Communications in
Commun. Math. Phys. 97, 473-540 (1985) Mathematical
Physics

© Springer-Verlag 1985
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Abstract. In each monopole sector there exist an infinite number of finite
energy solutions to the Prasad-Sommerfield limit of the SU(2) Yang-Mills-
Higgs equations on R3 whose energy is greater than any finite number.
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A.1. Introduction

The differential equations of a classical gauge theory are, in many cases, the formal
variational equations of a functional (the action) on a topologically non-trivial
space. And so it was conjectured [1, 2] that Morse theory, or some weaker analog
might be useful for establishing the existence of non-trivial solutions. There are
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standard conditions which, if satisfied, imply the relationship between the
topology of the space and the critical points of a function on that space [3, 4];
Condition C of Palais-Smale is one such condition. However, the Yang-Mills-
Higgs functional on IR*® does not satisfy any of these conditions.

One could conjecture for this functional, on the one extreme, that its behavior
was akin to the harmonic map energy functional on the space of C* maps from S?
to S2. The harmonic map energy functional obtains its minimum on each of the
countable number of path components of Maps(S?; S?); these are the
holomorphic and anti-holomorphic maps. But these local minima are its
only critical points [5], in spite of the rich topological structure of the space
Maps(S?; S?).

On the other extreme, one could imagine that the Yang-Mills-Higgs functional
behaved like a “good” Morse function, in spite of the failure of the Palais-Smale
condition. Indeed, a non-minimal solution to the SU(2) Yang-Mills-Higgs
equations on IR® which relates to 7, of the function space is known to exist [6, 7].

This article will prove that the SU(2) Yang-Mills-Higgs functional on R3, in
the Bogomol’'nyi-Prasad-Sommerfield limit behaves like a good Morse function
(Theorem A.1.2). One consequence of this fact, which is also established here, is
that in each path component of the function space (monopole sector), there exists
an infinite number of gauge inequivalent solutions to the associated variational
equations; in fact, an infinite number with action greater than any fixed number
(Theorem A.1.3). The results in [8] imply that all of these new critical points are
unstable ones for the action functional.

This article is to be considered as a sequel to [9], to which the reader will often
be referred. The results in this article were announced in [10].

These SU(2) Yang-Mills-Higgs equations are a set of partial differential
equations on R3 where the unknown is a pair (4, @), with 4 being a connection on
the principal SU(2) bundle P =IR3 x SU(2) over R?, and with ® being a section of
the associated bundle, AdP=IR? x SU(2). The equations are

D,*F,+%*[®,D,8]=0, (A.1.1a)
D, *D,»=0, (A.1.1b)

subject to the boundary condition that 1 —|®| e L°(IR®). Here, F ,is the curvature of
A (a section of 5 T*®AdP), D, is the exterior covariant derivative on AT*®Ad P
that A defines, *: AT*— AT*is the Euclidean, Hodge dual and [ -, - ]is the graded
bracket on AT*®AdP. The norm |-| on AT*®AdP is the product metric; (the
Euclidean metric on AT*) ® [the metric —2 trace ¢(-,-) on SU(2)]. The
uninitiated are referred to [9, Sects. A.1-A.3] and [11, Chaps. 1 and 4] for details.
Equation (A.1.1) is the variational equation for the action functional,

A4, <15)=%DL {IFAP()+1D PP (x)} dx . (A.12)

One is to consider U as a functional on the set
C={Smooth c=(4,®):A(c)<co and 1—|P|el’(R3}. (A.1.3)

The set € is topologized as in [9, Sect. B.1].
The space € is homotopically Maps(S?; $?) [9, Proposition A.1.17. It therefore
has also a countable set of disjoint path components, {€,},.,. D. Groisser has
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shown that for (4, ®)e €, [12],
1
n=— | {—2tracec:(F4ADD)}. (A.1.4)
4n R3

The triangle inequality then implies that for each ne Z,
Alg, = 4nn|. (A.1.5)

For ce(@,, equality in Eq. (A.1.5) occurs if and only if c=(4, @) satisfies the
Bogomol'nyi equations [13],

F ,=sign(n)*D . (A.1.6)

Solutions to the Bogomol'nyi equations exist in each €, [ 14, 11, 15]. Forn=0, any
c¢=(4, ®) satisfying Eq. (A.1.6) has F,=0 and D,9=0.

Each ¢, is acted on continuously by a topological transformation group, the
gauge group [9, Sect. 13.1],

® = {smooth automorphisms of R*® x SU(2)} ~C=(R*;SU(2)). (A.1.7)

The functional 2 is invariant under the action of & and solutions to Egs. (A.1.1) or
(A.1.6) are transformed into solutions. The subgroup

Go={ge®:g(x=0)=1eSUQ)} (A.1.8)

acts freely on € and the functional A descends to the quotient B. As G, is
contractible, B embeds in € as

%={c=(A,<D)e¢:A(x=O)=O and xi%_JA=O}. (A.1.9)
Here, and in Eq. (A.1.8), a product structure on P =IR3 x SU(2) has been chosen.
There is a residual SU(2) action on B which leaves 2 invariant. It is convenient to
reduce this SU(2) action to an S! action by constructing a new space, 8B, which
embeds in B (hence in €) as the fiber of a fibration [9, Sects. A.1 and B.5],

BB, 852, (A.1.10)

The group SU(2) acts on S? via rotations, and the fibration in Eq. (A.1.10) is SU(2)
equivariant. The S subgroup of SU(2) which fixes the north pole, p e S2, fixes
9B =7~ !(p). Then B is the orbit of B under SU(2). This structure and the map 7 are
all explained in [9, Sect. B.5].

One consequence of the preceding discussion is that U only “sees” the topology
of B (and the S* equivariant topology, at that). This is convenient because B is well
understood:

Theorem A.1.1 (Theorem A.1.1 of [9]). The space B is homotopically the space
Q(S?) of base-point preserving maps from S* to S*.

The topology of B and the critical points of U can be related by min-max
theory (cf. [3]); of which a brief review follows. Let M be a smooth manifold. A
family, §, of non-empty compact subsets of M is said to be homotopy invariant if for
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any continuous ¢:[0,1] x M—M for which ¢(0, - )=identity, it is true that the
condition F e § implies that ¢(1, F) e &.

For example, let {H*(M ; Z), k= 0} be the (compactly supported) cohomology
of M with coefficients in Z. Let [z] € HY(M; Z) and set

F=F([(z]))={F < M: the inclusion map, i: F— M, has the property
that i*[z]+0e HF,Z)} .

The family above is homotopy invariant.
Let f: M—[0, c0) be a smooth function. To a homotopy invariant family, &,
assign the number

= inf . A1.11
fo= infup 9 A1)

For a “good” function f on M one should require that f has a critical point at the
critical value fg. )
The theorem below states that U on B is good.

Theorem A.1.2. Let § be a homotopy invariant family. There exists a solution to Eq.
(A.1.1), ceB with A(c)=Ug.

Theorem A.1.2 of [9] asserts that for each neZ, the set

Crit, = {U: § is a homotopy invariant family of compact subsets of €,}
(A.1.12)
is an unbounded subset of R. Thus,

Theorem A.1.3. For eachne Z, Eq. (A.1.1) has an infinite number of solutionsin B,
with action above any finite level.

Theorem A.1.2, suitably modified, also provides information about the
topology of the spaces 9t,C B, of solutions to Eq. (A.1.6). Of import here is an
observation from [8] that a suitably defined hessian of U at a nonminimal critical
point in B, must have index |n|+ 1 or larger.

Theorem A.1.4. For each n, the inclusion M, CB, induces an isomorphism of the
pointed homotopy group m/-) for 1<|n|; and an epimorphism for 1=|n|.

Recently, S.K. Donaldson proved [16] the remarkable fact that for each ne Z,
9t, is homeomorphic to the space of base point preserving, rational maps from S2
to §? with degree n. Thus, Theorems A.1.1 and A.1.4 with [17] recover a theorem of
G. Segal: The inclusion of this space of rational maps into Q,(S?) (the space of all
smooth, base point preserving maps of degree n) induces an isomorphism of 7,( - )
for I<|n| and an epimorphism on 7,(-).

The proof of Theorem A.1.2 requires the author to introduce to the calculus of
variations a number of new techniques. For this reason, a long, detailed overview
of the strategy and logical train of the proof is provided in Sect. A.2.

A.2. Strategy for Convergence

To understand why convergent min-max sequences exist for 2 on B, it is necessary
to understand first where the standard Palais-Smale Condition C fails. Condition
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C s satisfied by a smooth function, f': M —[0, c0) on a smooth Banach manifold M
if the following statement is true: Every sequence {c;} CM for which {f(c,)} is
bounded and for which {||df.|,} has limit zero has, itself, a convergent
subsequence. Here, | - ||, is the norm on T*M. (See [3, 4].)

Were Condition C satisfied by 2 on %B, then Theorem A.1.2 would be
practically a standard result [3]. The technical problems in the proof arise because
Condition C is not present due to the non-compactness of R* (no Rellich lemma).

But, Condition C is not the last word. Even a function on the real line, R, may
be a good Morse function (in the sense that its critical points determine a CW
decomposition of R (cf. [18]) but not satisfy Condition C. Consider, for example,
the function ¢ on R which sends t to ¢@(t)=t>/(1+t?). Observe that
d¢ =2tdt/(1+t*)*. Thus, ¢ has only one critical point, t =0, and there, the hessian
0%¢/ot* is positive. This is the expected behavior of a good Morse function.
However, consider the sequence of integral points, Z CIR. It has the property that
for each keZ, ¢(k)<1, and as |k|— o0, |dp(k)|—0. But the sequence of integral
points has no limit point in IR. Thus, ¢ does not satisfy Condition C.

The important principle here is the following: To prove that the critical points
of a function f: M—[0, c0) mirror the topology of M, only sequences {c;} for
which {f(c;,)} is decreasing need be considered.

Min-max theory for a function f on a Banach manifold M illustrates this
principle. For example, let § be a homotopy invariant family of compact subsets of
M. One can try to establish that f; of Eq. (A.1.9) is a critical value of f by
considering min-max sequences in

Y&, f)= {(F,c)e(’yxM:ceF and f(c)= sgpf}.

A min-max sequence {(F;, ¢;)} CY is one for which the { f(c;)} are decreasing to fg:

fle)zf(cis LT

The pertinent question is: Can a min-max sequence {(F;,c;)} CY be chosen for
which {c;} converges in M to a critical point of f?

It can be remarked that this question is subtle; required for the answer is a
detailed knowledge of the function involved. For example, when M =IR, one must
distinguish between the functionals {f?(-):5€[0,1]} given by

ot
(143"

For §=0, f°(-)is not a good Morse function on R as it has no critical points. But
for any 6 >0, and in spite of Condition C’s failure, f%(-) is a good Morse function
on R.

For the Yang-Mills-Higgs problem, K. Uhlenbeck’s compactness theorems in
[19] imply that a sequence {c;} CB can converge only if the sequence {(c,)} is
bounded; and only if the curvatures {(F, D ,®P): ¢;=(4, ®)} have sufficiently
uniform decay as |x|— o0 on R3, independent of the index i.

This fact motivates the study as a function of ¢ = (4, &) € B of the maximum
separation of the setsin R® where |F ,|*(x) + |D ,®|*(x) is large. One assigns to each
ce®B a number g(c) which describes this maximum separation. To be precise, the

fit)=e+
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number ¢(c) is defined in the following way: One considers the local action of ¢ in
unit balls; this is a map s: B—C°(R?) given by
s@©@)=3 | @y{F)>+ID,9P}. (A2.1)

[x—yl<1
For a suitably chosen x>0, one defines
U)={xeR3?*:s(c)(x)>x} and U(c)={xeR>:dist(x, U(c))<1}.

On R*\U(c), the curvatures are sufficiently small so that they are effectively linear
in the basic field c=(4, ®). On U(c), the curvatures are large and the non-
linearities play the crucial role.

Observe that the set U(c) cannot be arbitrarily bad. Indeed, it is bounded, and
it has at most A(c)/x path components, and the sum of the diameters of the path
components is at most 4U(c)/k (see Lemma C.1.2).

The map o(-): B-[0, o) assigns to ¢ the maximum separation of the path
components of U(c) [Eq. (D.1.1)].

It is crucial to realize that a sequence {c;} CB can converge in B only if the
sequences {g(c;)} and {A(c;)} converge in [0, c0) (see Sects. C.4 and D.4).

Let § be a homotopy invariant family of compact subsets of 8. Then one must
obtain min-max sequences {(F;,¢)}CY(§) for which the sequence {o(c;)} is
bounded; whether or not they exist is a delicate question. To motivate the proof of
their existence, consider the following construction: By assigning to each ¢ € B the
set of centers of the path components of U(c), one obtains a point ¥(c) in one of the
configuration spaces C,(R3), for e {0, 1, ..., [A(c)/x]}. Here, C,(R?) is the space of

I-tuples of distinct points in R3, Thus, ¥ defines a map from B into O C(R?) with
the property that for any E€[0,00), ¥ maps A ([0, E)) i;too the finite
dimensional space U C,(R3). One may reinterpret the min-max problem for & as
that of finding a mm max sequence {(F;,c;)}C Y(&) such that the sequence of
points {¥(c,)} C 100 C(R?), A=[2Ug/x], is bounded.

Because the noncompactness here reflects the noncompactness of C,(R?), it is
enlightening to consider a model variational problem on C(R?) itself. One can
imagine a physical system of [-particles on IR* which interact via pair potentials.
Then the energy of a point {x, ..., x;} € C(IR?) is given by

€({xy,...,x;}) =constant+ 3 v(x;—Xx;).

i<j
Here, v(-)e C®(R3) is the potential. If v has the property that for some x =0,

lim v(tx)< o0,

t— oo

then € may not satisfy Condition C on C,(R®). However, if for all x40, and ¢
sufficiently large,

v(tx) < slgl;l) v(sx), (A.2.2)
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then one expects that the function € is really a good Morse function on C(R3)
because Eq. (A.2.2) says that it costs energy to pull two particles apart [of course,
v(-) must be repulsive for small |x|].

The analysis above suggests that one should try to write the action U(c;) for
each c; of a min-max sequence {(F;, ¢;)} C Y(&) as a sum of two parts: The first part
is the contribution from each path component of U(c;) and the second is the
contribution from R*U(c;). The contribution from R*U(c;) one wants to
interpret as an “interaction energy” between the path components of U(c;) and
then ask whether it costs energy to separate the path components. The analysis
would then proceed, at least heuristically, as if the variational problem were on
some C,(R3).

This procedure is feasible if one can obtain sufficiently strong a priori estimates
for the curvatures of each ¢; in the small field region, R*\U(c;). The existence of a
priori estimates is due to the fact that the Yang-Mills-Higgs equations are semi-
linear and R*\U(c;) is, by definition, precisely the region where the linear
approximation holds. Indeed, one might expect that for i large, ¢; is approximately
a solution to Eq. (A.1.1). For an exact solution, ¢, to Eq. (A.1.1), the fields in the
region R*\U(c) satisfy to order exp(—dist(x, U(c)) the linearized equations in
R*\U(c) with some boundary conditions on dU(c) (Sects. C.1-C.4; [24] and [11,
Chap. IV]). This just states the fact, long accepted by physicists, that from far away,
a non-abelian monopole looks abelian (i.e., a Dirac monopole [21]).

The trick is to obtain min-max sequences {(F;,c;)} for § such that each c;
essentially satisfies the a priori estimates in IR*\U(c;) of a solution to Eq. (A.1.1).
The author has two methods for obtaining min-max sequences which satisfy such
detailed estimates. The less elegant procedure is technically easier. It involves
constructing a sequence of regularized functionals {2°:5e[0,1)} on B (with
A0 =A):

W(A, P)=3 n{s {1+ X IF 4> () +1D 4@ (x)} dx . (A.2.3)

The set {2A°; 5 €[0,4)} has the following properties (Lemma B.1.2):
(1) If 6> ¢, then AZ=AZ, and
(2) lim AZ=A.
-0

Of crucial import is that for any 6 € (0,4) and any homotopy invariant family &
of B, there exist min-max sequences {(F?,c?)}C Y’(§) for A° such that {cf}
converges in B to ¢’(§), a solution of the variational equations of A? with
A(c*(F))=A3. This fact is established as Proposition B.1.3.

The variational equations for ° are used to prove that each c’(&) obeys the
required estimates (see Sects. C.1-C.4). The techniques for this task were developed
in [24], see also [11]. The necessary min-max sequences for 2 can be constructed
from a diagonal subsequence of the doubly indexed sequence {(F?,cd):ie{l,...}
and 5€(0,%)}.

The alternate method for obtaining a priori estimates for min-max sequences
involves deforming (F, ¢) € Y(§) to (F'(F), ¢), with F'(b) obtained from b e F by
solving Eq. (A.1.1) in the small field region, R3\U(b) (where these equations are
practically linear). This procedure is technically complicated, but it has applica-
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tions to other elliptic, semilinear variational problems which are borderline for
Condition C, and it will be discussed in a forthcoming article, not here.

For each c¢’(F) (6 >0), the fields in the small field region are determined via an
essentially linear system of equations by their values on dU (¢’(§)). This fact allows
the action, A(c’(F)), to be decomposed into its U(c’(§F)) contribution, and the
remainder. This remainder is to leading order the interaction energy of a system of
point particles, one in each path component of U(c’(F)) which interact via long-
range fields whose equations are the linearized Yang-Mills-Higgs equations with a
delta-function source at each particle’s position. The strength of the delta function
is determined by the boundary values of ¢’(&) on the path component of U(c*(F))
which contains that particle. This is pure potential theory for what is essentially
Laplace’s equation in an exterior domain. The technical lemmas that establish this
picture of ¢’(&) are proved in Sects. D.1-D.3.

With these a priori estimates established, one could proceed by a reductio ad
absurdum argument along the following lines: suppose that the linearized
equations provide, via potential theory, an interaction energy which defines
attractive forces between the path components of U(c’(&)). Now assume that the
maximum separation of the path components was large. In this case, one could
construct by “cutting and pasting” a one-parameter family of configurations that
started from ¢’(&) and which amounted to a rigid translation of the far-flung path
components of ¢’() towards each other. The attractive forces would insure that
A° was not stationary at ¢’(§) along such a one-parameter family.

In fact, an actual deformation of c’(&) is not required. A critical point ¢ = (4, ®)
of A satisfies a “virial theorem” that is derivable from the differential equation (see
Corollary D.1.5 and [11, Chap. 2]). This virial theorem is the following integral
equality:

£3d3y{IDA<P|2 —(1=20yPA+ D) D A+YPIFLPr=0.  (A24)

A uniform bound on g(c) comes from Eq. (A.2.4). It is a side remark that this
equation can be obtained by choosing a suitable deformation of ¢ and using the
fact that c is a critical point of U°. Equation (A.2.4) provides a short-cut which
avoids the necessity of constructing the actual deformation.

To utilize Eq. (A.2.4), one evaluates the integral by computing the contri-
butions from the large field regions separately from the weak field regions. The a
priori estimates and Eq. (A.2.4) yield the following inequality (Proposition D.3.2):

0 Z,(a(/t) a(4) —n(u)n(4))

& dist(w A) +01o(W(e) — LA (@)e(e) 2. (A25)

Here, the primed summation is over suitably defined pairs (u, A) of clusters of path
components of U(c) which are mutually separated by dist(u, 1) = 0(g(c)) (see Sect.
D.2). The functions x(-) and {(-) are positive and continuous in their arguments.
The number a(u) is an action associated to the cluster 4; Lemma D.2.2 makes this
precise, but essentially,

1
()= - (1 + P PP + 1Dy 0P).
"
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The number n(y) is the local “monopole number” of the cluster u; essentially
1
n(u)=—[d*x(F 4, * D ,®). (A.2.6)
47
Equation (A.2.4) has an analogy in the aforementioned model problem of
l-particles on R? which interact via the pair-wise potential v(x; — x;). For a critical

configuration of l-particles at positions {x,, ..., x;} in R3, the corresponding virial
theorem is

3 0
igj (Z;I (xl ‘_'.xj)‘z <axa U) (Xl - XJ) = 0 . (A.2.7)
Equation (A.2.7) is derivable by using the fact that the energy for a critical
configuration, {x,, ..., x;}, is stationary at t=1 along the curve t—{tx,, ..., tx;}.

As an aside, the pair potential, v(x(i) — x(4)), whose virial identity, Eq. (A.2.7),
is exactly the first term in Eq. (A.2.5) is the Coulomb potential,

(a()a(i)— (i)
@ —x@) (A-28)

This potential describes the “force” between far separated path components of
U(c). Such an interaction potential is precisely what physicists have expected for
monopoles in the Prasad-Sommerfield limit [20, 21].

Examine Eq. (A.2.5). Without the interaction term (the first term), the second
and third terms provide a 6-dependent bound on g(c). Such is to be expected, since
the weight (1 +|x|?)? in A’ is designed expressly to keep the path components of
U(c) together.

If all the “charges” in Eq. (A.2.5) satisfy

a(u)a(d) —n@n(A) 2 0,0~ ?); (A2.9)

and if at least one such charge is greater than some ¢ >0; then Eq. (A.2.5) provides
an d-independent bound on g(c) from its first and third terms, viz:

2(0) SL(Wc)) - 672, (A.2.10)

v(x() —x(4)= —

Here, {'(-) is a continuous function of its argument. It is in this case that the inter-
cluster forces are attractive. Thus it is of crucial importance to obtain information
about the numbers {a(y), n(x)} which appear in Eq. (A.2.5).

The essential properties of the {a(u),n(u)} are derived in Sect. D.2. These
properties are:

1) a(W)zk+00,0" '),

2 < -1/2

@) mwI=a(w+0(6,07 %), A1)
©) dn Y a(u) =A%)+ 03,01,

) En(w=n()+00,e" "),
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where n(c) is the “monopole number” from Eq. (A.1.4) (see Lemmas D.2.2 and
D.2.3). Given Eq. (A.2.6), Eq. (A.2.11) is not surprising.

Observe that Eq. (A.2.11.2) implies Eq. (A.2.9). Further, if Eq. (A.2.9) is an
equality for all pairs of clusters (u, 1), then Eq. (A.2.11.2) implies that each cluster
has a(u)=[n(u)|+ 05,0~ *'?) and that all the n(u)’s have the same sign. In this
eventuality, Eqs. (A.2.11.3-4) force the critical value to satisfy

W(c) =4nln(c)| + 03,0 112). (A.2.12)

To see the consequences of Eq. (A.2.5), let § be a homotopy invariant family of
compact subsets of €, for some integer n. Let {c(F); 6€(0,1/2)} be the set of
critical points of A° with critical values Ag. Two possibilities arise. The first is that
the number Wy > 4n|n|. Here, for § sufficiently small, Eq. (A.2.11) provides at least
one pair (g, 4) in the first term of Eq. (A.2.5) for which

a(u) a(A) —(wn(2) 2 { (W) (U —4n|n) + 05,0~ "%). (A2.13)

Here, {(-) is a strictly positive, continuous function of its argument. Thus, if
A >4n|n|, an a priori bound on o(c’(F)) for >0 is provided by Eq. (A.2.13) and
Eq. (A.2.10) (with e = g —4n(n]). See Proposition D.1.1 and the beginning of Sect.
D.3. When g >4n|n|, the proof of Theorem A.1.2 is completed in Sect. D.4.

In the case where g =4n|n|, Eq. (A.2.5) provides no a priori bound on o(c’(&)).
This is no surprise because the moduli spaces of solutions to Eq. (A.1.6) are known
to be noncompact; in fact, these contain configurations which have large field
regions with arbitrary separation [11, 14]. Theorem A.1.1 is proved in the case
913—4n|n! in Sect. E.1, where it is shown (Proposmon E.1.1) that for each neZ,
positive ¢ exists such that A 1([47z|n| 47|n| +€))nB,, retracts onto M,,.

As for Theorem A.1.4, it is practically a corollary to Theorem A 1.2 and
Theorem 1.2 of [8]. The theorem requires the Yang-Mills-Higgs analog of a result
in Sect. 5 of [22] which establishes the role of the Hessian of 2 in the min-max
procedure. The details appear in Sect. E.2.

A.3. Terminology

Most of the terminology in this article has been established in Sect. A.3 of [9].
However, certain conventions are new here. Let P =IR? x SU(2). Implicit is a fixed
product structure on P. Thus a pair (4, @) € € is a pair (connection on P, section of
Ad P), but also a pair (su(2) valued 1-form on IR* map from R? into su(2)), where
su(2)=Lie Alg SU(2). The topology on € is induced by the map of € into
% C*(R3 x [0, c0) which sends (4, ®) to {components of 4 and &} x A(4, D).
The statement that a sequence converges in € or B will always imply convergence
in the above topology. As a tool to prove such convergence, an auxiliary topology
is required. This is the L7 ., topology. A sequence {(4;, ®,)} € € is said to converge
strongly in the I3, topology to (4, @) € € if the sequence of numbers {0 (4, ®,)}
converges to QI(A @) and if on any bounded domain QCIR3, the sequence
{(4;, ®,)|o} converges strongly in the I3 -Sobolev topology to (4, ®)|,,. This s to say
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that
lim | By{|V(4—A))>+|(4—A4)I*} =0,
i»0 0

and similarly for (@ — ®,). Here, V denotes the flat connection on IR*x SU(2).
Notice that if {(4;, ®,)} is in €, and converges in the I, topology on €, to
(4, @) €@, then (4, ) e €,. This is a consequence of Eq. (A.1.4) and Proposition
B.3.1 of [9].

Certain terminology appears throughout the article, and should be introduced.
The vector bundle Ad P@(T*@®R) over R3is denoted by Q. If E—IR? is any vector
bundle, I'o(E) = Space of C*, compactly supported sections of E, and I'(E) = Space
of C* sections of E. If E is associated to R3 x SU(2) by a representation g, and if A
is a connection on IR3 x SU(2), then V,: I'(E)>T'(E® T*) denotes the induced
covariant derivative on I'(E). A flat, SU(2) invariant fiber metric on E is denoted
(-, +). The Euclidean metric on T* is the only one considered. The fiber metric on E
induces the [*-metric, <, -», on I'y(E) and the I’-norms | -||,. The formal
I?-adjoint of ¥, is denoted by V%

An origin in R? is fixed as are a set of Cartesian coordinates, {x}. It is necessary
to have available a C*-bump function, f € C*([0, o0); [0, 1]) which is identically 1
on [0,3] and identically zero on [3, o0). This 8 will also be considered as a function
on R3 via the assignment x € R3— B(|x|). For re (0, 0), B,(x) = B(x/r).

Finally, an important convention concerning constants is strictly adhered to.
The letter z will denote a numerical constant which is independent of any external
parameters unless explicitly noted. In any given derivation, the precise value of z
may change from line to line. Similarly, the letter { will always denote a continuous
function from [0,0) to (0,00) which is also independent of any external
parameters unless explicitly noted. The precise function may change from line to
line.

A.4. The Variational Problem

Equation (A.2.3) defines a functional A for each J € [0,%) whose domain is the
subset

@ ={ceC:A(c)<w}. (A4.1)

According to the discussion in Sect. B.2 of [9], for no neZ and 6€(0,2) is
€ =E°NE, empty.

As A% is G invariant, the construction in Sect. B.5 of [9] produces for each
0 €[0,2), spaces B?=BNE?, and for each neZ, B2 =B,nE?. Section B.2 of [9]
defines a topology on €° for which each €2 is homotopic to €, and each B? is
homotopic to B,. By design, the function 2* on € or B? is continuous whenever
1>6=2120.

In order to discuss the calculus of variations on B°, the notion of differentiation
is required:
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Definition A.4.1. Let 6€[0,%) and let ce @’ The gradient of A’ at ¢, VA?
is the linear functional on I(Q) which sends y=(a, ¢) to

dz
P2UAp) = T Wt tp)li-o =<1+ XD 0. Fy)s

+<[a,?]1,D 4P, + D ¢4,D ,P),. (A4.2)

The hessian of A’ at ¢, VA2 is the quadratic functional on Iy(Q) which
sends p=(a, ¢) to

dz
2UAp) = me’(c +tp)li—o=<(1+|x[*)’D4a, D 4a),

+ <(1 + |x|2)5[a, a]a FA>2 + <[a’ 45]’ [a7 ¢]>2
+2{[a,9], D4P),+2{[a, P1, D 4>, +<D 14, D 4$),. (A43)

In order to measure the size of P U2 and V2A?, it is convenient to introduce new
norms on I'o(Q).

Definition A.4.2. Let 6€[0,3) and ce@’. Define the norm |- ||, ; on I'o(Q) by
assigning to v =(a, ¢) the number
w2 5= <A +IXI?)°V 40,V 40>, +<V 48,V 4672 +<[2, 9], [2,¥]),.

This norm was chosen because it allows one to establish the following uniform
estimates.

Proposition A4.3. Let §€[0,3). There exists a continuous, increasing function
z(+): [0, 00)—[0, c0) with the following property. For c € € let z,=z(W%(c)), and
for notational convenience, let || - || denote || - || 5. For any w,neI'((Q),

(1) [2W(c+p) =W Sz w1+ vl)*,

2) W (c+yp)—W ()= VWW)I =z [wl*A+lwl)?,

(3) 1Wc+ ) —A() = VUAY) — 1272 W (W) z. [P+ 1wl ,

@) P2, )~V =z lnl lwll A+ lvl)?,

(5) 72U, () — VW =z In]1? lwll (1 + 1wl

Proof of Proposition A.4.3. This is an exercise in Holder’s inequality after using
Lemmas A.4.1 and B.6.4 of [9]. The details are left to the reader. (But see
Proposition 5.2 of [6, PartI].)

By construction, V! satisfies the uniform estimate

7AW = Ml e, (W) 2, (A44)
while V2 satisfies
(7222 ()] L)) w125 (A.4.5)

(Lemmas A.4.1 and B.6.4 of [9] must be used to derive Eq. (A.4.5).) A measure of
the size of these two functionals is defined next.
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Definition A.4.4. Let €[0,3) and c e €’. Define

)
e, = sup el
0% yelo(Q) ‘|1P||c,a

For each [>0, define

)= _inf [SUP VZQI&(W)J,

Ecro@ Lozver |92

where the infimum is over all I-dimensional linear subspaces E in I'(Q).
A configuration c €€’ is a critical point of U° if and only if

17|, =0. (A.4.6)

The significance of y2(]) is the following. This number is negative if and only if there
exists an [-dimensional linear subspace of I'y(Q) on which V2U2(-) is negative.

The numbers ||V A2||, and y2(]) are ® invariant, so they can be considered as S*
equivariant functions on %8°.

Proposition A.4.5. Let 6€[0,3), and let € {1,2,...}. The assignment of ce €’ to
either V2|, or y2(I) defines a continuous functzon on €.

This section ends with the proof of Proposition A.4.5.

Proof of Proposition A.4.5. For =0, Eq. (A.4.5) implies that V., defines a
continuous section over B of the vector bundle H(Q)* (see Sect. B 6 of [9])
Similarly, V>, ., defines a continuous section of Sym, H(Q)* over B.As |- [l )1s a
continuous fiber norm on H(Q) over B (Proposition B.6.2 of [9]), the assertions in
Proposition A.4.5 are automatically true.

For >0, one can argue directly by adapting the arguments of Lemmas 6.2 and
6.3 of [6, Part I to the present situation. Only the case for VU will be given. For
notational convenience, for a sequence {c;=(4;, ®,)} € €, use VU, | - ||;, for VA,
[ -1l.,5 and when c=c;. Also use V;, F; for V', and F, when A=A,. As they are
irrelevant, the & sub and superscripts will be omitted.

Consider a sequence {c;=(4;, ®;)} € € which converges to c=(4, ®) e €. Given
£>0, there exists p € I'y(Q) such that || ,=1 and

VALp)> V[l —e

But p has compact support, so lim ||y ||;=1 and lim VA, (y) = VA (p). Therefore,
lim [P = VAU, .. Conversely, given &> 0, there exists for each i, y;€I'y(Q)
with |ly;ll;=1and VU (p;) > VU], —e. As {(4;, @;)} converges in C* on bounded
domains, a diagonalization argument (as in [23]) shows that {y,} has a weakly
convergent subsequence in I3,,. (cf. Sect. A3.4 of [9]) with a limit,
y=(a, ¢) € I3, ... For this subsequence, write ;= (a;, ¢;). Then y;=((1+|x[)°V,a;,
Vid, [®,w;]) converges weakly in L* to some yel? As y must equal

=(1+|x))°V,a, V44, [P, v]) on bounded domains of R3, one infers that y=y,
and therefore that y.e [?. Further, (14 |x|)°|y;/ € L® is uniformly bounded (cf.
Lemma A.4.1 of [9]) and so a similar argument shows that (1 + |x|)’|p| € LS(R3). To
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summarize, {y;} has a weak limit, v, with (1+|x|)’ypel3,,.nL*(Q) and
lplle,s= Iyl <lim[y;],=1.

Define the Banach space H, 5(Q) as the completion of I'o(Q) with the norm
|-l Using mollifiers and Lemma A.4.1 of [9], one can readily show that
pe Hc, &(Q)

Equation (A.4.5) implies that VA’ defines a bounded, linear functional on
H, Q) whose norm is just ||[V22],.

Due to Proposition B.4.1 of [9], {(1 +|x|)°F;, V;®,)} converges strongly in [?
to {(1+x|)°F,,V ,®)}. Therefore, weak I? convergence of y; to y, implies that
Hm VA ;) =V AA). As ||l ;< 1, one concludes that

1
lylle,s
Therefore, |V, |, is continuous.

gl z VAL(p) 2lim [VA, —e.

B.1. The Regularized Problem

Let § be a homotopy invariant family of subsets of 9B. The regularized problem is
to use & to find a critical point of 2° on B°. For this purpose, define

F={FeF:FcB%. (B.1.1)
A crucial observation is

Lemma B.1.1. Let § be as described above. Then for each 6 € (0,%), &’ as defined by
Eq. (B.1.1) is not empty.

The proof of this lemma, and of Lemma B.1.2 below, are deferred to the
end of this section.
To each homotopy invariant family § and to each J €(0,%), assign the number

A% = inf max A’(c). (B.1.2)

Fego cefF

Concerning U3, one observes that AL > A and

Lemma B.1.2. 4s a function of d€[0,%), S is non-decreasing; and };in(l) AL =W

The significance of AL is provided by Proposition B.1.3 below. The statement
of the proposition refers to the family

Y(F)={(F,c)eF xB’:ceF and A(c)=sup,A}.

Proposition B.1.3. Let § be a homotopy invariant family of compact subsets of B.
Then for each 6 €(0,2), there exists a sequence {(F;, c;)} C Y(&) with the property
that the sequence {c;} converges in B? (as defined in Sect. A.3) to X&), and this
() is a critical point of W® with critical value A3,

The proof of Proposition B.1.3 occupies Sects. B.2—-B.4. The proof requires the
following technical lemmas.
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Lemma B.1.4. Let ¥:[0,1]xB—C€ be a continuous map. Suppose that (0, -)
=identity. There exists a continuous map h: [0, 1] x B—® such that h(0, -)=1and
(W) (-) maps [0, 1] x B continuously into B.

Lemma B.1.5. Let FCB be a compact set. For some 6€[0,%), suppose that
F B2 Given a neighborhood, V, of F in B, and >0, there exists a homotopy
7:[0,1]1 x BB such that ©(1,-) maps B continuously into B, for all te[0,1],
w(t, F)CV and for all be F, W(x(1, b)) <&+ sup, A°.

The proofs of Lemmas B.1.1-2 and B.1.4-5 complete this section.

Proof of Lemma B.I1.1. Proposition B.5.2 of [9] provides a continuous map

q:[0,1]x[0,1] x 9B B with the property that for each ¢€(0,1], q(e, -, -):[0,1]
>< BB satisfies (e, 0, - ) =identity and (e, 1, - ) maps B continuously into B°
for each 6 €[0,%). If Fe &, then as long as e€(0,1), ¢°(1, F)=q(e, 1, F) e F°.

Proof of Lemma B.1.2. The assertion that A% > A% when 3 > ¢ >y =0 follows from
the fact that for any ¢ € €, A’(c) =A(c) for 0=7y. To prove the second assertion,
choose ¢>0 and F € & with max, % <A+ $¢. According to Proposition B.5.2 of

[91, F(e)=q*>(1, F) has the property that F(¢) C () B? and the max of U on F(g) is
less than g + 3¢. The fact that F(e) C Q B implfes that ° is continuous on F(g)
for all 9 €[0,%). Now, for any fixed b e B,

};i_{% A(b)=A(b),

and this limit is uniform on compact subsets of () B?. Thus, 5(¢)>0 exists such
[

that for all 6e[0,4(), and for all beF(c), U (b)<WUz+e. For such 6,
A <A+, too.

Proof of Lemma B.1.4. The projection map, €—3B (see B.1 of [9]) produces a
continuous g:[0, 1] x B-G, such that (g- ¥): [0, 1] x B-B. Section B.5 of [9]
defines a G equivariant map 7 : 8 —S? with the property that B =71 (north pole)
(Eq. (B.5.2) of [9]). The homotopy lifting property of the fibration
St — SU(2) % S provides a continuous [: [0, 1] x B—-SU(2) with the property
that /(0,-)=1eSU(2) and

=ii(g- P). (B.1.3)

By using the embedding of SU(2)in G (=C *(R?; SU(2)) as the constant maps, one
obtains [ 'g:[0,1]x B—6. Equation (B.1.3) implies that (I"'g-¥)(-): [0,1]
x BB, and (I"g- P) (0, -)=identity.

Proof of Lemma B.1.5. Given F and V, it follows from Proposition B.5.2 of [9] that
there exists 4o € (0, 1) such that for all 0< 1< 4,, the homotopy q(4, -, -):[0,1]
x BB satisfies q(4,t, F)CV for all te[0,1] and also q(4,1, -) maps B
continuously into B?. As q(-, -, -) restricts to a continuous map from [0,1]
x [0,1] x B° to B2, for each b € F, there exists A(b) >0 such that for all 0 < 4 < A(b),
A%(q(2, 1, b)) <sup,A°+ & But A is continuous on B so there is a neighborhood,
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N,CB? of g(4, 1, b) such that for all b’ e N,, W(b") <sup, W +e. As |J q~ 1(Ab),
beF

1,-)(N,nF) is an open cover of F and F is compact, this cover has a finite
subcover. As a consequence, there exists A(F, ¢) >0 such that for any 0 < A< A(F, ¢),
t=gq(4, -, -) satisfies Lemma B.1.5’s requirements.

B.2. Minimizing Sets for N°

Let & be a homotopy invariant family of compact subsets of B. The purpose of this
section is to construct min-max sequences {(F;, ¢;)} in Y°(&) with special properties
which will facilitate the proof of Proposition B.1.3. The goal is to use appropriately
chosen, “pseudo-gradient” homotopies of B to construct such {(F;, c;)} for which
each ¢; satisfies a priori estimates which make it look like a solution to the
variational equation of 2°.

Proposition B.2.1. Let § be as described above. Let § € [0,3). Given any £>0, there
exists (F, c) e YX(&) with the following properties:

(1) W(e)<W(F)+e,
@) v <e,
(3) Every b=(A, ®)€e F satisfies ViV ,&=0,
(4) Every b=(A, ®) € F satisfies
A+ PYF 4 F oy =(1-20)" 'V 4B,V 18, =261+ )"V *OF 1, F 1.
(B.2.1)

The proposition is proved in four steps. The first produces a homotopy of B
which deforms a given Ge ° to G, e F° satisfying Assertion (3). A second
homotopy of B is then constructed which preserves the condition expressed in
Assertion (3) and deforms G, to F’ € &° which satisfies Assertions (3) and (4). Both
these homotopies decrease A°. For the third step, a Ge &’ is chosen to satisfy
maxe A’ <A+ pe for a suitable pe(0,1). The resulting F’ is deformed by a
pseudo-gradient vector field for W2 to F” € §° so that at the points in F” where 2°is
maximized, Assertions (1)~(4) are satisfied. Then the first two homotopies, above,
are reapplied to obtain F e §° whose points where ° is maximal are in the same
® orbit as those in F” where %’ is maximal. For this F, Assertions (1)(4) are
satisfied. A similar technique was used to prove Proposition 5.2 of [6, Part I]. See
also Sect. 5 of [22].

The remainder of this section contains the proof of Proposition B.2.1. The first
step is to use Proposition B.3.2 of [9]. It provides a continuous map ¢, : B°— B for
each 6 e[0,4) which sends c=(4, @) to c,(c)= (A4, Py(c)), where V%V ,D,(c)=0.

Lemma B.2.2. Given § and 6 as in Proposition B.2.1, and given >0 and G € &,
there exists a homotopy t,:[0,1]1x B—B such that F=1,(1,G)e §° has the
properties:

(1) max, A’ <maxsA+e.

(2) F satisfies Assertion (3) of Proposition B.2.1.
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Proof of Lemma B.2.2. Choose an open VCB that contains G and construct
7:[0,1] x B—>Bfor G, V, and e as specified by Lemma B.1.5. Let F, = (1, G).:l“hen
F | satisfies Assertion (1) of Lemma B.2.2. Now consider the map ¢:[0, 1] x B—>38
which sends (¢, ¢) to

C(t,c)=c+t(co(c)—c). (B.2.2)
Proposition B.3.2 of [9] insures that ¢ is continuous and that it maps
[0,1] x B*»B? continuously. For fixed ce B°, ACo(-,c)) and also
QI(cO( c)) are non-increasing on [0,1] due to their convexity in @. Let
77:[0,1] x B—B be defined so to send (t, b) to

. {e@L,b) for te[0,4],
T(t’b)—{é@t—l «(1,b) for te[L1].

Lemma B.1.4 provides a continuous h:[0,1]x B such that t,=ht" is a
continuous homotopy of B° for every d € [0,2). This t, satisfies the assertions of
Lemma B.2.2.

Lemma B.2.3. Given § and 6 as in Proposition B.2.1, and given >0 and G € X9,
there exists a homotopy t,:[0,1]1x B—->B such that F=1,(1,G)eF° has the
properties

(1) max,U°<maxs A’ +e¢, and

(2) F satisfies Assertions (3) and (4) of Proposition B.2.1.

The proof of Lemma B.2.3 is delayed as it requires the construction of a specific
homotopy of B. To begin, let d[0,1) and let A: EB"—»(O o0) be a continuous
function. Then 1 induces a continuous function, 1 SB"—>C°°(1R3 R3) which sends

ce B’ and xeR3 to A(c) (x)=A(c)- x. Thus, any 1:B°—(0, ) defines a map,
denoted A*, from B? to B° which sends ¢ = (4, ®) to the pulled back configuration

() =(1*(c) A4, 1*(c) D), (B.2.3)
where (1*®) (x) = ®(Ax) and (1*4) (x) = 1A(Ax).
Lemma B.2.4. Let 1:[0, 1] x B°—(0, ) be continuous. For each t € [0, 1], define

A¥(t, -): B°—B? as above. Then the assignment of (t,¢) € [0, 1] x B? to A%(t, c) € B
is continuous.

Proof of Lemma B.2.4. The fixed product structure on P=R?> x SU(2) identifies
9B as a subset of X C*(R%)(Sect. B.5 of [9]). The map A*(-, -) is continuous with

respect to the induced topology. The reader can check this using the definitions in
Sects. A.3, B.1-2 of [9]. It remains to show that the composition, A%(A*(-, -)):
[0,1] x%5—>[0 00) is continuous. However, A°(A*(-, -)) is a composition. Flrst
define [: B°—C=((0, 0)) by sending ce B’ and t e (0 o) to

le,t)=t<(1 4+t |°F 4, F >, +t~ (D ,®,D ,),. (B.2.4)

The map [ is evidently continuous, and by viewing [ as a continuous map from
B° x [0, 0)—(0, c0), one observes that WAP(A*(-,.)) is the continuous map
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Now, for each 6 € [0,3), let B°={(4, ®) e B°:F,£0and D, d=%0}. This P is
an open, dense set in B°.

Lemma B.2.5. For fixed c e B°, the C* functionl(c, -):(0, 00)—(0, c0) given by Eq.
(B.2.4) has exactly one critical point, its minimum s(c). The assignment of c to s(c)
defines a continuous map from P° to (0, o).

Proof of Lemma B.2.5. First, if c € B°, then I(c, t) goes to oo as t—0 or co and so
I(c, -) has at least one critical point on (0, 00). If s is a critical point of I(c, - ), then

0= 8 1te, N =(1=20) <+ PYF0 F1ds

+20<(L 4572+ )T VOF 4, F 0, —s (D@, D, P, (B.2.5)

By a direct calculation using Eq. (B.2.5), one can check that
2

d
il >0 (B.2.6)

Thus, I(c,-) has only minima, and hence just one. Equation (B.2.6) and the
implicit function theorem imply that the unique minimum, s(c), is a continuous
function of c.

These last two lemmas are applied in

Lemma B.2.6. Given an open set V ¢ 8° such that B2\ C V, there exists a continuous
map m: [0, 1] x B2 B with the following properties: (1) m(0, -) =identity; (2) m
fixes BA\R; (3) For all c € B°, W(m(-, c)) is nonincreasing; and (4) for ce BV,
m(1,c)=s*(c), where s*(-) is constructed from s(-) of Lemma B.2.5 with Eq.
(B.2.3). Thus, for such c, m(1, c) satisfies Eq. (B.2.1).

Proof of Lemma B.2.6. As B° is paracompact, there is a ¢ € C°(B?; [0, 1]) which is
identically 1 on BV and identically 0 on B°\%°. Consider the map from [0, 1]
x B2 to (0, co) which sends (¢, ¢) to A(t,¢) =1 +g(c)t(s(c) — 1), where Lemma B.2.5
defines s(c). This A(-, -) is continuous on its domain of definition. For ce B4V,
A(1,¢)=s(c), and for ce BAP’, A(t,c)=1 for all te[0,1]. Define m to send
(t,c)e[0,1] x B° to A*(t, c) e B® where A*(-, -) is given by Lemma B.2.4.

Proof of Lemma B.2.3. Given &¢>0, one can construct readily a homotopy,
70:[0,1] x B—B such that G'=1,(1, G) satisfies

(1) maxg A’ <maxy WA+ %,
- B.2.7
@ 6B =0, (527
One can require, if need be, that G be arbitrarily close to G. Indeed, because G is
compact, one can find ae I'y(AdP®T*) of arbitrarily small C*, k=0 and 2
norms such that for all ceG, c+(a,0)ePB’. Then for (t,b)e[0,1]x B, set

To(t, b)=b+1t(a,0).
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With <G’, %) in place of (G,¢) of Lemma B.2.2, construct the homotopy

7,:[0,1] x B-B. Let F'=1,(1, G"). Notice that F'CB? and therefore, since F’ is
compact, there is an open set ¥ C B¢ such that VAF' =@ and B\ B’ V. Use V and
Lemma B.2.6 to construct the map m: [0, 1] x B°—B° of that lemma. Notice that
for all ce B?,

W(m(1, ) <W(c). (B.2.8)

Finally, for (¢, b) [0, 1] x B, set

70(3t,b) if te[0,4]
%t b)=11,3t—1,75(1,b)) if te[3,32 (B.2.9)
m(3t—2,7,(1,b)) if te[21].

Then 7} is a continuous map from [0, 1] x B to B with 75(0, - ) =identity. Lemma
B.1.4 provides h:[0,1]xB—-® such that 7,=ht, maps [0,1]xB-B con-
tinuously. Due to Eq. (B.2.8) and Lemma B.2.2, 7,(1, G) satisfies Assertion (1) of
Lemma B.2.3. Assertion (2) of that lemma is satisfied because for ¢ € B°\V, Lemma
B.2.6 assures that m(1, ¢) satisfies Eq. (B.2.1); and if ¢ = (4, @) additionally satisfies
VEv,&=0, then m(l,c)= (4", ®’) satisfies V%,V . &' =0.

Proof of Proposition B.2.1. Fix pu>0. Given ¢ choose Ge @’ such that
max, W’ <AL + pe. Using G and pe in Lemma B.2.3, construct the homotopy 7,
and let F'=1,(1, G). This F’ € &’ satisfies Assertions (3) and (4) of Proposition B.2.1
and it satisfies Assertion (1) with 2ue instead of ¢. The goal now is to construct a
homotopy of B, 7,, which satisfies Assertions (1)~(4). For this purpose, define the
sets

Qo={beB’: A (b)>A},
and (B.2.10)
Q={beQo: VA1 + [ VAL],) " >4(1+82(A%(D))) - (W(b) — AP},
where z(-): [0, 00)—[0, 00) is the continuous function in Proposition A.4.3. Define

also a number
A= max W(b). (B.2.11)

* bed(@inF)

Next, a pseudo-gradient “vector field” for A° is required. To construct one,
note that at each b e B, there exists a section i, € I'o(Q) such that ||y, |, = ||V,
and VAY(p,) < —3||VAY,. As B? is paracompact (Sects. B.1-B.2 of [9]), one can
construct with {y,,beB°} and a locally finite partition of unity, a continuous
p: BT (Q) with the property that at each be B?,

Hyp®),— VA | <pe, and

(B.2.12)
VA (p(b)) < — 31V AR o+ pee.
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Let 6(-) be the standard step function on R; 6()=1ift>0, and 6(r)=01if t<0. A
map v: B°—T(Q) is defined as follows: In B\Q,, set v=0 and in Q,,

o(b) =41V U3 *(A(b) — A3) O(A (D) — AL) (D). (B.2.13)
Observe that v is continuous and [lv(b)[,<1.
Define a continuous map : [0, 1] x B°—-E? by sending (t, b) to
i(t, b)=b+1tv(b). (B.2.14)

When b ¢ Q,, then 4(¢, b)=b for all t [0, 1]. But when b € Q,, one computes with
Assertion (2) of Proposition A.4.3 that

Wo(1, b)) SW(b)— (WH) - A)OA(B) - AU, (B215)
Now, define a map 75 :[0, 1] x B—€ by sending (t, b) to
’ _ ’52(2t7 b) lf te [Oa%] s
vt )= {U(Zt— Lo (Lb) if te[d1].
This map 75 is continuous, and 74(0, -)=identity. Lemma B.1.4 provides a

continuous &: [0, 1] x B such that ¢, =ht} maps [0, 1] x B continuously into
B and actually with image in B°. Let F"=1,(1, G).

Lemma B.2.7. Define t5 and F” as above. Then

1) Fre®.

If ce F” satisfies W(c)=max,. A%, then

(2) W(c)<WZ+2pe,

(3) IPA(c)|l, Smax [16(1 +8z(A(b))) pe, (16(1 + 8z(A(b))ue)' /1,

4) c=(A, P) satisfies V5V ,0=0 and Eq. (B.2.1).

Proof of Lemma B.2.7. Assertion (1) is true because 7,4(1, - ) : B8 —>%B° continuously.
Assertion (2) is true because it is true for F'=1,(1, G) and max. A° <max A°.
Assertion (3) is true because of Eq. (B.2.15). Every ¢ € F” at which 2° is maximal lies
in the ® orbit of FA(F'nQ,). For this same reason, Assertion (4) is true.

To complete the proof of Proposition B.2.1, one must make note of the fact that
the maps ¢:[0, 1] x B—B of Eq. (B.2.2), and m: [0, 1] x B°—>B’ of Lemma B.2.6
have the following properties: Neither increases A as a function of te [0, 1] for
fixed b e B;if b= (A4, D) € B satisfies V%V ,&=0, then é(t,b) =bforall te [0, 1];if
b satisfies Eq. (B.2.1), then m(t, b)=b for all t € [0, 1]; and if b satisfies V%V ,=0
then m(1,b)=(4’, ®) satisfies V.V 4, &'=0 too.

Construct 7,:[0,1] x B->B as follows:

1,3t b) if te[0,4]
14(t, ) =1 h,é(3t—1,74(1, b)) if te[d,2
hym(3t—2,h,é(1,15(1,b) if te[21].
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Here h, and h, are maps from [0,1]x B—6 as provided by Lemma B.1.4. Let
F=1,(1,G). Then apropos the comments of the preceding paragraph, F satisfies
Assertions (1){4) of Lemma B.2.7. This F also satisfies Assertions (3) and (4) of
Proposition B.2.1. By choosing pu=[16(1+8z(g+1))]~ ' (1+¢)~%¢?, Assertions
(2) and (3) of Lemma B.2.7 insure that this F satisfies Assertions (1}H4) of
Proposition B.2.1.

B.3. Convergence of Min-Max for %°

The proof of Proposition B.1.3 requires an assertion which gives a sufficient
condition for a sequence in @° to contain a convergent subsequence. The
proposition below provides this assertion by establishing a modified form of
Condition C for A% on €°.

Proposition B.3.1. Let 6 € (0,%) and ne Z. Suppose that {c;} CE is a sequence with
the following properties:

(1) WAe)ZAW(e;r )AL,
(2) Asi—oo, [V, —~0,
(3) For each i, write c;=(A, ).
Then ViV ,&=0 and
(4) Equation (B.2.1) is satisfied by (A, ®).

Then, there exists a sequence {g;} C® and a subsequence of {g,c;} which converges
strongly inthe I3, . topology on €} to a critical point, c, of W’ on €2 and A?(c) =W,

The proof of this proposition occupies the remainder of this section. There are
two aspects to the proof. The first aspect establishes the existence of the sequence
{g;} C® for which a subsequence of {g,c;=(4;, ?;)} has the property that {4}
converges strongly in I3, and {®,} converges strongly in L%, | . to limits 4 and &.
At the end, one concludes that (4, @) e €° is a critical point of °.

The second aspect to the proof of Proposition B.3.1 is to prove that for that
locally convergent subsequence {(4;, ®;)} of the preceding paragraph, the sequence
of curvatures {(1+|x|)°F,,, D ,,®;)} converges strongly in I2.

The first aspect is summarized by

Lemma B.3.2. Let 6€[0,3) and let {c;}CC° be a sequence which satisfies
Assumptions (1)—(3) of Proposition B.3.1. There exists a sequence {g;} C® and a
subsequence of {g;c;} with the following properties: For that subsequence, write
{gici=(A;, ®))}. Then {A;} converges strongly in L7, ,,.(T* x su(2)) to A € 13,,,.(T*
x su(2)); and {@;} converges strongly in I3,,,.(AdP) to ® € L3, .(Ad P). Further,
(A, ®)e € and it is a critical point of W°.

It should be stressed that Lemma B.3.2 holds for 6=0.

Proof of Lemma B.3.2. In the 6=0 case, Theorem 5.6 of [6, PartI] and an
argument which is formally identical to the Appendix of [22] provide a specific
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choice of {g,} C® for which {g,c;} has a subsequence {(4;, ?,)} with the following
properties: {4;} converges strongly in I%, . to some 4; likewise {®;} converges
strongly in L% .. to some ®. Further, (4, @) € € and it is a critical point of 2. These
arguments generalize in a straightforward way to the 6 > 0 cases. The convergence
of {®;} in L3, follows from Proposition B.3.3 of [9]; cf. the proof of Lemma A.4.4
of [9]. The details are left to the reader.

Proof of Proposition B.3.1. Now the Proposition is a direct corollary to Lemma
B.3.2 and the lemma below.

Lemma B.3.3. Let §€(0,3). Let {¢;=(A,,®;)} CC° be a sequence which satisfies
Assertions (1)—(4) of Proposition B.3.1. Assume in addition that {A;} converges
strongly in I3, and that {®;} converges strongly in L3.,,.. Then {c;} converges
strongly in the I3, .. topology on G°.

According to Lemma B.3.2, the given sequence {(4;, ®;)} converges weakly in
L2 1o X L4100 t0 ¢=(A, ®) which is in €° and a critical point of A°. To prove
Lemma B.3.3 one need only show that lim°(c;)=’(c) (see Sect. A.3). Note
that Lemma A.4.5 of [9] then insures that the sequence of curvatures
{(1+|x)°F 4,, D ,,@;)} converges strongly in 2.

Proof of Lemma B.3.3. 1t is convenient to establish the following notation: For
each i, let (F,, G, V;, V¥ ||, mean (F,, D,®, V, VU ||, for
c=(A,P)=c;. Let y,=((1+1x|)°F,, G,).

The first observation is that {y,} converges weakly in I?, and strongly in I2__.
Assumption (3) of Proposition B.3.3 and Lemma A.4.1 of [9] insure that the
sequences {(1+[x)°V;G;} in I? and {(1+|x[)°G;} in L° converge weakly, but
strongly in I2,, and LS, respectively.

To obtain strong L? convergence from strong L% . convergence, Lemma A.4.6

of [9] will be the primary tool. Step 1 is to prove

Lemma B.34. Let {c;=(A;,®,)}CC° be as in Lemma B.3.3. Then the sequence
{(A+)x)°[®;, F.1, [P;, G.1)} converges strongly in I2.

Proof of Lemma B.3.4. Let fe C*(IR3;[0,1]) be the bump function of Sect. A.3.
For each Re(1, 0), let fg(-)=Pp((-)/R).

For each i, let yv;=([9;,G;],0)eI'(Q). Be aware that Assumption (3)
and the maximum principle imply that |®)<1. Thus, ;e [*(Q). Further,
Vip,=([®,V,;G;],0)+([G; G],0),and so (1 +|x|)°V,;y, is also uniformly bounded
in I?. Indeed,

L+ xD’LGs GAIS2(1+|x) "2 G2 - (1 +Ix)°IGD>2, (B.3.1)

and so Hélder’s inequality bounds ||(1 +|x|)°[G;, G||3 by 4||G,||, - I(1 + |x)° G| 3.

For Re[1, o0), the preceding discussion implies that although (1 — g)w; is not
compactly supported, it is the limit of such with respect to the norm | - ||; ; and
additionally, {||(1—Bg)w;ll; s is bounded uniformly in R and i. Therefore,
Assumption (2), and Eq. (A.4.5) imply that

lim P21 = o))l =0. (B32)
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In long hand, VA((1—Br)w,) is

I+ xPY°A=PR[Gi, G, Fyo — (1 +1x*)’dr A[®;, G, F i)
+ {1+ xI?°(A—Pr) [Py [Fis @11, Fi)» + (1= Br) [P, Gi1, .1, G)» -
(B.3.3)

In deriving Eq. (B.3.3), the identity D,D ,®=[F ,, @] has been used. Equations
(B.3.1-3) after rearranging imply the following: Given &> 0, there exists i(¢) < o0
which is independent of R such that for all i>i(¢),

A=) A+ x*°[D:, F1,[®, Fi1)2+ (1= Br) [9:, G;1. [ ;. G;1D,
<e+z-(R™P(Gll, A+ XD’ Gill6 11+ XD Fill, + R 2| Gy, I1Fi] 2) -
(B.3.4)

Because 6 €(0,3), Eq. (B.3.4) and the uniform bounds on {||(1+|x])°F;|,, |Gill,,
[(1+4|x])° G|l ¢} imply via Lemma A.4.6 of [9] the convergence assertion of Lemma
B.34.

Step 2 in the proof of Lemma B.3.3 is to prove

Lemma B.3.5. Let {c;=(A4,, @)} CC° be as in Lemma B.3.3. Then the sequence
{(1—|®,)} converges strongly in C°(R3). In particular, given ¢>0, there exists
R< 0 and i(e) < oo such that for all i>i(g), sup |1 —|D;|(x)|<e.

|x|>R

Proof of Lemma B.3.5. Since {(1+x|)°G;} is uniformly bounded in L?, {G,} is
strongly convergent in L° (Lemma A.4.6 of [9]) and so {d(1—|®,))} is strongly
convergent in L°(T*) (Kato’s inequality, Sect. A.4 of [9]). The lemma follows by
demonstrating the strong convergence of {(1—|®,|)} in I* for some 1 <p< oo (cf.
Lemma A.4.4 of [9]). Now, because {| G;|,} is uniformly bounded [Assumption
(1)1, so are {[d(1—|P)l,} and {[(1—|P)l¢} (Lemma A.4.1 of [9]). Now,
d(1—|®,)*=3(1—|2,)*d(1 —|®,|), and so Lemma A.4.1 of [9] implies that for any
Re[l, ),

(1= Br) (1= D)3l s = z[ | (1 —1@)* (1 — Br) d(1 =Bl + (1 = |@,)° dBl 2] -
The preceding equation implies the inequality
I(1=Br) A =126 <z{lI(1 - Br) d(1 — @l s +R™'}. (B3.5)

Finally, the strong convergence of d(1 —|®,]) in L° and Eq. (B.3.5) imply with
Lemma A.4.6 of [9] that {(1—|®,|)} converges strongly in L'¥(IR3). As previously
remarked, {(1—|®;)} converges strongly in C°(IR®). The second claim of
Lemma B.3.5 is a direct consequence of this last conclusion.

Step 3 of the proof of Proposition B.3.1 proves

Lemma B.3.6. Let {c;=(A4;, ®,)} CC° be as in Lemma B.3.3. Then the sequence
{(®;,V,;®,)} converges strongly in [*(T*).

Proof of Lemma B.3.6. For each i, let w;=%(1 —|®,*). Due to Assumption (3) of
Proposition B.3.1,

— Aw,;=|Gj?. (B.3.6)
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Also, {dw;} is uniformly bounded in I*(T*) and {w;} is uniformly bounded in
L5(T*). 1t is therefore permissable to multiply both sides of Eq. (B.3.6) by w; and
then integrate both sides over IR*. The resulting expression from the left-hand side
can be manipulated by an integration by parts, and no boundary terms arise. One
obtains

dw;, dw ), =<{w;G;, G, . (B.3.7)

Let (A4, @) € €° be the limit of {(4;, ®,)} in the sense given by Lemma B.3.2. Since
V2@ =0, if one sets w=1(1—|®|*) and G=V ,®, then also

{dw,dw) =<{wG,G),. (B.3.8)
Because {G;} converges strongly in L2 to G, and because of Lemma B.3.5,
1im WGy, G, =<{WG, G),. (B.3.9)

Because dw; = —(®,, G;), Egs. (B.3.7-9) imply that
lim [[(®;, G)ll2= (2, G2 - (B.3.10)

The strong convergence of {(@,, G,)} to (®,G) in L* is now observed as a direct
consequence of Lemma A.4.5 of [9] and Eq. (B.3.10).

For the final step to the proof of Lemma B.3.3, one should observe that
Lemmas B.3.4-B.3.6 imply that {G,;} converges strongly in [? to {G}. Since {F;}
converges strongly in L* to {F ,}, the convergence of {c;} in the I, . topology on €
has now been established. To prove that convergence is in the L7, ., topology on
(°, one must utilize Assumption (4) of Proposition B.3.1. For this, one requires

Lemma B.3.7. For 6€[0,3), let (4, ®) € € be a critical point of A°. Then (A, D)
satisfies Eq. (B.2.1).

Proof of Lemma B.3.7. The case 6 =0is proved as Corollary I1.2.2 of [11]. The case
6€(0,2) is established as Corollary D.1.5. Certain a priori estimates on critical
points of A° in €’ that one requires can be found in Sects. C.2-4, here. (Warning:
The definition of a critical point given in Sect. A.4 here precludes concluding this
lemma directly from Lemma B.2.5.)

Proof of Lemma B.3.3 (completion). Lemma B.3.7 and the strong * convergence
of {(F;, G,)} to (F 4,V 4®) and Assumption (4) of Proposition B.3.1 imply

lim [I(1+ XD Fill o= (14 X’ F .

Thus, lim A’(c;)=W’(c) and {c;} converges strongly in the I3,,,, topology on €°.

B.4. Final Arguments for %A°

The purpose of this section is to complete the proof of Proposition B.1.3 by sewing
together the assertions of Propositions B.2.1 and B.3.1.
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Proof of Proposition B.1.3. Let & be as assumed in Proposition B.1.3 and let
6€(0,%). For each me{1,2,...}, let (F,,c,) € Y’(&) be the data provided by
Proposition B.2.1 with e=m™"! there.

Consider the sequence {c,,} C 8. According to Proposition B.2.1, this sequence
satisfies Assumptions (1)+(4) of Proposition B.3.1 with A% =A2. Proposition B.3.1
asserts that this sequence has a subsequence, {c;}, for which a sequence {g,} C®
exists such that {g;c;} converges strongly in the I3, ,, topology on €° to a critical
point of A°. A priori, this critical point, ¢, satisfies W%(c) =A3.

Now consider

Lemma B.4.1. Let {(F;, ¢;)} CY%(®), {9:} C® and c € €° be such that {g;c;} converges
tocinthe I3, .. topology on €. Then there exists {(F;, b))} C Y(F) and {h;} C® such
that {h;b;} converges to c in the C® topology on G°.

Given Lemma B.4.1, the proof of Proposition B.1.3 is completed by observing
that because n: €°—B’ is continuous, {n(h;b;)} converges to n(c) in B°. But, for
each i, there exists [, SU(2) such that I; - n(h;b;) = b;. Since SU(2) is compact, {I;}
has a convergent subsequence with limit [. Then [-n(c)=c*(§)e B° and the
corresponding subsequence of {b;} converges to c*(§) in B°.

Proof of Lemma B.4.1. Let §: [0, o0)—[0, 1] be the bump function of Sect. A.3 and
for each ne {1,2,...}, let B,(-)=PB((-)/n).

The L%, convergence of {g;c;} to ¢ means that one can choose for each i, an
integer n(i) such that {g,(c;+g; ' B.u(c—gic)} converges to ¢ in the C* topology
on € and such that for each i and t€ [0, 1] (see Proposition A.4.3),

1A(c;+g; ltﬂn(i)(c —g:ic)) —Wey)l <%i~t.
For each i, there exists a neighborhood B,CB of ¢; and a function f;: B-[0,1]
such that (1) f;=0 on B\B,, (2) fi(c;)=1 and (3) for all (t,b)e[0,1] x B,,
(b +g;” 1 ti(B) Buy(c —gic:)) — WD) <3i ™'

The convexity of 2° with respect to compactly supported changes in ® allows
one to add to each c¢; a compactly supported y,=(0,¢;) with the following
properties: First, {¢;,} converges to zero in L% (AdP)nC*(Ad P) and second,

W(e) 4+ <W(e;+ i+ g B (c—gic)) <WAe)+i~*.
With a suitably chosen f;': B—[0, 1] with f;(c;) =1 and with support on B,, one
can require that for all be F,

Wb+ f/(b)y;+g;  fib) Buiiy (€ — gic)) <W(c; +p;+ g lﬁn(i) (c—gic)).
(B4.1)
Now, for each i, define a map L;:[0, 1] x B—€ by sending (¢, b) to

Li(t,b)=b+tf/(b)y; +g; 'tfib) (c—gic)) -

Note that L0, - )=1Identity|g, and that L; maps [0, 1] x B? into €°.

Define F;to be (h- L;) (1, F;) with h given by Lemma B.1.4. Due to Eq. (B.4.1),
(Fi, b (c;+wi+97 Bugc—gic) € YA(F) and by construction satisfies Lemma
B.4.1’s requirements.
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C.1. A Priori Estimates

For the proof of Theorem A.1.2, it is necessary to establish the following
proposition.

Proposition C.1.1. Let nc€ Z, and let § be a homotopy invariant family of compact
subsets of B,. Let {c*(&) € BZ; d € (0,2)} be the set of configurations that is provided
by Proposition B.1.3. If Ug>4n|n|, then there exists a decreasing sequence
A=1{8,0,,...3C(0,%) with limit zero such that the sequence {c’(§):5€ A} con-
verges in B, to c(§), a critical point of A with critical value A,

The proof of this proposition constitutes Sects. C.1-D.4, and the full argument
is summarized in Sect. D.4. A crucial part of the proof is to obtain good a priori
estimates on the configurations c’(%). These are derived from the variational
equations of A°: If (4, @) e € is a critical point of A, then

«D g (1+|x|?)°F ,+[&, D, 8] =0, (C.1.1a)
D,*D,&=0. (C.1.1b)

If one considers Eq. (C.1.1) as equations for the curvatures, (F 4, D ,®), then it is
useful to consider also the identities

DAFA=0’ (C.l.za)
D,D,®+[®,F,]=0. (C.1.2b)

Together, Egs. (C.1.1-2) form an elliptic system for (F ,, D ,®). This fact is made
transparent by using these equations to derive the following second order
equations for (F 4, D 4®): For notational convenience, let ¢ =(1 +|x|*)*/? and let
(f,9)=(xa’F, D P)e x T(AdP®T™). Also, x =3d|x|*.

—ViVAf+0 2[0,[D, f11—0 "+ (L, f1+1g.9])

+0%D, % (072X A f)=0D* (072 A *f) + 56 2 0% (x A[D,g])=0,
—ViVag+072[8,[®,g]]1-0°*([f,91+ 9, f])

+867 27 %% (xA[D, f1)=0. (C.1.3)
These equations are derived as in the § =0 case which is presented in Ch. IV.9 of

[11].

The estimates that are required for Proposition C.1.1 are formally similar to
those derived for solutions to Eq. (A.1.1) in [9, Chap. IV]. The difference here is
that more specific information is required. For this purpose, introduce for each
k>0, and c=(4, &) e €, the set U[c] (k). (See Definition C.2.8 of [9].) This set is
defined by first setting

Ulc] ()= {x eR>: | &y(F L+ IDA¢|2)>K}:
[x—yl<1
and then by setting

ULc] (k)= {x e R3: dist(x, U[c] () < 1} . (C.1.4)
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Three important and obvious properties of U[c] (k) are summarized by the
next lemma.

Lemma C.1.2. For each c € € and x>0 define the set U[c] (k) by Eq. (C.1.4). Then

(1) Ulc](x) is bounded.

(2) The number of path components of U[c](x), n[c](x), is bounded by
x~1A(c).

(3) The diameter of any path component of U[c](k) is bounded by
4k~ n[c] (k) ' A(c).

Proof of Lemma C.1.2. See the proof of Lemma C.2.9 of [9].
The first set of estimates that are required for the proof of Proposition C.1.2 are
the sup norm estimates below.

Lemma C.1.3. Let 5 € [0, 3) and let c = (A, ®) € €° be a solution to Eq. (C.1.1). Then
both || f ||, and ||g||, are bounded uniformly in 6 knowing a priori only a bound for
Ad(c).

The second set of estimates states that f and g are pointwise small outside of
Ulc] ().
Lemma C.1.4. There exist continuous functions A:[0,00)x(0,1]—(0,1] and
R:[0,00)x(0,1]-[0,00) with the following significance: Let d&€[0,%)
and let c=(A,P)eC’ be a solution to Eq. (C.1.1). Given £€(0,1], let
U=U[c] (A(U%c),e)). At each x e R? with dist(x, U)> R(A(A’(c), ¢)),

(1) a*(f1+1g) () <e,

@) (V4 f1+1V 49 (x) <é,

3) 1-19|(x) <.

The remainder of this section contains the proofs of Lemmas C.1.3 and C.1.4.

Proof of Lemma C.1.3. The 6 =0 case is stated as Proposition IV.10.6 of [11]. The
case 0 >0 is proved by mimicking the 6 =0 proof. The details are nearly identical
and omitted. One obtains the uniform estimate

I£11% +llgl% <{@(e) (C.14)

with {(-) continuous and independent of ¢ € €° and 6 € [0,3).
To prove Lemma C.1.4, introduce the notation ¥ =(f,g)e I’ (@(AdP x T*)).

Proof of Assertion (1) of Lemma C.1.4. Observe that contracting both sides of Eq.
(C.1.3) by YV yields the scalar equation

ki

== +(VFP+o" [0, VIP) sz{o [P+ 00~ WP +00 PV, P},

(C.1.5)
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where z< oo is independent of ce @’ and §€[0,4). By replacing z by another
constant independent of ¢ € €° and 6 €[0,3), one obtains

2
1
d*d(ﬂ%’—) + 5 (@7 PP+ 0P ([ B, WIS 2{o™ WP +507 1299
(C.1.6)

Introduce for each R e [1, o) the function Sg(-)=p((-)/R) with f the bump
function from Sect. A.3. Introduce the Green’s function (47|(-)— y|) ~* for d*d with
singularity at ye R3.

Multiply both sides of Eq. (C.1.6) by Bz(4x|(-)—y|) ! and integrate over R>,
Then integrate by parts to obtain

e T U X
_i 2533 4+ 56~ 1+ 30| PP <|d*dﬁ122| |dBrl ) 46 2:|.
S4n[f|() T A VAR ] oy s sy Ll

(C.1.7)

The right-hand side of Eq. (C.1.7) is estimated in the following way: First, because
|d*dp2|c* < R~ 2**°and |dBg|c*’ <R ™1+ thelast term on the right-hand side of
Eqg. (C.1.7) is bounded by

L p-1+4s 1 1
=R j(l(-)—yl+l(-)—yiz

> [P <z-R™TT4(W(e) +L{(A(0))

(C.1.8)

where the factor {(2°%(c)) is due to Eq. (C.1.4). The first term on the right-hand side
of Eq. (C.1.7) is bounded by breaking the integral into the part |(-)—y|>1 and the
part |(-)—y|<1. The result is the uniform bound

L) (1+ [ Bro® ¥ )7 (C.19)

With Egs. (C.1.8-9), the right-hand side of Eq. (C.1.7) is bounded independently of
yeR3. Take the sup over y € IR® on the left-hand side of Eq. (C.1.7). On the left,
|Bro*°¥|% appears while on the right, ||fzo*°¥||7/* appears. Therefore, one
obtains the uniform estimate, below, with {(-) continuous, and independent of R,
ce@’and e [0,%):

@1V 4 ¥1* + ([P, Y1) S{(A(c))-

(C.1.10)
As the right-hand side of Eq. (C.1.10) is independent of R, one obtains, first,

lo? 1% <{(W(c)); (C.111)

2092 4
[Bro*"PII% PjﬁR J’|

and second, for each yeR3,

46”7A¥1]2 j____( 36|)I/|3+50.—1+35'Y/|2)

a®|PIP»)+ — f =yl
(C.1.12)

4n I()
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To obtain Assertion (1) of Lemma C.1.4, fix x>0 and consider for R € (0, c0) a
point yeR? with
dist(y, U[c] (xk))>R. (C.1.13)
For such y, the right-hand side of Eq. (C.1.12) is bounded by

ZR™ V(0P 32 + DA

+z-(lo?PI5+1) d3xL(IFAl(x)+ 1D 4P|(x)),
|x—y|<R Ix—yl

and therefore
0.45 q'/ 2 +
1P1%(y) 4nI C )

Here, {(-) is continuous and 1ndependent of y satisfying Eq. (C.1.13), R, ce €,
and 0€[0,4). For Assertion(l) of LemmaC.14, take A(A%c),e)
=[$e%({(A’(c))~*]° and take R(A%(c), e)=A"*".

Proof of Assertion (2) of Lemma C.1.4. Take the covariant derivative of Eq.
(C.1.3). After commuting covariant derivatives, one obtains

— VAV, (7 P) + A(P)V, P +V,0=0. (C.1.15)

“"IVAY’IZ§C(QI"(c))(R‘1/4+xR2). (C.1.14)

Here, A(?) is a section of End((?(AdP@ T*® T*)) whose coefficients are linear

combinations of the components of ¥. The section Q of @-) (AdP® T¥*) represents

the left-hand side of Eq. (C.1.3) minus the term (— V3V, V). After contracting Eq.
(C.1.14) with VP, one obtains

7.1
2

Now multiply Eq. (C.1.16) by ¢*° to obtain

d*dA LV (VP =V P, APV, P)—(V P, V,0)=0. (C.1.16)

" 46|VATI2 44 401 2
dd(o‘ 5 S+ 0%V, P, V,0)—*3|V,(V,P) (C.1.17)

+2(a*|P| |V P>+ 6024, P)?).
Let ye R3. Denote by (- ) the bump function f(|(-)— y|). Multiply both sides

of Eq.(C.1.17) by p’(-)(4=|(-)—y]) and then integrate the result over
B’={xeR3:|x—y|<1}. The result is:
‘VA ‘1’12 a* wslVaaP)?
o* NWE— [ B———, P,V ~ | poriA AT

45
+z f 'B I(I‘I’I+(5(;’_2)|I7ASI’|2+Zj<74"|I7A‘I’I2

(C.1.18)
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The last term on the right-hand side, above, is due to the fact that
|d*dp’| + 21dp’|
I()=yl 1)yl
are uniformly bounded, independent of y e IR3,
Now, choose ¢€(0,1] to be determined shortly. Suppose that
=202 (W(c)) " *]° and that R=x"~*/° with {(-) as in Eq. (C.1.14). Restrict y to
satisfy Eq. (C.1.13). Then

45
4"[?’|2(y)+ fl( - IVA P2 < ge?. (C.1.19)
After writing out the left-hand side of Eq. (C.1.18) and using Eq. (C.1.19), one finds
there exists a constant z < co which is independent of y satisfying Eq. (C.1.13), c € €°
and 6 €[0,2) such that

o*°|V, P12 (y) S zoe? . (C.1.20)

Assertions (1) and (2) of Lemma C.1.4 follow from Egs. (C.1.14) and (C.1.20):
Choose g=(z+1) "1, above, and then A(A%(c), &) = [F(z + 1)~ 1e2{(A%(c)) ~*]° with
{(-) as in Eq. (C.1.14); choose R(A%(c), &) =4~ *°.

Proof of Assertion (3) of Lemma C.1.4. Let w=%(1—|®|*). The function w
satisfies

drdw=1g?, (C.1.21)
and we L°(R3). Thus at each yeR3,
w(y)= —I ol” (C.1.22)
4 |() =yl

Suppose that ¢>01is given. For a ¢ € (0, 1] to be determined shortly, let A(2°(c), ¢)
and R'(A%(c), ¢) be such that Assertions (1) and (2) of Lemma C.1.4 are satisfied.
Given re(l, ), let yelR3 satisfy Eq. (C.1.13) with x=A(A%c),0¢e) and
R=r+R/(Wc), ge). For such y, Eq. (C.1.22) implies

w(y) < = 82Q27‘2+ Lw (C.1.23)

Take r=(14+UA(c))e”! and take g=¢e(1+A(c))"'. Then w(y)<e. Thus, all
assertions of Lemma C.1.4 are obtained if A=A(A%c), e*(1+A(c))~!) and if
R=R'(W(c),e)+& 1(1+A(c)).

C.2. Exponential Decay Estimates

To prove Proposition C.1.1, d-independent estimates for a solution, ¢, of Eq.
(C.1.1) are required which allow one to approximate the fields (£, g) in R*\U[c] (k)
by solutions there to linear equations. This enables one to obtain, for a suitable x,
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multipole expansions for these curvatures in R*\U[c] (k). The first step, Lemma
C.2.1 below, asserts that the ficlds are essentially abelian in R3\U[c] (k).

Let ¢=(A,9) be a solution to Eq. (Cl1.1). Let x>0 and let
{U;:je{l,...,n[c](x)}} be the path components of U[c](x). To each U,
associate its center of mass

X;= <Ij;.xd3x> (g.d:‘x)_l. (C2.1)
Lemma C.2.1. There exists 5, € [0,%) and continuous functions i, : [0, ©0)—(0, 1]
and m: [0, 0)—[0,0) with the following significance: Let 6€[0,0,) and let
c=(A, ®)e € be a solution to Eq. (C.1.1). Let x =x(A%(c)). Let {U,} be the path
components of U[c](x) and define {x;} CR> by Eq. (C.2.1). If xeIR?, then

o’ (X)I[2, F 411(x) + I[P, D, P1|(x) < m(A(c)) ;(1 +x—x;f) 7.

The remainder of this section is occupied with the proof of Lemma C.2.1.

Proof of Lemma C.2.1. Let ¥’ =¢*°[®, ¥] with ¥ =(f, g) asin Sect. C.1. The idea is
to derive an equation for ¥’ from Eq. (C.1.3) which shows that for suitable
o(A%(c)) and R(A(c)), ¥’ satisfies the following inequality at xeR3 with
dist(x, U[c] (ko)) >R:

d*d|P)* +0" 2P <0. (C22)

Then Lemma C.2.1 is obtained by applying the comparison principle to Eq. (C.2.2)
with a suitable choice of comparison function.

To derive Eq. (C.2.2), take the commutator of Eq. (C.1.3) with @ and multiply
the result by ¢2°. After commuting through covariant derivatives, one obtains the
following equation for ¥

4 0 [0
—VEV, ¥+ G—(z(x, VO + ?*DA *X A <[ (’)f]> +02[P,V,¥],
+ 02, W], 40" P[0, [0, T]+50- PAP)=0.  (C23)

Here, [ -,-]; is a particular extension of the commutator pairing [ -,-]: (-I? AdP
—AdP to a bilinear pairing from <§B AdP® T*@T*) @ <(—? AdP@T*) to

® AdP® T*. This means that if one considers V, ¥ and ¥ as Ad P valued tensors

on IR3, then [¥,V,¥], is an AdP valued tensor whose components are linear
combinations of the commutators of the components of V,¥ and ¥. The
coefficients of these linear combinations are fixed real numbers. Likewise, [, ¥],
is an AdP valued tensor on IR® whose components are linear combinations of
commutators of components of ¥ with each other. The coefficients of these terms
are x-dependent, but they are bounded independently of x by a fixed z < co which is
independent of ce® and 4. In Eq. (C.2.3), 4 is an x-dependent section of
End <glr) AdPRT *) which satisfies an x, ¢ € €° and ¢ independent bound.
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To continue, contract both sides of Eq. (C.2.3) with ¥’ to obtain
|77

*
dd2

HV P+ 2@, PP <20 (1P + 1V, )

+(P, 6*°[P, V, P1) + (P, 62°[ ¥, P]))|- (C24)

In Eq. (C.2.4), z< oo is a constant which is independent x, ce €° and d € [0,%).

Let k= A(A%c),%) and R=R(WA’(c),$) with 1 and R as specified in Lemma
C.1.4. Since the diameter of U[c] () is less than 2(c)/x, Lemma C.1.4 implies that
the set

VIcl(k)={xeR?:|x—x;|>R+4A(c)x~" forall j=1,...,n[c](x)}
(C.2.5)
has the property that
|®|>% on V[c](x). (C.2.6)
Further, the following simple identities hold on V[c] (k):

1) v'=|®| %[2, [V, P]],

(2) ¢*°[D,V,¥P]=V, ¥ —0*[g, ¥]—200"*x¥V’,

(3) 16*°[¥, P1.I=z|?¥],

4 |?<4%. (C2.7)
From Egs. (C.2.6-7) one derives readily that the left-hand side of Eq. (C.2.4) is
bounded on V[c] (k) by

206 2P P+V PP+ 2| PP P+ PD+2IV PP (C28)

In Eq. (C.2.8), the constant z < co is independent of c € €° and § € [0, 3). Equations
(C.2.6-8) together with Eq. (C.2.4) imply that on V[c] (),

AP > +0"2°E—z(6+ 0% |P|+ 02|V, P)IPPL0. (C.2.9)

Here, z< oo is a constant which is independent of ¢ € € and 6 [0, 2).

Choose 5, =16~ (1 +2z) . Choose x,(A?%(c)) to be A(A’(c), (1 +16z) ') with 1
given by Lemma C.1.4. Let R=R(U%(c), 16 1(1 +2) ') as given by Lemma C.1.4.
If dist(x, U[c] (ky)) > R, then Lemma C.1.4 and Eq. (C.2.9) imply that Eq. (C.2.2)
holds with 6 €[0,9,].

Equation (C.2.2) is an inequality for which the comparison principle was
designed. For 6 €[0, d,], consider the function

__1__ 1 _1 2 2\—d/2
uj(x)_4n—|x—x~|eXp{ (L [x]* + x—x;%) Ix—xl}. (C.2.10)

J
By using the fact that
(1 el? +1x = x2) T2 S 01+ e + [x —x2) TP e —x,| 7,
|d*d (1 +[x]* +[x —x1%) "2 S 6(1+ x> + e —x,%) "2 |x —x,| 72,
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and that o(x) < (1+]x|* + |x — x,|?), one concludes that there exists 5, € (0, 5,] such
that for all §<,, and for all xe R3\{x},

—d*du;— o~ *°u; 0. (C.2.11)

Using Lemma C.1.4 and the comparison principle, one obtains for all é € [0, d,)
and x e R? with dist(x, U[c] (x,)) = R the bound

[P (x) S L(A%(c)) %‘, uj. (C2.12)

Here, {(-) is a continuous function on [0, co) which is independent of ¢ € €° and 8.
Thus, one concludes that Lemma C.2.1 follows from Eq. (C.2.12) and

Lemma C.2.2. Define u; by Eq. (C.2.10). Then (6~ *u;)(x)<z|x—x;|™>, where
z< oo is independent of x and x; in IR>,

Proof of Lemma C.2.2. Observe first that there exists z< oo such that when
120, exp(—zt"?)<z(1+1t)"°. Therefore, if |x—x;/=(1+|x|+|x—x;)*5,
then o~ *(u;(x)<o”*(x)(1+|x—x;)7°.  However, if 2<|x—x
<+ |x|+x—x;])°%®, then

0 Pu;<ze " Mx— x| T (140 x—x ) TSz H [x—x) 7.

C.3. Power Law Estimates for &

The uniform estimates provided by Lemma C.2.1 indicate that the fields in
R*\U[c] (k) for a suitable x are almost abelian if ¢ € €° satisfies Eq. (C.1.1) and if §
is sufficiently small. In the present section, it will be proved that the field |®| looks
like a solution to Laplace’s equation on R*\U[c] (k). The precise statement is

Lemma C.3.1. There exists m, € C°([0, 00); [0, 00)) with the following significance:
Let 6, and iy be as in Lemma C.2.1. For § € [0, 8,), let c = (A, ®) € €° be a solution to
Eq. (C.1.1). For k =k(U%(c)), let {U;} be the path components of U[c] (k). Define
{x;} by Eq. (C.2.2). There exist real numbers {a;:j=1,...,n[c](x)}, with each
|a| <my (W(c)), such that if xeIR>, then

(D [121(x)—1+ Zaj|x_xj|_1 §m1(m5(0))2|x_xj|_z >

) ‘((D,DA@)(X)-F gajdw—xjrl

<, (W(S) T kx| 2.

The numbers {a;} will be identified in Sect. D.2. The remainder of this section is
occupied by the proof of Lemma C.3.1.

Proof of Assertion (1) of Lemma C.3.1. Let A(A%(c), %) and R(A’(c), 3) be given by
Lemma C.1.4. On the set

V={xeR3:dist(x; UL] (k)uU[c] (A(A%c), %)) >R(A(c), 1) + 1.
(C3.1)
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Then |®|(x)>Z and 1—|®| satisfies the equation
d*d(1—|o))=|®|"'|[®,D ]| (C32)

Letne C¥(IR?; [0, 1]) be a function which is identically 1 on the set ¥, identically 0
on the set {x e IR®: dist(x, V)> 1}, and such that |dy|+ |d*dy| <4. Then y(1 —|®|)
satisfies at xe R3

{n@|" '[P, D4 P1* + (1 —|P)d*dn+2(d| D], dn)} .
(C.3.3)

(A=18Dnt) = 41—

A multipole expansion for 1 —|@| is to be generated from Eq. (C.3.3). For this
purpose, let G denote the term in brackets in the integrand of Eq. (C.3.3). A
consequence of Lemmas C.1.3 and C.2.1 is that there exists a continuous function
¢(+): [0, 00)—[0, co) which is independent of c € €% and 6 € [0, §,,) such that for all

X € suppr,
IG(x)I§C(91“(c))§(1 Flx—x;) 7>,

It is convenient to let y;=(1+ |x—xj|)‘5 and set

(Z wk) »,G (C.3.4)

Observe that Egs. (C.3.3—4) imply that

1 1 1
Sz Jst<|x—(~)| x—x |>

The proof of Assertion (1) of Lemma C.3.1 requires a proof that a;= | Gjis
R3

bounded by some m, (UA%(c)), and an estimate for the right-hand side of Eq. (C.3.5)
which establishes that

1 1
nin<|x—<~)| B |x—x,-!)

with z < oo a constant which is independent of c e €° and J € [0, ,). For a;, note
that Eq. (C.3.4) implies the inequality

1 GSLAE) [ (1 +1x—x)) ™ S20L(AC)).

’(l—lfbl)n(x) y e le 16

(C.3.5)

Sz {(W()x—x]2, (C3.6)

To prove that Eq. (C.3.6) holds, write

1
—yl |x x| o

d 1
— . C.3.7
d x—x;—t(y—x;) ( )

'—aw

This allows the left-hand side of Eq. (C.3.6) to be bounded by

(4n)"1f:dtfd3y|G,~(y)l ly—xl lx—x;—t(y—x)| 2. (C3.8)
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To complete the proof of Assertion (1) of Lemma C.3.1, break the integral in
Eq. (C3.8) into two parts, I, and I,. Here I, is the integral over
L={yeR3:|x—x;—t(y—x;)|>z|x—x}|},and I, is the integral over R*\L. For I,
observe that Eq. (C.3.4) implies the bound

1 1
—?HL Gy —x,| 4 LA x—x,] 2.

=rx—x

For I,, note that on R3\L, [y—x;/ =t~ ' [x—x|, so Eqs. (C.3.4,8) imply that
1
IS 2{(A%(0) [ tdtx — x| (t+ F1x —x;) ~* S 20 (W) [x—x,| .
0
Proof of Assertion (2) of Lemma C.3.1. Since d|®|=|®|” (@, D , ®), this assertion

follows by establishing that the expansion provided by Assertion (1) is differen-
tiable. From Eq. (C.3.3) one derives

1 -1 1 3 -1 -1
—X; < — ; - —dlx—x;]7".
d(|¢|n)+4n§:dlx x| HL G; _4n;n£3d yIG;lId]x—y| Ix—x;| 7Y

(C3.9)
The assertion then follows by establishing that
X — (x—x;) _
jdyIGjI }I(X—;g — N—x .J|3 <z-{(Wc))- Ix—x;| 3 (C.3.10)
J

with z< 00, a constant independent of ce €° and § € [0, §,).
To obtain Eq. (C.3.10), it is convenient to calculate the bound

F&ylpilly—x;|ly—x|"*<zlx—x;|~, (C.3.11)

with z < 00, a constant independent of x and x;. To establish Eq. (C.3.10) one also
needs the last inequality, below:

xoy x| [x-y o ox [0 1
=y P T x—y® xPlx—yl|  Ixllx—yl x|
1 1 1 Iyl 1 1 1
Sixlle—yl Il P =yl =y xP]
2] 1 1y 1 1|1 1
= Pelfbe—yl Il P =yl T Ik =yllx—yl x|

(C3.12)

With Egs. (C.3.4, 6, 11-12) one immediately finds that the left-hand side of Eq.
(C.3.10) is bounded by

LT
e=yllx=y1 " e=xj

The last term in Eq. (C.3.13) is evaluated using Eq. (C.3.7), and one obtains the
bound

2L (A(c)) {!x—le‘3 + n{ yyp;(y) } . (C3.13)

1
Ix—yl lx_xj_t(y—xj)lz'

1
gdtlgsfylpj(y)ly—le (C3.14)
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The evaluation of Eq. (C.3.14) proceeds as before, by breaking the integral into I,
and I, with I, the integral over L and with I, the integral over R3\L. For I, one
obtains with Eq. (C.3.11) that I, <z|x—x;| . As for I,, one obtains

1 1
I Zzlx—xj|"*fde¢* [ dr(r(1 —£)) ' min(r, (1 —1)),
0 0

Szlx—x; 7%

C.4 Power Law Estimates for A

The purpose of this section is to prove that if ¢=(4, ®)e €’ is a solution to
Eq.(C.1.1), then for x=r,(A%, the real 2-form (®,F,) on R\U[c] (k) is
approximately the curvature 2-form for an abelian, Dirac monopole connection
[21]. The precise statement is

Lemma C4.1. Let 6y,k, be as in Lemma C.2.1. There exists 6, €(0,0,) and a
continuous function m, : [0, 00)—[0, c0) with the properties below: Let 6 €[0,0,),
and let ce €° be a solution to Eq.(C.1.1). Let k=1xo(U’(c)) and let {x;} be as in
Lemma C.3.1. There exist real numbers {n;:j=1,...,n[c](x)} and vectors
{I,j=1,...,n[c] ()} with each [nj, |l <my(WA%(c)) such that at xeR?,

(<D,FA)+and|x—xj|"1+Z*(lj/\d|x_xj|—1)‘
J J
1 v \1/16
SmaUO) 5 {40 ) ma 1, L)),
J

The {n;,/;} are determined in Sect. D.2. This section contains the proof of
Lemma C.4.1. The asserted a priori estimates are obtained for a solution
c=(A4,P)e €’ to Eq. (C.1.1) by studying the equations for (&, F ,):

d*O-Zé(@,FA)—O-Z&(DAQ/\ *FA)=O, d(é,FA)_(DAQ/\FA)ZO. (C.4.1)

Proof of Lemma C.4.1. As in the proof of Assertion (1) of Lemma C.3.1, introduce
the set ¥, and the bump function #. For x € V; |®| (x) >4, and introduce for such x

9'(x)=12|"*[®,[g, 211, fT(x)=|2|"*[®,[f, ®1].
Define a real 1-form by
xt=exp(—n|P)) (D, F ). (C4.2)
The 1-form 7 obeys
do*’r=e "l {(1—n) (g A L) +n(g" AfT)—|Dldn A (D, f)},

=x* 2% (C4.3)
dxr=e "1 =n)(gn *f)+n(g" A = fT)=|@ldn A (D, 1)},
=*p. (C4.4)

In order to estimate 7, the Hodge theorem on R3 is required.
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Lemma C4.2. For 6€[0,d,), let ce@®® be a solution to Eq.(C.1.1). Define the
1-form t as in Eq.(C.4.2). There exists a unique (u,w) € I(R® T*)NL® with the
property that V(u,w) e LA(R®T*)®T*), d* w=0 and ¢*’t=du+ *dw.

Proof of Lemma C.4.2. Since one can show that te L*(T*), this is a standard
result, cf. [25] and [6, Proposition 1.7.6].
The function u satisfies the following equation:

V*Pu=p. (C4.5)

To obtain estimates from Eq. (C.4.5), introduce for each je{l,...,n[c](x)} the
function y;=(1+|x—x;))~>. Due to Lemma C.2.1,

Pl <L) X wi(x), (C4.6)
J
where {(+): [0, 00)—[0, co0) is continuous and independent of c € €% and J € [0, §,).

Let
Dj= (;@%)ﬂ Y;p.

Then u=3 u;, where each u;e I'(T*)nL° and
j

V*Vu;=p;. (C4.7)

Lemma C.4.3. Under the same assumptions that hold for Lemma C.4.1, define p; by
Egs. (C.4.3,5,7). There exists a function {(-): [0, c0)—[0, c0) which is independent
of ce € and 5 € [0, 6,); and there exists a number n; with [n;| < {(U°(c)) such that at

xeR3, -1 s -2
|uj+nj|x—xj| IéC(m (C))Ix_le s

lduj+ndlx —x;| S HAe)) Ix—x;) 73 (C48)
Proof of Lemma C.4.3. From Eq. (C.4.7),
1
uj(x)= ZEI dylx—yl " 'py) - (C4.9)

Now copy the proof of Lemma C.3.1 with p;, here, replacing G;, there. Use
Eq. (C4.6).

With the function u now estimated, turn attention to the 1-form .
Equation (C.4.3) implies that

*do?® xdw=02°q—260" 172 % (do Au). (C.4.10)

Introduce, for each je{l,...,n[c](x)}, the function y;=(1+|x—x)~>, again.
Due to Lemma C.2.1,

lgl < {(A(c) ? wi(x), (C411)

where {(-): [0, 00)—[0, 00) is continuous and independent of c € €% and J € [0, §,).
For each j, let ¢;= (Z wk>_1 y,q, and let
k

h;=q;—260 "' *(do A duy), (C4.12)
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where u; is defined and estimated in Lemma C.4.3. Under these circumstances,
w=Y wj, where each w;e I'(T*R*)NLE satisfies
j

P Va,+256" % (do A *dw)=h;. (C.4.13)

Equation (C.4.13) implies that v=dw;el’ ( AT *]R3> NL? satisfies the integral
equation

v(x)= ‘—11;5¢13y{d|x—y|_1 Ah;—28d]x—y|"" A % (o7 'do A *v)}. (C4.14)

Estimates for v(-) will be obtained from Eq. (C.4.14) by using the contraction
mapping principle on an appropriate Banach space of C° 1-forms on IR*. This
technique obtains v as a limit of {v*},-,, where

vo(x)=41—nfd3yd|x—y|_1/\hj, (C.4.15)

and for >0, v*=1v°—5T(¥* 1), with
Tw)(x)=Qn) " [d®ydlx—y| LA * (67 *do A *v). (C.4.16)
Consider first v°:

Lemma C4.4. Under the assumptions of Lemma C.4.1, let v° be defined by
Eq.(C.4.15). There exists a continuous function {(-):[0, 00)—[0, c0) which is
independent of ce €’ and 6€[0,5,) with the following significance: let

le(47t)_1nLd3yqj,
a vector in R3. Then
0°(x) + [ Adlx— x| S LA(e)) (x—x;1 3 +6lx— x| 2 In(1 + Ix—x;)).
Proof of Lemma C.4.4. Write v° =19 + 13, where

1 _
)= Z;Id3ydlx—yl "Ag;,

and

<

=~ [dydix—yI~" A+ (do A du).

The 1-form v9 is analyzed as was (®,D,®) in the proof of Assertion (2) of
Lemma C.3.1, see Egs. (C.3.11-14). The proof here is, essentially, word for word
the proof there, because g; satisfies the same estimates as does the function G; of
Eq. (C.3.4).
For v9, define r(x)=0""* (do A du;). Because of Lemma C.4.3, r(x) satisfies
) = LA()o ™M (1 + [x—x;) 2.
Thus,

033 - LU T Ay =y 72 A +IyD~Hy—x) 2. (CA.17)
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Equation (C.4.17) with Assertion (1) of Lemma C.4.5, below, completes the proof
of Lemma C.4.4.

Lemma C.4.5. There exists a constant z < oo with the following properties: For any
two points x, ¢ € R3,

@) T @y(yl+ D y—x 2y =&+ D2 Szx— & "2 In(Ix— |+ D).

(2) For any £€(0,%), let

1:(y; &)= +y— &N 721+ [yh°- max(1, (1+[y) ~*(1+|y—<&D*).
Then
FdPyly—x172(A+1y) " 'ny; ) Sze 7 (x5 0) -
(3) (y=&+D* =05 9.

The proof of Lemma C.4.5 is deferred to the end of this section.
Now turn to the sequence {v*} as defined by Eq.(C.4.16). To discuss its
convergence, define the Banach space £ = £(x;) to be the completion of the space

BO={zn(x;xj)+¢:zeR,¢eI},</2\ T*> and =, for s=3—12} (C.4.18)

with the norm
1Bll=ln~1C 5 x)b( )l o - (C.4.19)
The relevant properties of £ are summarized by the following two lemmas.

Lemma C.4.6. The space of sections £ embeds continuously in X C'(R3. If be &,
then for some ze R, b=zn(x;x;)+o(n(x; x;)).
Lemma C.4.7. There exists 6, >0 such that if 6€[0,0d,), then

(1) There exists a unique ve 2 satisfying Eq. (C.4.15).

(2) There exists { € C°([0, 00),[0, c0)), which is independent of ce €’ and
6€[0,8,) such that if v° € 2 is a solution to Eq. (C.4.15), then ||v—v,|| < 6(W%(c)).

Observe that Lemma C4.1 is a direct corollary of Lemma C.3.1,
Lemmas C.4.3-7, and the next lemma which asserts that Eq. (C.4.3) has a unique
L? solution.

Lemma C.4.8. There exists 5, € (0,%] such that if 5€[0,5,) and we I'(T*R3)~ L°
satisfies V¥V + 2661 * (do A *dw)=0, then w=0.
Proof of Lemma C.4.6. The embedding of € in >3<E’(1R3) is clear since |- || is

stronger than | - |ce. To prove the second assertion, let {b,=zn(x, &)+ ¢,} € L,
converge in £ to b with each z,€R and ¢, I,(T*). Convergence with respect to
| - | implies convergence of {z,} eRR to some zeR. Then

,,};ﬁ n(x; &)~ b—zn(x; &) =0,

as otherwise ||b,—b|| would not converge to zero as a— 0.
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Proof of Lemma C.4.7. Assertion (1) follows immediately from Lemmas C.4.4, 6
and Egs. (C.4.15-16) if one can establish that there exists ¢'>0 such that for all
0€[0,8), the mapping 6T as defined in Eq.(C.4.16) induces a contraction
mapping from £ to itself with norm independent of x; Since T itself is
independent of o, such will be the case if one can prove that T defines a bounded
linear operator on £ with operator norm independent of x; € R>. This property of
T follows from Assertion (2) of Lemma C.4.5 since

ITh(x)| =z|b| n{gtﬁylx—yl_z(l+Iy|)_111(y;xj)-

Now turn to the proof of Assertion (2) of Lemma C.4.7. For 6 € [0,0), let ve &
be the solution to Eq. (C.4.16) that Assertion (1) provides. If v, is the solution to
Eq. (C.4.15), then

v=04+0T(v). (C.4.20)

As T:2—& has norm bounded independently of x;, Eq.(C.4.20) implies that
0,€(0,0) exists such that for all 6€[0,d,), ||v]| £2||lvo]. Now Lemma C.4.4,
Assertion (3) of Lemma C.4.5 and Eq. (C.4.20) immediately give the result.

Proof of Lemma C.4.8. A standard argument with cut-offs puts Vw e L>(T*IR?),
where it satisfies ||Vw|,<46]c 'w|,. Lemma A.4.1 of [9] finishes the proof.
This section ends with the

Proof of Lemma C.4.5. For Assertion (1), one may first assume that r=|x—¢&|>1.
Then

(1)§n£3 Ayl —y 2=y A+DD T (C4.21)

Break the integral above into two parts, I, ={y:|y|>3ly—¢| or 3|y —x|} and I, is
the remainder. For I, assume |y|>4|y — x|, whence by changing y—y+x,

LT By A+ y =

After rescaling, y—ry, one has
LSr™2 § &y 72~ +y) " y—al 2 Lzr P lar.
]RS

Here i=(¢é—x)r~! is a unit vector. For I,, note that at least one of |[y—¢| or
|y—x|=1r (by the triangle inequality), and hence

L=z &yr+h) 20+l 2 <zr 2 Inr.
R3

For Assertion (2), the left-hand integral has two parts, I, ={y:|y|>|y—¢|}
and I,, the remainder. For I,, one has

L [ dylx—yl2A+) " oy =7

BRI
Now, change y-y+x and since (1+[y))"*<|y—¢/~' on the domain of
integration,

LS| &yl 2ly—&+x73  <ze™rm27e, (C4.22)
]R3
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For I,, one has
L | @ylx—y2A+y) " (y—E+ D72 (C4.23)

Iyl<ly—¢l
Break I, into I;={y:|y—¢& >3r}nI, and I,, the remainder. For I,
IiSzr 2 2 [ PBylx—y| 721+ |y)) " e <ze 2 251+ |x|) 7. (C4.24)
For I,, note that |x—y|>3r and |y|<|x—y|. Then,
L=z[ dy(r+y) 2yl 3 gze 727, (C.4.25)

Finally, since 1+ |x| is either = or < than 1+ |x—¢&|, one obtains Assertion (2)
from Egs. (C.4.22-25) and also Assertion (3).

D.1. The Stress-Energy Identity

For a solution ¢ € € of Eq. (C.1.1), the a priori estimates of Sects. C.2—4 allow a
calculation of the “forces” between the path components of the strong field region
Ul c] (ko(U’(c))). The purpose here is to establish that these path components are
in a region of fixed diameter.

Proposition D.1.1. Let 6, € (0, %) be as in Lemma C.4.1. Letne Z. Let 5 € [0, §,) and
suppose that ce @l is a solution to Eq. (C.1.1) such that for some &>0,
No(c)=4n|n|+e. Let ko(-) be as in Lemma D.2.1. Then diamU[c] (kq(U%(c)))
<L) (1 +&2), where { e CO([0, ), [0, 00)) is independent of ¢, ce €’ and
6€ef0,8,).

The remainder of this section, and Sects. D.2, 3 are occupied with the proof of
Proposition D.1.1. To prove the proposition, it is sufficient to provide a bound on
the distance between the path components of U[c] (k,), since the diameter of any
one component is bounded by 42 (c)/x, ! (Lemma C.2.1). This bound is derived in
two steps. The first step, summarized in Lemma D.1.2, establishes that this
maximum separation can be bounded by {(2%(c))5 2. A é-independent bound is
derived in Sect. D.3 with information provided in Sect. D.2.

To begin, let x, be as specified in Lemma C.2.1, and let c=(4,®)e €’ be a
solution to Eq. (C.1.1). Let U[c] denote U[c](xo((c))) and let
{U;,j=1,...,n[c](x,)} be its path components. Define for each j, the point x; by
Eq. (C.2.1); x; is the center of U;. Associate to ¢ the numbers

de=max{|x;|:j=1,...,n[c](ko)} ,
and
e=¢(c)=max{|x;—x;:i,j=1,...,n[c] (ko)} . (D.1.1)

Lemma D.1.2. Let 6, be given by Lemma C.4.1. Let 6€(0,6,) and let ce €° be a
solution to Eq. (C.1.1). Define d, and ¢ by Eq. (D.1.1). Then

d, L)) (e + D=L U)o 2,
where {, {'e C°([0, ), (0, )) are independent of ce €’ and 5[0, 6,).

The proof of Lemma D.1.2 will be given shortly. The estimates for the proof are
derived from the “stress-energy” identity in the next lemma:
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Lemma D.1.3. Let §€[0,2) and let c=(A, )€ a solution to Eq. (C.1.1). Let
(fo» 9u)2- 1 be the Ad P-valued components of (f, g)=(a°* F,, D,®) with respect to
the basis {dy“‘}fz=1 of T*. Then

33P0 = 305 (e fp) = @mg) 00 WIIP =0, (DL2)

Proof of Lemma D.1.3. Contract Egs. (C.1.1a) and (C.1.2a) with f and then add
them, and then contract Egs. (C.1.1b) and (C.1.2b) with * g and subtract these. The
result after some manipulation is Eq. (D.1.2).

Some corollaries of Lemma D.1.3, “virial theorems,” are listed below.

Corollary D.1.4. Let 6€[0,%) and let ce®® be a solution to Eq. (C.1.1). Let
BCIRR3 be an open ball of radius R>0 and center xeIR3. Let n= Zn"dy be the
exterior normal to 0B. Then

£d3y{|glz— Lf12+200~2(y1* = (0, 2)If1*} =R6fB *n{lgl* —1f1*+21£,1* —2lg.I*},

(D.1.3)
where (y,x)= 3 y*x* and f,(g,)= X n’f, <Z n"ga>~
Corollary D.1.5. Under the same assumptions as in Lemma D.1.3,
n{jay{lglz—lf|2+250"2|ylzlf|2}=0, (D.1.4)
and if 6>0, then for each a=1,2,3,
[ &y y*a=?|fI*=0. (D.L.5)
IR3

Proposition D.1.1 is proved by obtaining a d-independent estimate for g(c)
from Eq. (D.1.4). An explicit calculation of the left-hand side of Eq. (D.1.4) in terms
of the numbers {a;, 11;} of Lemmas C.3.1 and C.4.1 respectively is carried out in
Sect. D.3. This calculation, summarized in Proposition D.3.2, gives the bound on
o(c). The final task in this section is to prove Lemma D.1.2 and Corollaries D.1.4
and D.1.5.

Proof of Corollary D.1.4. To obtain Eq. (D.1.3), contract Eq. (D.1.2) with
y—x=(y*—x%3_, and integrate the result over B. After an integration by parts
(i.e. Stokes theorem), Eq. (D.1.3) is obtained.

Proof of Corollary D.1.5. For Eq. (D.1.4), take the limit in Eq. (D.1.3) with B
sequentially balls of increasing, integer radius, centered at 0 € IR®. Lemmas C.2.1,
C.3.1,and C.4.1 insure that the boundary term on the right-hand side of Eq. (D.1.4)
tends uniformly to zero in the limit. For Eq. (D.1.5), integrate Eq. (D.1.2) over R3,
and then integrate by parts.

Proof of Lemma D.1.2. Consider the left-hand inequality first. Suppose for the sake
of argument that d,>16(¢+1). Let xe{x;} be such that |x|=d,. For some
Re[zd,,5d,], let B={yeR*:|y—x|<R}. Then dist({x;}, R*\B)>{¢d,. Now
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contract Eq. (D.1.5) with x=(x%2_,. The contribution from B satisfies
[y, )0 2 1P 245 [ dyIf 7, (D.1.6)
since for ye B,
x5, 10 (M =10- (D.1.7)

Meanwhile, Lemmas C.2.1 and C.4.1 allow the contribution from R3\B to be
estimated as follows:

m§\3d3y(x,,\))0'—2lf|2 §|X|C(Q[5(c))' _§I>Rd3y|y|—1+26(1+|y_xl)—4+1/16

y

SUA(e))d, M2 (D.1.8)
Further, for ye 0B, Lemmas C.2.1, C.3.1, and C.4.1 imply that
(12 +1g1) () S LW (e)yd, *T2omite, (D.1.9)
and so Corollary D.1.4 asserts here that
£d3y{lgl2—2|f|2} S{A(e)yd, 2. (D.1.10)

Above, the fact that §, <% has been used. Together with Eq. (D.1.5), Egs.
(D.1.6, 8, 10) imply that

£d3y{|912+ If17} S0 (e)d, 2. (D.L.11)

However, by construction, B contains the centers, x;, of each U, and so
Ko(W(e) < Jfg Py(gl?+111). (D.1.12)

Thus, should it be true that d, =8(¢ +1), then Egs. (D.1.11, 12) imply that
d SUA)) . (D.1.13)

This establishes the left-hand inequality in Lemma D.1.2.

To establish the right-hand inequality, a crucial fact is that there exists
Re[4d,,3d,] such that the ball B={yeR?®:|[y—x|<R} has the following
property: For all je {1, ...,n[c] (k,)},

dist(x;; 8B) = (10n[c] (o))~ d,, . (D.1.14)

Indeed, the set of R € [{d,, 3d,.], where Eq. (D.1.14) fails for some x; has measure
less than £d, (and it has at most n[c] (x,) path components).
Contract both sides of Eq. (D.1.2) with x and integrate the result over B. After

an integration by parts, one obtains

31 Gem) (P =191~ | (s £) =G g:)) +8 [ dPya™2(x, p)I f 2 =0.

o " i (D.1.15)
Here n=(n%2_, is the exterior normal to éB and for v=x or n, f,(g,)
S v*f, (Z v"‘ga>. Together, Egs. (D.1.7, 9, and 15) imply the inequality

OJ dy|fI2 <L (e)d, ¥ T2 <A, 2. (D.1.16)
B
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Here, the fact that § <, < 4 has been used. Together, Egs. (D.1.10, 16) imply that
8§ Py(1f1> +191*) £ LA%(c))d; /2. But, by construction, B contains at least one
B

path component of U[c] (k,), and so this last equation implies that dxq(A%(c))
<{(W(c))dy 2, from which it follows that d, <{(W%(c))d~ 2, for { e C°([0, c0),
[0, c0)), independent of ¢ € €° and 6 € (0, 8,). This last equation implies the right-
hand inequality in Lemma D.1.2 because of the triangle inequality’s implication
that

20<d (D.1.17)

%

D.2. The Cluster Decomposition

To prove Proposition D.1.1, it is useful to group into clusters those points
{x;j=1,...,n[c](x,)} which are relatively close together. Two charges will be
associated to each cluster. Physically, one should interpret one charge as
determining the coupling of the cluster to the “®” field; and the other charge
should be interpreted as determining the coupling of the cluster to the “A4” field.

Let 6, be as in Lemma C.4.1 and let 6 € [0, §,). Let ¢ = (4, @) € €° be a solution
to Eq. (C.1.1) and let n=n[c] (x,(U%(c))) be defined for «, as in Lemma C.2.1. Let
A=A(c)={x;:j=1,...,n}. For ACA, denote by m=m(4) the number of ele-
ments of 4. Let 9 =g(c) be the number from Eq. (D.1.1). Assume that ¢=2.

For re(0,7%), define an r-cluster to be a non-empty subset ACA with the
following properties:

(a) diamA<g!/Zpn—m+1,
(b) A is not strictly contained in any A’C A which satisfies (a). (D.2.1)

The number r will be specified in Sect. D.3 as a function of A%(c).

For an r-cluster A, define
o(A)=dist(4, A\A). (D.2.2)

The r-clusters in A have the following properties:

Lemma D.2.1. Each x € A is contained in a unique r-cluster. Also, as 9=2, A
contains at least two r-clusters. If 1 is an r-cluster, then

oMz 30" (D.2.3)

Proof of Lemma D.2.1. Let x € A. The first step is to prove that x is in at least one
r-cluster. To do this, define a group, uCA, to be a subset which satisfies Eq.
(D.2.1a). Then x is contained in the group = {x}. Suppose that groups u;, y, exist
with m=m(u;)=m(u,) and p, Epy and xep;np,. Let p=pop,. If z, wep,
then

|z—w| S|z — x|+ |w—x| <202 M < Lol/2pn Tl < gl /2pmmmn) 22

Thus p is a group. Therefore, the set of groups that contain x is a partially ordered
set (by inclusion), and so there is a maximal group which contains x. By definition,
this maximal group is an r-cluster, and the construction shows that it is unique.
Due to Eq. (D.2.1), every r-cluster AC A satisfies diam (1)< 0'/?, and so A must
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contain at least two, since diamA=yg. Finally, if Eq. (D.2.3) were not true for
r-clusters A, pu with m=m(4) Zm(u), then 1=Auu would be a group containing
both 4 and u. Indeed, for any x, y €7, one would have
|x —y| S diam A + diam p + dist(4, p)

<2Q1/2rn—m+1 +%Q1/2rn—m<Q1/2rn~m<gl/2rn—m(1)+1 .

To each cluster AC A, associate the numbers
a(A)= X a; and n(A)= X nj, (D.2.4)

XjEA xjei
where a; and n; are as specified in Lemmas C.3.1 and C.4.1, respectively. Also,
associate to each cluster its center,

XAD=m1'Y x, (D.2.5)
xeA
and the open ball
B(A)={yeR3:|y—X(A)|<o()r'’}. (D.2.6)

Lemma D.2.1 implies that for distinct r-clusters 2, y,
diam(4) <2¢(A)r, dist(4, dB(1)) = So(A)r'/3, dist(u, dB(A)) = 20(4) . (D.2.7)

An important step in the proof of Proposition D.1.1 is to identify the numbers
a(2), n(4) with integrals over B(A) of bilinear functionals of the curvatures of
¢=(A4,®). Lemmas D.2.2 and D.2.3 accomplish this task.

Lemma D.2.2. Let 6, be given by Lemma C.4.1. Let 5€[0,5,) and let ce €° be a
solution to Eq. (C.1.1). Let A be an r-cluster and define (a(1), n(A)) by Eq. (D.2.4).
Then

1) |a(d)— %B{Dﬂglzﬂﬂz} SLW(e)) (54 0(A)~ Y2113y,

) ML a(d) +LA%c) 6 +o(A)~ V2~ 13)
where { e C°([0, c0), [0, 00)) is independent of 1, c€€® and 5€[0,5,).

Lemma D.2.3. Let neZ. Let 6, and & be as in Lemma D.2.2, and let ce € be a
solution to Eq. (C.1.1). Define {a;} and {n;} by Lemmas C.3.1 and C4.1,
respectively.

any ;=)= [ dya 2P If*, and X w;=n.
j J

Proof of Lemma D.2.2. Write c=(A, ®). To prove Assertion (1), contract Eq.
(C.1.1b) with @ and then integrate over B(1). Stokes theorem yields the identity

§ 1g1>= 68!( S (2,9). (D.2.8)

B(1)
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Let R =g(2) /?r*/3. Observe that for y € dB(4), Lemma C.3.1 and Eq. (D.2.7) imply
that

’(45, 9 ;ajly—le_zdly~x,-l <{UW()HR. (D.29)

Together, Egs. (D.2.8-9) assert that

lf g = a; | Iy—x| 2 #dly—x| <C@(chR™'.  (D.2.10)
B(2) 7 0B

Then, Stokes theorem implies from Eq. (D.2.10) that
’ [ lgI*—4n a(/l)i <{(W(cHR™. (D.2.11)
B(2)

Next, Corollary D.1.4 and Lemmas C.2.1, C.3.1, and C.4.1 imply the bound

BIIM {gP? =11 P} <C@%(0) {6(1 +(2+R)'°R™) +(e** +R*+ )R '}.
(D.2.12)
However, Lemma D.1.2 implies that
(0+R)''R™T+ R¥ 4+ 2 <1 + {(W(c))5%4, (D.2.13)
and since 6 <%, Eq. (D.2.12) actually asserts that
SUW(e) (B+R7Y). (D.2.14)

‘ § {lgl?=1/17}
B(3)

Together, Egs. (D.2.11) and (D.2.14) imply Assertion (1) of Lemma D.2.2.
To obtain Assertion (2) of Lemma D.2.2, first use the fact that for y € dB(4),
Lemmas C4.1 and C.4.2 and Eq. (D.2.7) imply that

I((P,FA)—%‘,njly——xj]‘z *d|y—xj|—dw,gc(u"(c))(R*JraR‘z). (D.2.15)

Thus, Stokes theorem and Eq. (D.2.15) imply that
| (®,F)—4n n(/l)r <L W) (O+R7Y). (D.2.16)

dB(A)
Next, use Stokes theorem and Eq. (C.1.2a) to obtain the identity

[ (@,F)= [ (9.%F,). (D.2.17)
0B(4) B(4)

But, by the triangle inequality,
' j (g’ * FA)
B(4)
so Assertion (2) of Lemma D.2.2 is implied by Egs. (D.2.16-18) and Assertion (1) of
Lemma D.2.2.

Proof of Lemma D.2.3. For the first claim, note that Eq. (C.1.1b) and Lemma C.3.1
imply that

<3 1 (aP+IP), (D218)
B(4)

4y a;= I lg)?.
J R3
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Now use Corollary D.1.5. For the second claim, note that Eqs. (A.1.4) and (C.1.2a)
imply that
47'U’l= j (ga*FA)z hm j (Q’FA)
R? R~ [y[=R

This identity with Lemmas C.3.1, C.4.2, 3, 7 complete the proof.
Finally, one must identify the vector charges, {/;}, of Lemma C.4.1. For an
r-cluster 4, define [(4)= Y’ [;. These are described in
jei

Lemma D.24. Under the same assumptions as in Lemma D.2.2, let A be an
r-cluster. Then

(A SLA(e) [e(A) 3+ 4],
where { € C°([0, ), [0, 00)) is independent of 1, ce €, and §€[0, ,).

Proof of LemmaD.24. As in Sect.C, let ;=(1+|x—x;)7> and let
ni=1; <2 wk>‘1. Define g e I'(T*) by Eq. (C.4.3). Note that d * 6?°q=0. Also,
k

dix—x,] dix—x| >
dn.=5 ; — J . D.2.19
=S B <(1 Th—x)  (+—x) (D219)

3

Write I(A)= Y L dx* Then for any constant ¢ e R3,
a=1
PF)== | dy—0n» T mg=—* | (y=8d*Xmq.  (D.2.20)
R3 jea R3 jei
The right-hand side of Eq. (D.2.20) has two terms,
D=~ =& T dnja*q+25 [ (y—&% ‘don* Y ng. (D.2.21)
R3 Jjei R3 jei

Finally, observe that Eq. (D.2.19) implies that

Ydm=3% ¥ njnk< dlx = dx =) > (D.2.22)

5T s s (I+x—x))  (A+x—x)

Evaluate Eq. (D.2.21) by considering the two possibilities, |X ()| <o(4)r'/® and
the converse. For the first case, take £ =0. For the second case, take £ = X(4). In
either case, Eq. (C.4.11) must be used with Eq. (D.2.22) to get

éC(QI‘*(C))% k%(l Hx—x) 71+ e —xl) 72

(A Pe=x )™+ T+ e—xd) ™).

> dmin*gq

jei

The remaining details are straightforward and left to the reader.

D.3. The Interaction of Clusters

To obtain from Eq. (D.1.4) a é-independent bound for the number ¢(c), it is
necessary to consider associations of the points in A on length scales which are
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0(o(c)) as well as the cluster length scales which are 0(p'/*(c)). By mimicking the
definition of an r-cluster, define an r-molecule to be a subset, @ C A, with the
following properties:

(a) diam® <2¢r" ™*!, where m=m(@)=the number of elements in .
(b) © is not strictly contained in any ®’C A which also satisfies (a). (D.3.1)
For an r-molecule, define
0(0)=dist(0, A1\O). (D.3.2)
In analogy with Lemma D.2.1, one has

Lemma D.3.1. Each r-cluster, uC A is contained in a unique r-molecule. As 9> 0,
there exists at least two r-molecules. If @ is an r-molecule, then o(©)= or" ™®.

Proof of Lemma D.3.1. Mimic the proof of Lemma D.2.1.
The crucial estimate in the proof of Proposition D.1.1 involves the following a
priori estimate.

Proposition D.3.2. Let 6, be as in Lemma C.4.1. Let $€[0,5,) and let ce € be a
solution to Eq. (C.1.1). Let g9=¢(c) be as in Eq. (D.1.1). Let re(0,%);
and if ACA(c) is an r-cluster, define (a(d),n(4)) by Eq. (D.2.4) and X(1) by
Eq. (D.2.5). Then

HL Ey{lgl? —IfP+200 2 |f P} 2 —o 3P " {(UX0))

+ 0K (W) (1 =L(WA(c)) o~ V2r— 2y, (D.3.3)

Here, {(-) e C°([0, w0), [0, 0)) is independent of c e €° and 6 € [0, 1); and Y’ means
to sum over all ordered pairs, (u, 1), of r-clusters for which u and A are in distinct
r-molecules.

This result will be proved shortly.

Proof of Proposition D.1.1, given Proposition D.3.2. Corollary D.1.5 asserts that
the right-hand side of Eq. (D.3.3) is zero. Choose r =[4+4{(%(c))] 3. Then Eq.
(D.3.3) asserts that
(a(p) a(d) —n(p) n(4))
X (w)—X(4)]

+0ro(W()) (1 = L(AW(c)e ™ 1?). (D.3.4)
According to Lemma D.2.3,

4ny a;2(1—0)U(c)=(1—0)4n|n|+ ¢,

j

02 —o 2 {(W () +2n Y

in fact,

4ny a;24n ‘2 | +3e— W) (D.3.5)
Jj j
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Since each x; € A is contained in a unique r-cluster, Eq. (D.3.5) asserts that

dn Y a(H)=dn| 3 n(/l)‘ +Le— ()5 (D.3.6)

r —clusters r — clusters

The second assertion of Lemma D.2.2 and Eq. (D.3.6) now allow only two
possibilities. The first possibility is that there exists an r-cluster A for which

a()z gnlc] (o) e+ (D=L W) 6+~ %). (D.3.7)

If Eq. (D.3.7) is not satisfied, then Eq. (D.3.6) and Lemma D.2.2 imply that the
n(4)’s are not all of the same sign. Because Lemma D.2.1 implies that

1
ahz o Ko(A(e) — (W) B +¢ ™11, (D.3.8)
either of the two cases imply with Eq. (D.3.4) and Lemma D.2.2 that

02 —¢ 2L +me ™ ' (n(c) (159) +4m) ™ 1o min (e, ko)
+01p(W() (1 =LA ))e~17). (D.3.9)

Equation (D.3.9) provides a J-independent bound for g(c): o(c)
<LW(c))max(1,e~2), where {eC°[0,00],[0,0)) is independent of ceE’
and 6 €[0,d,), as required.

The remainder of this section contains the proof of Proposition D.3.2. For this
purpose, some additional terminology is required. First, for an r-molecule @,
define its center, x(@)CIR? as follows: First, let w={ye R?:dist(y, @) <(O)r},
and then let

x(0)= @ o If |2>_1 <£ o~ ylf IZ). (D.3.10)
Let
B(@)={yeR*:[y—x(0)|<o(O)r'?}. (D.3.11)
Notice that because
diam @ £29(O)r, (D.3.12)

one has
dist(@,0B(0)) = %0(0)r'?, and dist(4\0,B(0))=30(O). (D.3.13)
To each r-molecule, ®, associate the number
5(0)= B(f@) {g1> =1 f1>+250 2|y f1*}. (D.3.14)
Let T= ]R3\kg B(0) and define
s(T)= ;{Iglz—|f|2+26a‘2|y|2IfI2} : (D.3.15)
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Each s(®), above, is evaluated using Lemma D.1.3. For this task, define for
each j=1,...,n[c] (ko)

¢ =—ajly—x|"" and n(y)=-—nly—x;]". (D.3.16)
Lemmas C.2.1 and C.3.1 assert that for ye T,
lg — (2P, g)l@)éé@"(C))? ly—x,73
and

(P,9)— ‘]2 dg

) <LAANZNy—x73. (D.3.17)
J
Also, for each j=1,...,n[c](x,), the 1-form ; is defined by Eq.(C.4.13).
Lemmas C.2.1, C.3.1, and C.4.3 assert that
|f= &P, NI =LA Ty —x,1 73
J

and
(@ /) =0 Tdny=o* T+ do DSLA @) Th-x| . DI1Y)

For notational convenience, define the real 1-forms
g=3.d$; and p=3dn;. (D.3.19)
J J

The first step in the proof of Proposition (D.3.6) is

Lemma D.3.3. Under the same assumption as in Proposition D.3.2, let ® C A(c) be
an r-molecule. Then

s(0)z 0Oy [ *n(lgl*—o*’p]* +2(c*°p; — 7))
2B(0)
+ Ig)dsy(y, X(@)a 2| fIP =W () Lo~ **r~ 2"+ 60~ 2r™ 1],
B(

where { € C°([0, ), [0, 00)) is independent of ce €° and 5€[0,5,).

Proof of Lemma D.3.3. Use Corollary D.1.4 with x=x(@) and B=B(®). That
corollary with Egs. (D.3.13, D.3.17, 18) yield the stated inequality with the
addition to the right-hand side of the term:

AOF [ #n(—2(p- V)~V +2p,,+ 2, (D:3.20)
0B(@)

_ s
where v=¢' Z*da)j.

To evaluz{te Eq. (D.3.20), consider that for xe T and x;€ 4, an r-cluster, one
has

ldx — x| —dlx = XA Sz 0" P x—X(A) 72,
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where z is independent of x, x;, and A. Thus for xeT, v is estimated via
Lemma C4.1:

v+ ;*I(/l)/\dlx—X(l)l‘l

SUA(e)) [Q‘”zr‘";IX—X(/?»)I‘2

+o(1+[x)*? 3% Ix—X(i)iz_”w}
(D.3.21)

where {(-)e C°([0, ©),[0, 0)) is independent of ce €’ and 5€[0,5,). Using
Eq. (D.3.21) with Lemmas D.1.2 and D.2.4, the extra term, Eq. (D.3.20), is readily
seen to bound —{(W’(c))- [0~ 3*r 2"+ 60~ M?r~2"] as required.

In order to further analyze s(@), it is convenient to introduce for each
r-molecule, @, real 1-forms

@)= X @d¢,~, pO)= 3 . dn;. (D.3.22)
JiXj€ JiX;€
Be aware that as long as y¢ 0,
dqg(©)=0, d=*q(O)=0, (D.3.23a)
and
dp(©)=0, d=*p(@)=0. (D.3.23b)

The second step in the proof of Proposition D.3.2 is to isolate the contri-
bution to each s(®) from the r-molecule @. For this one needs Lemmas D.3.4-5
below:

Lemma D.3.4. Under the same assumptions as in Proposition D.3.2, let ©,1I1 be
distinct r-molecules. Let v( - ) denote q(-) or p(-) of Eq. (D.3.22) and let {b;} denote
{a;} or {n;} respectively. Then

1) e@)r'® [ «n(u(ID)|*—20,(I1)%) = [ dylp(ID)>.
0B(0) B(@)
2 o@)y'* [ xn((p(Il), O))—20,(IT)v,(O))
0B(©)
b.

= | @y@(D),u(0)) -4y’ ibk 3 (x;—x(0), x;—x;) »
B(©) Xl

|x;
where 3" means to sum over all x;€ © and x, € Il.

Proof of Lemma D.3.4. Equation (D.3.23a,b) implies that for r-molecules O, I1
and for y¢ OUII

0
oy (@), v(ID))— %5 (0 O)vp(I1) +v5(O)v,(I1)) =0. (D.3.24)

The derivation of Eq.(D.3.24) is formally the same as the derivation of
Eq. (D.1.2). For Assertion (1), take ® =1II above and then contract Eq. (D.3.24)
with y—x(©). Then integrate the result over B(®). An integration by parts
completes the job. For Assertion (2), contract Eq. (D.3.24) with y — x(®) and then
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for each >0, integrate over B(@)\{y e R?:dist(y, ®) <&}. Integrate by parts and
observe that the ¢—0 limit is achieved uniformly; and results in Assertion (2).

To use Lemma D.3.4 to estimate s(@) requires the elimination of the factors
of 6%°:

Lemma D.3.5. Under the same assumptions of Proposition D.3.2, let @ be an
r-molecule. Define p by Eq.(D.3.19). Then

2O)? | 1= IpP L) (o Hr 2"+ 322,
0B(0®)

and
J 11=0™]|p L) (o> +0 2.

Here {(-) e C°([0, 0), [0, c0)) is independent of ce € and 5€[0,5,).
Proof of Lemma D.3.5. Use Eq. (D.3.16) along with Lemma D.1.12; this last
implying that if yeR? has |y| <4d2, then
1= S LAc))S™®. (D.3.25)
The third step in the proof of Proposition D.3.2 is the evaluation of s(T). This
evaluation requires

Lemma D.3.6. Under the same assumptions as in Proposition D.3.2,
s(T)> | d*y(lql* —Ip)* +230 2|y P|pl*) — LW (e)) [0~ 3r~ 2"+ 80~ 272",
T

where {(-)e C°([0, ), [0, 0)) is independent of c€C? and 6€[0,5,).

Proof of Lemma D.3.6. This is an immediate consequence of Egs. (D.3.17, 18, 21).
The fourth step in the proof is to isolate the contribution of s(T) from each

r-molecule @:

Lemma D.3.7. Under the same assumptions as in Proposition D.3.2, let @ be an

r-molecule. Define p(©), q(O) as in Eq. (D.3.22). Then

RS\L o y(l9(O)* —p(©)1*)
=—o(@)" 3@3{ o n(la(@)F — p(@)|* + 2(p(0)* —4,(6)%)) .

Proof of Lemma D.3.7. Use Eq. (D.3.24) with ® =1II. Contract with y— x(®) and
then integrate over R*\B(@). Do this with v=g¢, then v=p and subtract the
resulting two equations. Then integrate by parts.

The fifth and crucial step in the proof of Proposition D.3.2 is to compute the
interaction energy between r-molecules. The result is

Lemma D.3.8. Under the same assumptions as in Proposition D.3.2, let ©,11 be
distinct r-molecules. Then

H,L (9(), q(ID)) =4n 3’

a;ay
|x;—x

b

k
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and
n;mn
f (p(®), p(I))=4n 3’ x; ;|
k
where Y is the sum over all x;€ @ and x, €1l.

Proof of Lemma D.3.8. Use the defining equations, Egs. (D.3.16, 22) and the fact
that 4n|x—y| ™! is the Green’s function for d*d.
Together Lemmas D.3.3-8 imply the following inequality:

| dy{lgP—1f P+ 25021y If 2} 2 dn xS
* b =i
+4n2@2@(£fk_n+i?)(xj—X(@),xj—xk)
Xk
+5Z@{ | a®ye2(y, X(e))|f|2} —L(A(c)) (S~ 12r 24 g~ ¥2p2m)
v (D.3.26)

Here 3" means to sum over all x;, x, in distinct r-molecules. } o means to sum
over all r-molecules, and 35 means to sum over all x;€ @ and x, € 4\0.
Additional progress requires

Lemma D.3.9. Under the assumptions of Proposition D.3.2, let ®@ be an r-molecule.
Then

1 B(!@)d3yo‘2(y, X(@)|f12= —LQ%(c)) (o~ V2r— 24 59~ L4p—2m) |

If |x(O)| > o(@)r'/3, then
) ! d3ya“2(y,x(@))lflzzsxo(mé(c))—c(mf’(c))(Q~1/2r—2"+5g—1/4r~2n),

Here{(-)e CO([O, ), [0, 00)) is independent of c € €° and § € [0, 8,). The function
Ko is defined in Lemma C.2.1.

Proof of Lemma D.3.9. To prove Assertion (1), note that Lemmas C.4.1 and D.1.2
with Egs. (D.3, 10, 13, 25) imply that

[ @yo™2, x(ONIfIPZIxO)* | d*yo 2| f1>—LW(c)) (¢ 2~ 2"+ 5 Vor—2m),
B(6) B(6)
(D.3.27)
To prove Assertion (2), observe that if |x(@)| = (@)r!/3, then
[ 6721?2307 2(x(®)) | &yIfI*.
B(6) B(6)

In addition, Corollary D.1.4 asserts with Egs. (D.3.17, 18, 21) and Lemmas D.2.2
and D.2.4 that

3§ dIfPEE T &SP +gP) 8] o2, x(@)If P
B(©) B(©)
— @AYo
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Therefore, because [x(@)[=1,
| @y, x(O)| P25 [ &y(f1?+1g1») = L))~ 2"
B(®) B(®)

As B(®) contains at least one x;€ 4, this last equation implies Assertion (2).

Proof of Proposition D.3.2(completion). Due to Eq. (D.3.13), there exists at least
one r-molecule, O, with |x(@)| > o(@)r'/3.

Equations (D.3.26) and (D.3.27) along with Lemma D.3.9 force the conclusion
that

,;L Ay {lgl? —1f1* +200 2 pI* 117}

(a0, —m;m) (a,0,—1;1)

>An Y L 4 An Y o Yo (x;— X(0), X;— x;)

% —x;] 2o2i ;= x> 0 o
+ 81co(W(e)) — L(WA(c)) (B~ VV2r ™ 2" o 3%~ 2m) ., (D.3.28)
In order to obtain finally Proposition D.3.2, it is necessary to rearrange the sums in
Eg. (D.3.28) into sums over r-clusters. Let A be an r-cluster and let x;e 4. Then
Ix;— X(A)| <o'?r. (D.3.29)

If u is an r-cluster in a distinct r-molecule from A, and if x, € u, then

;= xil = 1X (D) = X ()|l <2"r. (D.3.30)

By rewriting the sums in Eq. (D.3.28) as double sums, first over r-clusters, and
second over points in r-clusters, one obtains with Eq. (D.3.30) that

Aoy —nmy) |, a(2) a(w) —n(2) n(w) e
Zﬁgz IX()—X W) —{(@(c))e ™7, (D.3.31)

Here, Y"”is the sum over pairs (4, u) of r-clusters in distinct r-molecules. In addition,

(a(4) a(u) —n(4) n(w)
[X(4)—X Wl

—{W(e)) (@~ *Pr 2460 Pr72m). (D.3.32)

(ajo,—1jmy)

]xj—ka (x;—x(0),x;—x)= —r'P Y

2026

Here, Assertion (2) of Lemma D.2.2 has been used. Proposition D.3.2 is a direct
consequence of Egs. (D.3.28, 31-32).

D.4. The Convergence of Min-Max for A

The a priori estimate that is provided by Proposition D.1.1 is the key result for the
proof of Proposition C.1.1. This section consists of the proof of said proposition.

Proof of Proposition C.1.1. It is assumed that Wz>4n|n|+¢ for some £>0.
According to Lemma B.1.2, each A% > A, > 47 |n| + ¢ too. Now Proposition D.1.1
asserts that if §€(0,d,), then the number o(c’(F)) of Eq. (D.1.1) is bounded
independently of 6 € [0, §,). Lemma D.1.2 provides a d-independent bound for the
number d,(c’(F)) of Eq. (D.1.1). Now, Lemmas C.2.1, C. 3.1, and C.4.1 provide a
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constant z=z(Wz—4nln)<oco with the property that if 6€[0,d,), then
() =(4, ®) has curvatures which satisfy

(IFal+ID4®) (x) S z(1 +|x]) 2+ (DA4.1)

Equation (D.4.1) implies that the numbers {|[V .| ,.: c=c*(§F) and d€(0,6,)}
tend uniformly to zero as 6—0. This fact allows one to invoke Lemma B.3.2. Said
lemma provides a subsequence {c;=c*(F):d<i '} C{c*(F)} and a sequence {g;}
C® such that (4;, ®;) =g,c; converges strongly in I3, ,.(T* x su(2)) x L3, . (Ad P)
to (4, @) € L3, ,(T* x su(2)) x L3, ,,.(Ad P) with (4, ) in € being a critical point of
A. However, Eq. (D.4.1) and Lemma A.4.6 of [9] imply that the sequence of
curvatures, {(F ,,, D, ®,)}, converges strongly in L* to (F 4, D ,®). This means that
{gic;} converges to ¢ in the L3, topology on €. The I3,,,, convergence with
Lemma B.1.2 guarantees that A(c) = As.

The convergence of {g;c;} to ¢ can be assumed to be with respect to the C*
topology on €. The argument goes as follows: As the set {2(c;)} is bounded, R?
can be covered by a uniform set of open balls, { B}, of fixed radius such that in each
B,, and for each i, there exists h,; € C*(B,; SU(2)) which puts 4; into the Hodge
gauge in B,. That is, if h,(A4;, ;) is written (4,;, ?,;), then

d*4,=0 in B,, and (n,A4,)=0 on 0B,, (D.4.2)
where n, is the unit normal to B,. Further,

”Aai”z,l;s,,éz||FA,-”2;B,= (D.4.3)

where z is independent of i and «. This fact is a direct consequence of K.
Uhlenbeck’s compactness theorems in [197]. Her theorems also provide for each a,
an h,e C*(B,;SU(2)) such that in B,, h,(A4, ®)=(4,, ?,) also satisfies Egs.
(D.4.2,3). Because {(4;, ®;)} converges strongly in L%, to (4, ®), the implicit
function theorem in [19] allows that no generality is lost in assuming that in each
B,, {(A,;, ®,;)} converges strongly in I to (4,, @,). The advantage of the Hodge
gauge of Eq. (D.4.2) is that in each B,, and for each i, Eq. (C.1.1) is a set of elliptic
equations for the pair (4,, ?,;). The equations are i-dependent, but bootstrap
theorems in [26, cf. Chap. 6] still apply, and one can conclude that in each B,,
(A @,;) converges to (4,,P,) in C*. As a consequence, the set of transition
functions {g,g;=h,hsz'} CC*(B,nBy: SU(2)) convergesin C* to g,z =h,hs '. Now
the construction in [19] as generalized in the appendix of [22] produces for each i,
a C® bundle isomorphism {,; : B,—~SU(2)} such that: (1) For each i and pair (c, f),
Nai9apiflpi =9ap in U,nUy,; and (2) for each o, the sequence {r,}CC*(B,)
converges. Now, for each i define g;e ® by setting gi(y) = (h; *n,h.9:) (y) when
y € B,. The preceding discussion can be summarized by the statements that each g;
is well defined, and that {gic;} converges strongly to ¢ in €.

Now, let IT : €— B denote the projection. Then {II(gic;)} converges strongly to
II(c) in B. For each i, there exists g; € SU(2) C ® such that ¢,J1(gic;) = c;. As SU(2) is
compact, {g;} has a subsequence, {q;}, which converges in SU(2) to g € SU(2). Then
the corresponding subsequence, {c;}, converges in B to g~ II(c)=c(F). This
completes the proof of Proposition C.1.1.
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E.1. The Neighborhood of the Moduli Space

For neZ, the infimum of A on 9B, is 4n|n|, and A(c)=4nln| if and only if
ceM,={(4, ?)eB,: F,=sign(n) * D ,&}. The purpose of this section is to prove
the following proposition:

Proposition E.1.1. For each neZ, there exists ¢>0 and a homotopy m:[0,1]
x B, B, with the properties: (1) For all te [0, 1], m(z, -) restricted to I, is the
identity; and (2) m(1,-): B,n U~ Y([4n|n|, 4n|n| +¢))—>IN,.

Corollary E.1.2. Let ne Z. There exists ¢>0 such that if § is a homotopy invariant
family of compact subsets of B, with Uy <4n|n|+ ¢, then Uy =4n|n| and there exists
Fe® with FCI,.

The proof of Proposition E.1.1 follows closely the author’s original existence
proof for 9t, as it appears in [11]. An analog of Proposition E.1.1 for the Yang-
Muills functional on §* is proved in [22]. The proof here is modelled closely after the
proof in [22]. For the proof, restrict attention to the cases n=0, as the n <0 cases
are obtainable from the former by reversing the orientation of IR.

For neZ, let ceB,. Because (see [12, 13])

A(c)=%|*F 4—D P53 +4n|n],
it is the I?-norm of
G(c)=(*F4—D,9,0)e [}(Q), (E.1.1)

which measures how close a given c is to 9%,. For c € €, define G(c) € I*(Q) by Eq.
(E.1.1) also.
Proposition E.1.1 is proved in two steps. The first step is summarized by

Lemma E.1.3. Given 0<n e Z, there exists ¢>0, a continuous homotopy m, :[0,1]
x B,—B, and a continuous map R :B,—[0, c0) such that

) If ceil):?,,, then m(t,c)=c for all te[0,1].
(2) If ce®B, and W(c)<4nn+e, then G(my(l,c)) has compact support in
{xeR>: [x|<R(c)} and [G(m(1,c)l,=[G(O)]>-

For the second step, introduce for each neZ the space €,={ceB,:
[Gll6/s<oo}. Topologize €, by the inclusion €,CB, x [0, c0) which sends ¢ to
(¢, 1G(c)ll6/5). Define €,=E,nB,.

Lemma E.1.4. Let 0<neZ. There exists ¢>0 and a homotopy m, : [0,1] x &,—€,
such that

(1) If ceM,, then m,(t,c)=c for all te[0,1].

(2) If ce€, and A(c)<dnn+e, then as a function of te[0,1], G(m,(t,c))
=(1-1G(c).

Proof of Proposition E.1.1., assuming Lemmas E.1.3. and E.1.4. Let ¢ be as in
Lemma E.1.3. Notice that m,(1, -) maps {ce B, : A(c) <4nn+¢} continuously into
the set {ce €,: A(c)<4nn+e}. Let 6 denote 1 times the minimum of the ¢&’s in
Lemmas E.1.3 and E.1.4. Define m as follows: Let a(c) = (6~ *(A(c) — 4nn)), where
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Be CF ([0, ); [0,17) is identically 1 if <4 and identically 0 if t>3. Let (t,c)
€[0,1]xB, and set

ml(zta C) if te [Oa %] 5
m(t,c)=1 my(a(c)2t—1),m,(1,¢)) if te[3,1] andif alc)>0,
m,(1,¢) if te[3,1] andif a(c)=0.

The proofs of Lemmas E.1.3 and E.1.4 occupy the rest of this section. To begin
these proofs, it is necessary to introduce certain extra facts from [8]. To each c € €,
associate the first order differential operators D, D} : I(Q)—I,(Q) which send

w=(a,9)eI(Q) to
Dctp =(*DAa+[¢a a]_DA¢7 DA *a+[(p9 ¢])>

(E.1.2)
D¥p=(xD,a—[D,a]—D,4,%D *a—[D,4]).
These operators are formal I? adjoints of each other. Both are of the type that was
discussed in Sect. C.2 of [9]. Associate to each c e €, the Hilbert space H.(Q) as
defined in Sect. B.6 of [9]; the completion of I(Q) in the norm, | - ||,, which is
defined by the inner product {y,n)>.=<V,p,Vn>,+<{[D®,v],[P,%])>,. Then
according to Lemma C.2.1 of [9], both D, and D} extend to bounded, Fredholm
operators from H,(Q) to I*(Q). In fact, more is true: The sets H(Q)
={H/(Q):ceB} and L(Q)={(c,p)eB x[*Q)} are given CC°-vector bundle
structures by Proposition B.6.3 of [9]. Lemma C.2.2 of [9] asserts that the
assignment of c € B to D, and D} define continuous sections, D and D*, over B of
Hom(H(Q), L(Q)). Let D, and D be respectively the fibre-wise adjoints of D, and
D*. They define continuous sections, D and D*, over B of Hom(L(Q), H(Q)).
Given &> 0, define for each 0<ne Z the space B, ,={beB,: A(b) <4nn+e}.
Similarly, define B, ,.

Lemma E.1.5. For each 0<neZ, there exist constants &, u>0 and a function
ve C%B,.,; (0, 1)) such that whenever ceB, ,,

ID¥zp and D] zv().

Proof of LemmaE.1.5. According to Proposition 9.1 of [8], the vector space ker D,
is isomorphic to ker D*. Proposition C.2.3 of [9] asserts that £ >0 exists such that
when ¢ € B, , then ker D =0. The existence of the constant u follows from Lemma
C.2.10 with the Wietzenbock formula for D*, Eq. (6.13) of [8]. The existence of
v(c) >0 such that | D,| > v(c) follow from the fact that Range(D,) is closed in H,(Q)
(cf. Theorem IV.5.2 of [27]). The continuity of the assignment of ¢ € B to D, implies
that v(-) can be taken to be continuous on B, .

For each ce®B, introduce the space I''=H (Q)nI'(Q) with the induced
topology. This I'“ is a Fréchet space.

Lemma E.1.6. Fix c € B. Then the assignment of @ € I'“ to ¢ + v defines a continuous
map from I'® into €. The assignment of (w,nm)el xI* to DF 0 or Dy n
€ [(Q)N I defines a smooth map; the assignment of (y,n) € I x (IX{Q)NnI'(Q)) to
Do+ N€H(Q)*NI(Q) and to D, e I* define smooth maps.
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Proof Lemma E.1.6. The first assertion follows from Proposition A.4.3. The
second assertion follows using Lemma B.6.4 of [9]. The third assertion claims that
the map which sends (y,y)el x (I*(Q)nI'(Q)) to the linear functional
n, DE (1)), H(Q)—IR is C*. This fact follows from Lemma B.6.4 of [9] which
implies that the assignment of (g,7)€ X H/(AdP) to {[o,7]," >,:I(AdP)»R
extends to define a smooth map of X H,(AdP)into H,(AdP)*. For the final claim,

define a map from I x I x (L*(Q)nI'(Q)) to H,(Q)*NTI'(Q) by assigning (y, u, 1) to
the linear functional <u,->..,—<n, D 4+ ,()),. This gives a smooth map into
H(Q)*, and the implicit function theorem implies the final claim.

For ce € and y=(a, ¢) € I, one has G(c +p)=G(c) + ImD.p +3 {y, p}, where

{W5 w} = (* [a’ a] - 2[61, ¢]a O) € F(Q) s (E13)
and
Im(a, §)=(a,0) e I(Q). (E.1.4)

Lemma B.6.4 of [9] implies that the assignment of pel™* to {y,p} and to
A, p},- >, defines smooth maps from I'* into L2(Q)nI'(Q) and H(Q)*nI'(Q),
respectively. In particular, this means that the assignment of ye I to G(c+1v)
e [X(Q)NnI'(Q) gives a smooth map.

Let ¢ be as in Lemma E.1.5 and let ce B, ,. Define

IF={ypel®: Uc+y)<dnn+s}.
Due to Lemma E.1.6, I is open in I

Lemma E.1.7. Let ¢ be as in Lemma E.1.5 and let ve C°(B, ,; (0,1)) be as defined
there also. Let II : €—B be the projection. There exists a continuous map 6:B,, .,
—(0, ) with the following significance: For each c€B, ,, let O,={ucI*(Q)
NI'(Q): |ull,<é(c)}. Then for each c € B, ,,, there exists an open neighborhood O,
of 0in I'* with a unique, smooth map t,: O, x O.— L*(Q)nI'(Q) which sends (0, 0) to
0 and which satisfies at each (y,u) €O, x O,

(1) Glc+v+Dsrp, ) =Glc+p)+u.

) Itw, )|, < zv(II(c+v))~%|ull,, where z < co is independent of ¢, p, and u.

Proof of Lemma E.1.7. For each ye I, consider the map T(y,-) which sends
r’ELZ(Q) to T(l/), n)=bc+w®c+wn+%{©c+wrl’ ®c+tp”}’ as a map from LZ(Q) to
I?(Q). Note that T(yp,-) is C*, T(yp,0)=0, and that the differential of T(yp, -) at
0eI*(Q) sends nel?(Q) to Doy, Doy, i According to Lemma E.1.5, this
differential is surjective and so the implicit function theorem provides the unique,
smooth inverse, T(y,-) ! to T(yp, -) as a map from a neighborhood of 0 e I*(Q)
into I*(Q). Lemma B.6.4 of [9] implies that

ITCp, 1) — Dy Doyl =zlnl3, (E.L5)

with z independent of ce®,,, and pel*. As v(-) of Lemma E.L5 is
continuous on B,, it follows from Eq. (E.1.5) that T(y, -) ! exists as a smooth map
from Q. ,={ue L*(Q): |lu|l, < d(II(c+1))} into L*(Q), where §: B, .2—(0,00)is
continuous. By replacing d by 4, one obtains readily that for admissible (c, y) and
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uel

¢, P

1T Cp, wll, S 2v(I (e + )~ *|lull,, (E.L6)

and that if T(y,n)=u and 5 satisfies Eq. (E.1.6) replacing T (i, u), then
n=T *(p,u). Furthermore, the fact that the assignment of (p,n)erl*
x (LX(Q)nI(Q)) to T(p,n)el*(Q)nI'(Q) defines a C* map with uniform
estimates implies via Hamilton’s inverse function theorem [28] that for each
ceB, ., there exists a neighborhood O,CI of 0™ such that T~ !(y,-) is a
smooth map on Q, for all p e O.. Let O, =Q.NI'(Q). Then this implicit function
theorem implies additionally that the assignment of (p,u)e O, x O, to 7.(p,u)
=T '(y,u) defines, as required, a smooth map into I*(Q)nI'(Q).

The application of Lemma E.1.7 is for a specific u € L2(Q)nI'(Q). For this, one
requires

Lemma E.1.8. Let ¢ be as in Lemma E.1.5 and let 5 € C°(B,, ,; (0, 1)) be given. Then
there exists g € C%(8B, ,; (0,1)) such that for all ce B, , and all r>g(c),

I(1=B)G(o)ll, <d(c), (E.1.7)
where B, e CP(R3) is as defined in Sect. A.3.

Proof of Lemma E.1.8. If Eq. (E.1.7) holds at ¢ € B, for some ¢ < o0, then it holds in
an open neighborhood, £(c), of ¢ in B, , with the same ¢. As B, , is paracompact
(Proposition B.1.2 of [9]), there exists a locally finite open cover, {€(c,): ie A}
together with a subordinate partition of unity, {«;: i€ A} such that if ce £(c;),
Eq. (E.1.6) holds for all g;<r<oo. Let g(c)=2 Z o;(c)o;- Then g(c)
>2min{g;: a;(c)>0} and Eq. (E.1.7) holds.

Now, let 6€C%®B,,,;(0,1) be given by Lemma E17 and let
0€ C%(B, ,»; [0, 0)) be constructed from £ as described by Lemma E.1.8. Then,
Lemma E.1.7 constructs for each ce B, ,,,

1(c) =710, (1 = B,)G(c) € L(Q)NT(Q) (E.1.8)
to satisfy G(c+ Dn(c)) =P ,G(c). Here, f,e CF(R3;[0,1]) is as specified in
Sect. A.3.

Lemma E.1.9. Let ¢ be as in Lemma E.1.5. For c€ B, , ,, define n(c) by Eq. (E.1.8).
The assignment of (t,c)€[0,1]xB,, ,, to II(c+tDn(c)) € B defines a continuous
map.

Proof of Lemma E.1.9. Proposition B.6.1 of [9] provides an open neighborhood,
9N(c), of each ¢ € B with a continuous h[c] : N(c)— G, such that the assignment of
beMN(c) to m(b)=h(b)-b—c embeds N(c) in I'“ sending ¢ to 0el“. The G
equivariance implies that for b € 9%(c),

Glc+m(b) + B syl [ B) - B) = o Gle+mb).  (EL9)
Further, Lemma E.1.7 asserts that

IAL1(®) - n(b) ]2 = zv(B) ™ * (1 — Bory)Glc +m (b)) -
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On the other hand, Lemma E.1.7 and E.1.8 provides a neighborhood OcCT* of
0el* and a unique, continuous ¢: O—I*(Q)NI'(Q) such that for ¢ €O,

Glc+g+ @c +¢€(¢)) = ﬁg(ﬂ(c+¢))G(C +¢),

and

1E(@) 2 S zv(TI(c+¢))~ ? f[(1— .Bg(n(c+¢)))G(c +d)l,-

As ¢ is unique, it must be true that on Dnm(9R(c)), E(m(b)) = h[c](b)n(b). Thus,
because m, is an imbedding, the assignment of b e N (b)nm, (D) to h[c](b)n(b)
e [2(Q)nI'(Q) is continuous. As

I(c+m(b) + Do m [ B)n(0)) = (b + Dyn(b)),

one obtains, finally, Lemma E.1.9. L
The proof of Lemma E.1.3 is completed by defining m, : 8,—B,, as follows:

my(t, ©)=g(t, ) [c+tp(2e™ " (U(c) —4nm))n(c)],

where g: [0, 1] x B G is provided by Lemma B.1.4, and e C2([0, o0); [0, 1]) is
a smooth function which is identically 1 on [0, 11 and identically 0 on [2, 00].
Define the function R by assigning c€ B, to

R(c)=0(c)f2e~ {(A(c)—4nn)) +1.

Proof of Lemma E.I.4. The lemma is proved by taking ¢ as in Lemma E.1.5 and
constructing for each c€€, ,,={ce€,: A(c)<4nn+e¢/2} a map «,.:[0,0]->T"
such that || G(c+a.(-))|, is decreasing to zero. Here, [0, oo] is topologized via the
map t—1—e " into [0,1]. The continuity of the assignment of (¢, c) to a(t) is
proved using the local embeddings of Proposition B.6.1 of [9].

To begin the construction, define the linear space Q°={perl*:
ImD,pe H(Q)*}. The space Q° is naturally a Fréchet space with the
topology from the map which sends weQ° to (p,ImDyw)el*x H(Q)*. For
ce€, ., G(c)e L°*(Q), and so by Lemma A.4.1 of [9], G(c) € H,(Q)*. Moreover,
the assignment of yp € H,(Q) to {y,yp} of Eq. (E.1.3) defines, via the I2-pairing, a
smooth map vy {{y,p},->e H(Q)* of H.(Q) into H.(Q)*. Therefore, the
assignment of pe Q° to G(c+y)=G(c)+ImD.yp+1{y,p} defines a smooth
map of Q° into H.(Q)*nI'(Q).

With ¢ as in Lemma E.1.5 and for ce@, ,,, define Q°={ye Q" Alc+y)
<4nn+e}. Note that Q° is open in Q°.

Lemma E.1.10. Let ¢ be asin Lemma E.1.5 and let c€ €, . For eachyp € °, there
exists a unique u(y) € I'° with the following properties:

(1) bc+wa+ wuc(w) = G(C + 1/))>

@) Nu)lleryp=z(IGlc+ )l + [Gle+1)ac+ ),

) 1D¥; yuW)lc+p S z(1Gle+ W) 2+ [Gle+ 1) e+ )

(4) D, u(p) €0

Here, || - ||+, is the dual norm on H, . ,(Q)*. The constant z < oo is independent
of ce€, ,, and e Q. In addition, the assignments of y € Q° to u(y)eI* and to
D, ulp) € Q, define smooth maps.
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Proof of Lemma E.I.10. Define a map T:Q°xI“—Q°x(H(Q)*nI'(Q)) by
sending (p,u) to T(y, u)=(p, D+, D ,u+ G(c+y)). According to Lemma E.1.6,
this is a smooth map. Lemma E.1.5 asserts that the differential of T at (yp,u)
e Q°x I'“ is surjective, and therefore, Hamilton’s inverse function theorem [28]
provides a smooth map u,:Q°—T* satisfying Assertion (1) of Lemma E.1.10.
Assertion (2) follows from Assertion (1) and Lemma E.1.5. Assertion (3) follows
from Assertions (1), (2) and the Weitzenbock formula for ©, ., in Eq. (6.13) of [8].
The calculations are straightforward and the interested reader can refer to Sect. B.3
of [9], where similar estimates are derived. Assertion (4) is a direct consequence of
Assertion (1). The differentiability of the assignment of y € O° to D, ,u.(p) € Q is
also a straightforward calculation which is left to the reader.

The tangent space to Q¢ is Q,x Q, and thus, the assignment of peQ, to
Dk, () € Q. defines a smooth vector field, v, on Q.. The results in [28] imply that
the integral curves of v exist and are unique. The following lemma summarizes:

Lemma E.1.11. Let ¢ be as in Lemma E.1.5 and let ce €, ,;,. For eachy e Q,, there
exists a neighborhood of v, O() CQ°; a number, t(y) >0, and a unique, smooth map
o, : [0, t(w)) x O(w)—Q° such that for any fixed ne O(y), and for each s € (0, t(y)),

dr
This lemma asserts that the integral curves of « exist for short times. The next
lemma extends existence to [0, co].

Lemma E.112. Let ¢ be as in Lemma E.1.5 and let c€€, ,,. There exists a
neighborhood O of o€ Q° such that o, of Eq. (E.1.10) has a unique extension for
which the assignment of (s,n)€[0,1]x D to a(—1n(1—s),#) defines a continuous
map from [0,1]x O to Q.

Proof of Lemma E.1.12. Lemma E.1.11 implies that if y € Q¢ and if € O(y) and
s€ [0, t(y)), then for a=a,,

(da°>(S,n)=(33*uc)(ac(s,17)) and o, (0,m)=1. (E.1.10)

(‘Z—f) (c+als,n)=—G(c+a(s,n)). (E.1.11)
Therefore, as long as s [0, t(y)),
G(c+als,n)=e *G(c+n), (E.1.12)
and
1G(c+als,m),=e*[G(e)], . (E.1.13)

The first step for Lemma E.1.12 is

Lemma E.1.13. Let ¢ and c€ €, ), be as in Lemma E.1.12, and let o, be the map of
Lemma E.1.11. Then o(—1n(1—s),0) is well defined for all se[0,1] and the
assignment of s to o(—In(1—s),0) defines a continuous map from [0,1] into Q,.

Proof of Lemma E.1.13. According to Lemma E.1.11, a(t, 0) exists for ¢ € [0, £(0))
with #(0)> 0. Suppose that «(-,0) has been extended to a continuous map from



534 C. H. Taubes

[0,T) to Q, for some T<oo. Then by showing that it extends uniquely to a
continuous map from [0, T] to Q. one could then infer Lemma E.1.13 from
Lemma E.1.11. Now, note that if ce €, ,,, then G(c) € L**(Q) and, therefore, if
s€[0, T), Eq. (E.1.12) implies
[G(c+o(s, 0)llg/s =€ *[1G(c) /5 - (E.1.14)
Lemma A.4.1 of [9] implies that L%>(Q) embeds in H,(Q)* with embedding
constant z < oo, independent of ¢ € €. Thus,
1G(c+ (s, 0) s 0,00 S 2¢ *IG(O)] g5 (E.L15)

For any ypeQ, and se(0,t(y)), Proposition B.6.2 of [9] implies that if
b=c+a(s, ), then

d
o )| <2

E o @+, (E116)
b

where z< o0 is independent of ¢, p, and s. In the present predicament, Egs.
(E.1.13,5, 6) and Lemma E.1.10 imply that

d
75 (14 flots, O)llp)| <ze™*(1+[G(O)gs),

and so, by integrating, that

”OC(S, 0)”c+a(s, 0) < f(C) > (E117)

where £(c) depends on ¢ only through ||G(c)| /5. Via Proposition B.6.2 of [9], this
last equation also asserts that with a different &(c),

llos, 0) ||, < E(c) . (E.1.18)
Now, if [s,t] [0, T), then
Jot, 0)~ts, 0}l = [ | T (5, 0)
¢ do
slegwo| ko),
<e *z&(c), (E.1.19)

with a different &(c). The second line, above, follows from the first using Eq. (E.1.7)
and Proposition B.6.2 of [9]. The third line uses Lemma F.1.10 and Egs.
(E.1.13, 15). Equation (E.1.19) implies that {a(s,0): s€ [0, T)} converges strongly
in H(Q) as s— T. By bootstrapping, one obtains the convergence of {a(s, 0)} in I'°
as well (cf. [28]). Equation (E.1.13) implies that this limit, «(7, 0), is in I'*. Further,
Eq. (E.1.15) implies that {G(c+«(s,0))} converges strongly in L%°(Q) to a limit
which must a priori be G(c + «(T, 0)). Therefore, { G(c + a(s, 0))} converges strongly
in H,(Q)*. This last fact, with the convergence of {a(s,0)} in H(Q) implies that
D +ai5,0045,0) converges strongly in H(Q)*, too. The conclusion is that
{a(s,0): se[0, T)} converges to a(T,0) in Q..
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The second step in the proof of Lemma E.1.13 is to obtain the existence of a of
Lemma E.1.11 on [0, c0] x O for some neighborhood O of 0 € Q,. For this purpose,
suppose that T< oo exists with a neighborhood O(T) of 0 in Q. such that « exists
and is continuous on [0, T) x O. By Lemma E.1.13, «(T, 0) € @, exists and there
exists a neighborhood, O’ of «(T,0) in Q, and t>0 such that o exists and is
continuous on [0,7) x O’. By Lemma E.1.13, there exists s [T—3¢, T) such that
(s, 0) € O’ and, therefore, there exists a neighborhood, O” £ O such that a(s, ) € O’
for all # € O”. Then by the uniqueness of assertion of Lemma E.1.11, o extends to
map [O, T+ %
T< o0, there exists a neighborhood O(T) of 0 in @, such that o : [0, T) x O(T)—-Q,
continuously. Further, since {o(t,0): t>0} converges to a(co,0)e,, one can
conclude that given a neighborhood, Q, of a(cc, 0) in Q,, there exists T< oo and a
neighborhood O(Q) CO(T) of 0 in Q,, such that for all € O(Q), «(T, n) € Q. Thus,
Lemma E.1.12 is a consequence of the uniqueness assertion of Lemma E.1.11
together with

x O into Q, continuously. The conclusion is the following: Given

Lemma E.1.14. Let ¢ and c be as in Lemma E.1.12. Let a(0, 0) € Q, be as in Lemma
E.1.13. There exists a neighborhood Q of a(00,0) in Q. such that o maps [0, 0] X Q
continuously into Q,.

Proof of Lemma E.1.14. As G(c+ a(o0, 0)) =0, there exists for each 6 >0, a convex
neighborhood Q(8) of a(co, 0) in Q, such that for all € Q(5),

1G(c+ml2+ [Gle+myc4y <O (E.1.20)

Lemma E.1.11 insures that no generality is lost by assuming that o exists and is
continuous on [0, t) X Q(3) for some ¢ € (0, o). For § >0, but sufficiently small, o
will be shown to extend to [0, co] x Q(J). To begin, observe that Proposition B.6.2
of [9] implies that z < oo exists such that for any c€ €, p € H(Q), and G € H (Q)*,

[Gllsc+p =21 Gllee(+ 19 [l +y)- (E.1.21)
Thus, for any (s, )€ [0, ) x Q(0), Egs. (E.1.13, 21) imply that
1G(c+ oS, M) llse+ as,m = 2€ N G(E+Mlac 4oL+ llo(s, D) =71 c 1),
and thus, with Eq. (E.1.20),
“ G(C + OC(S, ’1))||*c+a(s,r]) < Zée—s(l + “OC(S’ ’7) - 71 ”c+a(s,r,)) . (E122)
Now, Egs. (E.1.13, 16, 22) and Lemma E.1.10 imply that

d -
75 108 ) = Nlle e, | <20€7° (14N, 1) =111 oo, ) (E.1.23)

The integral form of the preceding inequality asserts that if (s, ) € [0, t) x Q(d), then

28(1—e™%)

— —_—. E.1.24
“O((S, '7) ’7”c+a(s,ry)< 1—25(1—'6—5) ( )



536 C. H. Taubes
Here, the reader should check that the constant z is independent of ¢, #, s, and 6.
Equation (E.1.24) implies that if <3z '=4,, then

”OC(S, 71)_71”c+a(s,11)<1 s (E125)

and therefore, ||a(s, 7) —#]l.+, is uniformly bounded on [0, £) x Q(9) if 6 < 6,.
Next, observe that if [r, s]C[0,t), and if # € Q(d), then

b
c+n

s | da
”OC(S, ’7)—“(7’ ’7)”c+r]§ .“d‘[ E(T’ ?’])

§22fd1: s

do

J— T,

dT ( n) c+a(t,n)

<2z8e”". (E.1.26)

Here, Line 2 follows from Line 1 with Eq. (E.1.25) and Proposition B.6.2 of [9],
while Line 3 follows from Line 2 with Egs. (E.1.13, 22, 25) and Lemma E.1.10.
Equation (E.1.26) asserts that the sequence {a(s,#): s€ [0, 1)} for fixed n € Q(5) is
Cauchy in H (Q) and that it converges uniformly, with respect to # € Q(J) to some
a(t, n) € Q(0). By bootstrapping as in the proof of Lemma E.1.13, one obtains the
uniform convergence on Q(J) of {a(s,n): s€[0,£)} in Q° to a(t, ). The uniform
convergence implies that o extends continuously to a map from [0, 1] x Q(5) to Q¢
as long as d <d,. This result, with the local existence assertion of Lemma E.1.11
implies Lemma E.1.14.

Completion of the proof of Lemma E.1.4. Let ff be a function in CZ([0, o0); [0,1])
which is identically 1 on [0,4] and identically zero on [3, c0). Let IT: €— B be the
projection. Let ¢ be asin Lemma E.1.5 and let o« be as in Lemma E.1.12. Then define
m,:[0,1]x &, —&, by setting

my(t, ¢)=g(t, )[c+ e ' (A(c) — 4nn))a (—In(1—1),0)]. (E.1.27)

Here, «, is as specified by Lemmas E.1.11 and E.1.12 and geC°%E,; ) is
constructed by replacing B, by €, in the proof of Lemma B.1.4. Equation (E.1.12)
insures that m, satisfies Assertions (1) and (2) of Lemma E.1.4. The only remaining
issue is the question of continuity. This is a local question ; and as with the map m;,
of Lemma E.1.3, the continuity question is settled by exploiting the local
embeddings of Proposition B.6.1 of [9]. Let ce €, and let 9N(c) be the open
neighborhood of ¢ in B, with continuous A, : 9t(c) > G as provided by Proposition
B.6.1 of [9]. Thus, the map sending b € 9(c) to m(b)=h.(b) - b—c embeds 9t(c) in
I sending c to o e I'*. If it can be established that m sends R(c)nE, continuously
into I'%, then the uniqueness and continuity of o, on [0, co] x {Open neighborhood
of 0 in Q°} implies the continuity of m,. The argument is the same as for the proof of
continuity of m, in Lemma E.1.3. Thus, continuity of m, follows by showing that
the assignment of b € N(c)NE, to Im D m (b) € H,(Q)* is continuous. For this, note
that the assignment of be R(c)nE, to G(c+m (b)) L°3(Q) is continuous (use
Lemma A.4.6 of [9]), so by Lemma A 4.1 of [9], the assignment of b € 0t(c)nE, to
G(c+m(b)) defines a continuous map into H,(Q)*. Further, the assignment of
p=(a,$)e H(Q) to L{w,y} of Eq. (E.1.3) defines, via the I*-pairing, a continuous
map from H, Q) into H(Q)*. Therefore, Eq. (E.1.13) implies that Im D m(b)
defines a continuous map from 9(c)nE, into H,(Q)* as required.
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E.2. Min-Max and Pointed Homotopy

The purpose of this section is to complete the proofs of Theorems A.1.2 and A.1.4.
Theorem A.1.2 is observed to be a direct consequence of Proposition C.1.1 and
Corollary E.1.2. To prove Theorem A.1.4, one is considering only families of
subsets of B, which are invariant under homotopies which fix a given subset of B,.
For a given neZ and 1={0,...}, let ¢eC°(S*;M,). The proof of Theorem
A.l4 requires answering the question of when a given path component
Oe{peCo(B'*'; B,): p|yp+: =@} contains a map whose image lies in 9,. Here,
B'*1is the standard unit ball on R'** with boundary S'. To prove Theorem A.1.4
by min-max arguments, define for each such ©, the number
Ay = mf sup A(y)) .-

eBl+1
The min-max theory for ® results in

Proposition E.2.1. Let neZ, let 1€ {0, 1, ...} and let ¢ € C°(S*; M,) be given. Let @
be a path component of {peCO(B'*'; B,): plg=¢}. There exists a critical
point ¢(@)e B, of A with critical value Wy and with Vel +2) of Definition
A.4.4 non-negative.

Proof of Theorem A.1.4, assuming Proposition E.2.2. FixneZ and 1€{0,1,2,...}.
Take ¢ to map S' to a point, *eM, Then a path component
OL{peCOUB'*1;B,):p|la=+} is precisely an element in 7, ,(B,). Theorem 1.2
of [8] asserts that if a critical point ¢ € B, of is not in M, then y,(|n| + 1) <0. So if
I+1<|n| and if ® em,, (B,), then Proposition E.2.1 implies that ¢(@) € M, and
A(c(@)) =Wy. Proposition E.1.1 implies that 1 € @ exists with Imyp CM,. Thus,
the inclusion homomorphism 7, (M,)— 7,(B,) is surjective for k < |n|. Next, let Z on
denote the kernel of this homomorphism. For k <|n], let [¢] € Z, , be represented
by ¢ e CO(S*; M,). A map y e CO(B'*1; B") with y|g:=¢ is a homotopy of ¢ to the
constant map. By Propositions E.1.1, E.2.1 and Theorem 1.2 of [8], there exists
such a v with ImpCM,; so for k<|n|, the inclusion homomorphism 7, ()
—m,(B,) is injective.

Proof of Proposition E.2.1. The proof is essentially the proof of Theorem A.1.2
save for two modifications. The first modification is to take into account that for a
given ¢, each @ does not define a homotopy invariant family of subsets of B,, but a
family of compact subsets which is invariant under homotopies which restrict to
Im¢ as the identity for all z. The second modification is for obtaining the a priori
estimate on y (I+2). This is a straightforward application of the construction in
Sect. 5 of [22] to the present situation. As both modifications are uncomplicated,
the discussion will be brief.

Fix neZ and let >0 and m:[0,1] xB,—»B, be as in Proposition E.1.1.

Proposition B.5.2 of [9] provides a continuous homotopy ¢ (g y s ) :[0,1]
x BB such that ¢ < 5 > B, —B? continuously for all § € [0,1) and such that
for all te[0,1], and ye S

A <q <§ t, ¢(y)>> <dnjn|+ % (E2.1)
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For each §€[0,2), let =¢q <§ 1, (- )) e CO(S%; BY). Let

OC{yeCUB*; B,): ylsa=9}
be a path component. Then O defines a path component, ©° of

{peCO(B'1; B : ylg=4} by assigning to each peoO, ¢=q<§,1,w(')>.

2

Notice that if p, ~yp,(relS?) then $p, ~P,(relS’). (Here “~” means “homo-
topic to”) Conversely, each path component @° of {ypeCoB'*!;B)):
plg=¢} defines a path component of {peC°B'*!;B,): ylas=¢} as
follows: Let te[0, 1] denote the radial coordinate on B'*! and let y denote a
point in S". If v € @°, define y° by

Y(2t,y) if te[0,3],

vEn=1",,
q<§, 2-—2t, ¢(y)> if te[3,17.
Notice thatify,,p, € @°and p; ~p,(relS’), then v ~p(rel ). Also, if p € O, then
(1)° ~y(rel SY). Conversely, if p € @2, then (p°) ~y(relS*). Thus, the path compo-
nents of {y e CO(B'*1; BY): y|s:=4} and those of {e CO(B'*1; B,): y|s=¢)} are
in 1 —1 correspondence.

Now, suppose that U,>4nn|. Then Proposition E.l1.1 asserts that
A, =4njn|+e. For such O, define

W= inf sup W(p(y)).
we®S yeBit1
Lemma E.2.2. A4s a function of 6 €[0,%), A, is non-decreasing and };irré A=Ay,

Proof of Lemma E.2.2. Mimic the proof of Lemma B.1.2 using the map ¢:[0, 1]
x[0,1]xB->B of Proposition B.52 of [9]. Use the fact that because
Wy =4nln| +¢, for each ¢ € O, there exists 7€ [0, 1) such that if x € B' and |x|>1,
then W(p(x)) <4nin|+e. The details are left to the reader.

For @ satisfying g =4n|n| +¢, and for each § € [0,3), let

YO)={(1p,c) e @’ x B2: ceImy and A (c) =AY} .
For such O, the analog of Proposition B.2.1 is

Proposition E.2.3. Let © be as described above with Wy =4n|n|+¢. There exists
3(0) €(0,%] such that given 6 € [0,5(O)) and ¢ >0, there are (p,c) eY%(O) with
(1) max{W(y(y)): ye B} <Wg+o,
@ 7], <e,
(3) y20+2)> —g,
@) if c=(A, D), then VIV ,&=0 and c also satisfies Eq. (B.2.1).

Proof of Proposition E.2.1, given Proposition E.2.3. By mimicking the proof of
Proposition B.1.3 (see Proposition B.3.1) one obtains for each ¢ € (0, 6(®)) a critical
point ¢’(©) of A? in B? with critical value AY. This uses Assertions (1), (2), and (4) of
Proposition E.2.3 to construct a good sequence with the properties that
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Proposition B.3.1 requires. The convergence assertion of Proposition B.3.1 and
Assertion (3) of Proposition E.2.3 imply that y7, ,(c(@)) = 0 (see Proposition 4.13 of
[6, Part II] and its proof). Now, if (O)<4n|n|+¢, Proposition E.1.1 implies
Proposition E.2.1. If A(O) > 4x|n| + ¢, then by copying word for word the proof of
Proposition C.1.1, one obtains the existence of a subsequence, {c;}2;
Cc{c%(®): 6 e (0,5(0))} which converges in B, to a critical point ¢(@) of A with
critical value U,. This convergence implies that y,,,(c(@))=0 (see, again,
Proposition 4.13 of [6, Part II]).

Proof of Proposition E.2.3. Since g = 4n|n| + ¢, there exists (@) € (0, 3] such that
for all 6<d(0), max{AX(H(y)): ye S <A,H— Z For 6€[0,5(@)) and a given

0 €(0, 1), the proof of Proposition B.2.1 is readily adapted to provide (y, b) € Y¥(O)
for which Assertions (1), (2), and (4) of Proposition E.2.3 hold. Indeed, the

homotopies in Sect. B.2 can be readily altered so that each fixes the set {c e B

W(c) <AL — %

Sect. 3 allow one to construct, given ¢ >0, a pair (, b) € Y%(O) such that Assertions
(1) and (2) are satisfied, and Assertion (4) is satisfied not just at b, but at all c e Imy

for which A%(c)> AL — % That there exists ¢ € Imy with A’(c) =AY, and such

} for all t€ [0, 1]; and hence fixes ¢(S"). In fact, the homotopies in

that | PA?| . +max (0, —y2(I+2)) are small (0(¢'/?)) is argued by showing that the
alternative leads to a contradiction. Indeed, should this number be uniformly large
on Imyn (A%~ ([, 0)) then the construction in Sect. 5 of [22] and specifically
Lemmas 5.1-5.3 of [22] readily adapts to the present problem and would produce
a map v’ e @ with max{W’(y'(y)): ye B'*1} <AY. The adaptation of Sect. 5 of
[22] to the present circumstances is straightforward, given the uniform bounds in
Proposition A.4.3 and given the continuity of y%(I) as a function of ¢e B’
(Proposition A.4.5).
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