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Abstract. Usually renormalization group transformations are defined by some
averaging operations. In this paper we study such operations for lattice gauge
fields and for gauge transformations. We are interested especially in character-
izing some classes of field configurations on which the averaging operations are
regular (e.g., analytic). These results will be used in subsequent papers on the
renormalization group method in lattice gauge theories.

Introduction

In Wilson's approach to renormalization group transformations [9,10] for lattice
gauge systems, it is necessary to define an operation of taking an average of field
configurations over subdomains of a lattice. These subdomains are usually some
simple subsets, for example cubes of a fixed size, or sums of several such cubes. In
this paper we will study one such definition of an averaging operation. This
operation will be used in other papers on gauge field theories.

Let us introduce some definitions and notations. We will be very sketchy
because these definitions have already appeared several times in the earlier papers
[1, 2] of the author and we refer the reader to these papers, especially to [2], for
more detailed explanations. We consider a subdomain Ω of the lattice ηZd with a
lattice spacing η. A sequence of sets Ω{j) is defined as the intersections

ΩU) = ΩnLjηZd, (1)

where L is a fixed integer, L > 1. For a point y e UηZd (or any lattice δZd), we define
a block of an order j as the cube

B\y) = {xeL-JL"ηZd:yμ^xμ<yμ + L%μ=l,...,d} (2)

(or the corresponding cube with Πη replaced by δ). We will omit the subscript; if
j= 1. For a subset ΛcLnηZd (or CδZd), we define

B\Λ)= U B^QL-^ηZ0 (or CL-JδZ"). (3)
yeΛ
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We assume that

Bj(ΩU)) = Ω for 7=1,. . . ,k (4)

for some k. In fact, we will assume that η = L~k. Thus Ω is a sum of blocks of the
order k.

Besides the blocks of different orders, there are two other geometric objects
important for us. Bonds of the lattice Ω are ordered pairs <x, x'> of nearest
neighbor points x, x' of Ω. We identify them with the corresponding oriented
intervals with endpoints x, x'. We will denote them also by the letters b, b\ c, etc.
For example, b denotes a bond (b_, b + } with an initial point b_ and a final point
b+; fc_, b+ are nearest neighbors. Plaquettes are oriented elementary squares of
the lattice Ω and are denoted by p, p\ etc. A boundary of a plaquette p is a sum of
four bonds, and an orientation of the plaquette may be indicated by an orientation
of the bonds. A plaquette p may be identified also with an ordered quadruple
<x, y, z, w> of corners x, y, z, w of the elementary square p; the ordering indicates
the orientations of bonds <x, y}, <j, z>, <z, vv>, <w, x> forming the boundary dp.
Speaking precisely, the symbol <x, y, z, vv> indicates not only the oriented square,
but also the initial point x of its boundary. In this paper we will consider positively
oriented plaquettes and such a plaquette p C Ω is represented as

p = (x,x + ηeμ,x + ηeμ + ηev,x + ηev}, μ<v. (5)

The above definitions of bonds and plaquettes may be applied to an arbitrary
lattice, e.g., to Ωu\

Gauge field configurations U are defined on a set of bonds in Ω, and with values
in a Lie subgroup G of a unitary group U(N). A value of U at a bond b = <x, x'> is
denoted by

(6)

and we assume that U satisfies the condition

t/(χ, xθ = [/" V , x) - U*(x\ x). (7)

In the sequel, we will consider quantities which are invariant with respect to some
important transformations in the space of gauge field configurations, the so-called
gauge transformations. They are determined by gauge functions u:Ω-+G, and are
given by

Uu(x, xθ - u(x) U(x, xθ M" V ) , O ? O C Ω. (8)

w - l

(J
l

For an oriented contour Γ= (J <x ί ?x ί+1> we define
i

^ + i ) , (9)
ί = 0

where the order of factors in the product is the same as the order of bonds in Γ. This
definition will be applied also to contours on arbitrary lattices. For a plaquette
p = <x, y, z, w> we define dp as the oriented contour δp = <x, y>u<y, z>u<z, w>
u<w,x>, and U(dp) is defined by (9).
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The renormalization group transformations are integral operators transform-
ing functions defined on gauge field configurations on a lattice, into functions
defined on configurations on the lattice of blocks. We will consider transform-
ations of the form

ρ\V)=idUδ(VU-1)ρ(U)9 (10)

where, for example, U is a gauge field configuration on the lattice Ωij\ V is a
configuration on the lattice Ωu+1) and dU is a product of Haar measures of the
group G. The most important part of the above definition is an averaging
operation Ό. It transforms a configuration U defined on Ω{j) into a configuration Ό
defined on Ωu+ υ . In fact, Ωω may be replaced by any other lattice. We will demand
that this averaging operation has to satisfy some important and natural
conditions. A first condition is connected with the fact that we consider gauge-
invariant quantities, so we demand that the averaging preserves gauge transfor-
mations, i.e.,

U~ U')u-1(y'), or Ό* = (ϋ)\ (11)

This property implies that the renormalization transformation (10) transforms
gauge-invariant functions ρ into gauge-invariant ρ'. Indeed, if v is a gauge function
on a new lattice, then

ρ'(Vϋ) = \dUδ{VvΌ-1)ρ{U)= ί dUδ(VΌ(Us)-1)ρ(Uu)

(12)

where we have used the gauge-invariance of the Haar measure dU and the function
ρ, besides the condition (11). Now if we choose u coinciding with v at points of the
new lattice, then we get

ρ'(V). (13)

We have used also the invariance of the ^-function concentrated at the identity of
the group G with respect to transformations U^vUv^1. A second condition on
averages Ό is formulated in the following way. We consider configurations U with
values in a small neighborhood of the identity of G, hence U = eiA and A is a Lie
algebra valued configuration with values in a small neighborhood of 0. For such

configurations we demand that τlogf7 is well approximated by the linear

averaging operation (1.8) defined in [2]. Let us write this operation

J iU + )). (14)
xefl(c-)

We refer the reader to paper [2] for explanations of symbols used above. Let us
notice that Γc_)Jcu[x,x(c)]uΓx(c))C+ is an oriented contour with c_ as an initial
point and c+ as a final point. We denote it by Γc x.

There are many ways of implementing these two conditions. We will write now
a definition of an average which satisfies these conditions and which has some
other advantages. We define

^ ] ^ ) (15)
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It is easy to see that taking U = eιA with A small and expanding the logarithm of the
expression on the right-hand side above in powers of A, we get the expression (14)
as a linear term in the expansion.

In this paper we will study properties of this and other averaging operations,
and especially their compositions. In the future we will need many properties of
these compositions. For example, it will be necessary to know that a composition
of many averaging operations applied to a regular or small gauge field
configuration gives a regular or small configuration also, the notions of regularity
or smallness being related to scales on which the gauge field configurations are
considered. This is the basic property of averagings we would like to understand.
Another important property is an analyticity of a result of the averaging operation
with respect to an averaged field.

The analysis and the propositions we prove in this paper can be easily extended
to other definitions of averaging operations satisfying the requirements postulated
in this introduction. The definitions we have used in this paper were chosen for
their simplicity but in some future papers we will need somewhat more
complicated definitions. We will discuss them at the proper time when they appear.

A. Norms, Important Inequalities, and Functions

We consider a Lie subgroup G of a unitary group U(JV). Its Lie algebra g is a
subalgebra of the algebra of hermitian matrices. Because of analyticity properties
we are looking for, we will consider complexified algebras and groups. The
complexification of the algebra of hermitian matrices is the algebra of all complex
NxN matrices, and the complexification of U(iV) is the general linear complex
group GL(C,JV).

The complexification gc is a subalgebra of the algebra of all complex matrices.
It may be defined in the following way: we take a basis {ta} of the algebra g, then all
elements A e g can be written as linear combinations A — Σ Aata, where Aa are

a

arbitrary real numbers, Aa e R, and we form a complexification gc taking Aa as
arbitrary complex numbers, Aa e <C. It is easy to see that this complexification is
independent of any particular basis {ta} chosen in the above definition. For a
function F(A) defined on the complexified algebra, a notion of analyticity is well
defined and means analyticity with respect to complex variables Aa. The unitary
group U(JV) can be obtained by an application of the exponential mapping to the
algebra of hermitian matrices. This exponential mapping is simply given by the
exponential function eίΛ, where

oo vn

ex = QχVX= Σ - Γ
n = o nl

is defined for an arbitrary matrix X. The group G is obtained by applying the
function eiA to A e g, and the complexified group Gc may be defined as an image of
the exponential function applied to the complexified algebra gc. Of course, Gc is a
subgroup of GL(C, N). We will need only a neighborhood of G in this subgroup.
We introduce a scalar product in the algebra of all complex matrices
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and a scalar product in spaces of matrix valued functions defined on subsets Ω
CηZd

d , (18)
xeΩ

similarly for functions defined at bonds or plaquettes of Ω. The scalar products
define the corresponding norms. They are L2 norms and are denoted by || ||, e.g.,
for a matrix X the norm is given by | |X| |2 = trX*X. The IF norms, 1 ̂ p ^ oo, are
defined in an obvious way. In estimates we will use much more frequently another
norm for matrices. It is the operator norm given by

\X\ = sup \X\p\ = sup \φ Xψ\, φ, ψ e C N ,

\φ\ = \ψ\ = l,\ψ\2= Σ J ψ / (19)

We have the following inequalities for the norms introduced:

(20)
\XY\^\X\\Y\9\\XY\\^\\X\\\\Y\\.

Now we will introduce several important functions on the matrix algebra. The
first is a logarithmic function. It is an inverse to the exponential function and for
matrices X satisfying \X — 11 < 1 it is given by

1V * + 1

(21)

Of course, both functions are analytic functions of complex matrices X. For
any branch logz of the ordinary logarithmic function, we may define logX for X

r

defining a normal operator on <CN. If X is such a matrix, then X = Σ zjPp zje ^>

{Pj} is a spectral family of orthogonal projections (i.e., Pf = Pp PjPk = PkPj

= δjkPj), and we define

logX = Σ^ogZjPj. (22)

We will use this definition for logz = log\z\ + i argz, where argz e ] — π, π], and for
unitary matrices. Every unitary matrix U can be represented uniquely in the form

r

U = Σ eiλjPp where the numbers λ} are different and satisfy λj e ] - π, π], and then
7 = 1

we define r

A is a hermitian matrix,
follow:

— 1 | = m a x 1
j

| ^ π . From this definition the following inequalities

—11= m a x

sin-r

^ f | ί / - l | , because

2

sinx

x
^ - for xe[-f,f].

π

(24)

(25)
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We will need also inequalities of this type for arbitrary complex matrices X
instead of U. For matrices X satisfying \X— 1 | ^ , we have

— X,-\X — L \=-i—7T?—7T=2A — 1 , (26)

n=in 1 - | X - 1 |

\χ - 11 = \elo*x -1\S e{logX{ - 1 S ellogX{ | logX | ^ 2 | l o g X | . (27)

Let us consider now the most important function for all future considerations,
the function describing the group multiplication in terms of Lie algebra elements.
Let us define

Z(u,v) = \ogeuXevY. (28)

It is a well-defined and analytic function of uX, vY, for example, in the domain
| M X | < | , |ι>Y|<£. Its power series expansion is given by the Baker-Campbell-
Haussdorf formula (see [7], Sect. 2.15)

Z = logΛy= £ Σ ^ ^ 1

1 Y

(29)

where ad^7= [X, Y~\ = XY— YX, and the series is convergent in a neighborhood
of 0: \X\, \Y\^c0 for some positive c0. From the structure of this power series
expansion, we get easily the bound

| 2 ) , (30)

and this implies

\Z-X-Y\^2\X\\Y\ for \X\,\Y\^Cl, (31)

where c1 is a sufficiently small positive constant, cί^c0. We will treat the
expression adx Y for a fixed X as a linear operator on a space of matrices Y, and we
will consider functions of this operator /(adx). For analytic functions / defined in
a neighborhood of 0 and for X with a sufficiently small norm, the function /(adx)
can be defined by the power series expansion.

We will be interested in calculating derivatives of the function Z(w, v) and some
other functions of this type. Let us start with the following basic formula (see [7,
Theorem 2.14.3])

Ai)Ait) J fe ^ά)nA\) ^ά))A\t), (32)
where Λ(t) is a differentiable matrix-valued function of t. The function g(z) defined
by the above formula is an entire function given by
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hence the function g~1(z) = —— is an analytic function in a neighborhood of 0,

more exactly for z + 2kπί, fc= ± 1, ± 2 , . . . , and we have the identities

g~\z)=-^-[9g-1(-z) = g-1(z)-z9g-1(z)=l+±z+.... (34)

Defining f(z) = g~1(z) — \z, we have /( — z)=f(z), so

/oo=i+ Σ fc2^,flf-
i(^)=/ω+^ff"1(-^)=/ω-έ^. (35)

P = l

Using (32) we can derive easily the following formulas:

^ =g-K-*L^x, d~ψ± =g-K«^JY. (36)

We apply them to derive the second-order Taylor expansion of Z(w, v) with respect
to the variable w, for example:

(7W o OU

(37)

ϋ) = ί ; 7 , - ^ ) = δ r - 1 ( - a d ι , r ) X = ί 7- 1 (- ! ;ad r )X.

From this we get

\logeixeiγ=Y + g-1(-iSidγ)X + &r(X;Y)9

| ^ ( X ; 7 ) | ^ 0 ( l ) | X | 2 ( 3 8 )

for \X\, \Y\ sufficiently small, where 0(1) is an absolute constant [e.g., we can take
0(1) = 24 for |X|:g 2Ό, | Γ | ^ χ £ | . Another important function we will need later is

(39)
Repeating the above calculations, we get

1

Z(u) = ug( — 2iάγ)X + u2\ dt(\ —ϊ)Z"(tύ), (40)
o

and

l . γ + . γ _.y
— \ o g e e —g{ — idiάγ)X + O{\X\). (41)
i

B. Compositions of Averaging Operations

Let us recall the basic definitions. Let U be a gauge field configuration with values
in U(ΛΓ). The one-step averaging operation is defined by

| i Σ L-d-\ogU(ΓcJU(c)-ι\
L xeB(c-) I J

c = exp|i Σ L-d-\ogU(ΓcJU(c)-ι\U(c\cC&ι\ (42)
L I J
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and if feth order averaging Uk is defined at bonds of Ω{k\ then

xeB(c-)

where the contours Γc x are defined on the lattice Ω(k).
Let us notice that this definition is local in the sense that Uk, c C Ω{k\ depends

only on the bond variables Ub for b C Bk(c^)uBk(c+). This property will play a very
important role in the future. Let us notice also that the property (11) is satisfied.
Indeed, for an arbitrary gauge field configuration U and a gauge transformation u,
we have U\Γc%x)U\c)'1=u{cJ)U{ΓCt^U{cYιu^\cJ)\ thus the matrices
U\ΓC x) JJu{cYι and U(ΓC x) U{c)~ι are unitarily equivalent, their eigenvalues are
equal, and by the definition (22) their logarithms are unitarily equivalent with the
same unitary operator u(c_). Then from (42) we get (ΪF) c = w(c_)0\u~ ι{c+).

Now we would like to understand how regular the configuration Ό is,
assuming some regularity of U. We will investigate carefully the one-step
averaging operation from this point of view. We assume that a configuration V
defined on a unit lattice Ω' satisfies

l | < α 0 , pCΩ', (44)

and α0 sufficiently small. We would like to get optimal bounds for \V(dp')- 1|, pf

Let us denote by y the upper right corner of the plaquette /?' and let us introduce
locally the axial gauge with the initial point y. This means that we take the
contours

for x in some neighborhood of y containing 2d blocks having the point y as one of
the corners, and we make a gauge transformation υ0 such that the gauge
transformed configuration VO = VV° satisfies the conditions V0(Γyx) = l. Such a
gauge transformation can be easily found because Vo(ΓytX) = VVo(ΓyiX)
= vo(y)V(ΓytX)vό*0*0=1 implies vo(x) = vo(y)V(ΓytX); thus v0 is determined
uniquely if vo(y) is given. Of course, we have

1|. (45)

< P r -

V0(Γy x)=l imply V0(x,x + e1)= 1, \V0(x,x + e2)-l\<\xi-y1\(x0,
\V( ) l | ( | l
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+ \xμ _ 1 — yμ _! I) α0, μ = 2,..., d, for x in the neighborhood of y. If we denote

(46)

then for bcAij)') we have |FO ί,—l|<|fo_ — y | α o ^ ^ L α o , hence V0J} = eιAb and
|̂ 4fc| < 2 |b_ — y\ α0 ̂  2dLoco. For c C δ//, the contours Γc x are contained in A(p') and
we have

bCΓCjX

\V0(ΓcJ-\-iA(ΓcJ\Si(\A\(ΓcJ)2<0(l)(L2a0)
2

so using the definition (21) of the logarithmic function, we have

1 <O(l)(L2α0)
2

for L2α0 sufficiently small. From this and (31) we get

\i Σ L

= expΓί Σ L

[_ xeB(c-)

hence

V — 1 — f V )
v0,c L ι ί—i 1

Now we can estimate |F0(δ//)— 1| We have

o(d jθ- l- i Σ Σ J
cCδp' xeB(c-)

<0(l)(L 2 α 0 ) 2 .

<0(l)(L 2 α 0 ) 2 . (47)

Denoting by (p')x a plaquette obtained by translation of the plaquette p' to the
point x, we have the identity

Σ Σ L-Ά(rej= Σ L-"A(d(p%)
cCdp' xeB(c-) xeB(y0)

= Σ IT" Σ >4(δp). (48)
XEB(yo) pC(p')x

Further, we have for pCΛ(pr)

\V0(dp)- 1 - W(3p)| <λ

2(\A\(dp))2 <i(8dLα0)
2 = O(l)L2α2. (49)

Gathering together the above three inequalities, we obtain

Σ IT* Σ \A(dp)\ + 0(l)(L2oc0)
2

xeB(y0) pC(p')x

Σ L~d Σ |F 0 (a P )- l | + 0(l)(L 2 α 0 ) 2

xeB(y0) pC(p')x

α0 + 0(l)(L 2α 0) 2. (50)

This is the estimate we are looking for. Let us notice that it is a local result; the
bound above depends on bounds for V(dp)—l on A(pr), i.e., for pCA(p'). We
formulate the results in the following:
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Proposition 1. There exist positive constants Co, c2 such that for every configuration
V satisfying (44) for pCΔ(pf) and for oc0^c2, we have

L 2 α 0 ) 2 . (51)

The constant Co depends on d and c2 depends on d and L.

Now it becomes obvious what assumption we have to make for a configuration
U in order to get a bound on U\dp) - 1, p C Ω(k). Each averaging operation rescales
a bound on plaquette variables approximately by the factor L2, hence k operations
by the factor L2k. To get some small number yet, we have to assume that

| l / ( 3 p ) - l | < α ( Λ

2 , η = L'k (52)

on some set of plaquettes. If oc0^c2, then by the above Proposition, \Ό{dp/)— 1|
< L2a0η

2 + Co(L20ίoη
2). We take k ̂  1 so α ? L V + Co(oιoL

2η2)2 <; α ? + Coαg and we
assume further that α 0 + Coal ^ c2. Applying the Proposition again, we get for p"

I Ό2{df) -11 < α o l V + C0L
2(L2(x0η

2)2 + C 0 (α 0 L 4 ^ 2 + C0L
2(L2a0η

2)2)

o ( o n ) IT 2 [ o o 7 ( 0 ^ ) ]

^ α 0 L V + C0(a0Uη2)2 [1 + L" 2(1 + C 0 α 0 ) 2 ] .

We make the following inductive assumption for j^k\

I ϋ\dp) - 11 < α0L2 V + C 0 ( α 0 L 2 ^ 2 ) 2

o)2O - D ] . (53)

The right-hand side can be bounded by α0 + Coal2 if L~2(l + C 0 α 0 ) 2 < \. The last
inequality holds if, e.g., C0oc0Sh a n d then αo + C o αo2<2α o . We assume further
that 2αo^C2. Then fory</c, we can apply Proposition 1 to the configuration Uj

and we get for pQΩu+1)

+ C 0 ( α 0 L 2 ^ 1 V + C0L2(α0L2 V ) 2 [1 + ] ) 2

Thus the inequality (53) is proved for all ^fc. Taking j = k, we get

Proposition 2. 7/ [7 satisfies (52) vWί/z α 0 ̂  c 2 = min < —— ,~c2f, then
(3C 0 2 J

-11 < α0 + 2C 0 α 2 < 2α 0 , p C &k). (54)

The result is local in the sense that if p = <x, y, z, w>, then it is enough to assume
(52) for pCB\x)uBk(y)uBk(z)uBk(w).

C. Other Averaging Operations

In future analysis of variational problems we will have a situation, where the
averaging operation will be composed with a change of gauge conditions, i.e., with
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a gauge transformation. Let us recall that if we apply a gauge transformation v to a
configuration V,V£ = υ{b_)Vhv~\b+\bcΩ\then(F)c = ϋ(c_)^~1(c+),cCΩ / ( 1 ).
We will consider gauge field configurations V of the form V= V'V0, where Vo is a
fixed configuration and F' may have values in the complexified group Gc. We find
easily that if we apply a gauge transformation v to V and we write Vv = F/ yF0, then

+) = K6-)n/«o.^"1(fe+)9 (55)

where for arbitrary invertible matrix X the operator R(X) is given by the formula

R(X)Y=XYX~1. (56)

R(X) acts on the algebra of all matrices and has the following properties:

R(X)f(Y) = f(R(X)Y) for analytic functions /,

R(Xy1=R(X~1)9 (57)

In a one-step renormalization transformation we consider configurations V
satisfying axial gauge conditions in blocks:

(R0,yV')(ΓyJ= Π R(V0(Γytb_))Vi;=l,xεB(y),xΦy. (58)
bCΓy^x

It will be convenient to change this gauge into another one. We apply a gauge
transformation v~1 to V and we get a configuration Vu thus

V'=Vf and VC = (VΎO)C = (V^VO)C =

We will consider this average for configurations V and V1 with values close to 1
and we will be interested in the expression

). (59)

The gauge conditions (58) written in terms of the configurations Vx and v have the
form

and they imply

(R0,yv) (x) = v(y) (ΛOfy^i) (/\,*), x eB(y), x + y, y e Ω^. (60)

To determine the configuration v uniquely, we will impose on it an additional
condition at each block.

To find a form of this condition, let us recall the simplest case of one vector field
considered in paper [1]. To change a gauge, we make a gauge transformation λ
satisfying {Q'λ) (y) = Σ L~dλ(x) = 0. Such a transformation does not change the

xeB(y)

average given by (1.11) in [2], and this is very important because the explicit
representations of propagators, and other formulas, hold for this specific form of
the averaging operation. In the considered general case, we will also try to find the
additional condition on gauge transformation requiring that the form of the
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averaging operation should be preserved. We will be able to obtain only an
approximate invariance. Because of the axial gauge conditions (58), the average
(7%)c depends on (K0,c_n([*,*(c)])= Π Λ(70(Γc_iXu[x,fc-]))76',

bC[x,x(c)]

xeβ(c_), and a good approximation of the function -log(VΎ0)c(V0)~* for

V' = eiA, A small, is given by (Q0A)(c)= Σ L~d(Ro c >4)([x,x(c)]), where
xeB(c-)

ROtC_ A is defined as Ro C_V\ only the product over b is replaced by the sum. If we
make a small gauge transformation v = eiλ, then a good approximation of this
transformation acting on Lie algebra variables A is given by Ab = Ab — (RObλ(b+)
— λ(b_)) = Ab — (DVoλ) (b). Under such a transformation the average Q0A changes
as follows:

(Q0A
λ)(c)= Σ L-d(R0,c_λ)(x) + (Q0A)(c)

xeB(c -)

- Σ L-\R0,c_λ){x').
x'eB(c + )

If we define (Q'oλ) (y) = Σ L~d(R0 λ) (x), then the first term in the right-hand
xeB(y)

side above is equal to (Q'oλ) (c_). There are troubles with the second term because

x'eB{c + ) x'eB{c + )

= Σ L-dR(V0(Γc,M-c)))R(V0(c))(RQ,c+λ)(x'),
x'eB(c + )

and this expression is only approximately equal to R(Vo(c))(Q'ol)(c+), because
VO(ΓC>xu( — c)) are close to 1 for Vo regular, but not necessarily equal to 1. Now if
we assume that λ satisfies the conditions QΌλ = O, then the form of Q0A is
approximately preserved under such a gauge transformation. Finally, these
conditions are approximations for λ small to the conditions

l ^ H ) ^ ) w l 1 (61)

We assume that the gauge transformation v we have applied to the configuration
V satisfies these conditions. The equality (60) and the condition (61) imply

and (62)

|_ xeB{y) I J

Thus the gauge transformation v is determined uniquely by the gauge conditions
(58) and conditions (61). It is a function of the gauge transformed configuration Vλ.
From (59) and (62) we get

- i Σ
xeB(c-)

Σ L-4log(Ro.c+^i)(^+iXol- (63)
x'eB(c + ) I J
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The same reasoning can be applied to a higher order average Uk, where
U= U'U0, UO is a fixed configuration and XJf satisfies a sequence of axial gauge
conditions in blocks of lattices Ω, Ω(1\ ..., Ω{k~1}. More precisely, we describe these
conditions in the following way. For blocks of the lattice Ω, we assume

(R0,yU')(ΓyJ=lxeB(y), xΦy,yeΩ^\ (64)

where Ro is defined by the configuration Uo. Next defining

(U% = (UΊΓO)C(U-Oχι, (65)

we assume

ϋ ( 2 (66)

and Ro is defined by Uo. If an average U/j is defined on the lattice Ωu\j < k, then we
assume

(KiyU'J) (ΓyJ = 1, x G B(y), x + y,ye Ω^+ », (67)

and we define

u[j+ι=φW0)c(ϋl);1. (68)

From this inductive definition of the average ΰ/j, it follows easily that

ϋ'i = (U'U0)ί(Ui)b- \ be β°>. (69)

Now we would like to change these gauge conditions and we apply a gauge
transformation M""1 to U'. We get some configuration Ux and U'=U". The/ h

order averages Ό' transform as follows,

(70)

and this implies a transformation law for U'j,

The gauge conditions (67) written in terms of Uί give us the following equations:

(%,yOrl){ΓjJ = u(y)(K3o,>ϋ{)(ΓyJ (R~iyuΓ1(x)= 1 (72)

for xeB(y), x + y, yeΩ<J+1\j<k. Solving these equations, we get

(R0,Xlu)(.x) = u(x1)(R0:XiU1)(ΓXuX) for xeB(Xl), Xle&», (73)

(RΌ,X2u)(x1) = u(x2)(Ro,X2U1)(ΓX2,Xι) for XιEB(x2),x2eΩ^, (74)

hence

(R~o,X2Ro,Xl«) W = u(x2)fcA) (ΓX2,Xl)R~o,Xl(Ro,XlUΰ(Γxux), xeB\x2),
(75)

and for arbitrary j < k we have

(RiXj+ιu)(xj) = u(xj+1)(Ri,Xj+ιϋi)(ΓX] + uX) for x,eB(x,+ 1), xj+1eΩ«+1K
(76)

Let us_ denote_ υQ(Γψ.J = Όi-\ΓXh )•... 00(ΓX2iXl)U0(ΓXlJ, then

(RiXj + ̂ C *o,»Λ>.χ, "> W = R(Uo(Γ

Xj

+

+ \]x»u(x), and we have the equality
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. R(ϋi(rx)i u x ) ) (RC) ϋ{-') (rXj,Xj _ , ) - . . .

j , j + ι ^ + \ ] j + 1 ) , (77)

where the symbol (R0,Xj + ̂ i ) 0 ^ 1 ? * ) i s defined by the last equation. Taking (77)
ϊorj = k-1, we may determine the gauge transformation u uniquely, given values
u{y) at points y of the lattice Ω{k). We calculate these values from additional
conditions, as in (61) and (62).These conditions are straightforward generalizations
of the conditions (61). At first we define inductively a feth order averaging operation
for gauge transformations. Generally a one-step averaging transformation defined
by a field configuration Vo is given by

(Rov) (y) = (R(V0)v) (y) = {(R(V0)v) (x)}xeBM

= Φ)expΓi Σ L-d~\ogv^(y)R(V0(ΓyJMx)\, (78)

where v is defined on a lattice Ω', yeΩ'(ί).

For a given configuration Uo we define inductively

(79)

(80)

The additional conditions are

(R^uk)(y)=U yeΩ{k\ (81)

Now using the identities (76), (77) we will solve the equations (81) and we will
determine u uniquely as a function of U1. We have

ZJΓ, (82)

for xιeΩm, where the expression -R0,*i^i is defined by the last equation. Next
from (74) we have

= (R(Uo)Rou)(x2)

,) (Ro,X2Ro,Xl

= u(x2) {{RO^UJ (ΓX2iXί)

(83)

where the last equation defines the symbol ROx2U1

(2). We easily find by induction
that

(R^)(xj) = u(x^R^ΊΓ^, XjeΩP, (84)

where Ro xU^ is defined inductively as
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(85)

The formula (84) together with the conditions (81) give the equation

^U[w=l for yeΩ ( f e\ (86)

hence

W^Γ1. (87)

Thus the gauge transformation is uniquely determined by all the conditions and is
given by the formulas (77) for j = k— 1 and by (87). Similarly as in (63) we get

(88)

We may consider this expression as a new averaging operation of kih order acting
on a configuration Uί defined at bonds of the lattice Ω. A result of the averaging is
a configuration defined at bonds of the lattice Ωik). Such an operation for k = 1 is
given by the formula (63).

Now we will prove the following fundamental fact: the new kth order averaging
operation defined by the last expression in (88) is a composition of k averaging
operations defined by (63) with properly chosen configurations Vo. More precisely,
for a/ h factor in this composition, we take Vo = Uj

0~
1. Let us introduce some new

notations. We denote the averaging operation in (63) by

= (^Γ^)"1^i*o,c^7^. (89)

We define inductively a sequence of averaging operations of/h order composing)
operations defined above for Vo = Uθ9 Uo,..., U

j

0~
x correspondingly. For j = 1 we

define

W^ (90)

and if the operation ϋ{ is defined, then

U{+1 = R(Ui)Ό{, (91)

i.e., it is a composition of the operation (89) for V0 = Uj

0 and of the / h order
operation U{.

Let us remark thatthese averages have the same locality properties as the
averages £7\ namely (Uk)c, cCΩik\ depends on the variables Ub for bcBk(c_)
uB\c+).

We are going to prove now the fundamental equality

(R^U1^r1U\Rk

OtbR^U-1^ = (U\)b. (92)

The proof will be by induction. For k = 1 the equality holds by the definitions
(89), (90), and the Eq. (63). If we have a configuration V= Vγ Vo on a lattice Ω\ then
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for an arbitrary gauge transformation υ we write V=(Vv~1)v = (Yi~1V0)
v and we

have

Let us consider the case k = 2, and let us start with an analysis of U\. We have by
(68) E/ί = (l/i) and we apply the above identity with Vί = Uu V0 = U0, and

(1)

( l ^ l ^ (94)

Further, by the definition (89), we have

(Ur^iR^ΊΓ^'ΰ^Ro^R^^Γ^ϋ,, (95)

hence

•RΊΛR^Z^iΓ1- (%)

The expression in the square bracket above is equal to Ό\. Let us make the
following inductive hypothesis:

φ[)b = vj{b-){Ό[)bWo,bvj\b+) = {Ό[)V, bzΩP,

vj(x) = ( R o . U J ( R o . x U J ••••• ( Λ J o 7 χ VJΓ'), x ε Ω ϋ )

We have proved it for j = 1,2. The definition (68) and the hypothesis imply

{+ ̂ Miuί)"' u{)e utf±e=»/c_

^ 1 < c 1 ^ 1 i ( c + ) , ( 9 8 )

where we have used the identity (93) again and the other definitions.
Let us now consider the expressions RQ^U^, xeΩU). We will prove that

^j j (99)

For ;•= 1 it is the definition (97) of v}. For 7 + 1 we have by (85), (97), and (99)

J (RiyVj) (x)}xmy)

^ (100)

hence the identity (99) is proved by induction. From (97), (99) for; = /c we get (92).
Let us consider again the gauge transformation u calculated before in terms of

U1 and given by the equalities (77) for j = k — _1, (87). In the future we will need this
transformation expressed by the averagings D{. Let us write explicitly the formula
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for u

^ , . ^ ) , (loi)

where xeBk(y), yeΩik\ xk = y, xo = x.
We use the equalities (97) and we get for j > 0

(Ri.Xj + ι U[) (ΓXj+uX) = Vj(xJ+,) (RiXj+1 ϋ{) (ΓXjtίιXj)

•(Ri^^-'ixj). (102)

If we take two neighboring factors for;, j — 1 in (101), then the last factor on the
right-hand side above for) and the first factor for j — 1 give the product

? Xj ff 'Ui-1) -1, (103)

where we have used the second Eq. (97). We connect this expression with the factor
corresponding to j — 1. We get such an expression for j —1=0 also. The first factor
in (102) for j+l=k and the first factor on the right-hand side of (101) give
vk1(y)vk-i(y) a n d ^is is equal to (103) for j = k. Thus we obtain the equality

R(uo(rf>x))u(x)= π
j k 1

i^M UM J. „,;]. (104)
Let us recall that we have

Σ g^,,^.^)^,,,,)]. (105)
xeB(xj+ί) I

The Eq. (104) can be written also in the following way:

i this

(1

0

.π
gives

(i

\r\U )

the

(ϋo(r«+

+!!J))

formulas

y(χj)= Π (
l = k-ί

•••+1)R(Uj

0(Γx

-'mix,

+ ίtX))(Ri *ί+βi)(ΓXj+

(106)

(107)

(108)

D. Properties of the Averages U\

We will now investigate the new averaging operations. Forthe averages Ok natural
quantities to consider were plaquette variables. For U\ we expect that the
configuration itself, i.e., bond variables, has good bounds in terms of bounds of U1.
We will prove to this effect propositions analogous to Propositions 1 and 2.
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Let us recall that the definition of φ\)c, cCΩ{k\ involves only the gauge fields
Uuh9 UOib at bonds bcBk(c_)uB\c+).

Let us start with a detailed analysis of the one-step averaging operation Vv We
assume that the configurations Vo, Vι satisfy the conditions

\Vo(dp)-l\«xO9Vltb = eiA»9\Ab\«*l9 p9bcΩ'9 (109)

and Ab belong to the complexified Lie algebra gc.
We would like to prove that for α0, aί sufficiently small the average (Fx)c is an

analytic function of the variables Ab,bC B(CJ)\JB{C+), C C Ω/(1\ and to find bounds

for (Vί)c— 1, or rather τ log(F 1) c . We assume that α0 is so small that the

Propositions 1 and 2 hold, i.e., α o ^ c 2 .
At first let us consider the expressions

1
i Σ LΓd-log(R0fyV1)(ΓytX)'], yeΩ/(1). (110)

We have

1
-log(jR0 v^i)(^v x) = (Ro VA)(ΓV X) + O(QA\(ΓV J ) 2 ) , (111)

i ' y ' y y' y'

hence

(112)
Next let us consider

Σ
xeB(c-)

= expΓi Σ L-O-
L xeB(c_) I

- i Σ L-4logK0(Γc>JCu(-c))
xeB(c~) I

> (113)
xeJ3(c-) I J

and let us denote

^=jlog(Ro,c-^i)(ΓC i,u(-c)), y x=jlog7 0(ΓC i J Cu(-c)). (114)

As in (111) we have

i i ?). (115)

A logarithm in the first exponential in (113) can be written as ~\ogeιAχeιYχ.
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Applying the results of Sect. A, more exactly (38), we have

±logetA*etr*=Yx + g-1(-i*ΛγMχ + O(\Ax\
2). (116)

All these formulas give us

Σ L-'Yx + i Σ L-dg-\-iadyx)
xeB(c-) xeB(c-)

i Σ L~dYx\ (117)

Denoting Σ L~dYx= Y and using the formula (41), we have further
xeB(c-)

χ
*εB(c-)

2α 2)

where

• exp[-iY] exp[iR(eiy) (RO,C.A) (c) + 0(L2α2)]

= e x P r i 9 ( - i a d y ) Σ
L X6B(C-)

• exp[iΛ(eir) (RO,C.A) (c)
2 2 ) ] , (118)

+ R(eiY)(ROtC_A)(c), (119)

as it follows from (115).
We can transform this linear expression using the identities R(e'Yχ) = e'ady* and

g ~1 (— i ad y J eι ady* = g ~ι (i ad y J . The last follows from the corresponding identity
for functions of a complex variable: g~i( — z)ez = g~1(z). We have also

= R(e-iY)R((V0)c)(R0,c+A)(Γc+,x,)

= e - i a d ^ 0 , c ( i ? 0 ,

These identities imply the following formula:

Σ
xeB(c-)

From (118) and (112) we get finally

= expΓ-i Σ L-'(Ro<

I XEB(C-)

+ i Σ L-^ 0 , c (^ 0 , c + ^)(Γ c + ? x O + 0(L2α?)Ί. (120)
' J
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In all the estimates above, we have assumed that α0, αx are sufficiently small so that
the formulas and inequalities proved in Sect. A hold, and that \YX\ = 0(L2OL0) are
small. We restrict further a1 assuming that the norm of the element in the
exponential above is small also; for example, it is enough that it is 5Ξ \. Under these
assumptions it is obvious that functions of the variables A involved in all the
formulas until now are analytic functions of A. Let us define

Q(V0,A,c)=-.\og(V1)c, (121)

then <2(F0, A, c) is an analytic function of A and from (120) it follows that its Taylor
expansion begins with a first-order polynomial. Let us denote it by L(Q{VQ)A)C.
Thus we have

A,c). (122)

C(V0)A,c) is an analytic function of A whose Taylor's expansion begins with a
second-order polynomial (a quadratic form), and

\C(V0, A, c)\ S C,L2\A\2 < C.iLa,)2 . (123)

The linear form Q(V0)A is given by

(Q(VO)A)C= Σ L^d+1\ROt «
xeB(c -)

Σ
xeB(c-)

) - Σ
xeB(c-)

x \ ^ (124)
xeB(c-) J

The first term on the right-hand side above is the main term in this linear form, and
it resembles the definition of the averaging operation Q in [2]. The remaining
terms are small because the functions g{ — z),g~ x(z), eiz are equal to 1 for z = 0, so
the operators occurring in these terms can be estimated by O(L2α0) and the terms
can be estimated by 0(l)L2oc0L\A\ <O(l)L 2 α 0 Lα 1 . We will denote the main term
by Qvo> or Qo

(QoA)c = (QVoA)c= Σ L-« + '\R0,c_A)([x,xy, (125)
XEB(C _)

and it has an estimate

|(βo;l)cl^μ4|<αi>

so we have for the whole linear term

| ( ρ ( F 0 ) ^ ) c | ^ μ | + 0 ( l ) L 2 α 0 μ | < ( l + 0 ( l ) L 2 α 0 ) α 1 < β O ( 1 ) L 2 α 0 α 1 . (126)

Thus we have proved the following

Proposition 3. There exist constants C l 5 c3, c3^c2, such that for α0, ocι^c3 the

function Q(V0, A) = τ l o g Vί is an analytic function of A satisfying the equalities and

bounds (122)—(124). The constant Cx depends on d and c 3 depends on d and L.
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Now we will consider the kih order average TJ\. Its definition implies that

-\ogU\ as a function of -\ogUx is a composition of the functions

Q(U0, -),Q(U0, •),..., (127)

We assume that Uo satisfies the assumptions of Proposition 2 and U1=eiηΛ,
|^4|<α x. Then by this proposition the configurations Uj

0 for j<k satisfy the
assumptions of Proposition 3 for V0 = Uj

0 if ot0L
2jη2 + 2C0(oc0L

2jη2)2

We will now investigate compositions of functions in the sequence (127). For
the first function we have

\Q(U0, ηΛ)-LηQ(U0)A\ £ < Cx (oc.Lη)2 ,

hence

and

1

Lη
< \Q(U0)A\ + C.Lηa2 < (1 + 0(1) L2^)^ + C

<έ
,O(l)L2η2x0 (128)

Because e°il)L2η2aoocί + CγLηa\ ^ e0™*0^ + C&\ ^ 2αx for α0, oq sufficiently small
( O ( l ) α 0 ^ j , C i α ^ l ) , so |β( ί7 0 ,ηA)\<2a ι Lη^2a ι ^c 3 for α ^ ^ C g , and we can
apply Proposition 3 to function Q(U0, •) calculated at Q(UQ,ηA). For this
composition we have

Q(U09 Q(U09 ηA)) - L2ηQ(U0) ±- Q(Uθ9 ηA)
L,η i

1

Lη
denoting

Q(U0, Q(U0,ηA)) = Q2(U0, ηA), Q(Ό0)Q(U0) = Q 2(l7 0),

and using (128) we get

J-J ΫΊ
ΎΓIQ2(U0,ηA)-Q2(U0)A

2)ηaj)ηaj,

<έ

<e O ( 1 » 2 0 I O ( l+8C 1 α 1 )αi

<2αj for α o ,α! sufficiently small [e.g.,

(129)
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Continuing these arguments, we arrive at the following inductive assumption for
the composition Qj(U0,ηA) of the first j functions (127) aad the composition
Qj(U0) of their linear parts:

1

Jη / ' (130)
This implies

(131)

and for αt ^ jc 3 we can apply Proposition 3 to the function Q(OJ

O, ) calculated at
Qj(U0, ηA), and we get

.-.,-. 1

(132)

Applying (130) and denoting

we have

jj+τ-Qj+1(Uo,ηA)-Qj+ι(Uo)A

Thus the inductive hypothesis (130) is proved for j^k. For j = k, we have

(133)

We formulate the obtained results in

Proposition 4. There exist constants C2, c4 such that for α0, αx ίί c4 ί/ιe function

Qk(U0,ηA,c)= -τlog(ί/i)c, cCi2(k), is α« analytic function of the variables Ab, b

CBk(c_)κjBk(c+). Further we have

and

\Ck(U0,A)\^C2\A\2<C2ai.

(134)

(135)
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The constants C2, c4 are independent of k, C2 depends on d and c4 depends on d and
L.

The function Ck can be decomposed further into a sum of homogeneous
polynomials,

Ck(U0, A) = C?\Uθ9 A) + Cί3\U0, A) + .... (136)

We will need some more precise information about the function Qk. This
information is connected with a notion of the functional derivative. Let us recall
this notion. If F{A) is a differentiable function defined at field configurations A on
Ω, then the differential

is a linear functional of the variable δA and can be represented as a scalar product
of δA and some Lie algebra valued function. This function is called the functional

derivative and is denoted by -z—F(A), thus we have
oA

d „, A , . _ „. δF(A)n . IδF(A) „ A
(13δ)

From this definition it follows easily that the functional derivative coincides with
partial derivatives (gradient) of F(A) multiplied by η~d.

We would like to prove that the functional derivative of Qk(U0, ηA) is bounded
by a constant independent oϊη. This property is not clear even for the linear part of
Qk, so let us start with an analysis of this linear part. The linear part of the one-step
renormalization transformation is given by the formula (124). It is a sum of the
main term QVoA given by (125) and a remainder which we will denote by Q"{VQ)A.

From (124) it is clear that we have the inequalities

\QVoA\ZQ\A\, \Q"(V0)A\^C\L2*0Q"\A\, (139)

where the operator Q is defined as in [2], and Q" is defined as

(Q"A)C= Σ L-"Ab. (140)
bCB(c-)uB(c + )

The constant C\ depends on d and L. A composition of k operators Q is the
operator Qk. The operators Q" do not compose in a simple way, but if we introduce
an operator Q'k by the formula

(141)
bCBk(c-)vBk(c + )

then we have the inequality

\Q"QjΛ\SQ"Qj\A\ύ2dQ'j+1 \A\. (142)

Now we will prove by induction the bound

(143)
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assuming that Uo satisfies the bound (52). Fory'= 1 it is a consequence of (139). We
assume (143) for j<k and we have

S Q(QM\ + 2C\ ao(tiη)2 Q] \2zo(Ώη)2

= QJ+1\A\ + 2C; ao(LJη)2 QQ'j\A\ + 2C\ ao(IJη)2 Q"Qj\A\

+ 4C'1
2a2

0(lJη)4Q"Q';\A\ (144)

by (139) and Proposition 2. Further using the inequalities (142), QQ'j\A\

S2Qj+1\A\, and Q"QJ\A\SQJ+1\A\, we get

Because

2L" 2 + L" 2 + 4ί/C; α 0 L - 4 ̂  f + 4dCΊ L" 4oc0 ̂  1

if 16ί/CΊL~4α0^ 1, so the bound (143) is proved for all jfΞfc. For j = k we have

\Qk(U0)A\ίQk\A\ + 2C'1a0Ql\A\S(l+2C1a0)Ql\A\, (146)

and this bound implies the required property, namely

oAb
0;c,b), \Qk(U0;c,b)\Sl+2C1a0. (147)

Now we will generalize it to the whole function Qk. It is enough to prove it for Ck.
For one-step renormalization transformation we have the bound

PΨ1-" (148)

following easily from general properties of the function C(V0, A). The constant C\
depends on d and L. We will prove that a similar bound holds for the functional
derivative of CfUQ,A) for arbitrary j ^ k. We will prove by induction that

— Cj(U0,A),δA (149)

where the configurations A are considered on L •'-lattice and C 3 is a positive
constant satisfying conditions which will be written later.

From the definition of the functions Qj(U0,ηA) we have

/o, ηA) = Q(Ul, Qj(U0, ηA)),

hence

= LQ(Uj

0)Qj(U0, ηA) + C(W0, β/l/ 0 , ηA))

= LJ+ 'ηQiUti Qj(U0)A + LQ(Ui) Cj(U0, UηA)

+ C(Ui,Qj(U0,ηA))

= Lj+1ηQj+1(U0)A + Cj+ι(U0,U
+1ηA), (151)
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and

41

(152)

A is a field configuration considered on 17(jί+ 1 } Z d , \A\ < Lj+1 ηoc1. Differentiation of
the above equality gives

(153)

Using (143), (148), (149) we obtain the following bound:

δ

δA
Cj+1(U0,A),δA ^QC3L-1\A\Q"J\δA\

+ C'ι2a0(IJη)2Q"C3L-1\A\Q';\δA\

Q"

1 (1

'Mtiη)2 Q]\δA\ + C,L~x \A\ Q'-\δA\)

1 α 1 ) 2 . (154)

This bound implies the inequality (149) ioτj+ 1 if

1a1)
2S^ (155)

This inequality is satisfied if C3 > C'[ and α0, αx are sufficiently small, e.g., we may
take C 3 = 6Cί and α0, αx satisfying 4dC'1a0L~1 Si, (C2Lrl+ \2dC'[L~ί)<xί^l.
Thus we have proved



42 T. Baίaban

Proposition 5. The functional derivative of Qk(U0, ηΛ) is a bounded function for α0,
(X1 sufficiently small, and we have the bounds

δA
-Qk(U0,ηA,c) ; α 0 + C3\A\

δA
•Ck(U09A,c)

(156)

(157)

E. Analyticity Properties of the Averaging Operations

In this section we will prove some simple analyticity results for the averages. Let us
begin with the average Uk. Formally, it is defined for all configurations, but we
have good control over it for configurations U satisfying the regularity condition
(52). We will prove that Uk is an analytic function of U on this domain. In fact, we
will prove a little bit stronger result. Let us take a configuration Uo satisfying (52)
and U=U'U0, U' = eiηΛ', \A'\ bounded by a small constant ocv Such configurations
U do not necessarily satisfy (52), so we get a neighborhood of Uo which is larger
than neighborhoods of Uo in the domain. This neighborhood may be also
described by the conditions

\U— U0\ = \UUQ1 — l\<octf, (158)

oc1 is a sufficiently small number.
We will prove that Uk = U/Uo

k is an analytic function of A' and Όk{Όk

0)~ι is
close to 1; the difference may be estimated by a constant proportional to CLV We
have

(159)

where

vk(x) = (Ro,χUWo.xUΊ' ...'(R&U*-1), xeΩ*K (160)

From Proposition 4, and especially from (131), we get

τlog£//J (161)

hence

1

i

and

<8a,1dLj+1ηe2ctldLJ+i'i<O(l)a1L
J+1η, j = O,l,...,k-l ( 1 6 2 )

k-l

(163)

for (xί sufficiently small. Moreover, Proposition 4 implies that the functions of A in
(159) are analytic. We get the following
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Proposition 6. If Uo satisfies (52), then U'Uo

k is an analytic function of

A'= — log JJr for Af with values in the complexified algebra, and satisfying \A'\ <cc1.

Moreover, we have a bound

l E T T T ^ o Γ ' - l ^ C K l K . (164)

Of course, we assume that α0, a1 are sufficiently small.
Another analyticity result we will need is an analyticity of Qk(U0,ηA) with

respect to Uo. We will understand it in a similar way as for Uk. We take U'U0

instead of Uo, U' = eiηA\ \A'\ < α l 5 and we consider the function Qk(U'U0, ηA). We
want to prove that it is an analytic function of both variables Af and A, and that
Proposition 4 holds uniformly with respect to A'.

Let us analyze the proof of Proposition 3 first. The bounds depend on bounds

of the quantities Yx= τ logF 0 (Γ C ) X u(-c)) . Previously we had \Yx\ = O(L2(x0), but

now we allow complex perturbations V'V0 of Vo, and for these we have
I Yx\ = 0(L2oc0 + LαJ. Thus Proposition 3 holds unifirmly for V'V0 instead of Vo and
with the only change in the inequality (126), where the constant e

O{1)L2cc° on the
right-hand side is replaced by gWM^o+Lαi) similarly we repeat the reasoning
connected with Proposition 4, but with 0J

0 replaced by U'Uo

j= U/jOJ

0. Because of
the bound (164), we have to replace the factors e

0{1)L2(i+i)η2cxo by

eo(i)(L^J+ί)η2ao+Lj+iηaι^ b u t t h i s c h a n g e i s e a s i l y incorporated into the consider-
ations and the estimates. We get the same results as before for α0, oc1 sufficiently
small, uniformly in A\ and additionally, we get the analyticity of Qk with respect to
A'. Let us formulate these results in

Proposition 7. For Uo satisfying (52) and U' = eιηA>, | ^ Ί < α 1 ? α0, ax sufficiently
small, the function Qk(U'Uθ9ηA) is analytic in complex variables A\ A, and
Proposition 4 holds uniformly in A'.

Similarly, Proposition 5 may be extended to include analyticity and uniformity
statements. The formulations are obvious.

F. Averaging Operations for Gauge Transformations

In the last section of the paper we will study the averaging operations for gauge
transformations, given by (61), (78)-{80). A natural analog of the regularity
condition (52) would be the condition

\(dUou)(b)\ = \R(U0,b)u(b+)-u(b^\<ot0η, bcΩ. (165)

We will consider functions u satisfying this condition, but we have to consider also
the functions u given by the formulas (104)-(106). They appear naturally in our
considerations and generally they do not satisfy the regularity condition (165), but
they satisfy other conditions following from (107), (108) if the configuration Uί is
small, i.e., IL^ — 1|<α1f7, αx small. We define:
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Λk(Uθ9 α3) is a set of gauge transformations u defined on Ω,

and satisfying the conditions

(xj)-\\<a3,XjeΩu\ j = 0,1, ...,fc, (166)

j x j e B ( x j + ι ) , j = 0,1, . . . , fe-l . (167)

From this it is obvious that for u e Λk(U0, α3) and α3 small, all operations needed to
define Rou

k are done always in a case where proper expressions are small. More
exactly, we have to calculate a logarithm of the expression in (167) and this
expression is small.

We need to consider a product of two gauge transformations satisfying (166),
(167), so we would like to know that it also satisfies similar conditions. Let us
consider at first the following situation: we have functions v9 vl9 v2 defined on a
lattice Ω' and a gauge field configuration Vo, and we assume that
v(x) = vi{x)v2(x)eir^\ \r(x)\<cu \vri(yURo,yvd(?c)-_}\<c2, i = l , 2 , x e B ( y ) ,
y G Ω/{1). We will find relations between Rov and Rovi, R0v2, and bounds satisfied
by Rov. We have

= exp -ίr(y) + iR{v2 \y)) jloguf

hence

L-d\ogυ~\y)(R0>yv)(x)]=vi(y)v2(y)

) J

i Σ

i Σ L-ά-
xeB(y) I

xeB(y)

, , - 1 /= vi(y)v2(y)R(v2 %y))eχp[-,
•exp L'd-\ogv2\y)(R v )(x) I

'y J
•exp i 2. *

xeB(y)

e^\ \r[y)\<c1 + O((Cl + c 2) 2). (169)
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Let us denote the constant in the above bound by C3, so we have

c1+c2)\ yeΩ™. (170)

Now let us take two gauge transformations uu u2 satisfying (166), (167).
Applying the above result to u = uγu2, we get

(R^u) (xx) = f e ) (xθ (Ϊ^Γ2) (xt) e»^\ ^(x^l < C3(α3Lf/)2 (171)

for Xi eΩ(1). Next applying it to Rou, Rouu R0u2, we get

(R^ύ2) (χ2) = (R^l2) (x2) ( K ^ 2 ) (x2) eir^,

|r2(x2)| < C3(a3Lη)2 + C3(C3(α3L>?)2 + α3L
2^)2

^C 3 (α 3 L 2 ^) 2 [ l+L- 2 ( l + C3α3)
2] (172)

for x2

 E Ώ ( 2 ) We can prove by an easy induction that

(R-&) (xj) - (R^ΓΛ (xj) (R^Γ2

j) (Xj) eir^, Xj e Ω<»,

|r/x7OI<C3(α3L^)2[l+L-2(l + C3α3)
2 + ...+(L- 2(l + ^ ^ ^

<2C3(a3IJη)2 (173)

for α3 sufficiently small, i.e., such that L~ 2(1 + C3α3)
2 ^ ^. From this it follows that

1. (175)

We can formulate these results in

Proposition 8. // uuu2e Λk(U0, α 3 ) and α 3 is sufficiently small, i. e.,oc3S c6 for some

c6, then u = u1u2eΛk(Uo,2a3-\-2C3a3

ι) and we have (173).

We will need to consider regular configurations vΐ in the sense that the
following conditions are satisfied:

|u ' (x)- l |<α 4 , xeΩ, (176)

bcΩ. (177)

We would like to know that if w' is such a configuration and uγ belongs to a class
v4k(α3), then the product u/uί belongs to some class Λk(O(l) (α3 + α4)) also. Because

we want some analyticity properties of -logRQu'u^, we will consider configu-

rations vΐ with values in the complexified group Gc, i. e., u' = eiλ and λ has values in

the complexified algebra gc. We will consider the averages

(178)

As in the case of averages TJ'\ it can be easily seen that they may be defined
inductively as

j i ^ A ^ R ^ J r 1 (179)



46 T. Balaban

We will prove that the configuration u'j for j^k satisfy the regularity conditions
(176), (177) on proper scales and with different constants. As usual, we start with a
careful analysis of a one-step operation. Let us assume that we have a gauge field
configuration Vo satisfying the regularity condition \V0(dp)— l |<α 0 , pCΩ\ and
two gauge transformations v\ vx satisfying the conditions

(loU)

x G B(y), y e Ω/{i\ We assume that the constants are sufficiently small, so that we
can apply proper theorems and estimates. We will find a bound for
v'-\c_)R0J'(c+)-l. We have

•expΓΐ Σ L-d\log(υ'υ1y
1(yHRo,yV/v1)(x)\, (181)

v'vj- \y) (Λ0,,»'»i) W = RivT'iy)) [ Γ 1 ^ ) ( i ? 0 » (x)]

,, (182)

and \v'-1(y)(ROtyv')(x)-\\<\ryJa'Ae\r^a'* = O(La'ii) by (180), hence

o.yΌ'υJ (x) = R(v; x(y)){logt;'- ι(y)

Λ, y g ; ( y ) ( 0 ^ 1 ) ( ) ( 3 4 ) (183)

A constant in the bound above is an absolute constant. Using (41) and (181), (183)
we get

v'(y) = v'(y)v1(y)exp\ i Σ L "R^

• (R0,yv
/) (x) + O(L2α'3α;) + (L 2< 2) wf ι(y)

Γ A
= ί/(j/)exp| i Σ L τlogί/ (y)(ROyyv

/)(x)

(184)

Let us denote

η=v'-ι(b-)ROtbt/(b+), then \V;-l\<a'Ae«'\

Using this we can write

v'-1(y)(R0,yv')(x)= Π Λ(Ko(Γ,,6.))ίς'=(ΛOi,n(Γ,,»), (186)
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and we have

g(0ty^(yJ ( 0 t y ) ( y J ( ( ^ ) 2 ) . (187)

Now using this and the representation (184), we have

XGB(C-)

Let us recall that

hence

Similarly,

(R0,cR0,

Further we can write

and this implies the following representation

ff-\c.)ROtCff(c+)-l = -i Σ L-"(ROtC_A)(Γc_,x)
xeB(c -)

+ i(R0,c_A)(c) + ί %

•expΓi Σ L~d(ROcRo
|_ x'eB(c + )

(188)

i Σ
κJ(c-)

x'eB(c + )

. (189)

We will transform the linear terms in A on the right-hand side of (189). Let us
notice that by the definition (185) of A and by the identity logy"x = — logi; we have
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hence

-Ab = ROtbA.b. (190)

For the term (ROtC_A)(c)> we have for x e £ ( c _ ) ,

(ROtC_A)(c)= Σ W P r Σ y o l J ) b

bQc bCc

= - Σ R{V0(cυ(-ΓeJ))R(V0(Γe,xuίc+,b-J))Ab

bC-c

= - Σ K(F 0(ΓC j Xu[c+,fe_]))Λ + O(L2α0α;); (191)
bC-c

similarly for the third term on the right-hand side of (189). Taking this into
account, we have

ff-\c-)ROtCvr(c+)-l=i Σ L-'(KOiC_Λ)([x,x'])
xeB(c-)

-ί Σ L-\ROtC_A)(ΓC9M-c))
xeB(c-)

+ 0(L 2 (α 0 α 4 + α 0 α 4 + αr

3α; + α^2)). (192)

Let us now estimate the terms (ROtC_A) (Γcxu( — c)). They almost vanish because

by the definition (185) A is almost equal to the derivative of λ= τlogι/. We will

prove in fact that they are small. Similarly, as in (187) we have

f ^ j i Λi) 2), (193)

and

(194)

hence

(R0,c_A)(Γc,M-c)) = 0(L2(a0a4 + a'4
2)). (195)

This gives us finally

v'-1(c_)R0J'(c+)-\=i d

xeB(c)

+ 0(L 2 (α 0 α 4 + α 0 α; + α'3α4 + α4

2)). (196)

From this we easily get a bound if we notice that

This implies | ^ | < α 4 + 0(α4

2), and

. (197)
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From representation (184) we obtain also

\v\y) - 11 < α 4 + 0(Lα 4) + O(L2(α3 + α 4)α 4) ^ α4 + 0(Lα 4 ) . (198)

Let us formulate these results in

Proposition 9. There exist positive constants C4, C"5, c'6 5wc/z ί/zαί /or arbitrary
functions Fo, 1/, 1̂  satisfying (180) w/ί/z α0, α3, α3, α4, α ^ C g , ί/ze following bounds
hold:

(199)

(200)

In these bounds we have assumed that α4 = 0(α 4), which will always be true here
and in forthcoming papers.

Let us apply this result to configurations Uo, u\ uγ many times. We assume that
Uo satisfies (52), u satisfies (176), (177), and u1 satisfies (166), (167). When we apply it
the first time, we get bounds

(201)

(202)

Let us denote /? = α 0 α 4 + α 3 α 4 + α4, C 5 = 1+4C'5, C 4 = 8C 4 C 5 . We will prove by
induction that

(203)

\u'j(y) -11 < α 4 + 2C5oc4Lη + ... + 2C5oc4L
jη, y e ΩU). (204)

Let us notice that

(x4L
jη + CJ(Ljη)2 ^ α4ίΛ/(l + C 4(α 0 + α3 + α4)) ̂  2α 4 L^ ^ 2α4

for α0, α3, α4 sufficiently small, so the condition α4 = 0(α 4) mentioned above is
satisfied indeed. The inequalities (203), (204) hold for 7 = 0,1. We assume them for
some) and we will prove them for7+ 1. We apply Proposition 9 with Vo= Uj

0,
v' = u\ v1 =Rouι

j. We have α0 replaced by 2<xo(Ljη)2, α3 replaced by a3L
jη, α4

replaced by the right-hand side of (204), which can be bounded by
α4(l +4C'5) = C5aί4., and α4 replaced by the right-hand side of (203), which can be
bounded by 2α4. The conditions of the proposition are satisfied if, e.g., 2α0, α3,
C 5 α 4 , 2α4rgc6, so we can apply it and we get

+ Q ( 2 α 0 C 5 α 4 + α32α4 + 4α2) (Lj+ ιη)2

^ α 4 ί / + ιη + C4β(B+ 'η)2 , (205)

Wj+ Ky)- 11 < α 4 + 2C5oc4Lη + ... + 2C5ot4L
jη + 2C5oc4L

j+ xη . (206)

Thus we have proved the following
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Proposition 10. There exist positive constants C 4, C 5, c6 such that for arbitrary
configurations Uo, u\ ux satisfying (52), (176), (177), (166), (167) with α0, α3, α 4 ^ c 6

the bounds (203), (204) hold forj^k.

This result implies in particular that the configuration u' belongs to the class
/Lfc(C5α4). The assumptions (176), (177) can be reformulated in terms of the

functions λ= -logu'. If we assume

α 4 , \λ(x)\<oc4, λ

α4 sufficiently small, (207)

then assumptions (176), (177) are satisfied with a constant 4α4 instead of α4. It is
obvious from the definition of the averaging operations that ύ/j are analytic
functions of λ, and

Q'j(μl9λ)=^logu'J9 j^k, (208)

are analytic functions of λ also. We want to calculate a linear term in an expansion
of this function. In fact, we will be satisfied with a good approximation of this term.
From (184), (187), we have for v' = eiλ

(209)
By definition of A,

hence

1 ,

i

Ab=\loge-iλ(b-)eiRo-bλ(b + )

1

i

xeB(y)

Vo λ)(ft)

/2 (210)

4

2 ) . (211)

By (179) the function Q](uu λ) is a composition of one-step functions and from the
above formula we can easily see that

Qj(Mi,λ,y)= Σ L-JdR(u0(ifx))λ(x)+1Σ
xeBJ(y) I = 0

• 0(C5oc42a4L
ιη + «32a4(Lιη)2 + 4al(Lιη)2), (212)

hence

Q'j(uuλ,y) = (Q'jλ)(y) + Cj(uι,λ,y), (213)

| q ( M l , λ, y)\ = O((α3α4 + oftϋη). (214)



Averaging Operations for Lattice Gauge Theories 51

References

1. Balaban, T.: (Higgs)2; 3 quantum fields in a finite volume. I. A lower bound. Commun. Math.
Phys. 85, 603-636(1982)

2. Balaban, T.: Propagators and renormalization transformations for lattice gauge theories. I.
Commun. Math. Phys. 95, 17-40 (1984)

3. Brydges, D.C., Frόhlich, J., Seiler, E.: On the construction of quantized gauge fields. I. General
results. Ann. Phys. 121, 227-284 (1979)

4. Kadanoίf, L.P.: Notes on Migdal's recursion formulas. Ann. Phys. 100, 359-394 (1976)
5. Kadanoff, L.P.: The application of renormalization group techniques to quarks and strings.

Rev. Mod. Phys. 49, 267-296 (1977)
6. Osterwalder, K., Seiler, E.: Gauge field theories on a lattice. Ann. Phys. 110, 440-471 (1978)
7. Varadarajan, V.S.: Lie groups, Lie algebras and their representations. New York: Prentice-

Hall 1974
8. Wilson, K.G.: Confinement of quarks. Phys. Rev. D10, 2445-2459 (1974)
9. Wilson, K.G.: Quantum chromodynamics on a lattice. In: Quantum field theory and

statistical mechanics, Cargese 1976, pp. 143-172. Levy, M., Mitter, P., eds. New York:
Plenum Press 1977

10. Wilson, K.G.: Monte Carlo calculations for the lattice gauge theory. In: Recent developments
in gauge theories, pp. 363^02. 't Hooft, G., Itzykson, C, Jaffe, A., Lehmann, M., Mitter, P.K.,
Singer, I.M., Stora, R., eds. New York: Plenum Press 1980

Communicated by A. Jaffe

Received January 12, 1984; in revised form September 4, 1984






