xp(X\ω(d(X))) = 0 unless cardδ(X) ̂  2, we obtain

Indeed, each Xt has to be close to some Γed iϊψ(X)Φ0. [Note that this bound is
analogous to (A. 16).]

Moreover, using (A.21) again,

ί = l

whereM = O(|lneo|).
Finally, since F is a τ-functional.

Γ e δ
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Inserting all these estimates into (A.26), we obtain

\Xt\ exPf-(τ-O(e0))Σ|Γ|
\ Γed

(A.27)

Since P is .R-connected the sum over δ's and over sets of multiplicity functions
can be controlled in a standard way, leading to our final bound:

|£(P)|^exp(-C|P|) (A.28)

where \P\ = c^τd({ieZd\CiCP}) and C = O(min(M,τ-O(fi0))) goes to oo when
τ, ε^1—>oo.

Given (A.25) and (A.28) one can obtain, from the algebraic formalism, a
convergent expansion for \nZ(Λ\F\ as we did in Appendix 1 for the free energy of
the restricted ensembles.

If we include the ω-dependence in Z(Λ\F, ω), then one obtains a formula
similar to (A.26) but the activity of the polymers close to A are modified. The
existence of S(F) is proven just as (A.6) in Appendix 1. In order to prove (3.15) we
observe that, if P + 0, then for each non-zero term of the sum Σ P in (A.24), 3 + 0:
indeed, ψ(X\ω(d(X))) = 0 if d(X) = φ and d(X)cd. This and (A.27) implies that
\ξ(P)\ ^ 0(e~τ\ Since S(F) is given by a convergent series of truncated functions of
polymers, this last bound can be easily extended to S(F).

From this expansion, one also gets, in a standard fashion, the bound (3.16) on
the boundary term A(A\F, ω, μ), and the existence and clustering of the correlation
functions. We could get Peierls' estimate from the expansion, but we prefer to do it
as follows: Write

δ:Γeδ Γed

Let d' = d\{Γ} and bound P(Γ) from above by restricting the sum in Z(A\F) to
the sets d'. Now use (A. 16) (which extends easily to W) in the numerator to compare
it with the denominator; we obtain

(A.29)

(A.30)

(A.31)

which is Peierls' estimate.
Now we prove (3.17). It is enough to prove:

d

dμ
logZ(Λ\F,μ)

and

j\ogZ{Λ\Ft,μ) S\Λ\O(e^)\\\Fx-F2\h

with Ft = tFί y
Using (A. 17) we write

— logZ(/t|F,μ)i
dμ

'dW.
Ίμ~{ (A.32)
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where < ) is defined in the obvious way by (A. 17). Observing that, in the definition
of W9 (A. 19), the only X's that contribute must satisfy d(Γ, X)^R for at least one (in
fact, two) Γ's in d, and using the bounds (A.4) on φτ and its derivative with respect
to μ, we easily get:

Γed

Thus the right-hand side of (A. 3 2) is bounded by

dQA Γeδ ΓCΛ

[Here P(d) denotes one of the terms in the sum (A.28).] By Peierls' estimate, (A.29),
this last quantity is less than O(e~T)\A\, which proves (A.30).

Now we prove (A.31). By a calculation similar to the one above and the
definition (3.18) of | | |F|| |, we get

dt
\ogZ(Λ\Ft,μ)

ΓCΛ
(A.33)

where < }Γ is just < > as in (A.32) conditioned on Γ. Now, notice that, by convexity,

we need only to bound the derivative — for t — 0 and 1. But, in these cases, Ft = F1

at
or F2 is a τ-functional and we can use (3.13) to prove:

<(rc(ωΓ)>Γ ̂  0(τ 3) \Γ\ exp(O(β0) \Γ\). (A.34)

To prove (A.34) we use (A. 16) in the numerator and the denominator of < >Γ in
order to "decouple" Γ from the other contours. Thus we have

which, by (3.13), implies (A.34).
Now, inserting (A.34) into (A.33) and using Peierls' estimate (A.29), we easily

obtain (A.31) for τ large enough.
We remark that we could have bounded the derivatives (A.30) and (A.31) (for

t = 0 or 1) using directly the polymer expansion as we did in (A.8), (A.9). However,
these more "probabilistic" arguments (i.e. dependent on F, W being real) are useful
for our last estimate:

Proof of Lemma 3. This is the analogue of Proposition 2.5 in [5]. The dependence
upon b is treated just as in [5]. Using (3.19), we estimate

— logZ(yl|F,&,μ)|
dCΛ

j-μW( ))(8) + Σ Σ sup
Γed m~\ dμ

W( )) (IntmΓ,ω?)

where P(δ) = $dv*(ωd)exp(-W(ωd)) Π Z(ωΓ\F) and < >(δ) is the expectation
Γed

conditioned on d being the set of outer contours; < >(IntmΓ,ω^) is defined as in
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(A. 17) with A = IntmΓ and b.c. ω^. Clearly, with the bounds that we have on — W,
dμ

and

sup

d_.
dμ

— W{-)){lntmΓ,ωψ)

Γed

\dμ ,

Since, for each set d of outer contours in A,
z - i ^oebv(d)p^= 1 ? w e h a γ e t h e b o u n d

dCΛ

~AogZ{A\F^μ)\

and
Γed

d
which yields the third part of (3.21) since we have already a bound on —-S(F, μ)

\ \ dμ
by (A.30) j . The fourth term in (3.21) follows from:

sup \W(ωd\Λ9 ω) - W(ωd\A, ω')\ ̂  O(εo) \dΛ\, Vω, ω' e Q\,

which itself can be easily derived from (A. 15) and properties of φτ(Xys and implies

mZ(Λ\F,b,ω,μ) ^ Λ /log
Z(Λ\F,b,ω',μ)

bound

Now we control the f-dependence in (3.21). Let F t = ί.F + (l -t)F'. We shall
d
j\ogZ(Λ\Ft,b,μ) for ί = 0 or 1.

Proceeding as above, and using the norm (3.18), this is bounded by

Σ°eme)P(d)(Σ
dCΛ \Γed

where we have used (A.31) for the estimate in IntΓ. We shall prove below that

(A.35)

which is similar, but more subtle, than (A.34). [We could have used (A.35) in
place of (A.34).]

Then we have,

for any d made of outer contours in A. Moreover, if Γ C A, δ(Γ) ̂  δ(Λ) — 2(2R 4-1),
because d(Γ,A)>2R + l. So we gain a factor exp( — τ2(2jR + l)), which can
"absorb" the 0(τ3) in (A.36) and give (3.21). So we are left with the proof of (A.35).
Let /( ) denote a characteristic function and write

[using n^
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Now, in <exp(n/τ)> we use (A.16) to "decouple" Γ from the other contours, and
then (3.13) on <exp(n/τ)>(Γ,F) as in the proof of (A.34). Thus we have

<n(ωΓ)> (d) ̂  A + 2τe ~{ΛI2τ) exp(τ2 |Γ| + 0(e0) |Γ|).

Choosing Λ = 2(τ+ 1)3 |Γ| gives (A.35).
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