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Min-Max Theory for the Yang-Mills-Higgs Equations
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Abstract. In each monopole sector there exist an infinite number of finite
energy solutions to the Prasad-Sommerfield limit of the SU(2) Yang-Mills-
Higgs equations on R 3 whose energy is greater than any finite number.

Contents

A.1 Introduction 473
A.2 Strategy for Convergence 476
A.3 Terminology 482
A.4 The Variational Problem 483
B.I The Regularized Problem 486
B.2 Minimizing Sets for 2Γ5 488
B.3 Convergence for Min-Max for %δ 493
B.4 Final Arguments for 2Γ5 496
C.I A priori Estimates 498
C.2 Exponential Decay Estimates 502
C.3 Power Law Estimates for Φ 505
C.4 Power Law Estimates for A 508
D.I The Stress Energy Identity 513
D.2 The Cluster Decomposition 516
D.3 The Interaction of Clusters 519
D.4 The Convergence of Min-Max for 51 526
E.I The Neighborhood of the Moduli Space 528
E.2 Min-Max, and Pointed Homotopy 537

A.I. Introduction

The differential equations of a classical gauge theory are, in many cases, the formal
variational equations of a functional (the action) on a topologically non-trivial
space. And so it was conjectured [1, 2] that Morse theory, or some weaker analog
might be useful for establishing the existence of non-trivial solutions. There are
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standard conditions which, if satisfied, imply the relationship between the
topology of the space and the critical points of a function on that space [3, 4];
Condition C of Palais-Smale is one such condition. However, the Yang-Mills-
Higgs functional on R 3 does not satisfy any of these conditions.

One could conjecture for this functional, on the one extreme, that its behavior
was akin to the harmonic map energy functional on the space of C00 maps from S2

to S2. The harmonic map energy functional obtains its minimum on each of the
countable number of path components of Maps(52; S2); these are the
holomorphic and anti-holomorphic maps. But these local minima are its
only critical points [5], in spite of the rich topological structure of the space
Maps(S2;S2).

On the other extreme, one could imagine that the Yang-Mills-Higgs functional
behaved like a "good" Morse function, in spite of the failure of the Palais-Smale
condition. Indeed, a non-minimal solution to the SU(2) Yang-Mills-Higgs
equations on R 3 which relates to πί of the function space is known to exist [6, 7].

This article will prove that the SU(2) Yang-Mills-Higgs functional on R3, in
the BogomoΓnyi-Prasad-Sommerfield limit behaves like a good Morse function
(Theorem A. 1.2). One consequence of this fact, which is also established here, is
that in each path component of the function space (monopole sector), there exists
an infinite number of gauge inequivalent solutions to the associated variational
equations; in fact, an infinite number with action greater than any fixed number
(Theorem A. 1.3). The results in [8] imply that all of these new critical points are
unstable ones for the action functional.

This article is to be considered as a sequel to [9], to which the reader will often
be referred. The results in this article were announced in [10].

These SU(2) Yang-Mills-Higgs equations are a set of partial differential
equations on R 3 where the unknown is a pair (A, Φ), with A being a connection on
the principal SU(2) bundle P = R 3 x SU(2) over R3, and with Φ being a section of
the associated bundle, AdP = R 3 x SU(2). The equations are

DΛ*DΛΦ = 09 (A.l.lb)

subject to the boundary condition that 1 — \Φ\ e L6(R3). Here, FA is the curvature of
A (a section of $ T*(x)AdP), DA is the exterior covariant derivative on AT*®kάP
that A defines, *: AT*^>AT* is the Euclidean, Hodge dual and [ , ] is the graded
bracket on AT*®AάP. The norm | | on AT*®AdP is the product metric; (the
Euclidean metric on AT*) (x) [the metric —2 trace C2( , ) on SU(2)]. The
uninitiated are referred to [9, Sects. A.1-A.3] and [11, Chaps. 1 and 4] for details.

Equation (A. 1.1) is the variational equation for the action functional,

9104, Φ) =4 ί {\FA\
2(x) + \DAΦ\2(x)}d3x. (A.1.2)

R3

One is to consider 91 as a functional on the set

(£ = {Smooth c = (A, Φ): 9I(c) < oo a id 1 - \Φ\ e L6(R3)}. (A.1.3)

The set (£ is topologized as in [9, Sect. B.I].
The space (£ is homotopically Maps(S2; S2) [9, Proposition A.I.I]. It therefore

has also a countable set of disjoint path components, {&n}neZ. D. Groisser has
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shown that for (A, Φ) e £„ [12],

n=~Ll{~2tracec2^ΛDAΦ)] ' (A'L4)

The triangle inequality then implies that for each neZ,

For ceKn, equality in Eq. (A.I.5) occurs if and only if c = (A, Φ) satisfies the
BogomoΓnyi equations [13],

FΛ = sign(ή)*DΛΦ. (A. 1.6)

Solutions to the BogomoΓnyi equations exist in each (£„ [14,11,15]. For n = 0, any
c = (A, Φ) satisfying Eq. (A. 1.6) has FA = 0 and DAΦ = 0.

Each (£„ is acted on continuously by a topological transformation group, the
gauge group [9, Sect. 13.1],

(5 = {smooth automorphisms of R 3 x SU(2)} ~ C°°(R3 SU(2)). (A.1.7)

The functional 9ί is invariant under the action of (5 and solutions to Eqs. (A. 1.1) or
(A. 1.6) are transformed into solutions. The subgroup

acts freely on (£ and the functional 91 descends to the quotient 93. As ©0 is
contractible, 23 embeds in (£ as

A(x = 0) = 0 and χi^JJA =

Here, and in Eq. (A.I.8), a product structure o n P = R 3 x SU(2) has been chosen.
There is a residual SU(2) action on 23 which leaves 91 invariant. It is convenient to
reduce this SU(2) action to an S1 action by constructing a new space, 33, which
embeds in 23 (hence in (£) as the fiber of a fibration [9, Sects. A.I and B.5],

The group SU(2) acts on S2 via rotations, and the fibration in Eq. (A. 1.10) is SU(2)
equivariant. The S1 subgroup of SU(2) which fixes the north pole, peS2, fixes
(S = ή~ί(p). Then 93 is the orbit of 93 under SU(2). This structure and the map n are
all explained in [9, Sect. B.5].

One consequence of the preceding discussion is that 91 only "sees" the topology
of 23 (and the S1 equivariant topology, at that). This is convenient because 23 is well
understood:

Theorem A.I.I (Theorem A. 1.1 of [9]). The space 93 is homotopically the space
Ω(S2) of base-point preserving maps from S2 to S2.

The topology of 93 and the critical points of 91 can be related by min-max
theory (cf. [3]); of which a brief review follows. Let M be a smooth manifold. A
family, g, of non-empty compact subsets of M is said to be homotopy invariant if for
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any continuous φ: [0,1] x M^M for which φ(0, ) = identity, it is true that the
condition Fε$ implies that φ(l, F) e g.

For example, let {Hk(M; Z), fc^O} be the (compactly supported) cohomology
of M with coefficients in ΊL. Let [z] eH\M; Έ) and set

g = g([z]) = {FgM: the inclusion map, i.F^M, has the property

The family above is homotopy invariant.
Let / : M-»[0, oo) be a smooth function. To a homotopy invariant family, g,

assign the number

/ 8 =infsup/(c). (A.1.11)
Feft ceF

For a "good" function / on M one should require that / has a critical point at the
critical value f%.

The theorem below states that 91 on 95 is good.

Theorem A.1.2. Let $be a homotopy invariant family. There exists a solution to Eq.

Theorem A.1.2 of [9] asserts that for each neZ, the set

CritM = {2tg;: g is a homotopy invariant family of compact subsets of (£„}
(A.1.12)

is an unbounded subset of JR. Thus,

Theorem A.1.3. For each neZ, Eq. (A.1.1) has an infinite number of solutions in 95Π

with action above any finite level.

Theorem A. 1.2, suitably modified, also provides information about the
topology of the spaces 90ϊnc33n of solutions to Eq. (A. 1.6). Of import here is an
observation from [8] that a suitably defined hessian of 91 at a nonminimal critical
point in 95 „ must have index \n\ +1 or larger.

Theorem A.1.4. For each n, the inclusion 9WΠ C 33Π induces an isomorphism of the
pointed homotopy group π,( ) for l<\n\; and an epimorphism for l = \n\.

Recently, S.K. Donaldson proved [16] the remarkable fact that for each neZ,
S0ΪΠ is homeomorphic to the space of base point preserving, rational maps from S2

to S2 with degree n. Thus, Theorems A.I.I and A.1.4 with [17] recover a theorem of
G. Segal: The inclusion of this space of rational maps into Ωn(S2) (the space of all
smooth, base point preserving maps of degree ή) induces an isomorphism of πt( )
for l<\n\ and an epimorphism on πjΠ|( ).

The proof of Theorem A. 1.2 requires the author to introduce to the calculus of
variations a number of new techniques. For this reason, a long, detailed overview
of the strategy and logical train of the proof is provided in Sect. A.2.

A.2. Strategy for Convergence

To understand why convergent min-max sequences exist for 91 on 35, it is necessary
to understand first where the standard Palais-Smale Condition C fails. Condition
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C is satisfied by a smooth function, / : M-> [0, oo) on a smooth Banach manifold M
if the following statement is true: Every sequence {cJcM for which {/(cf)} is
bounded and for which {||4fcJI*} has limit zero has, itself, a convergent
subsequence. Here, || H* is the norm on T*M. (See [3, 4].)

Were Condition C satisfied by 2ί on 93, then Theorem A. 1.2 would be
practically a standard result [3]. The technical problems in the proof arise because
Condition C is not present due to the non-compactness of R 3 (no Rellich lemma).

But, Condition C is not the last word. Even a function on the real line, R, may
be a good Morse function (in the sense that its critical points determine a CW
decomposition of R (cf. [18]) but not satisfy Condition C. Consider, for example,
the function φ on R which sends t to φ(i) = t2/(\ + t2). Observe that
dφ = 2tdt/(l + ί2)2. Thus, φ has only one critical point, t = 0, and there, the hessian
d2φ/dt2 is positive. This is the expected behavior of a good Morse function.
However, consider the sequence of integral points, Z c R . It has the property that
for each fceZ, φ(k)<\, and as |/c|-»oo, \dφ(k)\->0. But the sequence of integral
points has no limit point in R. Thus, φ does not satisfy Condition C.

The important principle here is the following: To prove that the critical points
of a function /:M-»[0, oo) mirror the topology of M, only sequences {ct } for
which {f(Ci)} is decreasing need be considered.

Min-max theory for a function / on a Banach manifold M illustrates this
principle. For example, let g be a homotopy invariant family of compact subsets of
M. One can try to establish that / 5 of Eq. (A. 1.9) is a critical value of / by
considering min-max sequences in

Y(%J)=$(F,c)e%xM:ceF and /(c)= sup/1.

A min-max sequence {(Fb ct)} C Yis one for which the {/(cf)} are decreasing to f%\

The pertinent question is: Can a min-max sequence {(FhCi)}cY be chosen for
which {cj converges in M to a critical point of f?

It can be remarked that this question is subtle; required for the answer is a
detailed knowledge of the function involved. For example, when M = R, one must
distinguish between the functionals {fδ( ): δ e [0,1]} given by

1 + t 2 )"

For δ = 0, f°( -) is not a good Morse function on R as it has no critical points. But
for any δ > 0, and in spite of Condition C's failure, fδ( ) is a good Morse function
onR.

For the Yang-Mills-Higgs problem, K. Uhlenbeck's compactness theorems in
[19] imply that a sequence {cJcSβ can converge only if the sequence {2ϊ(Cj)} is
bounded; and only if the curvatures {(FA,DAΦ): ct = {A, Φ)} have sufficiently
uniform decay as |x|->oo on R3, independent of the index ί.

This fact motivates the study as a function of c = {A, Φ) e 33 of the maximum
separation of the sets in R 3 where \FA\

2(x) + \DAΦ\2(x) is large. One assigns to each
c e S a number ρ(c) which describes this maximum separation. To be precise, the
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number ρ(c) is defined in the following way: One considers the local action of c in
unit balls; this is a map s: 93->C°(R3) given by

S(c) (x) =\ J d*y{\FΛ\
2 + |D^Φ| 2}. (A.2.1)

\x-y\<l

For a suitably chosen κ > 0 , one defines

t/(c) = {xeR3:s(c)(x)>K} and 17(c) = {xeR 3 :dis t(x, U(c))< 1} .

On R3\l7(c), the curvatures are sufficiently small so that they are effectively linear
in the basic field c = (A,Φ). On t/(c), the curvatures are large and the non-
linearities play the crucial role.

Observe that the set U(c) cannot be arbitrarily bad. Indeed, it is bounded, and
it has at most 9ί(c)//c path components, and the sum of the diameters of the path
components is at most 42ί(c)/κ; (see Lemma C.1.2).

The map ρ( ): 93-•[(), oo) assigns to c the maximum separation of the path
components of U(c) [Eq. (D.I.I)].

It is crucial to realize that a sequence {cj C 93 can converge in 93 only if the
sequences {ρ(cj} and {2I(cf)} converge in [0, oo) (see Sects. C.4 and D.4).

Let 5 be a homotopy invariant family of compact subsets of 23. Then one must
obtain min-max sequences {(Fi9 ct)} C Y(ffl for which the sequence {ρfo)} is
bounded; whether or not they exist is a delicate question. To motivate the proof of
their existence, consider the following construction: By assigning to each c e S the
set of centers of the path components of U(c), one obtains a point Ψ(c) in one of the
configuration spaces Cj(R3), for / e {0,1,..., [2I(C)/TC]}. Here, Q(R 3 ) is the space of

^ °°
/-tuples of distinct points in R 3 . Thus, Ψ defines a map from 93 into (J Q(R 3 ) with

ι = o
the property that for any £e[0, oo), Ψ maps St^flΌjE)) into the finite

E/K

dimensional space (J Q(R 3 ) . One may reinterpret the min-max problem for g as
z=o

that of finding a min-max sequence {(Ff, cf)} C Y(ffl such that the sequence of

points {Ψ(Ci)}C U Q(R 3 ), yl = [22ί*/κ;], is bounded.
1 = 0

Because the noncompactness here reflects the noncompactness of Q(R 3 ), it is
enlightening to consider a model variational problem on Q(R 3 ) itself. One can
imagine a physical system of /-particles on R 3 which interact via pair potentials.
Then the energy of a point {xu...,xι}e Q(R 3 ) is given by

5 ...,*/}) = constant + Σ v(Xi — xj).

Here, υ( ) e C°°(R3) is the potential. If υ has the property that for some x φ 0,

lim v(tx) < oo ,
ί-> oo

then (£ may not satisfy Condition C on Cj(R3). However, if for all x + 0, and t
sufficiently large,

v(tx) < lim v(sx), (A.2.2)
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then one expects that the function (S is really a good Morse function on Q(R3)
because Eq. (A.2.2) says that it costs energy to pull two particles apart [of course,
v(') must be repulsive for small |x|].

The analysis above suggests that one should try to write the action 9l(Ci) for
each ct of a min-max sequence {(Fi9 ct)} C 7(5) as a sum of two parts: The first part
is the contribution from each path component of U(c?) and the second is the
contribution from R3\£/(ct). The contribution from R3\l7(c/) one wants to
interpret as an "interaction energy" between the path components of U(ct) and
then ask whether it costs energy to separate the path components. The analysis
would then proceed, at least heuristically, as if the variational problem were on
some Q(R3).

This procedure is feasible if one can obtain sufficiently strong a priori estimates
for the curvatures of each c{ in the small field region, R3\ί/(cί). The existence of a
priori estimates is due to the fact that the Yang-Mills-Higgs equations are semi-
linear and R3\[7(cί) is, by definition, precisely the region where the linear
approximation holds. Indeed, one might expect that for i large, ct is approximately
a solution to Eq. (A. 1.1). For an exact solution, c, to Eq. (A. 1.1), the fields in the
region R3\ί/(c) satisfy to order exp( —dist(x, ί/(c)) the linearized equations in
R3\L/(c) with some boundary conditions on dU(c) (Sects. C.1-C.4; [24] and [11,
Chap. IV]). This just states the fact, long accepted by physicists, that from far away,
a non-abelian monopole looks abelian (i.e., a Dirac monopole [21]).

The trick is to obtain min-max sequences {(Fi9 ct)} for g such that each c{

essentially satisfies the a priori estimates in R3\L/(cί) of a solution to Eq. (A. 1.1).
The author has two methods for obtaining min-max sequences which satisfy such
detailed estimates. The less elegant procedure is technically easier. It involves
constructing a sequence of regularized functionals {2l̂ :<5e[O,̂ )} on 93 (with
91° = 91):

«'04,Φ) = ί J {(l + \x\2)3\FA\
2(x) + \DAΦ\2(x)}d3x. (A.2.3)

IR3

The set {^Άδ;δe[0,^)} has the following properties (Lemma B.1.2):
(1) ίίδ>δ\ then 3lj^3l£, and
(2) Iim8β = 9ϊ«.

Of crucial import is that for any δ e (0,̂ ) and any homotopy invariant family g
of 93, there exjst min-max sequences {(Ff, c3)} C Y\^) for M3 such that {c?}
converges in 93 to cδ($% a solution of the variational equations of 2l5 with
<H3(c3(ty) = <&3j: This fact is established as Proposition B.1.3.

The variational equations for 2I5 are used to prove that each cδ($) obeys the
required estimates (see Sects. C.1-C.4). The techniques for this task were developed
in [24], see also [11]. The necessary min-max sequences for 9Ϊ can be constructed
from a diagonal subsequence of the doubly indexed sequence {(Ff, c3): i e {1,...}
and(Se(0,i)}.

The alternate method for obtaining a priori estimates for min-max sequences
involves deforming (F,c)e 7(g) to (F\F),c% with F'(fc) obtained from bεF by
solving Eq. (A. 1.1) in the small field region, ΊR.3\U(b) (where these equations are
practically linear). This procedure is technically complicated, but it has applica-
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tions to other elliptic, semilinear variational problems which are borderline for
Condition C, and it will be discussed in a forthcoming article, not here.

For each cδ(^) {δ > 0), the fields in the small field region are determined via an
essentially linear system of equations by their values on dU(cδ(^)). This fact allows
the action, 3la(c*(3r))> to be decomposed into its l/(c5(5)) contribution, and the
remainder. This remainder is to leading order the interaction energy of a system of
point particles, one in each path component of U(cδ(^)) which interact via long-
range fields whose equations are the linearized Yang-Mills-Higgs equations with a
delta-function source at each particle's position. The strength of the delta function
is determined by the boundary values of cδ($) on the path component of U(cδ(%))
which contains that particle. This is pure potential theory for what is essentially
Laplace's equation in an exterior domain. The technical lemmas that establish this
picture of c3^) are proved in Sects. D.1-D.3.

With these a priori estimates established, one could proceed by a reductio ad
absurdum argument along the following lines: suppose that the linearized
equations provide, via potential theory, an interaction energy which defines
attractive forces between the path components of U(cδ(^)). Now assume that the
maximum separation of the path components was large. In this case, one could
construct by "cutting and pasting" a one-parameter family of configurations that
started from c^(5) and which amounted to a rigid translation of the far-flung path
components of cδ($) towards each other. The attractive forces would insure that
2Γ5 was not stationary at c^(g) along such a one-parameter family.

In fact, an actual deformation of cδ(%) is not required. A critical point c = (A, Φ)
of 9Γ5 satisfies a "virial theorem" that is derivable from the differential equation (see
Corollary D.I.5 and [11, Chap. 2]). This virial theorem is the following integral
equality:

ί d3y{\DAΦ\2 - ( 1 -2<5|j;|2(l + \y\2)"') (1 + \y\2)δ\FA\
2} = 0. (A.2.4)

R3

A uniform bound on ρ(c) comes from Eq. (A.2.4). It is a side remark that this
equation can be obtained by choosing a suitable deformation of c and using the
fact that c is a critical point of S&δ. Equation (A.2.4) provides a short-cut which
avoids the necessity of constructing the actual deformation.

To utilize Eq. (A.2.4), one evaluates the integral by computing the contri-
butions from the large field regions separately from the weak field regions. The a
priori estimates and Eq. (A.2.4) yield the following inequality (Proposition D.3.2):

- 3 / 2 . ( A . 2 . 5 )
0 ^ Σ

μfx Qisι(μ,λ)

Here, the primed summation is over suitably defined pairs (μ, λ) of clusters of path
components of U(c) which are mutually separated by dist(μ, λ) = (9(Q{C)) (see Sect.
D.2). The functions κo( ) and ζ( ) are positive and continuous in their arguments.
The number α(μ) is an action associated to the cluster μ; Lemma D.2.2 makes this
precise, but essentially,

a(μ) = ̂  J Λ ( ( l + \x\Ύ\FA\
2 + \DAΦ\2).
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The number n(μ) is the local "monopole number" of the cluster μ; essentially

n(μ) = — j d3x(FA, * DAΦ). (A.2.6)
4π μ '

Equation (A.2.4) has an analogy in the aforementioned model problem of
/-particles on R 3 which interact via the pair-wise potential v(xi — xj). For a critical
configuration of/-particles at positions {xu ..., xt} in R3, the corresponding virial
theorem is

Σ V (y v Y* I 11 \(y Y Ί — Π (A 1 1\

2^ {Xi — Xj) I -r—^ V I {Xt — Xj) — U . (A./. / ;
i<jα=l \CX /

Equation (A.2.7) is derivable by using the fact that the energy for a critical
configuration, {xί9 ...,xz}, is stationary at ί = l along the curve t\-^{txί, ...,ίxj}.

As an aside, the pair potential, v(x(μ) — x(λ)), whose virial identity, Eq. (A.2.7),
is exactly the first term in Eq. (A.2.5) is the Coulomb potential,

v(x(μ) χ(λ))- l x ( μ ) _ x ( λ ) l • ( A 2 8 )

This potential describes the "force" between far separated path components of
U(c). Such an interaction potential is precisely what physicists have expected for
monopoles in the Prasad-Sommerfield limit [20, 21].

Examine Eq. (A.2.5). Without the interaction term (the first term), the second
and third terms provide a (5-dependent bound on ρ(c). Such is to be expected, since
the weight (1 + |x|2)^ in SΆδ is designed expressly to keep the path components of
U(c) together.

If all the "charges" in Eq. (A.2.5) satisfy

α(μ) a(λ) - n(μ)n(λ) ̂  Θ(δ9 ρ~ί/2); (A.2.9)

and if at least one such charge is greater than some ε > 0; then Eq. (A.2.5) provides
an (5-independent bound on ρ(c) from its first and third terms, viz:

ρ(^ΓΛ)) ε~2. (A.2.10)

Here, ζ'( ) is a continuous function of its argument. It is in this case that the inter-
cluster forces are attractive. Thus it is of crucial importance to obtain information
about the numbers {α(μ), n(μ)} which appear in Eq. (A.2.5).

The essential properties of the {α(μ), n(μ)} are derived in Sect. D.2. These
properties are:

(1)

(2) . . , . . , . ,, ( A 2 n )

(3)

(4)
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where n(c) is the "monopole number" from Eq. (A.1.4) (see Lemmas D.2.2 and
D.2.3). Given Eq. (A.2.6), Eq. (A.2.11) is not surprising.

Observe that Eq. (A.2.11.2) implies Eq. (A.2.9). Further, if Eq. (A.2.9) is an
equality for all pairs of clusters (μ, λ)9 then Eq. (A.2.11.2) implies that each cluster
has α(μ) = |n(μ)| + Θ(δ,ρ~1/2) and that all the n(μ)'s have the same sign. In this
eventuality, Eqs. (A.2.11.3-4) force the critical value to satisfy

M*(c) = 4π|n(c)| + G{δ, ρ~1/2). (A.2.12)

To see the consequences of Eq. (A.2.5), let g be a homotopy invariant family of
compact subsets of (£n for some integer n. Let {cδ(%); δe(0,1/2)} be the set of
critical points of 2Γ5 with critical values 2I|. Two possibilities arise. The first is that
the number 21^>4π|n|. Here, for δ sufficiently small, Eq. (A.2.11) provides at least
one pair (μ,/l) in the first term of Eq. (A.2.5) for which

a(μ)a(λ)-n(μMλ)^ζ(^)(%-4π\n\) + Θ(δ,ρ-^2). (A.2.13)

Here, ζ( ) is a strictly positive, continuous function of its argument. Thus, if
9Iey>4π|n|, an a priori bound on ρ(cδ(g)) for <5 > 0 is provided by Eq. (A.2.13) and
Eq. (A.2.10) (with & = ςϋ^ — 4π|n|). See Proposition D.I.I and the beginning of Sect.
D.3. When 91&>4π|n|, the proof of Theorem A.1.2 is completed in Sect. D.4.

In the case where 9Iff = 4π |n|, Eq. (A.2.5) provides no a priori bound on ρ(cδ&)).
This is no surprise because the moduli spaces of solutions to Eq. (A. 1.6) are known
to be noncompact; in fact, these contain configurations which have large field
regions with arbitrary separation [11,14]. Theorem A. 1.1 is proved in the case
9lδ = 4π|n| in Sect. E.I, where it is shown (Proposition E.I.I) that for each neZ,
positive ε exists such that 9ί~ 1([4π|n|,4π|n| + ε))n^βII retracts onto Win.

As for Theorem A. 1.4, it is practically a corollary to Theorem A. 1.2 and
Theorem 1.2 of [8]. The theorem requires the Yang-Mills-Higgs analog of a result
in Sect. 5 of [22] which establishes the role of the Hessian of 91 in the min-max
procedure. The details appear in Sect. E.2.

A.3. Terminology

Most of the terminology in this article has been established in Sect. A.3 of [9].
However, certain conventions are new here. Let P = R 3 x SU(2). Implicit is a fixed
product structure on P. Thus a pair (A, Φ) e (£ is a pair (connection on P, section of
AdP), but also a pair (su(2) valued 1-form on R 3 , map from R 3 into su(2)), where
su(2) = Lie AlgSU(2). The topology on (£ is induced by the map of (£ into
x C ^ R 3 ) x [0, oo) which sends (A, Φ) to {components of A and Φ} x 9ί(^4, Φ).

The statement that a sequence converges in (£ or 93 will always imply convergence
in the above topology. As a tool to prove such convergence, an auxiliary topology
is required. This is the L2

1; loc topology. A sequence {(At, Φf)} e K is said to converge
strongly in the L2

1; loc topology to (A, Φ)e(ί if the sequence of numbers {91(̂ 4,-, Φt)}
converges to 21(̂ 4, Φ) and if on any bounded domain Ω c R 3 , the sequence
{(Au ΦΪ)\Ω} converges strongly in the L^-Sobolev topology to (A, Φ)\Ω. This is to say
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that

and similarly for (Φ — Φ^. Here, V denotes the flat connection on R 3 x SU(2).
Notice that if {(Ah Φt)} is in (£π and converges in the L2

1;loc topology on dn to
(A, Φ) e (£, then (A, Φ) e (£„. This is a consequence of Eq. (A. 1.4) and Proposition
B.3.1 of [9].

Certain terminology appears throughout the article, and should be introduced.
The vector bundle AdP® (T*0R) over R 3 is denoted by Q. If £-+R3 is any vector
bundle, Γ0(E) = Space of C00, compactly supported sections of E, and Γ(E) = Space
of C00 sections of E. If £ is associated to R 3 x SU(2) by a representation ρ, and iϊA
is a connection on R 3 x SU(2), then VA : Γ(£)->Γ(Έ® T*) denotes the induced
covariant derivative on Γ(E). A flat, SU(2) invariant fiber metric on E is denoted
( , ). The Euclidean metric on T* is the only one considered. The fiber metric on E
induces the L2-metric, < , >2 on Γ0(E) and the ί/-norms || ||p. The formal
L2-adjoint of VA is denoted by V*A.

An origin in R 3 is fixed as are a set of Cartesian coordinates, {x}. It is necessary
to have available a C°°-bump function, β e C°°([0, oo); [0,1]) which is identically 1
on [0,i] and identically zero on [f, oo). This β will also be considered as a function
on R 3 via the assignment xeR3i->/?(|x|). For re(0, oo), βr(x) = β(x/r).

Finally, an important convention concerning constants is strictly adhered to.
The letter z will denote a numerical constant which is independent of any external
parameters unless explicitly noted. In any given derivation, the precise value of z
may change from line to line. Similarly, the letter ζ will always denote a continuous
function from [0, oo) to (0, oo) which is also independent of any external
parameters unless explicitly noted. The precise function may change from line to
line.

A.4. The Variational Problem

Equation (A.2.3) defines a functional %δ for each δe [0,^) whose domain is the
subset

According to the discussion in Sect. B.2 of [9], for no neΈ and <5e(0,̂ ) is

e ̂ e 'ne;,, empty.
As Wίδ is © invariant, the construction in Sect. B.5 of [9] produces for each

(Se[0,|), spaces $<5 = 23nG:<5, and for each ΠGZ, g ^ S ^ n G * . Section B.2 of [9]
defines a topology on &δ for which each GjJ is homotopic to (£„ and each 23̂  is
homotopic to 93Π. By design, the function 91̂  on dδ or ©^ is continuous whenever

In order to discuss the calculus of variations on ©5, the notion of differentiation
is required:
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Definition A.4.1. Let <5e[0,i) and let ceGΛ The gradient of SΆδ at c, VSΆδ

c

is the linear functional on Γ0(Q) which sends ψ = (a, φ) to

V2ςΆδAψ) = jpK\c + tψ)\t=o = <(1 + \x\2)δDAa, FA}2

+ <[«, Φ], DAΦ}2 + < D ^ , D ^ > 2 . (A.4.2)

The hessian of 9Ia at c, Γ29lf is the quadratic functional on Γ0(Q) which
sends ψ = (α, ^) to

δ

c(ψ) = ^SΆ\c + tψ)\t=o =

\x\2)δla, a], FA)2 + <[α, Φ], [α, Φ]>2

α, Φ], D ^ > 2 + < D ^ , D ^ > 2 . (A.4.3)

In order to measure the size of F9I^ and V2(Άδ, it is convenient to introduce new
norms on Γ0(Q).

Definition A.4.2. Let <5e[0,i) and ce6Λ Define the norm || \\Ctδ on Γ0(Q) by
assigning to ψ = (a, φ) the number

This norm was chosen because it allows one to establish the following uniform
estimates.

Proposition A.4.3. Let <5e[0,^). There exists a continuous, increasing function
z( ) : [0, oo)->[0, oo) with the following property. For ce(ίδ let zc = z(<H(c)), and
for notational convenience, let || || denote || ||c δ. For any ψ, ηeΓ0(Q),

(1) \K

(2) \<Ά

(3) \W

(4) \vκδ

+φ(η)-vyίδM\ίzc\\η\\ llvll(i + llvl l) 2 ,
(5) \V2

Proof of Proposition A.4.3. This is an exercise in Holder's inequality after using
Lemmas A.4.1 and B.6.4 of [9]. The details are left to the reader. (But see
Proposition 5.2 of [6, Part I].)

By construction, F2If satisfies the uniform estimate

, , (A.4.4)

while V2ς&δ satisfies

. (A.4.5)

(Lemmas A.4.1 and B.6.4 of [9] must be used to derive Eq. (A.4.5).) A measure of
the size of these two functionals is defined next.
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Definition A A.4. Let δe[0,%) and ceGΛ Define

) \\ψ\\c,δ

For each />0, define

* 0 - M Γ sup
ECΓ0(Q)\_0$ψeE

where the infimum is over all /-dimensional linear subspaces E in Γ0(Q).
A configuration c e (Γ5 is a critical point of 91* if and only if

L = 0. (A.4.6)

The significance of yδ

c(ΐ) is the following. This number is negative if and only if there
exists an /-dimensional linear subspace of Γ0(Q) on which V2<Άδ(*) is negative.

The numbers || Γ9ίf || ̂  and yf(/) are © invariant, so they can be considered as S1

equivariant functions on 33Ί

Proposition A.4.5. Let δe[0,%), and let /e{l,2,...}. The assignment of ce&δ to
either ||F9lf.||# or yf(Z) defines a continuous function on GΛ

This section ends with the proof of Proposition.A.4.5.

Proof of Proposition A.4.5. For δ = 0, Eq. (A.4.5) implies that F 9 I ω defines a
continuous section over 33 of the vector bundle H(Q)* (see Sect. B.6 of [9]).
Similarly, ίz29I(.) defines a continuous section of Sym 2 i ϊ(β)* over 23. As || ||(.} is a
continuous fiber norm on H(Q) over 33 (Proposition B.6.2 of [9]), the assertions in
Proposition A.4.5 are automatically true.

For δ > 0, one can argue directly by adapting the arguments of Lemmas 6.2 and
6.3 of [6, Part I] to the present situation. Only the case for Γ9If.) will be given. For
notational convenience, for a sequence {cι = (Ai9 Φt)} e(£5, use Γ9Iί? || ||i? for F9I;?,
|| \\Ctδ and when c = ct. Also use F ί? Ft for F^ and i7^ when A = At. As they are
irrelevant, the δ sub and superscripts will be omitted.

Consider a sequence {ct = (Ab Φ$} e £ which converges to c = {A, Φ) e (£. Given
ε>0, there exists xpeΓ0(Q) such that | | tp | | c =l and

But ψ has compact support, so lira||tp 11̂  = 1 and \imV(Άi(xp)= VSΆc(ψ). Therefore,
l i m l l F S y ^ IIFSldl,,,. Conversely, given ε>0, there exists for each ί, v\ e^o(6)
with || ψt || i = 1 and ^91^^) > || V% \\ * - ε. As {(Ai9 Φt)} converges in C00 on bounded
domains, a diagonalization argument (as in [23]) shows that {φj has a weakly
convergent subsequence in L2

1; loc (cf. Sect. A.3.4 of [9]) with a limit,
\p = (a,φ)eL\;loc. For this subsequence, write ψi = (ai9φi). Then ^ = ((1 + 1 x 1 / ^ ,
Viφi, [ΦvΨΪ\) converges weakly in L2 to some ye I}. As y must equal
ycΞΞ((\ + \χ\)δVAa, VAφ, [Φ, φ]) on bounded domains of R 3 , one infers that y = yc

and therefore that yceL2. Further, (l + lxD^ly^eL6 is uniformly bounded (cf.
Lemma A.4.1 of [9]) and so a similar argument shows that (1 + \x\)δ \ψ\ e L6(]R3). To
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summarize, {ψj has a weak limit, ψ9 with (l-\-\x\)δψeL\.locnL6(Q) and
\\ψ\\c,δ=\\y\\2S\im\\yi\\2 = l.

Define the Banach space Hc δ(Q) as the completion of Γ0(Q) with the norm
|| ||c δ. Using mollifiers and Lemma A.4.1 of [9], one can readily show that

ψKs()
Equation (A.4.5) implies that F2If defines a bounded, linear functional on

HCjδ(Q) whose norm is just HFSIfll*.
' Due to Proposition B.4.1 of [9], {((1 + \x\)δFi9 F

7<•$;)} converges strongly in L2

to {(1 + I^D^F^, VAΦ)}. Therefore, weak L2 convergence of yt to yc implies that
) = VΆδ(ψ). As | |ψ | | c > a ^ l , one concludes that

\\Ψ\\c,δ

Therefore, HFStf.)!!* is continuous.

B.I. The Regularized Problem

Let 5 be a homotopy invariant family of subsets of 93. The regularized problem is
to use g to find a critical point of 2I*5 on 33Ί For this purpose, define

A crucial observation is

Lemma B.I.I. Let gr be as described above. Then for each δ e (0, | ) , $d as defined by
Eq. (B.I.I) is not empty.

The proof of this lemma, and of Lemma B.1.2 below, are deferred to the
end of this section.

To each homotopy invariant family g and to each δ e (0,^), assign the number

5l£= inf max 2l*(c). (B.1.2)
5 Fe& ceF V ' }

Concerning 9I|, one observes that 9I | ^ 9I g and

Lemma B.1.2. 4̂5 a function of δs [0,χ), 2I | is non-decreasing; and lim 9I | = 2Ϊ5.

The significance of 2ϊjy is provided by Proposition B.I.3 below. The statement
of the proposition refers to the family

and <Άδ(c)

Proposition B.1.3. Let $ be a homotopy invariant family of compact subsets of 33.
Then for each δ e (0,χ), there exists a sequence {(Fh cf)} C YδC$) with the property
that the sequence {cj converges in S*5 (as defined in Sect. A3) to cd($), and this
cδ($) is a critical point of 2I*5 with critical value 9ί|.

The proof of Proposition B.I.3 occupies Sects. B.2-B.4. The proof requires the
following technical lemmas.
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Lemma B.1.4. Let Ψ: [0,1] x 93->(£ be a continuous map. Suppose that Ψ(0, •)
= identity. There exists a continuous map h: [0,1] x 93->© such that h(0, -) = l and
(hΨ)( ) maps [0,1] x 93 continuously into S.

Lemma B.1.5. Let F c S be a compact set. For some δe[0,j% suppose that
Fc&δ. Given a neighborhood, F, of F in 33, and ε>0, there exists a homotopy
τ: [0,1] x &->& such that τ(l, •) maps S continuously into S δ, for all t e [0,1],
τ(ί,F)CV and for all beF, 9l*(τ(l,b))<ε + supF5IΊ

The proofs of Lemmas B.I.1-2 and B.l.4-5 complete this section.

Proof of Lemma B.I.I. Proposition B.5.2 of [9] provides a continuous map
q: [0,1] x [0,1] x 23->93 with the property that for each ε e (0,1], q(ε, , ): [0,1]
x 93-+93 satisfies q(ε, 0, ) = identity and q(ε, 1, •) maps 93 continuously into 93d

for each δ e [0,i). If F e g, then as long as ε e (0,1), qε(l, F) = q(ε, 1, JF) e g5.

/ o/ Lemma B.I.2. The assertion that 2I | ̂  2Ϊ£ when ^ > δ > γ ̂  0 follows from
the fact that for any c e (£δ, SΆδ(c) ^ W{c) for δ ̂  y. To prove the second assertion,
choose ε > 0 and Fe g with max F 9I^9I 5 + ̂ ε. According to Proposition B.5.2 of
[9], F(ε) = qε/3(lf F) has the property that F(ε) cf]^Bδ and the max of 91 on F(ε) is

less than 2I5 + f ε. The fact that F(ε) C f] &δ implies that 9Iδ is continuous on F(ε)

for all δ e [0,i). Now, for any fixed b G $δ,

and this limit is uniform on compact subsets of f] $δ. Thus, <5(ε)>0 exists such
δ

that for all δe[0,δ{ε))9 and for all beF(ε\ 9Î (fc) < 9IS + ε. For such δ,
| + ε, too.

Proof of Lemma B.1.4. The projection map, (£->93 (see B.I of [9]) produces a
continuous g: [0,1] x 93->(50 such that (g Ψ): [0,1] x 33-»93. Section B.5 of [9]
defines a © equivariant map ή: ©->S2 with the property that 93 = n~1 (north pole)
(Eq. (B.5.2) of [9]). The homotopy lifting property of the fibration
S1 -+ SU(2) ̂  S2 provides a continuous /: [0,1] x S->SU(2) with the property
that Z(0, ) = leSU(2) and

π.l = ή(g-Ψ). (B.1.3)

By using the embedding of SU(2) in © (= CGO(R3 SU(2)) as the constant maps, one
obtains Γιg\ [0,1] x 93-*©. Equation (B.1.3) implies that (Γ1g Ψ)( ): [0,1]
X93-+93, and (Γ V Ψ)(0, .) = identity.

Proof of Lemma B.I.5. Given F and V, it follows from Proposition B.5.2 of [9] that
there exists λ0 e(0,1) such that for all 0<λ<λo, the homotopy q(λ, •, ): [0,1]
x93->93 satisfies q(λ,t,F)CV for all ί e [ 0 , l ] and also q(λ91, •) maps 93

continuously into $δ. As <?(•, , •) restricts to a continuous map from [0,1]
x [0,1] x 93δ to ®5, for each b e F, there exists λ(b) > 0 such that for all 0 < λ < λ(b),

λ, l,b))<supF%δ + ε. But 2ίδ is continuous on 93δ so there is a neighborhood,
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NbC$δ ofq(λ, l,fe) such that for all b'eNb9 gi*(&O<supFffl* + ε. As U flf W ) ,
beF

l, )(NbnF) is an open cover of F and F is compact, this cover has a finite
subcover. As a consequence, there exists λ(F9 ε) >0 such that for any 0<λ<λ(F9 ε),
τ = q(λ, , •) satisfies Lemma B.1.5's requirements.

B.2. Minimizing Sets for 3ίδ

Let 5 be a homotopy invariant family of compact subsets of 93. The purpose of this
section is to construct min-max sequences {(Fi9 ct)} in Yδ($) with special properties
which will facilitate the proof of Proposition B.I.3. The goal is to use appropriately
chosen, "pseudo-gradient" homotopies of 93 to construct such {(Fi9 ct)} for which
each Ci satisfies a priori estimates which make it look like a solution to the
variational equation of 2Γ5.

Proposition B.2.1. Let g be as described above. Let δ e [0,χ). Given any ε>0, there
exists (F, c) e Yδ($) with the following properties:

(1) 2I*(c)

(2) \\VVL%<e,

(3) Every b = (A,Φ)eF satisfies V%VAΦ =

(4) Every b = (A,Φ)eF satisfies

(B.2.1)

The proposition is proved in four steps. The first produces a homotopy of 93
which deforms a given Ge$δ to Gxe $δ satisfying Assertion (3). A second
homotopy of 93 is then constructed which preserves the condition expressed in
Assertion (3) and deforms Gx to F' e ffi which satisfies Assertions (3) and (4). Both
these homotopies decrease 2lΛ For the third step, a G e %δ is chosen to satisfy
max G 3I 5 <9ί | + με for a suitable μe(0,1). The resulting F' is deformed by a
pseudo-gradient vector field for 2I*5 to F" e ffi so that at the points in F" where 2I*5 is
maximized, Assertions (l)-(4) are satisfied. Then the first two homotopies, above,
are reapplied to obtain F e ffi whose points where 9Ia is maximal are in the same
(5 orbit as those in F" where %δ is maximal. For this F, Assertions (l)-(4) are
satisfied. A similar technique was used to prove Proposition 5.2 of [6, Part I] . See
also Sect. 5 of [22].

The remainder of this section contains the proof of Proposition B.2.1. The first
step is to use Proposition B.3.2 of [9]. It provides a continuous map c0:93<5->93(5 for
each <5e[0,i) which sends c = (A,Φ) to co(c) = (A,Φo(c))9 where V%VAΦo(c) = 0.

Lemma B.2.2. Given g and δ as in Proposition B.2.1, and given ε > 0 and Geffi,
there exists a homotopy τγ: [0,1] x 93-»93 such that F = τ1(l,G)e^δ has the
properties:

(1)

(2) F satisfies Assertion (3) of Proposition B.2.1.
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Proof of Lemma B.2.2. Choose an open Fc33 that contains G and construct
τ: [0,1] x 33->$for G, V, andεas specified by Lemma B.1.5. Leti^ =τ(l, G). Then
F1 satisfies Assertion (1) of Lemma B.2.2. Now consider the map c: [0,1] x 33->33
which sends (ί, c) to

c(t, c) = c + t(co(c) - c). (B.2.2)

Proposition B.3.2 of [9] insures that c is continuous and that it maps
[0,1] x &*->©* continuously. For fixed c e S 5 , 2I*(co( ,c)) and also
9ϊ(co( ,c)) are non-increasing on [0,1] due to their convexity in Φ. Let
τ': [0,1] x »->95 be defined so to send (ί, ft) to

2ί,6) for ί e [ 0 , i ] ,

2ί-l,τ(l,6)) for ί e [ i , l ] .

Lemma B.1.4 provides a continuous /z: [0,1] x 9§->© such that τί = hτ' is a
continuous homotopy of $δ for every 5 e [0,|). This τx satisfies the assertions of
Lemma B.2.2.

Lemma B.2.3. Given $ ^ ^ <5 #s m Proposition B.2.1, and given ε>0 αrad Ge $δ,
there exists a homotopy τ 2 : [0 , l ]xB->S such that F = τ2(l,G)e<&δ has the
properties

(1) maxF9ί^<maxG9I^ + ε, and

(2) F satisfies Assertions (3) and (4) o/ Proposition B.2.1.

The proof of Lemma B.2.3 is delayed as it requires the construction of a specific
homotopy of 23. To begin, let δe[0,%) and let λ:$δ-+(0, oo) be a continuous
function. Then A induces a continuous function, X: ©δ->C°°(R3; ΊR3) which sends
c e ^ and x e R M o X(c)(x) = A(c) x. Thus, any A:»5->(0,oo) defines a map,
denoted A*, from $δ to S 5 which sends c = (A, Φ) to the pulled back configuration

λ*{c) = (X*(c)A, He) Φ), (B.2.3)

where (X*Φ)(x) = Φ(λx) and (

Lemma B.2.4. Lei /I: [0,1] x ©^^(0, oo) be continuous. For each t e [0,1], define
λ*(t, -): 33<5->93<5 as above. Then the assignment of (ί, c) e [0,1] x &δ to λ*(t, c) e 95̂
is continuous.

Proof of Lemma B.2.4. The fixed product structure o n ? = R 3 x SU(2) identifies
®δ as a subset of x C°°(]R3) (Sect. B.5 of [9]). The map λ*( , ) is continuous with

respect to the induced topology. The reader can check this using the definitions in
Sects. A.3, B.l-2 of [9]. It remains to show that the composition, SI*(y|*( , •))•
[0,1] x ^-•[O, ex)) is continuous. However, 9Iδ(A*( , )) is a composition. First
define /: ®^C°°((0, oo)) by sending c e $δ and t e (0, oo) to

/(c, t) = ί<(l + ί"2i l 2 ) ^ , F^>2 + r ^ ^ Φ , D^Φ>2. (B.2.4)

The map / is evidently continuous, and by viewing / as a continuous map from
2V5 x [0,oo)^(0,oo), one observes that 9Iδ(>l*( , •)) is the continuous map
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Now, for each δ e [0,i), let ψ = {(A, Φ)e$δ:FA^0 and DAΦφ0}. This ψδ is
an open, dense set in 33δ.

Lemma B.2.5. For fixed c e ψ, the C00 function l(c, ) : (0, oo)->(0, oo) given by Eq.
(B.2.4) has exactly one critical point, its minimum s(c). The assignment of c to s(c)
defines a continuous map from 9βδ to (0, oo).

Proof of Lemma B.2.5. First, if c e Sβδ, then l(c, t) goes to oo as ί->0 or oo and so
l(c, ) has at least one critical point on (0, oo). If s is a critical point of l(c, ), then

0 l ( ) \ (l

+ 2δ((l+s-2\-\2y1+δFA,FA)2-S-
2<DAΦ,DAΦ)2 (B 2 5)

By a direct calculation using Eq. (B.2.5), one can check that

p(c, .)\s>0. (B.2.6)

Thus, /(c, •) has only minima, and hence just one. Equation (B.2.6) and the
implicit function theorem imply that the unique minimum, s(c), is a continuous
function of c.

These last two lemmas are applied in

Lemma B.2.6. Given an open set Vc$5dsuch that $δ\>$δc V, there exists a continuous
map m: [0,1] x 33<5-*23<5 with the following properties: (1) m(0, ) = identity; (2) m
fixes ^Bδ\^βδ; (3) For all c e ®δ, 2I*(m( , c)) is nonincreasing; and (4) for c e &*\V,
m(l,c) = s*(c), where s*( ) is constructed from s( ) of Lemma B.2.5 with Eq.
(B.2.3). 77ms, for such c, m(l,c) satisfies Eg. (B.2.1).

Proo/ o/ Lemma B.2.6. As 93̂  is paracompact, there is a ρ G C°(?Bδ; [0,1]) which is
identically 1 on 33^7 and identically 0 on ^Bδ\ψδ. Consider the map from [0,1]
x IB3 to (0, oo) which sends (ί, c) to λ(t, c) = 1 + ρ(c)t(s(c) -1), where Lemma B.2.5

defines s(c). This A( , ) is continuous on its domain of definition. For c G 95δ\V,
λ(l,c) = s(c), and for C G S B ^ , λ(t,c) = l for all ί e [ 0 , l ] . Define m to send
(ί,c)G[0,1] xS*5 to λ*(t,c)e$δ where λ*(-, )is given by Lemma B.2.4.

Proof of Lemma B.2.3. Given ε>0, one can construct readily a homotopy,
τ 0 : [0,1] x » ^ » such that G ^ τ o ί l , G) satisfies

(1)

(2)

One can require, if need be, that G' be arbitrarily close to G. Indeed, because G is
compact, one can find aeΓo(AdP®T*) of arbitrarily small Cfe, /c^0 and L2

X

norms such that for all CGG, c + (a,0)etyδ. Then for (t9b)e[0,1] x Sβ, set
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/ Λ
With I G\ - J in place of (G, ε) of Lemma B.2.2, construct the homotopy

τ1: [0,1] x 23->23. Let F ^ T ^ I , G'). Notice that F'cψ and therefore, since F is
compact, there is an open set VC 23δ such that F n F = 0 and Sβ*\φ* c K Use F and
Lemma B.2.6 to construct the map m: [0,1] x S5->955 of that lemma. Notice that
for all c e S&\

SΆδ{m{\,c))^SΆ\c). (B.2.8)

Finally, for (ί, b) e [0,1] x 23, set

ίτo(3ί,fe) if ίe[0, i]

τi(ί,6) = |τ 1(3ί-l,τ0(l,fc)) if ί e [ i f ] (B.2.9)

[m(3ί-2?τ1(l?fo)) if ί e [ f , l ] .

Then τ2 is a continuous map from [0,1] x 23 to 95 with τ2(0, ) = identity. Lemma
B.1.4 provides ft: [0,1] x&->® such that τ2 = ftτ2 maps [0, l ]x©-^S con-
tinuously. Due to Eq. (B.2.8) and Lemma B.2.2, τ2(l, G) satisfies Assertion (1) of
Lemma B.2.3. Assertion (2) of that lemma is satisfied because for c e 2 3 ^ Lemma
B.2.6 assures that m(l, c) satisfies Eq. (B.2.1); and if c = (A, Φ) additionally satisfies
V*VAΦ = 0, then m(l,c) = (A',Φ/) satisfies V%VA.Φ' = Q.

Proof of Proposition B.2.1. Fix μ>0. Given ε, choose Geg*5 such that
maxG2I^<2I| + μs. Using G and με in Lemma B.2.3, construct the homotopy τ2

and let F = τ2(l, G). This i7' G ffi satisfies Assertions (3) and (4) of Proposition B.2.1
and it satisfies Assertion (1) with 2με instead of ε. The goal now is to construct a
homotopy of 23, τ4, which satisfies Assertions (l)-(4). For this purpose, define the
sets

and (B.2.10)

where z( ): [0, oo)-»[0, oo) is the continuous function in Proposition A.4.3. Define
also a number

« t = max 2I5(fo). (B.2.11)
bed(ΩmF')

Next, a pseudo-gradient "vector field" for S&0 is required. To construct one,
note that at each b e SB*5, there exists a section ψb e Γ0(Q) such that | |φb || b = || P9Î  || ̂ ,
and P9l^(t^6)^ - ^ | | FSIfl^. As S δ is paracompact (Sects. B.1-B.2 of [9]), one can
construct with {ψb, b e Uδ} and a locally finite partition of unity, a continuous
ψ: $*->Γ0(β) with the property that at each ft e ©5,

and
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Let 0( •) be the standard step function on R; θ(t) = 1 if t > 0, and θ(t) = 0 if t < 0. A
map v:$δ->Γ0(Q) is defined as follows: In &*\Ωl9 set v = 0 and in Ωl9

(B.2.13)

Observe that t; is continuous and ||u(ft)||&< 1.
Define a continuous map £: [0,1] x &->& by sending (ί, ft) to

ΰ(t,b) = b + tv(b). (B.2.14)

When ft £ Ω l9 then £(ί, fc) = fc for all ί e [0,1]. But when beΩl9 one computes with
Assertion (2) of Proposition A.4.3 that

(B.2.15)

Now, define a map τ 3 : [0,1] x 93->(£ by sending (ί, b) to

fτ2(2ί,6) if ί ε [ 0 , i ] ,
if ί e [ i , 1].

This map τ3 is continuous, and τ3(0, ) = identity. Lemma B.1.4 provides a
continuous h: [0,1] x 33->© such that τ3 = Λτ3 maps [0,1] x 93 continuously into
93 and actually with image in $*. Let F" = τ3(l9 G).

Lemma B.2.7. Define τ 3 and F" as above. Then

// ceF" satisfies 9lί(c) = maxF»9lί, ίften

(2) 9Iδ(c)<2r| + 2με,

(3) || PSI^c)!^ ^max[16(1 + 8z(2I^)))με, (16(1

(4) c = (4,Φ) 5αίϊs/f^ V%VAΦ = 0 and Eq. (B.2.

Proo/ of Lemma B.2.7. Assertion (1) is true because τ3(l, ): S->©5 continuously.
Assertion (2) is true because it is true for J v = τ2(l, G) and maxF"2I<5^maxF,2l<5.
Assertion (3) is true because of Eq. (B.2.15). Every c e F" at which %δ is maximal lies
in the © orbit of F%F'c\Q^). For this same reason, Assertion (4) is true.

To complete the proof of Proposition B.2.1, one must make note of the fact that
the maps c: [0,1] x 93-+93 of Eq. (B.2.2), and m: [0,1] x »<5->93^ of Lemma B.2.6
have the following properties: Neither increases 9Γ5 as a function of t e [0,1] for
fixed b e 93*; if b = (A, Φ) ε 93* satisfies V\ VA Φ = 0, then c(ί, b) = b for all t e [0,1] if
b satisfies Eq. (B.2.1), then m(t, b) = b for all t e [0,1] and if b satisfies V\ VA Φ - 0
then m(l9b) = (A\Φ/) satisfies V\.VA.Φ' = Q too.

Construct τ 4 : [0,1] x 23->93 as follows:

U(t,b) =

τ3(3ί,b) if ίε[0,i]

if ί ε [ i f ]

if tε[f,l].
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Here hγ and h2 are maps from [0,1] x 93->© as provided by Lemma B.1.4. Let
F = τ4(\, G). Then apropos the comments of the preceding paragraph, F satisfies
Assertions (l)-(4) of Lemma B.2.7. This F also satisfies Assertions (3) and (4) of
Proposition B.2.1. By choosing μ = [16(l + 8z(9ίίϊ + l ) ) ] " 1 ( l + ε ) " 2 ε 2 , Assertions
(2) and (3) of Lemma B.2.7 insure that this F satisfies Assertions (l)-(4) of
Proposition B.2.1.

B.3. Convergence of Min-Max for S&δ

The proof of Proposition B.I.3 requires an assertion which gives a sufficient
condition for a sequence in (ίδ to contain a convergent subsequence. The
proposition below provides this assertion by establishing a modified form of
Condition C for 2I*5 on 6Λ

Proposition B.3.1. Let δ e (0, \) and neZ. Suppose that {ct} C &n is a sequence with
the following properties:

(1)

(2)

(3) For each i, write ct = (A, Φ).

Then V*A VA Φ = 0 and

(4) Equation (B.2.1) is satisfied by (A, Φ).

Then, there exists a sequence {g^ C © and a subsequence of {gf^ which converges
strongly in the L2

1; loc topology on K* to a critical point, c, of SI*5 on (£jj and 9Iδ(c) = 91^.

The proof of this proposition occupies the remainder of this section. There are
two aspects to the proof. The first aspect establishes the existence of the sequence
{Qi} C © for which a subsequence of {gici = (Ah Φt)} has the property that {At}
converges strongly in L2

1; loc and {ΦJ converges strongly in L2

2;loc to limits A and Φ.
At the end, one concludes that (A, Φ) e (Γ5 is a critical point of <$ίδ.

The second aspect to the proof of Proposition B.3.1 is to prove that for that
locally convergent subsequence {(Ai9 Φj)} of the preceding paragraph, the sequence
of curvatures {((l + lxD^F^D^.ΦJ} converges strongly in L2.

The first aspect is summarized by

Lemma B.3.2. Let δe[0,^) and let {cJcG? be a sequence which satisfies
Assumptions (l)-(3) of Proposition B.3.1. There exists a sequence {gt} C© and a
subsequence of {gtc^ with the following properties: For that subsequence, write
{gici = (Aί9 Φj)}. Then {A^ converges strongly in L 2

1 ; l o c(T* x su(2)) to A e L 2

1 ; l o c(T*
x su(2)); and {ΦJ converges strongly in L2

2;loc(AdP) to ΦeL 2

2 ; l o c(AdP). Further,
(A, Φ) G dδ and it is a critical point of %δ.

It should be stressed that Lemma B.3.2 holds for <5 = 0.

Proof of Lemma B.3.2. In the δ = 0 case, Theorem 5.6 of [6, P a r t i ] and an
argument which is formally identical to the Appendix of [22] provide a specific
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choice of {gt} C © for which {gf^ has a subsequence {(Ai9 Φ;)} with the following
properties: {At} converges strongly in L2

1; loc to some A; likewise {Φf} converges
strongly in L2

1; loc to some Φ. Further, (A, Φ) e (£ and it is a critical point of 21. These
arguments generalize in a straightforward way to the δ > 0 cases. The convergence
of {ΦJ in 14; ioc follows from Proposition B.3.3 of [9]; cf. the proof of Lemma A.4.4
of [9]. The details are left to the reader.

Proof of Proposition B.3.1. Now the Proposition is a direct corollary to Lemma
B.3.2 and the lemma below.

Lemma B.3.3. Let (5e(0,χ). Let {c^{Ab Φί)}C(£<5 be a sequence which satisfies
Assertions (l)-(4) of Proposition B.3.1. Assume in addition that {At} converges
strongly in L2

1; loc and that {Φf} converges strongly in L2

2;loc. Then {ct} converges
strongly in the L2

1; loc topology on GΛ

According to Lemma B.3.2, the given sequence {(Ai9 Φ^} converges weakly in
^ i ioc x^2;ioc t o c = (A,Φ) which is in Gδ and a critical point of 2Γ5. To prove
Lemma B.3.3 one need only show that lim2Γ(c;) = 2Γ(c) (see Sect. A.3). Note
that Lemma A.4.5 of [9] then insures that the sequence of curvatures
{((l + \x\)δFΛi,DΛiΦύ} converges strongly in L2.

Proof of Lemma B.3.3. It is convenient to establish the following notation: For
e a c h i, l e t (Fi9 Gi9 Vi9 F2If , M l , , ) m e a n (FΛ, DAΦ, VAi VSBLδ

c, \\ \\Ctδ) f o r

c = (A, Φ) = ct. Let yt = ((1 + | x | / ^ G,)
The first observation is that {yt} converges weakly in L2, and strongly in L2

0C.
Assumption (3) of Proposition B.3.3 and Lemma A.4.1 of [9] insure that the
sequences {(l + l x D ^ G J in L2 and {(1+ |x|)d GJ in L6 converge weakly, but
strongly in L2

OC and L6

loc, respectively.
To obtain strong L2 convergence from strong L2

0C convergence, Lemma A.4.6
of [9] will be the primary tool. Step 1 is to prove

Lemma B.3.4 Let {c{ = (Ab Φ^C^ί3 be as in Lemma B.3.3. Then the sequence
{((1 + \x\)δ[Φh FJ, [Φ f, GJ)} converges strongly in L2.

Proof of Lemma B.3.4. Let β e C°°(1R3; [0,1]) be the bump function of Sect. A.3.
For each Re (I, oo), let βR( ) = β(( )/R).

For each /, let ψi = ([ΦbGJ,0)eΓ(Q). Be aware that Assumption (3)
and the maximum principle imply that |Φi |< l . Thus, ψieL2(Q). Further,
p.φ. = ([φ.? p. GJ, 0) + ([Gf, GJ, 0), and so (1 + \x\)δ Vi\pi is also uniformly bounded
in L2. Indeed,

and so Holder's inequality bounds ||(1 + W\Gb G J | | | by 4 | |G f | | 2 ||(1 + WGiWl
For R e [1, oo), the preceding discussion implies that although (1 —βR)ψi is not

compactly supported, it is the limit of such with respect to the norm || \\itδ and
additionally, {\\(i-—βR)ψi\\i,δ i s bounded uniformly in R and i. Therefore,
Assumption (2), and Eq. (A.4.5) imply that

0 (B.3.2)
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In long hand, F2I?((1 -βR)ψd is

<(1 + \x\2)δ(l-βR) [G,, GJ, Fty2 - <(1 + \x\2fdβR A [Φ;, GJ, F,>2

Fb ΦJ], F,>2 + <(1 -i?R) H i , , GJ, Φ ;], G ;> 2.

(B.3.3)

In deriving Eq. (B.3.3), the identity DADAΦ = [FA, Φ] has been used. Equations
(B.3.1-3) after rearranging imply the following: Given ε>0, there exists i(s)< oo
which is independent of R such that for all ί>i(έ),

<(1 -βR) (1 + \x\2)δίΦh F J , [Φ, , F J > 2 + <(1 ~βR) [Φ,, GJ, [Φ,, GJ> 2

(B.3.4)

Because <5e(0,i), Eq. (B.3.4) and the uniform bounds on {IKl + M ) ^ ! ^ | |G f | | 2 ,
||(1 + |x|)*GJ 6} imply via Lemma A.4.6 of [9] the convergence assertion of Lemma
B.3.4.

Step 2 in the proof of Lemma B.3.3 is to prove

Lemma B.3.5. Let {ct = (Ai9 Φt )} C &δ be as in Lemma B.3.3. Then the sequence
{(1 — \Φi\)} converges strongly in C°(IR3). In particular, given ε>0, there exists
R<oo and i(ε) < oo such that for all i> i(ε), sup 11 — |Φf|(x)| < ε.

\x\>R

Proof of Lemma B.3.5. Since {(1 + |x|)<5Gί} is uniformly bounded in L6, {GJ is
strongly convergent in L6 (Lemma A.4.6 of [9]) and so {d(l —\Φi\)} is strongly
convergent in L6(Γ*) (Kato's inequality, Sect. A.4 of [9]). The lemma follows by
demonstrating the strong convergence of {(1 — \Φι\)} in II for some 1 ̂ p < oo (cf.
Lemma A.4.4 of [9]). Now, because {HG^} is uniformly bounded [Assumption
(1)], so are {μ( l- |^ l ) l l 2 } and {||(1 — |Φ4|)||6> (Lemma A.4.1 of [9]). Now,
d(l - |φ.|) 3 = 3 (1 - |Φ;|)2d(l - \Φt\)9 and so Lemma A.4.1 of [9] implies that for any

+ 11(1 —IΦ.D^^^^i i^.
The preceding equation implies the inequality

\\(ί-βκ)(l-\Φt\)3\\6^z{Kl-βIdd(l-\Φi\)\\6 + R~1} (B.3.5)

Finally, the strong convergence of d{\ — |Φf|) in L6 and Eq. (B.3.5) imply with
Lemma A.4.6 of [9] that {(1 — IΦJ)} converges strongly in L 1 8(R 3). As previously
remarked, {(1 — |Φf|)} converges strongly in C°(1R3). The second claim of
Lemma B.3.5 is a direct consequence of this last conclusion.

Step 3 of the proof of Proposition B.3.1 proves

Lemma B.3.6. Let {c~(Ai9 Φ^jcK5 be as in Lemma B.3.3. Then the sequence
{(Φb ViΦi)} converges strongly in L2(T*).

Proof of Lemma B.3.6. For each i, let wt = i ( l — |Φj|2). Due to Assumption (3) of
Proposition B.3.1,

- M H G I 2. (B.3.6)
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Also, {dWi} is uniformly bounded in L2(T*) and {wt} is uniformly bounded in
L6(T*). It is therefore permissable to multiply both sides of Eq. (B.3.6) by wt and
then integrate both sides over R 3 . The resulting expression from the left-hand side
can be manipulated by an integration by parts, and no boundary terms arise. One
obtains

<dwί,dwj>2 = <w iG i,G i>2. (B.3.7)

Let (A, Φ) e &δ be the limit of {(Ai9 ΦJ} in the sense given by Lemma B.3.2. Since
V2

AΦ = 0, if one sets w = i ( l -\Φ\2) and G=VAΦ, then also

. (B.3.8)

Because {GJ converges strongly in L2

loc to G, and because of Lemma B.3.5,

> 2 . (B.3.9)

Because dwt= - ( Φ , , G;), Eqs. (B.3.7-9) imply that

μm| |(Φ £ ,G ί ) | | 2 = | | (Φ,G) | | 2 . (B.3.10)

The strong convergence of {{Φh Gt)} to (Φ, G) in L2 is now observed as a direct
consequence of Lemma A.4.5 of [9] and Eq. (B.3.10).

For the final step to the proof of Lemma B.3.3, one should observe that
Lemmas B.3.4-B.3.6 imply that {GJ converges strongly in L2 to {G}. Since {FJ
converges strongly in L2 to {FA}, the convergence of {cj in the L2

1; loc topology on (£
has now been established. To prove that convergence is in the L2

1; loc topology on
G?, one must utilize Assumption (4) of Proposition B.3.1. For this, one requires

Lemma B.3.7. For δ e [0,i), let (A, Φ) sd3 be a critical point of SΆδ. Then (A, Φ)
satisfies Eq. (B.2.1).

Proof of Lemma B.3.7. The case δ = 0 is proved as Corollary II.2.2 of [11], The case
(5e(0,i) is established as Corollary D.I.5. Certain a priori estimates on critical
points of 2Γ5 in ϋδ that one requires can be found in Sects. C.2-4, here. (Warning:
The definition of a critical point given in Sect. A.4 here precludes concluding this
lemma directly from Lemma B.2.5.)

Proof of Lemma B.3.3 (completion). Lemma B.3.7 and the strong L2 convergence
of {(Fi9 Gf)} to (FA, VAΦ) and Assumption (4) of Proposition B.3.1 imply

Jim ||(1 + M ) ^ | | 2 = ||(1 + \x\)δFA\\2.
ι-κχ>

Thus, Jim 9lδ(cf) = 9ίa(c) and {cj converges strongly in the L2

1;loc topology on &δ.

B.4. Final Arguments for SΆδ

The purpose of this section is to complete the proof of Proposition B.I.3 by sewing
together the assertions of Propositions B.2.1 and B.3.1.
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Proof of Proposition B.1.3. Let g be as assumed in Proposition B.I.3 and let
<5e(0,i). For each me{1,2,...}, let ( F m , c M ) e ^ ( g ) be the data provided by
Proposition B.2.1 with ε = m~1 there.

Consider the sequence {cm} C S*5. According to Proposition B.2.1, this sequence
satisfies Assumptions (l)-(4) of Proposition B.3.1 with 91^ = Sljy. Proposition B.3.1
asserts that this sequence has a subsequence, {cj, for which a sequence {grjc©
exists such that {ftcj converges strongly in the L2

1; loc topology on Hδ to a critical
point of *Άδ. A priori, this critical point, c, satisfies SΆδ(c) = 9ϊ|.

Now consider

Lemma B.4.1. Let {(Fb cf)} C ̂ ( g ) , {gfj C (5 and c e dδ be such that {gfj} converges
to c in the L2

1; loc topology on GΛ Then there exists {(F'i9 bt)} C Y%%) and {ftj C © such
that {hibί} converges to c in the C00 topology on &δ.

Given Lemma B.4.1, the proof of Proposition B.I.3 is completed by observing
that because π:(£<5-*93<5 is continuous, { π ^ ft,)} converges to π(c) in 9Sδ. But, for
each ί, there exists lt e SU(2) such that lt n{hιb^ = bt. Since SU(2) is compact, {lt}
has a convergent subsequence with limit /. Then / π(c) = cδ(g) e 93̂  and the
corresponding subsequence of {fcj converges to c^((5) in $δ.

Proof of Lemma B.4.1. Let^S: [0, oo)->[0,1] be the bump function of Sect. A.3 and

for each ne{l,2,. . .}, let j8Λ(.) = i8(( )/i).
The L2

1; loc convergence of {gf^ to c means that one can choose for each i, an
integer n(ί) such that {gi(ci + gϊ1βnii)(c — gic$)} converges to c in the C°° topology
on (Γ5 and such that for each i and t e [0,1] (see Proposition A.4.3),

\&\Ci+ft- 'ίAwίc - gfid) - w\cd\ < ί r x .

For each z, there exists a neighborhood 95,-C β̂ of cf and a function / f : 33-•[(), 1]
such that (1) f = 0 on 93\33f, (2) ^ ( c j = 1 and (3) for all (ί, b) e [0,1] x 3S/?

The convexity of 31* with respect to compactly supported changes in Φ allows
one to add to each ct a compactly supported ψi = (09φi) with the following
properties: First, {φt} converges to zero in L2 (AdP)nC 0 0(AdP) and second,

With a suitably chosen //: $8->[0,1] with f{{c^) = 1 and with support on SB,-, one
can require that for all b e Fi9

Wφ+ft'Qήψi + g;x Mb) finite - gfid) < ̂ f e + V* + 9Ϊ 'βn^c - gfd).
(B.4.1)

Now, for each i, define a map Lt: [0,1] x ©-»(£ by sending (ί, fc) to

L,(ί, 6) = 6 + tf/φ)Ψi + ft" 'ί/iίfe) (c - 0 A)

Note that Lf(0, ) = Identity|& and that Lf maps [0,1] x S 5 into &δ.
Define FJ to be (ft Q (1, F f) with ft given by Lemma B.I.4. Due to Eq. (B.4.1),

(F'i, h-(ci + ψi + gϊ1βn(i)(c--gicd))e Ύδ{%) and by construction satisfies Lemma
B.4.Γs requirements.
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C.I. A Priori Estimates

For the proof of Theorem A. 1.2, it is necessary to establish the following
proposition.

Proposition C.I.I. Let neΈ, and let $ be a homotopy invariant family of compact
subsets of 33Π. Let {cδ($) e 8 ^ e ( 0 , ^)} be the set of configurations that is provided
by Proposition B.L3. If 21^>4π|n|, then there exists a decreasing sequence
Λ = {δί9δ2, ...}C(0,χ) with limit zero such that the sequence {cδ(^):δeA} con-
verges in 93Π to c(g), a critical point of 21 with critical value 2IS.

The proof of this proposition constitutes Sects. C.1-D.4, and the full argument
is summarized in Sect. D.4. A crucial part of the proof is to obtain good a priori
estimates on the configurations cδ(^). These are derived from the variational
equations of 5Γ5: If (A, Φ) e dδ is a critical point of 9ίδ, then

A0']=O9 (C.l.la)

DA*DAΦ = 0. (C.l.lb)

If one considers Eq. (C.I.I) as equations for the curvatures, (FA, DAΦ\ then it is
useful to consider also the identities

DΛFΛ = 09 (C.1.2a)

DADAΦ + tΦ,FA-] = 0. (C.1.2b)

Together, Eqs. (C.I. 1-2) form an elliptic system for (FA,DAΦ). This fact is made
transparent by using these equations to derive the following second order
equations for (FA,DAΦ): For notational convenience, let σ = (l + |x|2)1 / 2 and let

= (*σδFΛ9DΛΦ)€ x Γ(AdP®Γ*). Also, x^d\x\2.

+ δ*DA*(σ-2XΛf)-δDA*(σ~2XΛ

These equations are derived as in the δ = 0 case which is presented in Ch. IV.9 of
[11].

The estimates that are required for Proposition C.I.I are formally similar to
those derived for solutions to Eq. (A. 1.1) in [9, Chap. IV]. The difference here is
that more specific information is required. For this purpose, introduce for each
K > 0, and c = (A, Φ) e (£, the set C7[c] (K). (See Definition C.2.8 of [9].) This set is
defined by first setting

U[c] (K) = ίx e R 3 : ί d3y(\FA\
2 + \DAΦ\2) > K

and then by setting

ί/[c] (κ) = {xeR 3 : dist(x,
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Three important and obvious properties of U[c~\ (K) are summarized by the
next lemma.

Lemma C.1.2. For each cedandκ>0 define the set 17 [c] (K) by Eq. (C.I.4). Then
(1) (7[c] (K) is bounded.
(2) The number of path components of U\_c\(κ), n\_c]{κ), is bounded by

κ~lς&{c).
(3) The diameter of any path component of U[c](κ) is bounded by

4κ-1nic\(κy1<Ά(c).

Proof of Lemma C.1.2. See the proof of Lemma C.2.9 of [9].
The first set of estimates that are required for the proof of Proposition C.1.2 are

the sup norm estimates below.

Lemma C.1.3. Let δ e [0, \) and let c = (A, Φ) GUδbea solution to Eq. (C.I.I). Then
both | | /1 | oo and \\g\\n are bounded uniformly in δ knowing a priori only a bound for

The second set of estimates states that / and g are pointwise small outside of
Uίc](κ).

Lemma C.1.4. There exist continuous functions λ: [0, oo) x (0, l]-»(0,1] and
R: [0, oo) x (0,1]-• [0, oo) with the following significance: Let δ e [0,£)
and let c = (A,Φ)eίίδ be a solution to Eq. (C.I.I). Given £6(0,1], let
U = U[c] (λ(SΆ\clε)). At each x e R 3 with dist(x, U)>R(λ(nδ(c\ε)),

(1) *

(2) σ

(3) l - |

The remainder of this section contains the proofs of Lemmas C.1.3 and C.1.4.

Proof of Lemma C.1.3. The δ = 0 case is stated as Proposition IV. 10.6 of [11]. The
case δ > 0 is proved by mimicking the δ = 0 proof. The details are nearly identical
and omitted. One obtains the uniform estimate

with ζ( -) continuous and independent of c e K and δ e
To prove Lemma C.1.4, introduce the notation Ψ = (fg)eΓ j^φ(AdP x T*)

Proof of Assertion (1) of Lemma C.1.4. Observe that contracting both sides of Eq,
(C.1.3) by Ψ yields the scalar equation

(C.1.5)
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where z<oo is independent of ce(ίδ and (Se[0,|). By replacing z by another
constant independent of c e (Γ5 and δ e [0, %), one obtains

(C.1.6)

Introduce for each Re[1, oo) the function βR(-) = β(( )/#) with β the bump
function from Sect. A.3. Introduce the Green's function (4π |( ) — y\) ~* for d*d with
singularity at yeR 3 .

Multiply both sides of Eq. (C.1.6) by j8|(4π|( ' )-)Ί)~ * and integrate over R3.
Then integrate by parts to obtain

(C.1.7)

The right-hand side of Eq. (C.1.7) is estimated in the following way: First, because
\d*dβl\σ4δ^R-2+4δ and \dβR\ σ4δ<R~1+4δ, the last term on the right-hand side of
Eq. (C.1.7) is bounded by

(C.1.8)

where the factor £(2ϊ*(c)) is due to Eq. (C.1.4). The first term on the right-hand side
of Eq. (C.1.7) is bounded by breaking the integral into the part |( ) — y\ > 1 and the
part |( ) —j/|< 1. The result is the uniform bound

With Eqs. (C.I.8-9), the right-hand side of Eq. (C.1.7) is bounded independently of
yeΊR3. Take the sup over yelR3 on the left-hand side of Eq. (C.1.7). On the left,
WR<723IF\\2OO appears while on the right, Wβnσ^ΨfJ4 appears. Therefore, one
obtains the uniform estimate, below, with ζ( ) continuous, and independent of R,
ce<ίδϊmdδe[0,i):

IIAr*2'y|β + ^

(C.1.10)

As the right-hand side of Eq. (C.1.10) is independent of R, one obtains, first,

Wσ^ΨWlKζWXc)); (C.l.ll)

and second, for each y e R3,

(C.1.12)
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To obtain Assertion (1) of Lemma C.1.4, fix K > 0 and consider for R e (0, GO) a
point y e R 3 with

For such y, the right-hand side of Eq. (C.I. 12) is bounded by

J d3xr-^—(\FΛ\(x) + \DAΦ\(x)),
\χ-y\<R \x-y\

and therefore

_1_ J ___L____

Here, £(•) is continuous and independent of y satisfying Eq. (C.1.13), R,
and <5e[0,i). For Assertion (1) of Lemma C.1.4, take λ(SΆδ(c%ε)

i 2 ^ 1 9 and take \ 419

Proof of Assertion (2) of Lemma C.1.4. Take the covariant derivative of Eq.
(C.1.3). After commuting co variant derivatives, one obtains

Here, Λ(Ψ) is a section of Endf® (AdP® T*(BT*)\ whose coefficients are linear

combinations of the components of Ψ. The section Q of φ (AdP(χ)T*) represents
the left-hand side of Eq. (C.1.3) minus the term ( - Γ* VAψ). After contracting Eq.
(C.1.14) with VAΨ, one obtains

\2

L \2+ \VΛ(VAΨ)\2-(VAΨ,Λ(Ψ)VAΨ)-(VAΨ,VAQ) = O.
d d

Now multiply Eq. (C.1.16) by σ4δ to obtain

( C L i η

Let y eR3. D e n o t e by βy( •) the b u m p function β(\{ )—y\). Mult ip ly b o t h sides
of Eq. (C.I. 17) by βy( )(4π\( )-y\) and then integrate the result over
By={xeK3:\x-y\<l}. The result is:

σ^^(y)ύ- ί β>ττ^-XVAΨ,VAQ)-\\ β
2 K ) y | 2

+ z 7rrΛ
B> |( )-y | B»

(C.1.18)
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The last term on the right-hand side, above, is due to the fact that

\d*dβ>\ , 2\dβy

\( )-y\ !(•)-#

are uniformly bounded, independent of j/eR 3 .
Now, choose ρ e (0,1] to be determined shortly. Suppose that

κ = [iρε2C(9I'(c))"x]9 and that R = κ~4/9 with ζ( ) as in Eq. (C.I. 14). Restrict y to
satisfy Eq. (C.1.13). Then

After writing out the left-hand side of Eq. (C.I. 18) and using Eq. (C.I. 19), one finds
there exists a constant z < oo which is independent of y satisfying Eq. (C.1.13), cetίδ

and δ e [0, £) such that

σ4δ\VAΨ\\y)^zρε2. (C.1.20)

Assertions (1) and (2) of Lemma C.1.4 follow from Eqs. (C.I.14) and (C.1.20):
Choose ρ = {z + 1)" \ above, and then λ{%\c\ ε) = β(z + l)~1e2C(2ϊί(c))~1]9 with
C( ) as in Eq. (C.1.14); choose

Proof of Assertion (3) of Lemma C.1.4. Let w = ̂ (l — \Φ\2). The function w
satisfies

and weL6(R3). Thus at each

^ ) = ^ ^ . (C.1.22)

Suppose that ε > 0 is given. For a ρ e (0,1] to be determined shortly, let Λ/(2I5(c), ρε)
and Λ^SI^c), ρε) be such that Assertions (1) and (2) of Lemma C.1.4 are satisfied.
Given re(l,oo), let y e R 3 satisfy Eq. (C.1.13) with κ = λ\ςΆ\c\ρε) and
R = r + RχVlδ(c),ρε). For such y, Eq. (C.1.22) implies

w ( y ) < ^ 2 ρ V + ^ ^ . (C.1.23)

Take r = (l+9I(c))ε~1 and take ρ = ε(l + ϊΆ(c)yί. Then w(y)<ε. Thus, all
assertions of Lemma C.1.4 are obtained if λ = λ\ςΆδ{c), ε2(l +9I(c))~1) and if

C.2. Exponential Decay Estimates

To prove Proposition C.I.I, ^-independent estimates for a solution, c, of Eq.
(C.I.I) are required which allow one to approximate the fields (/, g) in R3\£7[c] (K)
by solutions there to linear equations. This enables one to obtain, for a suitable K,
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multipole expansions for these curvatures in R3\ί/[c] (K). The first step, Lemma
C.2.1 below, asserts that the fields are essentially abelian in R3\L/[c] (K).

Let c = (A, Φ) be a solution to Eq. (C.1.1). Let τc>0 and let
{UJ\JE{\, ...,n[c\{κ)}} be the path components of U[c~](κ). To each Up
associate its center of mass

Lemma C.2.1. There exists δ0 e [0,£) and continuous functions κ0 : [0, oo)->(0,1]
and m: [0, oo)->[0, oo) with the following significance: Let δe[0,δ0) and let
c = (A, Φ) ε&bea solution to Eq. (C.1.1) .Letκ = κo(2l*(c))- Let {Uj} be the path
components of U[c](κ) and define {x7 }cR 3 by Eq. (C.2.1). If x e R 3 , then

j

The remainder of this section is occupied with the proof of Lemma C.2.1.

Proof of Lemma C.2.1. Let Ψ = σ2δ [Φ, Ψ\ with ψ = (f g) as in Sect. C. 1. The idea is
to derive an equation for Ψ' from Eq. (C.I.3) which shows that for suitable
K0{S)il%c)) and Λ(9l*(c)), Ψ satisfies the following inequality at x e R 3 with

+ σ"2 ί|ϊ ίΊ2<0. (C.2.2)

Then Lemma C.2.1 is obtained by applying the comparison principle to Eq. (C.2.2)
with a suitable choice of comparison function.

To derive Eq. (C.2.2), take the commutator of Eq. (C.I.3) with Φ and multiply
the result by σ2δ. After commuting through covariant derivatives, one obtains the
following equation for Ψ':

(C.2.3)

Here, [ , ] x is a particular extension of the commutator pairing [ , ] : φ AdP

-•AdP to a bilinear pairing from ίψAdP®T*φT*\®ίφAdP®T*\ to

© AdP® T*. This means that if one considers VA Ψ and Ψ as AdP valued tensors

on R3, then [Ψ9 VAΨ~\X is an AdP valued tensor whose components are linear
combinations of the commutators of the components of VAΨ and Ψ. The
coefficients of these linear combinations are fixed real numbers. Likewise, [_Ψ,Ψ]2

is an AdP valued tensor on R 3 whose components are linear combinations of
commutators of components of Ψ with each other. The coefficients of these terms
are x-dependent, but they are bounded independently of x by a fixed z < oo which is
independent of ced and δ. In Eq. (C.2.3), A is an x-dependent section of
End ίφ AdP®T*\ which satisfies an x, ceG?5 and δ independent bound.
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To continue, contract both sides of Eq. (C.2.3) with Ψ' to obtain

\ψ'\2

d*d

2

+1(9", σ2δtΨ, VA Ψ]2)\ + \(Ψ\ σ2δlΨ, Ψ\x)\. (C.2.4)

In Eq. (C.2.4), z< oo is a constant which is independent x, ceK*5 and δG[0,£).
Let κ = /l(9tδ(c),|) and Λ = Λ(9I*(c),£) with /I and R as specified in Lemma

C.I.4. Since the diameter of U[c] (k) is less than 22ί(c)//c, Lemma C.1.4 implies that
the set

for all j = l,...,n[c](κ;)}
(C.2.5)

has the property that

\Φ\>i on 7[c](κ). (C.2.6)

Further, the following simple identities hold on F[c] (K) :

(1) Ψ'=\Φ\-2IΦ,[Ψ'9ΦJ],

(2) σ 2 < 5 [Φ,^ ϊ F] = ^ ι F / - σ 2 5 [ ^ , ι F ] - 2 ^ σ - 2 x ι F / ,

(3) \σ2*[Ψ9Ψl2\£z\Ψ'\\Ψ\,

(4) |Π<i. (C.2.7)

From Eqs. (C.2.6-7) one derives readily that the left-hand side of Eq. (C.2.4) is
bounded on V[c] (re) by

- 2 δ ( \ Ψ ' \ 2 + \ V Ψ ' \ 2 ) + z\Ψ\(\Ψ'\2 + \Ψ'\\VΨ'\) + z \ V Ψ \ \ Ψ ' \ 2
zδσ-2δ(\Ψ'\2 + \VAΨ'\2) + z\Ψ\(\Ψ'\2 + \Ψ'\\VAΨ'\) + z\VAΨ\\Ψ'\2. (C.2.8)

In Eq. (C.2.8), the constant z < oo is independent of c e &δ and δ e [0, J). Equations
(C.2.6-8) together with Eq. (C.2.4) imply that on V[c] (k),

d*d\Ψ'\2 + σ-2δQ-z(δ + σ2δ\Ψ\ + σ2δ\VAΨ\)\Ψ'\2SO. (C.2.9)

Here, z < oo is a constant which is independent of c e &δ and ^ G [0, J).
Choose ^ 1 = 1 6 - 1 ( l + z ) " 1 . Choose κo(9lδ(c)) to be A(8I*(c), (1 + lόz)'1) with A

given by Lemma C.1.4. Let R = R((Άδ(c), 16" \l +z)~ x) as given by Lemma C.1.4.
If dist(x, U[_c\ (κo))>R, then Lemma C.1.4 and Eq. (C.2.9) imply that Eq. (C.2.2)
holds with ^ [ O , ^ ] -

Equation (C.2.2) is an inequality for which the comparison principle was
designed. For δ G [0, δ^, consider the function

/ ^ | ^ ^ | ( l + |x|2 + |x-x/)-^|x-xJ.|}. (C.2.10)

By using the fact that
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and that σ(x) ̂  (1 + |x|2 + \x — Xj\2), one concludes that there exists δ0 e (0, δ^ such
that for all δ^δ0, and for all 3

-d*duj- σ-2δUjS0. (C2.11)

Using Lemma C.1.4 and the comparison principle, one obtains for all δ e [0, δ0)
and x e R 3 with dist(x, U[c\ (κo))^R the bound

\Ψf(x)^ζ(^L\c))Σuj. (C2.12)
3

Here, ζ( ) is a continuous function on [0, oo) which is independent of c e &δ and (5.
Thus, one concludes that Lemma C.2.1 follows from Eq. (C.2.12) and

Lemma C.2.2. Define Uj by Eq. (C.2.10). Then (σ~4rδuj)(x)^z\x-xj\~5, where
z< oo is independent of x and Xj in R 3 .

Proof of Lemma C.2.2. Observe first that there exists z<oo such that when
ί^O, e x p ( - | ί 1 / 9 ) ^ z ( l + ί)~ 5 Therefore, if | x - x ; | ^ ( l + \x\ + \x-x.\f*i*9

then σ~Aδ{x)uj{x)^σ~A\x){\+\x-x]\y5. However, if 2<|x-xJ.|
(l |x| + |x-x,.|)9*/8, then

C.3. Power Law Estimates for Φ

The uniform estimates provided by Lemma C.2.1 indicate that the fields in
R3\£/[c] (K) for a suitable K are almost abelian if c e (ίδ satisfies Eq. (C.I.I) and if δ
is sufficiently small. In the present section, it will be proved that the field \Φ\ looks
like a solution to Laplace's equation on R3\£/[c] (K). The precise statement is

Lemma C.3.1. There exists mγ e C°([0, oo); [0, oo)) with the following significance:
Let δ0 and κ0 be as in Lemma C.2.1. For δ e [0, <5O)5 let c = (A, Φ) e(ίδbea solution to
Eq. (C.I.I). For K = KO(^3(C)), let {Uj} be the path components of U[c\ (K). Define
{Xj} by Eq. (C.2.2). There exist real numbers {<Xj'.j= 1,..., w[c](κ:)}, with each

j 9 I ί ( c ) ) , such that / / x e R 3 , then

(1)

(2)

1 - 2

1 - 3

The numbers {α7} will be identified in Sect. D.2. The remainder of this section is
occupied by the proof of Lemma C.3.1.

Proof of Assertion (1) of Lemma C.3.1. Let /l(2Iδ(c), | ) and K(2l*(c), | ) be given by
Lemma C.1.4. On the set

L / [ c ] ( κ ) ^ ^ ^

(C.3.1)
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Then |Φ|(x)> | and 1 — \Φ\ satisfies the equation

d*rf(l-|Φ|) = | Φ Γ 1 | [ Φ , ^ Φ ] | 2 . (C.3.2)

Let η e C^(1R3 [0,1]) be a function which is identically 1 on the set V, identically 0
on the set j x e R 3 : dist(x, V)> 1}, and such that \dΐ]\ + \d*dη\<4. Then f/(l-|Φ|)
satisfies at x G R 3

(C.3.3)

A multipole expansion for 1 — |Φ| is to be generated from Eq. (C.3.3). For this
purpose, let G denote the term in brackets in the integrand of Eq. (C.3.3). A
consequence of Lemmas C.I.3 and C.2.1 is that there exists a continuous function
ζ( ): [0, oo)-> [0, oo) which is independent of c e dδ and δ e [0, δ0) such that for all
xesupp*?,

(C.3.4)

1

J

- 5It is convenient to let ^- = (1 + \x — Xj\) 5 and set

,k J
Observe that Eqs. (C.3.3-4) imply that

1

X — X ;
<—V

lGj\\χ-( )\ (C.3.5)

The proof of Assertion (1) of Lemma C.3.1 requires a proof that α7 = j Gj is
R3

bounded by some ra^SΓ^c)), and an estimate for the right-hand side of Eq. (C.3.5)
which establishes that

fΛ 1

*-( )l
(C.3.6)

with z < oo a constant which is independent of c e (£5 and δ G [0, δ0). For ap note
that Eq. (C.3.4) implies the inequality

R 3 J R 3

To prove that Eq. (C.3.6) holds, write

l^-yl l ^ - ^ l o αί Ix-Xy-ίiy-x^l

This allows the left-hand side of Eq. (C.3.6) to be bounded by

(C.3.7)

(C.3.8)
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To complete the proof of Assertion (1) of Lemma C.3.1, break the integral in
Eq. (C.3.8) into two parts, Iγ and J 2 . Here It is the integral over
L={yeΊR3:\x — xj — t(y — x7 )| > \ \x — Xj\}, and I2 is the integral over R 3\L. For / x,
observe that Eq. (C.3.4) implies the bound

1 1

π x —
ί \y - *;l ^ 4 I * - 1 " 2

For J 2, note that on R 3\L, ly-X/l^ -Xjl, so Eqs. (C.3.4,8) imply that

1-3

Proo/ of Assertion (2) of Lemma C.3.1. Since d\Φ\ = \Φ\ 1(Φ, DAΦ\ this assertion
follows by establishing that the expansion provided by Assertion (1) is differen-
t ia te . From Eq. (C.3.3) one derives

1 1
I

The assertion then follows by establishing that

(x-y) (x-x

\x-y 3 |γ Y |3
X — X ;

1-3

(C.3.9)

(C.3.10)

(C.3.11)

with z < oo, a constant independent of x and Xy To establish Eq. (C.3.10) one also
needs the last inequality, below:

with z < oo, a constant independent of c ε (£a and δ ε [0, δ0).
To obtain Eq. (C.3.10), it is convenient to calculate the bound

χ - y

\χ-y?

X

|x|3

X

|x-

1

x|

2

x\

- y

-y?
1

χ-y\

1

\x-y\

\χ\2\

1

1

|x|

X

χ-y\

. \y\
\χ\2

\y\

V 2

\X

\X

1

x|

1

- .

1
Iv

y\ +

1

-y\ '

v\

|x

X

1

|x
1 i

-y\2 M2

1

-y\

1 1
x-y| |x|

(C.3.12)

With Eqs. (C.3.4, 6,11-12) one immediately finds that the left-hand side of Eq.
(C.3.10) is bounded by

d3yΨj(y)
1

\x-y\

1 1

\x-y\ \x-xj\
. (C.3.13)

The last term in Eq. (C.3.13) is evaluated using Eq. (C.3.7), and one obtains the
bound
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The evaluation of Eq. (C.3.14) proceeds as before, by breaking the integral into Ix

and 12 with Iγ the integral over L and with I2 the integral over R3\L. For Il9 one
obtains with Eq. (C.3.11) that Iλ^z\x — Xj\~3. As for J2, one obtains

0
- 4

C.4 Power Law Estimates for A

The purpose of this section is to prove that if c — {A, Φ)e(ίδ is a solution to
Eq.(C.l.l), then for κ = κo(

<Άδ\ the real 2-form (Φ9FΛ) on R3\[/[c] (K) is
approximately the curvature 2-form for an abelian, Dirac monopole connection
[21]. The precise statement is

Lemma C.4.1. Let δo,κo be as in Lemma C.2.1. There exists <5X e(0,<50) and a
continuous function m2 : [0, oo)->[0, oo) with the properties below: Let δ e [0, c^),
and let cedδ be a solution to Eq. (C.I.I). Let K = /co(9lδ(c)) and let {Xj} be as in
Lemma C.3.1. There exist real numbers {Kj'J= 1, ...,n[c](/c)} and vectors
{lpj= 1, ...,τi[c] (K)} with each |n7|, \lj\<m2(

<Άδ(c)) such that at X G R 3 ,

The {xip lj} are determined in Sect. D.2. This section contains the proof of
Lemma C.4.1. The asserted a priori estimates are obtained for a solution
c = (A, Φ)G(£ 5 to Eq. (C.I.I) by studying the equations for (Φ,FA):

d*σ2δ(Φ,FA)-σ2δ(DAΦΛ *FA) = 0, d(Φ,FA)-(DAΦΛFA) = 0.

Proof of Lemma C.4.1. As in the proof of Assertion (1) of Lemma C.3.1, introduce
the set V, and the bump function η. For x e V, \Φ\ (x) > J, and introduce for such x

/ Γ (χ) = |ΦΓ 2 [Φ,[/,Φ]].

Define a real 1-form by

τ = exp(-»/|Φ|)(Φ,FJ. (C.4.2)

The 1-form τ obeys

= *σ2δq (C.4.3)

d*τ = e-" |φ |{(l-^)(^Λ */) + ί7(/Λ *fτ)-\Φ\dηΛ *(ΦJ)} ,

= *p. (C.4.4)

In order to estimate τ, the Hodge theorem on R 3 is required.
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Lemma C.4.2. For δe[0,δo)9 let ce£δ be a solution to Eq.(CΛΛ). Define the
\-form τ as in Eq. (C.4.2). There exists a unique (w,ω)eΓ(R®T*)nL 6 with the
property that P(M,ω)eL 2(RφT*)(x)Γ*), d*ω = 0 and σ2δτ = du + *dω.

Proof of Lemma C.4.2. Since one can show that τ e L 2 ( T * ) , this is a standard
result, cf. [25] and [6, Proposition 1.7.6].

The function u satisfies the following equation:

V*Vu = p. (C.4.5)

To obtain estimates from Eq. (C.4.5), introduce for each je{ l , ...,n[c~]{κ)} the
function i/̂  = (l + |x — Xj\)~5. Due to Lemma C.2.1,

, (C.4.6)

where ζ( ): [0, oo)-»[0, oo) is continuous and independent of c e (ίδ and δ e [0, δ0).
Let

Then u = Σup where each UjeΓ(T*)nL6 and
j

pj. (C.4.7)

Lemma C.4.3. Under the same assumptions that hold for Lemma C.4.1, define pj by
Eqs. (C.4.3,5,7). There exists a function ζ{ ) : [0, oo)-•[(), oo) which is independent
ofce&δ and δ e [0, (50); and there exists a number n7- with \rij\ < C(9ί̂ (c)) such that at
x eIR 3

\ ,

\duj + Πjd\x - xf11 ^ ζ(<&\c)) \x-xj\-3.

Proof of Lemma C.4.3. From Eq. (C.4.7),

^ (c.4.9)

Now copy the proof of Lemma C.3.1 with pp here, replacing G7 , there. Use
Eq. (C.4.6).

With the function u now estimated, turn attention to the 1-form ω.
Equation (C.4.3) implies that

*dσ2δ*dω = σ2δq-2δσ-1 + 2δ*(dσΛu). (C.4.10)

Introduce, for each je{l,..., w[c](κ)}, the function ψj = (l + \x — Xj\)~5, again.
D u e to Lemma C.2.1,

where ζ( ): [0, oo)-•[(), oo) is continuous and independent of c e (ίδ and δ e [0, <S0).

For each j , let qj= (Σψλ~1ψjq, and let
\k J

hj = qj-2δσ-1* (dσ A duj), (C.4.12)
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where Uj is defined and estimated in Lemma C.4.3. Under these circumstances,

co = Σωp where each ωjGΓ(T*WL3)nL6 satisfies

V Vωj + lδσ-^idσΛ *dcoj) = hj. (CA13)

Equation (C.4.13) implies that υ^dω^Γί AT^ΊR.3\nL2 satisfies the integral

equation ^ '

v(x)=-^-id3y{d\x-y\-1 Ahj-lδdlx-y]-1 A * ( ( J " W Λ *Ό)}. (C.4.14)

Estimates for υ( ) will be obtained from Eq. (C.4.14) by using the contraction
mapping principle on an appropriate Banach space of C° 1-forms on IRA This
technique obtains ϋ a s a limit of {vot}OL=0, where

Λχ) = -^Sd3yd\χ-yr1Ahj9 (C.4.15)

and for α>0, vΛ = v°-δT(υa-1), with

T(v)(x) = (2π)-1U3yd\x-y\~1 Λ *(σ"1dσΛ *u). (C.4.16)

Consider first v°:

Lemma C.4.4. Under the assumptions of Lemma C.4.1, let v° be defined by
Eq. (C.4.15). There exists a continuous function C( ) : [0? oo)->[0, oo) which is
independent of cedδ and δ e [0, δ0) with the following significance: let

ί s ^ ) - 1 f d3yqj,
IR3

a vector in R 3 . Then

Proof of Lemma C.4.4. Write u° = t;J + U2J where

and

» o = - A j d 3 j , φ _ j , | - i Λ *(dσΛdu,).

The 1-form t;̂  is analyzed as was (Φ,DAΦ) in the proof of Assertion (2) of
Lemma C.3.1, see Eqs. (C.3.11-14). The proof here is, essentially, word for word
the proof there, because qj satisfies the same estimates as does the function G7 of
Eq.(C.3.4).

For v%, define r(x) = σ x * (dσ A dUj). Because of Lemma C.4.3, r(x) satisfies

Thus,

l ^y-XjΓ2. (C.4.17)
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Equation (C.4.17) with Assertion (1) of Lemma C.4.5, below, completes the proof
of Lemma C.4.4.

Lemma CAS. There exists a constant z < oo with the following properties: For any
two points x,ξe R 3 ,

(1) SdiyQyl + iy'ly-xΓWy ^ H
(2) For anyεe(0,i), let

Then

(3) (\y-

The proof of Lemma C.4.5 is deferred to the end of this section.
Now turn to the sequence {v*} as defined by Eq. (C.4.16). To discuss its

convergence, define the Banach space 2 = 2(xj) to be the completion of the space

20 = jzη(x;x,) + φ:zeWL9φeΓ0(Λ T*\ and η = ηε for ε = j ^ \ (C.4.18)
1 v2 j

with the norm

ll&IIHIfΓH x/MOL (c.4.19)

The relevant properties of 2 are summarized by the following two lemmas.

Lemma C.4.6. The space of sections 2 embeds continuously in x C°(R3). Ifbe 2,
then for some z e R , b = zη(x xj) + o(η(x xj)).

Lemma C.4.7. There exists δt>0 such that if δe [0, δx)9 then
(1) There exists a unique ve2 satisfying Eq. (C.4.15).
(2) There exists £ E C ° ( [ 0 , OO), [0, oo)), which is independent of ced3 and

δ e [0, δx) such that ifv0e2isa solution to Eq. (C.4.15), then \\v-υ0\\ ^<

Observe that Lemma C.4.1 is a direct corollary of Lemma C.3.1,
Lemmas C.4.3-7, and the next lemma which asserts that Eq. (C.4.3) has a unique
L2 solution.

Lemma C.4.8. There exists δte(0, i ] such that ifδe [0, δj and ω e Γ ( Γ * R 3 ) n L 6

satisfies V*Vω + 2δσ~1 *(dσΛ *dω) = 0, then ω = 0.

Proof of Lemma C.4.6. The embedding of £ in x C°(R3) is clear since || || is

stronger than || ||co. To prove the second assertion, let {bΛ = zaη(x,ξ) + φΛ}e20

converge in 2 to b with each zαe]R and φaeΓ0(T*). Convergence with respect to
|| || implies convergence of {zα} e ΊR. to some z e R. Then

as otherwise ||feα —fe|| would not converge to zero as α
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Proof of Lemma C.4.7. Assertion (1) follows immediately from Lemmas C.4.4, 6
and Eqs. (C.4.15-16) if one can establish that there exists <5'>0 such that for all
δε[0,δ% the mapping δT as defined in Eq. (C.4.16) induces a contraction
mapping from £ to itself with norm independent of Xj. Since T itself is
independent of δ, such will be the case if one can prove that T defines a bounded
linear operator on £ with operator norm independent of Xj e R3. This property of
T follows from Assertion (2) of Lemma C.4.5 since

J d3y\x-y\-2(l + \y\y^(y;xj).
R3

Now turn to the proof of Assertion (2) of Lemma C.4.7. For δ e [0, δ% let v e £
be the solution to Eq. (C.4.16) that Assertion (1) provides. If v0 is the solution to
Eq.(C.4.15), then

v = υo + δT(v). (C.4.20)

As T:£->£ has norm bounded independently of xp Eq. (C.4.20) implies that
δx 6(0,(50 exists such that for all δelO.δ^ |M| ̂ 2||ι;0 | |. Now Lemma C.4.4,
Assertion (3) of Lemma C.4.5 and Eq. (C.4.20) immediately give the result.

Proof of Lemma C.4.8. A standard argument with cut-offs puts FωeL2(T*R3),
where it satisfies | |Pω||2^4^||σ~1ω||2. Lemma A.4.1 of [9] finishes the proof.

This section ends with the

Proof of Lemma C.4.5. For Assertion (1), one may first assume that r = \x — ξ\>l.
Then

£ J d 3 y | χ _ y Γ 2 | { _ | - 2 ( 1 + | D - i β ( C A 2 1 )
3

Break the integral above into two parts, I1 = {y; \y\ >\\y — ξ\ or \\y — x\} and I2 is
the remainder. For Iί9 assume l y ^ i b — ̂ l? whence by changing

h^i d*y
R3

After rescaling, y^ry, one has

hύr~2 ί
3

ί
R 3

r~ί
Here ή = (ξ — x)r~ί is a unit vector. For 72, note that at least one of \y — ξ\ or
l y - x l ^ r (by the triangle inequality), and hence

2 i
R3

For Assertion (2), the left-hand integral has two parts, Iί = {y: |;y|>|j> — ζ\}
and 12, the remainder. For Iu one has

ia ί d3y\x-y\-2(l + \y\y+*\y-ξ\-2.
\y\>\y-ξ\

N o w , change y™>y + x a n d since ( l + | y | ) ~ 1 < | y — ζ\~x on the d o m a i n of
integration,

/ ^ J d?>y\y\-2\y-ξ + x\-^B^z&-1r-2+ε. (C.4.22)
R3
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For J2, one has

i y \ y \ ( \y\Γ%\yξ\ y (C.4.23)
\y\<\y-ξ\

Break I2 into I3 = {y: \y — ξ\>2r}nh a n d U> the remainder. For 73,

I3Szr~2 + 2εid3y\x-y\~2(l + \y\y1~εSzε~ίr~2 + 2ε(l + \x\yε. (CA24)

For J4, note that \x — y\>^r and |y|^|x-j; | . Then,
1r-2 + ε. (C.4.25)

Finally, since l + |x| is either ^ or ^ than l + |x — ξ\, one obtains Assertion (2)
from Eqs. (C.4.22-25) and also Assertion (3).

D.I. The Stress-Energy Identity

For a solution c e (ίδ of Eq. (C.I.I), the a priori estimates of Sects. C.2-4 allow a
calculation of the "forces" between the path components of the strong field region
U[c\ (/co(9l5(c))). The purpose here is to establish that these path components are
in a region of fixed diameter.

Proposition D.I.I. Letδ1G (0, £) be as in Lemma C.4.1. Let neZ.Letδe [0, δj and
suppose that ce£f is a solution to Eq. (C.I.I) such that for some e>0,
SΆδ(c)^4π\n\ + ε. Let κo( ) be as in Lemma D.2.1. Then diaml/[c](κ;o(2l*(c)))

β~2), where ζeC°([0, oo), [0, oo)) is independent of e, ceϋδ and

The remainder of this section, and Sects. D.2, 3 are occupied with the proof of
Proposition D. 1.1. To prove the proposition, it is sufficient to provide a bound on
the distance between the path components of U[c~\ (κ0), since the diameter of any
one component is bounded by 4SΆ(C)/KQ * (Lemma C.2.1). This bound is derived in
two steps. The first step, summarized in Lemma D.1.2, establishes that this
maximum separation can be bounded by ζ^Άδ{c))δ~2. A ^-independent bound is
derived in Sect. D.3 with information provided in Sect. D.2.

To begin, let κ0 be as specified in Lemma C.2.1, and let c = (A, Φ)e^ίδ be a
solution to Eq. (C.I.I). Let U[c\ denote U[c] (KO(^L\C))) and let
{Upj=l9..., n[c] (κ0)} be its path components. Define for each;, the point Xj by
Eq. (C.2.1); Xj is the center of I/,.. Associate to c the numbers

and

ρ = ρ(c) = max{|x i-x J. |:zj=l,...,n[c](κ:o)}. (D.I.I)

Lemma D.1.2. Let δλ be given by Lemma C.4.1. Let δ e (0, δ^) and let ce(ίδ be a
solution to Eq. (C.I.I). Define d* and ρ by Eq. (D.I.I). Then

where ζ, ζ'e C°([0, oo), (0, oo)) are independent of ce<ίδ and δe [0, δγ).

The proof of Lemma D.1.2 will be given shortly. The estimates for the proof are
derived from the "stress-energy" identity in the next lemma:
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Lemma D.1.3. Let <5e[0,i) and let c = (A,Φ)e&δ a solution to Eq. (C.1.1). Let
(/α, ga)l=! be the AdP-valued components of (/, g) = (σδ * FΛ, DAΦ) with respect to
the basis {dycc}l==ί of T*. Then

Λ\f\2\\2)((Lf)(

Proof of Lemma D.1.3. Contract Eqs. (C.I.la) and (C.1.2a) with / and then add
them, and then contract Eqs. (C.l.lb) and (C.1.2b) with * g and subtract these. The
result after some manipulation is Eq. (D.1.2).

Some corollaries of Lemma D.1.3, "virial theorems," are listed below.

Corollary D.1.4. Let δe[0,i) and let ce(ίδ be a solution to Eq. (C.1.1). Let
EcIR3 be an open ball of radius R>0 and center x e R 3 . Let n = ̂ nadya be the
exterior normal to dB. Then α

ίd3y{\9\2-\f\2 + 2δσ-2(\y\2-(y,x))\f\2} = R J *n{\g\2-\f\2 + 2\fm\2-2\gH\2},
B dB

(D.1.3)

where (y, x)=Σ / * " and fn(gn) = Σ n*L (Σ n'g\

Corollary D.1.5. Under the same assumptions as in Lemma D.1.3,

ί
3R3

and if δ>Q, then for each α= 1, 2, 3,

ί d3yy«σ-2\f\2 = 0. (D.1.5)
IR3

Proposition D.I.I is proved by obtaining a ^-independent estimate for ρ(c)
from Eq. (D.1.4). An explicit calculation of the left-hand side of Eq. (D.1.4) in terms
of the numbers {ap rty} of Lemmas C.3.1 and C.4.1 respectively is carried out in
Sect. D.3. This calculation, summarized in Proposition D.3.2, gives the bound on
ρ(c). The final task in this section is to prove Lemma D.1.2 and Corollaries D.1.4
and D.1.5.

Proof of Corollary D.1.4. To obtain Eq. (D.1.3), contract Eq. (D.1.2) with
y — x = (ya — xα)α=i and integrate the result over B. After an integration by parts
(i.e. Stokes theorem), Eq. (D.1.3) is obtained.

Proof of Corollary D.1.5. For Eq. (D.1.4), take the limit in Eq. (D.1.3) with B
sequentially balls of increasing, integer radius, centered at OeR3. Lemmas C.2.1,
C.3.1, and C.4.1 insure that the boundary term on the right-hand side of Eq. (D.1.4)
tends uniformly to zero in the limit. For Eq. (D.1.5), integrate Eq. (D.1.2) over ]R3,
and then integrate by parts.

Proof of Lemma D.1.2. Consider the left-hand inequality first. Suppose for the sake
of argument that d^>\6(ρ-\-1). Let xe{Xj} be such that 1x1 = ̂ . For some
Λ e β d ^ K J , let B = {yeΈL3:\y-x\^R}. Then dist({x7 }, ΈL3\B)>^d^. Now
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contract Eq. (D.I.5) with χ = (χΛ)l=1. The contribution from B satisfies

ίd"y(x,y)σ-
B

since for y e B,

Meanwhile, Lemmas C.2.1 and C.4.1 allow the contribution from JR3\£ to be
estimated as follows:

J d*y(x,y)σ~2\f\2 £ |x|C(α'(c)) ί
3 \ \
J

WL3\B

ί
\χ-y\>R

Further, for yedB, Lemmas C.2.1, C.3.1, and C.4.1 imply that

(i/ι2+ι^ι2)ω^c(
and so Corollary D.1.4 asserts here that

Above, the fact that δ1<^ has been used. Together with Eq. (D.I.5), Eqs.
(D.1.6,8,10) imply that

ϊd3y{\g\2 + \f\2}^ζ(%δ(c))d^2. (D.l.ll)
B

However, by construction, B contains the centers, xp of each Up and so

B

Thus, should it be true that d^8(ρ + l), then Eqs. (D.l.ll, 12) imply that

This establishes the left-hand inequality in Lemma D.1.2.
To establish the right-hand inequality, a crucial fact is that there exists

Rεlϊd*Λd*\ such that the ball B = {yeW^\ \y-x\<,R} has the following
property: For all;6 {1,...,n[c] (κ0)},

Indeed, the set of R e [id*,id*], where Eq. (D.1.14) fails for some xj has measure
less than \d^ (and it has at most rc[c] (κ0) path components).

Contract both sides of Eq. (D.1.2) with x and integrate the result over B. After
an integration by parts, one obtains

l ί (x-n)(\f\2-\g\2)- ί ((/„,/,)-(gn,gx)) + δjd3yσ-2(x,y)|/|2 = 0.
dB eB B (D.1.15)

Here n = (n*)l=1 is the exterior normal to dB and for v = x or n, fv(gv)
Σ ^ / α ί Έ ^ V Together, Eqs. (D.1.7, 9, and 15) imply the inequality

α \ α
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Here, the fact that δ < δx < \ has been used. Together, Eqs. (D.I. 10,16) imply that
δϊd3y(\f\2 + \g\2)^ζ(SΆδ(c))d~112. But, by construction, B contains at least one

B

path component of U\_c]{κ0), and so this last equation implies that (5/co(9I5(c))
^ζ(SΆδ(c))d-ίl2, from which it follows that rf^((f(c))Γ2, for £eC°([0, oo),
[0, oo)), independent of c e dδ and δ e (0, δ^. This last equation implies the right-
hand inequality in Lemma D.I.2 because of the triangle inequality's implication
that

D.2. The Cluster Decomposition

To prove Proposition D.I.I, it is useful to group into clusters those points
{xpj=l, ...,w[c](κ:0)} which are relatively close together. Two charges will be
associated to each cluster. Physically, one should interpret one charge as
determining the coupling of the cluster to the "Φ" field; and the other charge
should be interpreted as determining the coupling of the cluster to the "^4" field.

Let δ1 be as in Lemma C.4.1 and let δ e [0, δx). Let c = (A, Φ) e &δ be a solution
to Eq. (C.I.I) and let n = n[c\ (KO(W3(C))) be defined for κ0 as in Lemma C.2.1. Let
A = A(c) = {Xj:j=l,...,n}. For λcA, denote by m = m(λ) the number of ele-
ments of λ. Let ρ = ρ(c) be the number from Eq. (D.I.I). Assume that ρ^2.

For re(0,τξ), define an r-cluster to be a non-empty subset λcA with the
following properties:

(a) dmmλ<ρίί2rn~m+1,

(b) λ is not strictly contained in any λ'cA which satisfies (a). (D.2.1)

The number r will be specified in Sect. D.3 as a function of %d{c).
For an r-cluster λ, define

) = dist(λ,Λ\λ). (D.2.2)

The r-clusters in A have the following properties:

Lemma D.2.1. Each xeA is contained in a unique r-cluster. Also, as ρ^
contains at least two r-clusters. If λ is an r-cluster, then

rn~ι. (D.2.3)

Proof of Lemma D.2.1. Let xeA. The first step is to prove that x is in at least one
r-cluster. To do this, define a group, μCA, to be a subset which satisfies Eq.
(D.2.1 a). Then x is contained in the group μ = {x}. Suppose that groups μl9 μ2 exist
with m = m(μί)^m(μ2) and μ2$μi and xeμίnμ2. Let μ = μίvμ2. If z, weμ,
then

\ z - w \ ^ \ z - x \ + \ w - x \ l ι l 2

Thus μ is a group. Therefore, the set of groups that contain x is a partially ordered
set (by inclusion), and so there is a maximal group which contains x. By definition,
this maximal group is an r-cluster, and the construction shows that it is unique.
Due to Eq. (D.2.1), every r-cluster λcA satisfies diam(/l)^^ρ1/2, and so A must
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contain at least two, since diam/l = ρ. Finally, if Eq. (D.2.3) were not true for
r-clusters λ, μ with m = m(λ)^m(μ), then τ = λκjμ would be a group containing
both λ and μ. Indeed, for any x, yeτ, one would have

|x — y\ ̂  diamA + diamμ + dist(/l, μ)

<2aί/2rn~m+1 + ^-n 1 / 2 r"~ m <ρ 1 / 2 r"~ m <o 1 / 2 r"~ m ( τ ) + 1

To each cluster λCΛ, associate the numbers

* W = Σ dj and n(λ)= Σ nj9 (D.2.4)
Xjeλ Xjeλ

where α7- and n^ are as specified in Lemmas C.3.1 and C.4.1, respectively. Also,
associate to each cluster its center,

X(λ) = m~1Σx, (D.2.5)
xeλ

and the open ball

B(λ) = {yeΈL3: \y-X(λ)\<ρ(λ)r1/3}. (D.2.6)

Lemma D.2.1 implies that for distinct r-clusters λ, μ,

diam(2)<2ρ(λ)r, dist(2, dB(λ))^ ^ρ(λ)r1/3, dist(μ, dB(λ))^ ^ρ(λ). (D.2.7)

An important step in the proof of Proposition D. 1.1 is to identify the numbers
α(/l), n(λ) with integrals over B(λ) of bilinear functional of the curvatures of
c = (A, Φ). Lemmas D.2.2 and D.2.3 accomplish this task.

Lemma D.2.2. Let δx be given by Lemma C.4.1. Let δ e [0, δ^) and let ce&δ be a
solution to Eq. (C.I.I). Let λ be an r-cluster and define (a(λ), n(λ)) by Eq. (D.2.4).
Then

(1) - l ί8π. . .

(2) \n(λ)\ ̂ a(λ) + ζ(SΆ\c)) (δ + ρ(λ)"^r" W),

where ζ e C°([0, oo), [0, oo)) is independent of λ, ce (Γ5 and δ e [0, δj.

Lemma D.2.3. Let neZ. Let δγ and δ be as in Lemma D.2.2, and let ce&^be a
solution to Eq. (C.I.I). Define {cty} and {xij} by Lemmas C.3.1 and C.4.1,
respectively.

and Σnj — n-
j

Proof of Lemma D.2.2. Write c = (Λ, Φ). To prove Assertion (1), contract Eq.
(C.l.lb) with Φ and then integrate over B(λ). Stokes theorem yields the identity

ί \Q\2= ί *(Φ,ff). (D.2.8)
B(λ) dB(λ)
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Let R = ρ(λ)1/2r1/3. Observe that for y e dB(λ\ Lemma C.3.1 and Eq. (D.2.7) imply
that

- 1

r 3 . (D.2.9)

(D.2.10)

(D.2.11)

Next, Corollary D.1.4 and Lemmas C.2.1, C.3.1, and C.4.1 imply the bound

(D.2.12)

(D.2.13)

and since δ<%, Eq. (D.2.12) actually asserts that

ί {M 2-|/Γ} ^CC&XcW + R-1). (D.2.14)
B(λ)

Together, Eqs. (D.2.11) and (D.2.14) imply Assertion (1) of Lemma D.2.2.
To obtain Assertion (2) of Lemma D.2.2, first use the fact that for y e dB(λ),

Lemmas C.4.1 and C.4.2 and Eq. (D.2.7) imply that

). (D.2.15)

Together, Eqs. (D.2.8-9) assert that

ί \g\2-Σaj ί \y-χjΓ2*d\y-xj\ <ζφδ(c))R

B(λ) j dB(λ)

Then, Stokes theorem implies from Eq. (D.2.10) that

J \g\2-4πa(λ) ^rrςirδ^wu-i

ί
B\λ\

However, Lemma D.I.2 implies that

Thus, Stokes theorem and Eq. (D.2.15) imply that

f (Φ,FA)-4πn(λ)
dB(λ)

Next, use Stokes theorem and Eq. (C.1.2a) to obtain the identity

f (Φ,FA)=
dB(λ)

But, by the triangle inequality,

B(λ)

B(λ)

£- J {\g\2 + \f\2},
£ B(λ)

(D.2.16)

(D.2.17)

(D.2.18)

so Assertion (2) of Lemma D.2.2 is implied by Eqs. (D.2.16-18) and Assertion (1) of
Lemma D.2.2.

Proof of Lemma D.2.3. For the first claim, note that Eq. (C.l.lb) and Lemma C.3.1
imply that

αj= ί \g\2.
R3
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Now use Corollary D.1.5. For the second claim, note that Eqs. (A. 1.4) and (C.1.2a)
imply that

4πn = ΠQ,*FA)= lim J {Φ,FA).
IR3 R-*co \y\=R

This identity with Lemmas C.3.1, C.4.2, 3, 7 complete the proof.
Finally, one must identify the vector charges, {/,}, of Lemma C.4.1. For an

r-cluster λ, define /(A)= Σ '/• These are described in
jeλ

Lemma D.2.4. Under the same assumptions as in Lemma D.2.2, let λ be an
r-cluster. Then

where ζ e C°([0, oo), [0, oo)) is independent of λ,ce &δ, and δ e [0, δj.

Proof of Lemma D.2.4. As in Sect. C, let ψj = (l + \x — Xj\)~5, and let

πj = ψj(Σψk)~ί' Define qeΓ(T*) by Eq. (C.4.3). Note that d*σ2δq = 0. Also,

/ d\x — xk\ d\x — X:\ \ /τ^ _ ...

3

Write l(λ)= Σ Ά α Then for any constant ξeΊR3,
α = l

l\λ) = * J d(y - ξf A * Σ nfl = - * J (y - ξfd * Σ nsq. (D.2.20)
R 3 jeλ R3 j e λ

The right-hand side of Eq. (D.2.20) has two terms,

l(λ)=-\ (y-ξYΣdπ Λtq + lδ f
1R3 jeλ 1R3

Finally, observe that Eq. (D.2.19) implies that

l(λ)=-\ (y-ξYΣdπ Λtq + lδ f ( y - ^ - ^ Λ ^ o . (D.2.21)
1R3 jeλ 1R3 jeλ

( D 1 2 2 )

Evaluate Eq. (D.2.21) by considering the two possibilities, \X(λ)\<ρ(λ)r1/3 and
the converse. For the first case, take £ = 0. For the second case, take ξ = X(λ). In
either case, Eq. (C.4.11) must be used with Eq. (D.2.22) to get

Σ dπjΛ*q
jeλ

)Σ Σ
jeλkφλ

The remaining details are straightforward and left to the reader.

D.3. The Interaction of Clusters

To obtain from Eq. (D.I.4) a ̂ -independent bound for the number ρ(c), it is
necessary to consider associations of the points in A on length scales which are
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O(ρ(c)) as well as the cluster length scales which are O(ρ1/2(c)). By mimicking the
definition of an r-cluster, define an r-molecule to be a subset, Θ C A, with the
following properties:

(a) diam(9<2ρr"~m + 1, where m = m(Θ) = the number of elements in Θ.

(b) Θ is not strictly contained in any Θ'CΛ which also satisfies (a). (D.3.1)

For an r-molecule, define

ρ(Θ) = dist(Θ,Λ\Θ). (D.3.2)

In analogy with Lemma D.2.1, one has

Lemma D.3.1. Each r-cluster, μCΛ is contained in a unique r-molecule. As ρ>0,
there exists at least two r-molecules. If Θ is an r-molecule, then ρ(Θ)^ρrn~m{Θ).

Proof of Lemma D.3.1. Mimic the proof of Lemma D.2.1.
The crucial estimate in the proof of Proposition D.I.I involves the following a

priori estimate.

Proposition D.3.2. Let δ1 be as in Lemma C.4.1. Let δ e [0, δ^ and let c e (P5 be a
solution to Eq. (C.I.I). Let ρ = ρ(c) be as in Eq. (D.I.I). Let re(0,χ);
and if λcΛ(c) is an r-cluster, define (a(λ),n(λ)) by Eq. (D.2.4) and X{λ) by
Eq. (D.2.5). Then

ιl2r-2n). (D.3.3)

Here, ζ( ) e C°([0, oo), [0, oo)) is independent of ce<ίδ and δ e [0,1); and Σ ' means
to sum over all ordered pairs, (μ, λ), of r-clusters for which μ and λ are in distinct
r-molecules.

This result will be proved shortly.

Proof of Proposition DΛΛ, given Proposition D.3.2. Corollary D.I.5 asserts that
the right-hand side of Eq. (D.3.3) is zero. Choose r = [4 + 4ζ(<Άδ(c))Y3. Then Eq.
(D.3.3) asserts that

1/2) P.3.4)

According to Lemma D.2.3,

in fact,

-ic-9I'5(c)<5 (D.3.5)
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Since each Xj^Λ is contained in a unique r-cluster, Eq. (D.3.5) asserts that

4π Σ a(λ)^4π\ Σ n(λ)
r — clusters \r — clusters

(D.3.6)

The second assertion of Lemma D.2.2 and Eq. (D.3.6) now allow only two
possibilities. The first possibility is that there exists an r-cluster λ for which

^λ)^nlc^{κ0yHΛ-\n{λ)\-ζ{^\c)){δ + Q-ιi2). (D.3.7)

If Eq. (D.3.7) is not satisfied, then Eq. (D.3.6) and Lemma D.2.2 imply that the
n(A)'s are not all of the same sign. Because Lemma D.2.1 implies that

^ v2), (D.3.8)

either of the two cases imply with Eq. (D.3.4) and Lemma D.2.2 that

+ δκo(!Ά>(c))(l - C ( ^ ( c ) ) ρ - 1 / 2 ) . (D.3.9)

Equation (D.3.9) provides a (5-independent bound for ρ(c): ρ(c)
^C(2I*(c))max(l,e~2), where ζeC°([0, oo], [0, oo)) is independent of ce&
and δ ε [0, δx), as required.

The remainder of this section contains the proof of Proposition D.3.2. For this
purpose, some additional terminology is required. First, for an r-molecule Θ,
define its center, x(<9)clR3 as follows: First, let w = {yeIR3:dist(y, Θ)<ρ(Θ)r},
and then let

( (D.3.10)

Let

B(Θ) = {yeΉL3 :\y-x(Θ)\<ρ(Θ)r113}. (D.3.11)

Notice that because

diamΘS2ρ(Θ)r, (D.3.12)

one has

dist(Θ,dB(Θ))^iρ(Θy/3, and dist(Λ\Θ,dB(Θ))^±ρ(Θ). (D.3.13)

To each r-molecule, Θ, associate the number

s(Θ)= ί {\g\2-\f\2 + 2δσ-2\y\2\f\2}. (D.3.14)
B(Θ)

Let T = R 3 \ U B(Θ) and define

s(T) = ί {\g\2 - I/I2 + 2δσ~2 \y\2 \f\2}. (D.3.15)
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Each s(Θ), above, is evaluated using Lemma D.I.3. For this task, define for

eachj = l,...,n[c](κ;o)

Φj(y)=-aj\y-xjr
1 and n.(y)=-nj\y-xj\-1. (D.3.16)

Lemmas C.2.1 and C.3.1 assert that for ye Γ,

\g - Φ(Φ, g)\ (y) ̂  ζ(WΛ(c)) Σ\y~ Xj\' 3

and

(φ,g)-Σdφj (y)<ζW(c))Σ\y-XjΓ3. (D.3.17)

Also, for each j=l9...9n[c](κ0)9 the 1-form ω} is defined by Eq. (CAD).
Lemmas C.2.1, C.3.1, and C.4.3 assert that

Γ3

and

j j

For notational convenience, define the real 1-forms

and p =j ^
j J

The first step in the proof of Proposition (D.3.6) is

(D.3.18)

(D.3.19)

Lemma D.3.3. Under the same assumption as in Proposition D.3.2, let ΘcΛ(c) be
an r-molecule. Then

f *n(\q\2-σ2»\p\2+2(σ2yn-q2

n))
dB(Θ)

B(Θ)

where ζ e C°([0, oo), [0, oo)) is independent ofcetί3 and δ e [0, δx).

Proof of Lemma D.3.3. Use Corollary D.1.4 with x = x(Θ) and B = B(Θ). That
corollary with Eqs. (D.3.13, D.3.17, 18) yield the stated inequality with the
addition to the right-hand side of the term:

dB(Θ)
*n(-2(p-v)-\v\ (D.3.20)

where v = σδ Σ *

has

j
To evaluate Eq. (D.3.20), consider that for xe Γand Xjβλ, an r-cluster, one
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where z is independent of x, xj9 and λ. Thus for xeT, v is estimated via
Lemma C.4.1:

(D.3.21)

where C( )eC°([0,oo),[0,oo)) is independent of ce(£δ and δ€[0,δt). Using
Eq. (D.3.21) with Lemmas D.1.2 and D.2.4, the extra term, Eq. (D.3.20), is readily
seen to bound -ζ(9I*(c)) [ρ" 3 / 2 r~ 2 n + ̂ ρ"1 / 2r~2 M] as required.

In order to further analyze s(Θ), it is convenient to introduce for each
r-molecule, Θ, real 1-forms

q(β)= Σ dφj, p(Θ)= Σ dηj. (D.3.22)
J'.XJGΘ j'.XjeΘ

Be aware that as long as yφΘ,

dq{Θ) = 0, d * q(Θ) = 0, (D.3.23a)

and

dp(Θ) = 0, d * p(θ) - 0. (D.3.23b)

The second step in the proof of Proposition D.3.2 is to isolate the contri-
bution to each s(Θ) from the r-molecule Θ. For this one needs Lemmas D.3.4-5
below:

Lemma D.3.4 Under the same assumptions as in Proposition D.3.2, let Θ,Π be
distinct r-molecules. Let v( ) denote q(-) or p( ) of Eq. (D.3.22) and let {bj} denote
{α,} or {rtj} respectively. Then

(1) Q{Θ)r^ J *n{\v(Π)\2~2vn(Π)2)= J d3y\v(Π)\2.
δB(Θ) B(Θ)

(2) Q{Θ)r^ J *n((v(Π),υ(Θ))-2vn(Π)vn(Θ))

dB(Θ)

B{Θ) \Xj — Xk\

where X' means to sum over all Xj e Θ and xfc e Π.
Proof of Lemma D.3.4. Equation (D.3.23a,b) implies that for r-molecules Θ, Π
and for yφΘuII

g~ {v{Θ\ v(Π)) - A (υa(θ)υp(Π) + vβ(θ)υa(Π)) = 0. (D.3.24)

The derivation of Eq. (D.3.24) is formally the same as the derivation of
Eq. (D.1.2). For Assertion (1), take Θ=Π above and then contract Eq. (D.3.24)
with y — x(Θ). Then integrate the result over B(Θ). An integration by parts
completes the job. For Assertion (2), contract Eq. (D.3.24) with y — x(Θ) and then
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for each ε>0, integrate over B(Θ)\{y e R 3 : dist(y, Θ) <ε}. Integrate by parts and
observe that the ε->0 limit is achieved uniformly; and results in Assertion (2).

To use Lemma D.3.4 to estimate s(Θ) requires the elimination of the factors
oΐσ2δ:

Lemma D.3.5. Under the same assumptions of Proposition D.3.2, let Θ be an
r-molecule. Define p by Eq. (D.3.19). Then

ρ(Θ)r113 J \\-
dB(Θ)

and

Here ζ(-)e C°([0, oo), [0, oo)) is independent ofcε<ίδ and δ e [0, δx).

Proof of Lemma D.3.5. Use Eq. (D.3.16) along with Lemma D.I.12; this last
implying that if y e R 3 has |j;|^4d;j;, then

|1 -σ2δ(y)\^ζ(SΆ\c))δΊ/8. (D.3.25)

The third step in the proof of Proposition D.3.2 is the evaluation of s(T). This
evaluation requires

Lemma D.3.6. Under the same assumptions as in Proposition D.3.2,

where ζ( )e C°([0, oo), [0, oo)) is independent ofceϋ3 and δ e [0,δj.

Proof of Lemma D.3.6. This is an immediate consequence of Eqs. (D.3.17, 18, 21).
The fourth step in the proof is to isolate the contribution of s(T) from each

r-molecule Θ:
Lemma D.3.7. Under the same assumptions as in Proposition D.3.2, let Θ be an
r-molecule. Define p(Θ), q(Θ) as in Eq. (D.3.22). Then

J <Py(\q(Θ)\2-\p(Θ)\2)
»3\B(β)

ί
dB{Θ)

Proof of Lemma D.3.7. Use Eq. (D.3.24) with Θ = Π. Contract with y-x(Θ) and
then integrate over R 3 \ ΰ ( 0 ) . Do this with v = q, then v = p and subtract the
resulting two equations. Then integrate by parts.

The fifth and crucial step in the proof of Proposition D.3.2 is to compute the
interaction energy between r-molecules. The result is

Lemma D.3.8. Under the same assumptions as in Proposition D.3.2, let Θ,Π be
distinct r-molecules. Then

f
IR3
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and

where Σ' is the sum over all Xj e Θ and xk e Π.

Proof of Lemma D.3.8. Use the defining equations, Eqs. (D.3.16, 22) and the fact
that 4π\x — y]"1 is the Green's function for d*d.

Together Lemmas D.3.3-8 imply the following inequality:

ί
3

(D.3.26)

Here Σ' means to sum over all xp xk in distinct r-molecules. ΣΘ means to sum
over all r-molecules, and ΣΘ means to sum over all XjeΘ and xkeΛ\Θ.

Additional progress requires

Lemma D.3.9. Under the assumptions of Proposition D.3.2, let Θ be an r-molecule.
Then

(1) J d^yσ-\y,x(Θ))\f\2^ -C(8l ί (c))(β" 1 / 2 ' " 2 " + ^ " 1 / 4 r " 2 1 1 ) .
B(Θ)

If\x(Θ)\>ρ(Θ)r1/\ then

(2) J dV~ 2 fo*(®))l/l 2 ^iκo(a'^
B(Θ)

Here ζ(-)e C°([0, oo), [0, oo)) is independent ofce&δ and δ e [0, δx). The function
κ0 is defined in Lemma C.2.1.

Proof of Lemma D.3.9. To prove Assertion (1), note that Lemmas C.4.1 and D.1.2
with Eqs. (D.3, 10, 13, 25) imply that

ί d3yσ-2(y,x(Θ))\f\2^\x(Θ)\2 f
B(Θ) B{Θ)

(D.3.27)

To prove Assertion (2), observe that if \x(Θ)\^ρ(Θ)r1/3, then

J σ-2\f\2^σ-2(x(Θ)) J d'y\f\2.
B(Θ) B(Θ)

In addition, Corollary D.1.4 asserts with Eqs. (D.3.17, 18, 21) and Lemmas D.2.2
and D.2.4 that

\ ί d3y\f\2U ί
B(Θ) B(Θ)
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Therefore, because | x ( Θ ) | ^ l ,

J d*yσ-2(y,x(Θ))\f\2^ J
B{Θ) B(Θ)

As B(Θ) contains at least one Xj e A, this last equation implies Assertion (2).

Proof of Proposition D.3.2(completion). Due to Eq. (D.3.13), there exists at least
one r-molecule, Θ, with |:x(<9)|>ρ((9)r1/3.

Equations (D.3.26) and (D.3.27) along with Lemma D.3.9 force the conclusion
that

+ δκQ(W*(c)) - f(2l'(c)) (δρ ~ ί/2r ' 2n + ρ ~ 3 / 2 r " 2n). (D.3.28)

In order to obtain finally Proposition D.3.2, it is necessary to rearrange the sums in
Eq. (D.3.28) into sums over r-clusters. Let λ be an r-cluster and let Xjβλ. Then

\xj-X(λ)\<ρ1/2r. (D.3.29)

If μ is an r-cluster in a distinct r-molecule from λ, and if xk e μ, then

\\Xj-Xk\-\X(λ)-X(μ)\\<2ρ"2r. (D.3.30)

By rewriting the sums in Eq. (D.3.28) as double sums, first over r-clusters, and
second over points in r-clusters, one obtains with Eq. (D.3.30) that

(aflk-njnj a(λ)a(μ)-n(λ)n(μ)

^ \Xj-xk\
 = L \X(λ)~X(μ)\

Here, Σ / r is the sum over pairs (λ, μ) of r-clusters in distinct r-molecules. In addition,

(a;a f c -n 7 nfc) (a(λ)a(μ)-n(λ)n(μ))
Σ Θ Σ Θ \xj-xkf (xj-*(θ)9xj-xte-r Σ \χ{λ)-χ{μ)\ '

ί/2r-2n). (D.3.32)

Here, Assertion (2) of Lemma D.2.2 has been used. Proposition D.3.2 is a direct
consequence of Eqs. (D.3.28, 31-32).

D.4. The Convergence of Min-Max for 21

The a priori estimate that is provided by Proposition D. 1.1 is the key result for the
proof of Proposition C.I.I. This section consists of the proof of said proposition.

Proof of Proposition C.l.l. It is assumed that 9 ϊ g > 4 τ φ | + ε for some ε>0.
According to Lemma B.1.2, each 21§^2tg>4π|n| + ε too. Now Proposition D.I.I
asserts that if (5 6(0,^), then the number ρ(cδ($)) of Eq. (D.I.I) is bounded
independently of δ e [0, δj. Lemma D.1.2 provides a (5-independent bound for the
number d*(c%%)) of Eq. (D.I.I). Now, Lemmas C.2.1, C. 3.1, and C.4.1 provide a
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constant z = z(9I^ —4π|n|)<oo with the property that if δe^δ^ then
cδ($) = (A, Φ) has curvatures which satisfy

Equation (D.4.1) implies that the numbers {HPSIJ*: c = cδ(%) and (5 e (0,(5 J}
tend uniformly to zero as (5->0. This fact allows one to invoke Lemma B.3.2. Said
lemma provides a subsequence {c( = cδ($): δ<ί~*} C {cδ(^)} and a sequence {g^
C © such that (Ai9 Φf) = gfr converges strongly in L 2

1 ; l o c(T* x su(2)) x L2

2;loc(AdP)
to (A, Φ) e L 2

1 ; l o c(T* x su(2)) x L2

2;l0C(AdP) with (A, Φ)I in £ being a critical point of
91. However, Eq. (D.4.1) and Lemma A.4.6 of [9] imply that the sequence of
curvatures, {(FAi9DAiΦ^}9 converges strongly in L2 to (FA,DAΦ). This means that
{gfii} converges to c in the L2

1; loc topology on (£. The L2

1;loc convergence with
Lemma B.1.2 guarantees that 2l(c) = 2l&.

The convergence of {gf^ to c can be assumed to be with respect to the C00

topology on (L The argument goes as follows: As the set {31(^)1 is bounded, R 3

can be covered by a uniform set of open balls, {Ba}, of fixed radius such that in each
Ba, and for each i, there exists haieC°°(Ba; SU(2)) which puts Ax into the Hodge
gauge in Ba. That is, if hai(Ai9 Φt) is written (Aai9 Φαi), then

d*Aaί = 0 in Ba, and (na,Aaί) = 0 on 3£ α , (D.4.2)

where na is the unit normal to Ba. Further,

\\AJ2.1SB.Zz\\FΛl\\2.Bm, (D.4.3)

where z is independent of i and α. This fact is a direct consequence of K.
Uhlenbeck's compactness theorems in [19]. Her theorems also provide for each α,
an /ιαeC°°(jBα;SU(2)) such that in Ba9 ha{A9Φ) = {Aa9Φ(ύ also satisfies Eqs.
(D.4.2,3). Because \{Ai9Φ>i) converges strongly in L2

1; loc to {A, Φ), the implicit
function theorem in [19] allows that no generality is lost in assuming that in each
βα, {(Aaί, Φαι )} converges strongly in L2 to (Aa9 Φα). The advantage of the Hodge
gauge of Eq. (D.4.2) is that in each £ α , and for each i, Eq. (C.I.I) is a set of elliptic
equations for the pair (Aai9 Φαί). The equations are z-dependent, but bootstrap
theorems in [26, cf. Chap. 6] still apply, and one can conclude that in each Ba,
(i4αj,Φαj) converges to (Aa9 Φα) in C0 0. As a consequence, the set of transition
functions {gaβi = hji^1} C C°°(BanBβ: SU(2)) converges in C00 to gaβ = hjij1. Now
the construction in [19] as generalized in the appendix of [22] produces for each z,
a C00 bundle isomorphism {ηai: I?α->SU(2)} such that: (1) For each i and pair (α, β),

n*i9aβinβi1=9aβ i n UanUβ} a n d (2) f o r e a c h <*> t h e sequence { y c C 0 0 ^
converges. Now, for each i define gf e © by setting g[{y) = {h~ιηaih0Lig^{y) when
)/ e Ba. The preceding discussion can be summarized by the statements that each g\
is well defined, and that {g c j converges strongly to c in G.

Now, let 77: (£^>S denote the projection. Then {Π{g\c^} converges strongly to
Π(c) in 93. For each ί, there exists qt e SU(2) C © such that qjlig'f^ = cf. As SU(2) is
compact, {gj has a subsequence, {#,-}, which converges in SU(2) to ̂  G SU(2). Then
the corresponding subsequence, {c7}, converges in 23 to ζjf~177(c) = c(g). This
completes the proof of Proposition C.I.I.
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E.I. The Neighborhood of the Moduli Space

For weZ, the infimum of 91 on 33 M is 4τφ | , and 9I(c) = 4π|n| if and only if
c e 9KΠ = {(̂ 4, Φ)eS&n:FA = sign(n) * DAΦ}. The purpose of this section is to prove
the following proposition:

Proposition £.1.1. For each neΈ, there exists ε>0 and a homotopy m:[0,1]
x $„->&„ with the properties: (1) For all t e [0,1], m(£, •) restricted to Wn is the
identity; and (2) m(l, •): ^ ^

Corollary E.1.2. Let neΈ. There exists ε > 0 such that if % is a homotopy invariant
family of compact subsets of 23 „ with 2ίg < 4π \n\ + ε, then 2ί g = 4π \n\ and there exists

The proof of Proposition E.I.I follows closely the author's original existence
proof for 9KM as it appears in [11]. An analog of Proposition E.I.I for the Yang-
Mills functional on S 4 is proved in [22]. The proof here is modelled closely after the
proof in [22]. For the proof, restrict attention to the cases w^O, as the n<0 cases
are obtainable from the former by reversing the orientation of R 3 .

For rceZ, let c e 8 n . Because (see [12, 13])

it is the L2-norm of

G(c) = (*FA-DAΦ,0)eL2(Q), (E.I.I)

which measures how close a given c is to $RM. For c e (£, define G(c) e L2(Q) by Eq.
(E.I.I) also.

Proposition E.I.I is proved in two steps. The first step is summarized by

Lemma E.1.3. Given O^neZ, there exists ε>0, a continuous homotopy mγ: [0,1]
x B n - ^ S n and a continuous map R: 93M-•[(), GO) such that

(1) If cemn, then m1(ί,c) = c for all ί e [ 0 , l ] .
(2) // ce93Π and 2I(c)<4τm + ε, then Gfm^l,*:)) has compact support in

: \X\<R(C)} and HGCm^l,c))| | 2^ | |G(c)| |2.

For the second step, introduce for each nεΈ the space (Sn =
l|G||6 /5<oo}. Topologize ©„ by the inclusion SMC23Mx[O, oo) which sends c to
(c,| |G(c)| |6 / 5). Define (gw = (gMn»n.

Lemma E.I.4. Let O^neΈ. There exists ε>0 and a homotopy m 2 : [0,1] x ©„-•(£„
such that

(1) If ce ψn, then τn2(ί, c) = c for all t e [0,1].
(2) // c e 6 n and ($ί{c)<4πn + ε, then as a function of ί e [ 0 , 1 ] , G(m2(ί,c))

Proof of Proposition E.I.I., assuming Lemmas E.I.3. and E.I.4. Let ε be as in
Lemma E.I.3. Notice that m ^ l , •) maps {c e S n : 9I(c) <4πn + ε} continuously into
the set {ce©n:9I(c)<4πn + ε}. Let δ denote \ times the minimum of the ε's in
Lemmas E.1.3 and E.I.4. Define m as follows: Let α(e) = β(δ" 1(9l(c) - 4πn)), where
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βeC$([0,ao); [0,1]) is identically 1 if t^\ and identically 0 if ί^f. Let (ί,c)
G [0,1] x ®M and set

ί m ^ c ) if ίe[0,i],

m(ί,c) = |m2(α(c)(2ί-l),m1(l,c)) if ί eβ, l ] and if α(c)>0,

[m^l.c) if ίe[i,l] and if α(c) = 0.

The proofs of Lemmas E.1.3 and E.I.4 occupy the rest of this section. To begin
these proofs, it is necessary to introduce certain extra facts from [8]. To each ceK,
associate the first order differential operators Dc, £>C*:ΓO(Q)->ΓO(<2) which send

to

T)cψ ={DΛa + lΦ9ά]DΛφ9DAaHΦ,ΦΊ),

lΦ]Dφ*D*lΦψ])

These operators are formal L2 adjoints of each other. Both are of the type that was
discussed in Sect. C.2 of [9]. Associate to each ce(E, the Hubert space HC(Q) as
defined in Sect. B.6 of [9]; the completion of Γ0(Q) in the norm, || ||c, which is
defined by the inner product (ψ,η}c = (VAψ,VAη)2 + (ίΦ,ψ'],[Φ,η]}2' Then
according to Lemma C.2.1 of [9], both Ί)c and Dc* extend to bounded, Fredholm
operators from HC(Q) to L2(Q). In fact, more is true: The sets H(Q)
= {Hc(Q):ce®} and L(β) = {(c9ψ)e93xL2(Q)} are given C°-vector bundle
structures by Proposition B.6.3 of [9]. Lemma C.2.2 of [9] asserts that the
assignment of c e 93 to D c and D* define continuous sections, D and D*, over 93 of
Horn (if ( 0 , L(g)). Let T)c and X)* be respectively the fibre-wise adjoints of D c and
D*. They define continuous sections, ί) and f>*, over 23 of Hom(L(β),//(Q)).

Given ε > 0, define for each 0 ̂  n e Z the space 93n>ε = {fc G 93Π: 2I(ft) < 4πw + ε}.
Similarly, define SM ε.

Lemma E.1.5. For each O^neΈ, there exist constants ε ,μ>0 and a function
v G C°(93M9ε; (0,1)) such that whenever c G 93 w ε ,

Proof of Lemma E.I.5. According to Proposition 9.1 of [8], the vector space ker ί ) c

is isomorphic to ker D*. Proposition C.2.3 of [9] asserts that ε > 0 exists such that
when c G 93rt ε, then ker D* = 0. The existence of the constant μ follows from Lemma
C.2.10 with'the Wietzenbock formula for D*, Eq. (6.13) of [8]. The existence of
v(c) > 0 such that || ί ) c || > v(c) follow from the fact that Range (X>c) is closed in HC(Q)
(cf. Theorem IV.5.2 of [27]). The continuity of the assignment of c G 93 to Φ c implies
that v( ) can be taken to be continuous on 93Π ε.

For each c e S , introduce the space Γc = Hc(Q)nΓ(Q) with the induced
topology. This Γc is a Frechet space.

Lemma E.1.6. Fix c G 93. Then the assignment of ψe Γc to c + ψ defines a continuous
map from Γc into (£. The assignment of (ψ,η)eΓc xΓc to T)f+ψη or T)c + ψη
e L2(Q)nΓc defines a smooth map; the assignment of (ψ, η)eΓc x (lf(Q)nΓ(Q)) to
ΐ)c + ψη G HC(Q)*nΓ(Q) and to f)c+ψηeΓc define smooth maps.
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Proof Lemma E.1.6. The first assertion follows from Proposition A.4.3. The
second assertion follows using Lemma B.6.4 of [9]. The third assertion claims that
the map which sends {ψ,η)eΓcx (L2(Q)nΓ(Q)) to the linear functional
(η, D*+v( )>2: Hc(Q)^Έί is C00. This fact follows from Lemma B.6.4 of [9] which
implies that the assignment of (σ,τ)e xHc(AdP) to <[σ,τ], >2:Γ0(AdP)->R
extends to define a smooth map of x Hc(AdP) into 77c(AdP)*. For the final claim,

define a map from ΓxΓx (L2(Q)nΓ(Q)) to Hc(Q)*nΓ(Q) by assigning (ψ, w, η) to
the linear functional <u, -}c+ψ — (η,Dc+Ψ( ))2 This^gives a smooth map into
HC(Q)*> a n d the implicit function theorem implies the final claim.

For ceK and ψ = (a, φ)eΓ\ one has G(c + yή = G(c) + ImT)cψ +|{ψ,ψ}, where

{ψ, ψ} = (• [α, α] - 2[α, £|, 0) e Γ(β), (E.1.3)

and

Lemma B.6.4 of [9] implies that the assignment of ψeΓc to {ψ,ψ} and to
<{ip,φ}, >2 defines smooth maps from Γ into L2(Q)nΓ(Q) and H,{QYr\Γ(Q),
respectively. In particular, this means that the assignment of ψeΓc to G(c + ψ)
eL2(Q)nΓ(Q) gives a smooth map.

Let ε be as in Lemma E.1.5 and let ce93B i e. Define

Γc = {ψ G Γc :2I(c + ψ)<4τm + ε}.

Due to Lemma E.1.6, Γc is open in Γc.

Lemma E.1.7. Let ε fc^ as in Lemma E.1.5 and let v e C°(Sn j £; (0,1)) be as defined
there also. Let Π: (£->23 be the projection. There exists a continuous map δ : 93Ms£/2

-•(0, oo) with the following significance: For each ce93 Λ £ / 2 let D ^ = { M G L 2 ( Q )
nΓ(Q): || M || 2 < <5(c)}. Tfen /or eαc/ί c e SΠjε/2? iftere exists an open neighborhood Όc

of 0 m Γc wiί/i α unique, smooth map τc: O c x O c " ^ ^ 2 ( 0 n ^ ( 0 w/iicfe 5βπ^5 (0,0) ί<?
0 αwd which satisfies at each (ψ, u)eΌcx Ό'c,

(1) G(c + ψ + f)c+ψτc{ψ,u)) = G(c + ψ) + u.
(2) \\τc(ψ,u)\\2^zv(Π(c + ψ)) 21|w||2, where z< oo is independent of c, ψ, and u.

Proof of Lemma E.I.7. For each ψeΓc, consider the map T(φ, ) which sends
*7eL2(β) to T(φ,ι/) = 3)c + vί)c + vι/+i{I)c + vι/,ί)c + vιj}, as a map from L2(β) to
L 2 (0. Note that T(ψ, •) is C00, T(ψ,0) = 0, and that the differential of T(ψ, •) at
0eL2(Q) sends ηeL2(Q) to Ί)c+ψT)c+ψη. According to Lemma E.I.5, this
differential is surjective and so the implicit function theorem provides the unique,
smooth inverse, T(ψ, •) * to T(ψ, •) as a map from a neighborhood of 0εL2(β)
into L2(β). Lemma B.6.4 of [9] implies that

with z independent of c e 2 3 n ε / 2 and ψeΓc. As v( ) of Lemma E.1.5 is
continuous on 93ε, it follows from Eq. (E.I.5) that T(ψ, - ) ' 1 exists as a smooth map
from &c,ψ = {u EL2(Q) :\\u\\2<δ(Π(c + ψ))} into L 2(β), where δ: 33Π,e/2->(0, oo) is
continuous. By replacing δ by \δ, one obtains readily that for admissible (c, ψ) and
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and that if T(ψ,η) = u and η satisfies Eq. (E.1.6) replacing T~1(ψ9ύ), then
η = T~ί(ψ,u). Furthermore, the fact that the assignment of (ψ,η)eΓc

x (L2(0)nΓ(β)) to T(ψ,η)eL2(Q)nΓ(Q) defines a C00 map with uniform
estimates implies via Hamilton's inverse function theorem [28] that for each
ce93Mε/2, there exists a neighborhood £)CCΓC of QeΓc such that T~1(ψ, •) is a
smooth map on Qc for all ψ e θ r Let Ό'c = CίcnΓ(Q). Then this implicit function
theorem implies additionally that the assignment of (ψ9 u)eΌcx Ό'c to τc(ψ9 u)
= T~1(ψ,u) defines, as required, a smooth map into L2(Q)nΓ(Q).

The application of Lemma E.1.7 is for a specific u e L2(Q)nΓ(Q). For this, one
requires

Lemma E.1.8. Let ε be as in Lemma E.I.5 and let δ e C°(Sπ > ε; (0,1)) be given. Then
there exists ρ e C 0(33n £; (0,1)) such that for all c e 33Mε and all r >ρ(c),

\\(l-βr)G(c)\\2<δ(c), (E.1.7)

where βre C^(R3) is ^5 defined in Sect. A3.

Proof of Lemma E.I.8. If Eq. (E.1.7) holds at c e 23, for some ρ < oo, then it holds in
an open neighborhood, £(c), of c in 23Π ε with the same ρ. As 93Πtβ is paracompact
(Proposition B.1.2 of [9]), there exists a locally finite open cover, {£(cf): zeyl}
together with a subordinate partition of unity, {αf: ieΛ} such that if cefi(Cj),
Eq. (E.1.6) holds for all g^rKoo. Let ^ ) = 2 ^ « ^ f e . Then ρ(c)
>2min{ρί: aί(c)>0} and Eq. (E.1.7) holds. ieΛ

Now, let (5 6C0(93n > £ / 2;(0,l)) be given by Lemma E.1.7 and let
ρ E C°(SW ε / 2; [0, oo)) be constructed from \b as described by Lemma E.I.8. Then,
Lemma E.I.7 constructs for each ce93π > ε / 2,

η(c) = τc(0, (1 - )Sρ(c))G(c)) e L\Q)nΓ{Q) (E.1.8)

to satisfy G(c + t>cn{c)) = βmG(c). Here, ^ ρ G C J ( R 3 ; [0,1]) is as specified in
Sect. A.3.

Lemma E.1.9. Let ε be as in Lemma E.I.5. For c e 23n>fi/2, rf^/ine f/(c) by £̂ f. (E.I.8).
77ze assignment of (ί, c) 6 [0,1] x 93Π)ε/2 ίo i7(c + tT)cη(c)) e 93 defines a continuous
map.

Proof of Lemma E.I.9. Proposition B.6.1 of [9] provides an open neighborhood,
yi{c\ of each c e 93 with a continuous h\_c\ : 9l(c)->©0 such that the assignment of
be9l(c) to mcφ) = hφ)-b-c embeds 9t(c) in Γ sending c to 0eΓ c. The (5
equivariance implies that for b e 9ΐ(c),

me(6)Λ[c] (b) • η(b)) = i?ρ(b)G(c + meφ))

Further, Lemma E.I.7 asserts that
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On the other hand, Lemma E.1.7 and E.I.8 provides a neighborhood ΌcΓc of
OeΓc and a unique, continuous ξ:Ό->L2(Q)nΓ(Q) such that for

G(c + φ + %c+φξ(ψ)) = βρiΠic+φ))G(c + φ),

and

As ξ is unique, it must be true that on Όnmc(9l(c)), ξ(mc{b)) = h\_c\(b)η{b). Thus,
because mc is an imbedding, the assignment oί beyic(b)c\m~ι(&) to h[c\(b)γ\φ)
eL2(Q)nΓ(Q) is continuous. As

Π(c + mc(b) + Φc+mc{h)h[_c] φ)η(b)) = Π{b + t)bη(b)),

one obtains, finally, Lemma E.1.9.
The proof of Lemma E.I.3 is completed by defining m1: ©M-^Sn as follows:

m^t, c) = g(f, c)Π\c + tβ(2ε~ ^ ( c ) - 4πn)>,(c)] ,

where #: [0,1] x »->© is provided by Lemma B.1.4, and β e Q([0, oo); [0,1]) is
a smooth function which is identically 1 on [0,|] and identically 0 on [f, oo].
Define the function R by assigning c e S n to

Proof o/ Lemma E.I.4. The lemma is proved by taking ε as in Lemma E.I.5 and
constructing for each ce(&nfE/2 = {ce(&n\ 9I(c)<Ann + ε/2} a map αc: [0, GO]->ΓC

such that || G(c + αc( )) II2 is decreasing to zero. Here, [0, 00] is topologized via the
map t^l—e~t into [0,1]. The continuity of the assignment of (ί,c) to ac(t) is
proved using the local embeddings of Proposition B.6.1 of [9].

To begin the construction, define the linear space Ωc = {ψeΓc:
ImS cψeff c(β)*}. The space Ωc is naturally a Frechet space with the
topology from the map which sends ψeΩc to (ψ,lmT>cψ)GΓcxHc(Q)*. For
c e eM?ε/2, G(c) E L 6 / 5(0, and so by Lemma A.4.1 of [9], G(c) e HC(Q)*. Moreover,
the assignment of ψeHc{Q) to {ψ,ψ} of Eq. (E.I.3) defines, via the L2-pairing, a
smooth map y>ι̂ <{y^y>}, >eiϊ c(β)* o f HdQ) into HC(Q)*. Therefore, the
assignment of ψeΩc to G(c + yή = G(c) + ImT>cψ+^{ψ,ιp} defines a smooth
map of Ωc into Hc(β)*nΓ(β).

With ε as in Lemma E.I.5 and for ce(£Bjε/2, define 0 c = {t/;e£2c: 9I(c + ip)
<4τra + ε}. Note that Ωc is open in Ώc.

Lemma E.1.10. Let ε be as in Lemma E.I.5 and let c e &nfE/2- For each ψ e Ω\ there
exists a unique uc(ψ)eΓc with the following properties:

(1)
(2) \\
(3) ||
(4) φ

Here, \\ 11^+^ is the dual norm on Hc + ψ{Q)*. The constant z< 00 is independent
of ce (£Λ)C/2 and ip G ΩC. /n addition, the assignments of ψeΩc to uc(ψ) G Γ C anrf ίo
Ί)f+ψuc(ψ) E Ωc define smooth maps.
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Proof of Lemma E.I.10. Define a map T: Ωc x ΓC->ΩC x(Hc(Q)*nΓ(Q)) by
sending (ψ, u) to T(ψ, ύ) = (ψ, T)c+ψΊ)f+ψu + G(c + ψ)). According to Lemma E.1.6,
this is a smooth map. Lemma E.1.5 asserts that the differential of T at (ψ,u)
eΩcxΓc is surjective, and therefore, Hamilton's inverse function theorem [28]
provides a smooth map uc\Ωc->Γc satisfying Assertion (1) of Lemma E.I.10.
Assertion (2) follows from Assertion (1) and Lemma E.I.5. Assertion (3) follows
from Assertions (1), (2) and the Weitzenbock formula for D c + ψ in Eq. (6.13) of [8].
The calculations are straightforward and the interested reader can refer to Sect. B.3
of [9], where similar estimates are derived. Assertion (4) is a direct consequence of
Assertion (1). The differentiability of the assignment of ψ e Ωc to T>f+ψuc(ψ) e Ωc is
also a straightforward calculation which is left to the reader.

The tangent space to Ωc is Ωc x Ωc and thus, the assignment of ψ e Ωc to
Ί)f+ipuc(ψ) G Ωc defines a smooth vector field, v, on Ωc. The results in [28] imply that
the integral curves of v exist and are unique. The following lemma summarizes:

Lemma E.1.11. Let ε be as in Lemma E.I.5 and let c e ©π>ε/2. For each ψ e Ωc, there
exists a neighborhood of ψ, O(φ) C Ωc; a number, t(xp) > 0, and a unique, smooth map
α c: [0, t(ψ)) x D(ψ)-+Ωc such that for any fixed η e O(φ), and for each s e (0, t(\p)),

,η) = (T>*uc)(ac(s,η)) and ae(0,η) = η. (E.1.10)

This lemma asserts that the integral curves of α exist for short times. The next
lemma extends existence to [0, oo].

Lemma E.1.12. Let ε be as in Lemma E.I.5 and let c e © n ε / 2 . There exists a
neighborhood © of oeΩc such that occ of Eq. (E.1.10) has a unique extension for
which the assignment of (s, η) e [0,1] x O to αc( — ln(l — s), η) defines a continuous
map from [ 0 , l ] x O to Ωc.

Proof of Lemma E.1.12. Lemma E.I.I 1 implies that if ψ e Ωc and iϊηeΌ(ψ) and
s G [0, t(ψ)), then for α = αc,

η)). (E.l.ll)

Therefore, as long as s e [0, t(xp)),

and

The first step for Lemma E.I. 12 is

Lemma E.1.13. Let ε and c e Gn > ε / 2 be as in Lemma E.I. 12, and let αc be the map of
Lemma E.l.ll. Then αc( —ln(l—s),0) is well defined for all 5 6 [0,1] and the
assignment of s to αc( —ln(l — s),0) defines a continuous map from [0,1] into Ωc.

Proof of Lemma E.I. 13. According to Lemma E.l.ll, α(ί, 0) exists for t e [0, ί(0))
with ί(0)>0. Suppose that α( ,0) has been extended to a continuous map from
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[0, T) to Ωc for some T^oo. Then by showing that it extends uniquely to a
continuous map from [0, T] to Ωc, one could then infer Lemma E.I. 13 from
Lemma E.I.11. Now, note that if ce(£n ) £ / 2, then G(c)eL6/5(Q) and, therefore, if
5 G [0, T), Eq. (E.I. 12) implies

with embedding

For any ip 6 £2C, and s e (0, ί(φ)), Proposition B.6.2 of [9] implies that if
b = c + α(s, ψ), then

Lemma A.4.1 of [9] implies that Lβ/5(Q) embeds in HC(Q)*
constant z < oo, independent of c e (L Thus,

< z
dα

(E.1.16)

where z < oo is independent of c, ψ, and s. In the present predicament, Eqs.
(E.I.13, 5, 6) and Lemma E.I.10 imply that

d_

Is

and so, by integrating, that

(E.1.17)

where ξ(c) depends on c only through | |G(c)| | 6 / 5. Via Proposition B.6.2 of [9], this
last equation also asserts that with a different ξ(c)9

\\φ,0)\\c<ξ(c). (E.I.18)

Now, if [5, ί] G [0, T), then

c + α(τ,0)

<e~szξ(c), (E.1.19)

with a different ξ(c). The second line, above, follows from the first using Eq. (E.I.7)
and Proposition B.6.2 of [9]. The third line uses Lemma E.I.10 and Eqs.
(E.I.13,15). Equation (E.I.19) implies that {α(s,0): S G [ 0 , T)} converges strongly
in HC(Q) as s-+T. By bootstrapping, one obtains the convergence of {α(s, 0)} in Γc

as well (cf. [28]). Equation (E.I. 13) implies that this limit, α(T, 0), is in Γc. Further,
Eq. (E.1.15) implies that {G(c + α(s,0))} converges strongly in L 6 / 5(β) to a limit
which must a priori be G(c + α(T, 0)). Therefore, {G(c + α(s, 0))} converges strongly
in //C(Q)*. This last fact, with the convergence of {α(s, 0)} in HC(Q) implies that

£)
c + α ( s 0 )

( y
α(s, 0) converges strongly in f/ c (0*, too. The conclusion is that

( )

{α(s, 0y.se [0, T)} converges to α(T, 0) in Ωc.
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The second step in the proof of Lemma E.I. 13 is to obtain the existence of α of
Lemma E. 1.11 on [0, oo ] x £> for some neighborhood O of o e Ωc. For this purpose,
suppose that T< oo exists with a neighborhood O(T) of o in Ωc such that α exists
and is continuous on [0, T) x Ό. By Lemma E.I.13, α(Γ, 0) G Ωc exists and there
exists a neighborhood, O' of α(T,0) in Ωc and £>0 such that α exists and is
continuous on [0, t) x O'. By Lemma E.I.13, there exists se [T—\t, T) such that
α(s, 0) G O' and, therefore, there exists a neighborhood, O" g O such that α(s, ?y) G O'
for all 77 G O". Then by the uniqueness of assertion of Lemma E.I.I 1, a extends to

map 0, T+ - x θ " into Ωc continuously. The conclusion is the following: Given

T< oo, there exists a neighborhood £>(T) of o in Ωc such that α: [0, T) x O(T)->ΩC

continuously. Further, since {α(ί,0): ί>0} converges to α(oo,0)GΩc, one can
conclude that given a neighborhood, Q, of α(oo, 0) in Ωc, there exists T< oo and a
neighborhood O(Q) C O(T) of o in Ωc, such that for all η G O(Q), α(T, f/) e Q. Thus,
Lemma E.I. 12 is a consequence of the uniqueness assertion of Lemma E.I. 11
together with

Lemma E.1.14. Let ε and c be as in Lemma E.I.12. Let α(oo, 0) e Ωc be as in Lemma
E.1.13. There exists a neighborhood Q of α(oo, 0) in Ωc such that α maps [0, oo] x Q
continuously into Ωc.

Proof of Lemma E.I.14. As G(c + α(oo, 0)) = 0, there exists for each δ > 0, a convex
neighborhood Q(δ) of α(oo, 0) in Ωc such that for all η e Q(δ),

\\G(c + η)\\2+\\G(c + η)lc + η<δ. (E.1.20)

Lemma E.I.11 insures that no generality is lost by assuming that α exists and is
continuous on [0, t) x Q(δ) for some t G (0, oo). For (5 >0, but sufficiently small, α
will be shown to extend to [0, oo] x Q{δ). To begin, observe that Proposition B.6.2
of [9] implies that z<oo exists such that for any ce(ί,ψeH C (Q), and GGH C (Q)*,

Thus, for any (s, η) e [0, ί) x Q(δ), Eqs. (E.1.13, 21) imply that

\\G(c + cc(s,η))lc+x{s,

and thus, with Eq. (E.I.20),

(l + \\a(s,η)-η\\e + φJ. (E.1.22)

Now, Eqs. (E.1.13,16, 22) and Lemma E.I.10 imply that

-^\\φ,η)-η\\c+xis,η)
(E.I.23)

The integral form of the preceding inequality asserts that if (s, η) e [0, t) x Q(δ), then

zδ(\ e ~s>)
\\r/(<i tη\ fill <^ (Tl 1 94^
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Here, the reader should check that the constant z is independent of c, η, s, and δ.
Equation (E.1.24) implies that if δ<\z~γ = δθ9 then

| |α(s,ή) — η\\c+a(stη)<l, (E.1.25)

and therefore, \\ot(s,η) — η\\c+η is uniformly bounded on [0, t) x Q(δ) if δ<δ0.

Next, observe that if [r, 5] C [0, ί), and if η e Q(δ\ then

s

doc

(E.1.26)

Here, Line 2 follows from Line 1 with Eq. (E.1.25) and Proposition B.6.2 of [9],
while Line 3 follows from Line 2 with Eqs. (E.I. 13, 22, 25) and Lemma E.I. 10.
Equation (E.1.26) asserts that the sequence {α(s, η): se [0, t)} for fixed η e Q(δ) is
Cauchy in HC(Q) and that it converges uniformly, with respect to η G Q(δ) to some
α(ί, η) G Q((5). By bootstrapping as in the proof of Lemma E.I. 13, one obtains the
uniform convergence on Q(δ) of {α(s, 77): S G [ 0 , t)} in Ωc to oc(t,η). The uniform
convergence implies that a extends continuously to a map from [0, ί] x Q(δ) to Ωc

as long as δ<δ0. This result, with the local existence assertion of Lemma E.I.11
implies Lemma E.I. 14.

Completion of the proof of Lemma E.I.4. Let β be a function in C^([0, 00); [0,1])
which is identically 1 on [0,^] and identically zero on [f, 00). Let Π: (£->93 be the
projection. Let ε be as in Lemma E.I.5 and let α be as in Lemma E.I.12. Then define
m 2 : [0,1] x ©„-•(£„ by setting

ί) ? 0)] . (E.1.27)

Here, otc is as specified by Lemmas E.I.11 and E.I.12 and geC°(ί£n;Cΰ) is
constructed by replacing 93n by Gn in the proof of Lemma B.1.4. Equation (E.I. 12)
insures that m 2 satisfies Assertions (1) and (2) of Lemma E.1.4. The only remaining
issue is the question of continuity. This is a local question; and as with the map m1

of Lemma E.I.3, the continuity question is settled by exploiting the local
embeddings of Proposition B.6.1 of [9]. Let c e g n and let 9ί(c) be the open
neighborhood of c in 23Π with continuous hc: 9ΐ(c)->(50 as provided by Proposition
B.6.1 of [9]. Thus, the map sending b e 9ΐ(c) to mc(b) = hc(b) b -c embeds 5R(c) in
Γc sending do oe Γc. If it can be established that m sends 9ΐ(c)n(lΠ continuously
into Γc, then the uniqueness and continuity of ac on [0, 00] x {Open neighborhood
of o in Ωc} implies the continuity of m2. The argument is the same as for the proof of
continuity of rr^ in Lemma E.I.3. Thus, continuity of m 2 follows by showing that
the assignment of b e 9ίl(c)n©n to lmT)cmc(b) e i ί c ( 0 * is continuous. For this, note
that the assignment of be$t(c)n&n to G(c + mc(b)) e L 6 / 5(β) is continuous (use
Lemma A.4.6 of [9]), so by Lemma A.4.1 of [9], the assignment of b e 9l(c)n&n to
G(c + mc(b)) defines a continuous map into H c ( 0 * . Further, the assignment of
ψ = (α, φ) e HC(Q) to \{ψ, ψ} of Eq. (E.1.3) defines, via the L2-pairing, a continuous
map from HC(Q) into HC{Q)*. Therefore, Eq. (E.I.13) implies that lmT)cmc(b)
defines a continuous map from 9l(c)n($;n into ίΓc(β)* as required.
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E.2. Min-Max and Pointed Homotopy

The purpose of this section is to complete the proofs of Theorems A. 1.2 and A. 1.4.
Theorem A. 1.2 is observed to be a direct consequence of Proposition C.I.I and
Corollary E.1.2. To prove Theorem A. 1.4, one is considering only families of
subsets of ©„ which are invariant under homotopies which fix a given subset of ©„.
For a given neZ and / = {0,...}, let φeC\Sι\Wn). The proof of Theorem
A.1.4 requires answering the question of when a given path component
Θ e{ψe C°(Bι+1; 23J: ψ\dBι + i = φ} contains a map whose image lies in 50tπ. Here,
Bι+1is the standard unit ball on BJ+1 with boundary Sι. To prove Theorem A. 1.4
by min-max arguments, define for each such (9, the number

81* = inf sup 9l(v>(y)).
ψeΘ yeBι+1

The min-max theory for Θ results in

Proposition E.2.1. Let n e Z, let I e {0,1,...} and let φ e C°(Sι; 501J be given. Let Θ
be a path component of {ψGC°(Bι + 1; $„): ψ\si = φ}. There exists a critical
point c{Θ)e($>n of 91 with critical value *H@ and with 7c(Θ)(/ + 2) of Definition
A.4.4 non-negative.

Proof of Theorem A.1.4, assuming Proposition E.2.2. Fix neΈ and / e {0,1,2,...}.
Take φ to map Sι to a point, *e$0ίM. Then a path component
Θς{ψGC0(Bι+1;$n):ψ\sι = *} is precisely an element in π ί + 1 ( $ J . Theorem 1.2
of [8] asserts that if a critical point c e ©„ of 91 is not in $0tΠ, then γc(\n\ + 1) < 0. So if
/+1 < \n\ and if Θ e πι+1φn), then Proposition E.2.1 implies that c(<9) e 501,, and
9I(c(<9)) = SIφ. Proposition E.I. 1 implies that xpeΘ exists with lm\pQtffln. Thus,
the inclusion homomorphism πfe(50lΠ)->πfc(SJ is surjective for k ̂  \n\. Next, let ZKn

denote the kernel of this homomorphism. For k < \n\, let \_φ~] e Zk n be represented
by φ G C°(Sk SRn). A map ψ e C°(Bι + 1;%n) with ψ\sl = φ is a homotopy of φ to the
constant map. By Propositions E.I.I, E.2.1 and Theorem 1.2 of [8], there exists
such a ψ with Imφg$0lΠ; so for fc<|n|, the inclusion homomorphism πfc(50lΛ)
^ π f c ( S J is injective.

Proof of Proposition E.2.1. The proof is essentially the proof of Theorem A. 1.2
save for two modifications. The first modification is to take into account that for a
given φ, each Θ does not define a homotopy invariant family of subsets of 33n, but a
family of compact subsets which is invariant under homotopies which restrict to
Imφ as the identity for all t. The second modification is for obtaining the a priori
estimate on y.(/ + 2). This is a straightforward application of the construction in
Sect. 5 of [22] to the present situation. As both modifications are uncomplicated,
the discussion will be brief.

Fix n e Z and let ε > 0 and m: [0,1] x© M -^S Π be as in Proposition E.I.I.
/ β \

Proposition B.5.2 of [9] provides a continuous homotopy q - , , •): [0,1]

ίε \ V2 /
x »->© such that q ί - , 1, j : 23Π->2^ continuously for all δ e [0,i) and such that

for all te [0,1], andyeS 1
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For each <Se[0,i), let $=q{^, ί,φ(-))eC0(Sι; <Bf). Let

be a path component. Then Θ defines a path component, Θδ, of

{ψeC°(Bι + 1;%δ}:ψ\sι = φ} b y a s s i g n i n g t o e a c h ψeΘ, ψ = ql^,

Notice that if ψί~ψ2(re\Sι) then t/)1^i/)2(relS/). (Here " ~ " means "homo-
topic to".) Conversely, each path component Θδ of {ψGC°(Bι+1; 53f):
ψ\sι = φ} defines a path component of {ψGC°(Bι + ί;$5n):ψ\sι = φ} as
follows: Let ίe[0,1] denote the radial coordinate on Bι+1 and let y denote a
point in Sι. If ψ e Θδ, define ψ° by

if ί e [ 0 , i ] ,

if ί e [ i , l ] .

Notice that if t/?l5 ψ2 G Θδ and t/^ ~ψ2(τe\Sι), then φj ^^(relS 1). Also, if ψ G Θ, then
(ψ^^i/^relS*). Conversely, if ψGΘδ, then (tp0) ̂  ip(reliS'). Thus, the path compo-
nents of {ψGC°(Bι+1; ©2): ψ\sι = φ} and those of {φ6C°(B / + 1; ®J: ψ\sι = Φ} are
in 1 — 1 correspondence.

Now, suppose that 2Iβ>4π|n|. Then Proposition E.1.1 asserts that
9IΘ^4π|n| + ε. For such Θ, define

SΆ%= inf sup 9l*(v>O0).

Lemma £.2.2. 4̂s α function of δG [0,^), 91^ is non-decreasing and lim *ΆQ = 2I0.

Proo/ o/ Lemma E.2.2. Mimic the proof of Lemma B.1.2 using the map q: [0,1]
x[0, l ]x&-»® of Proposition B.5.2 of [9]. Use the fact that because
2Ϊ<9 ^ 4π\n\ + ε, for each ^ e <9, there exists τ e [0,1) such that if x e Bι and |x| > τ,
then 2l(ψ(x))<4π|n| + ε. The details are left to the reader.

For Θ satisfying 9IΘ^4π|w| + ε, and for each δ G [0,^), let

Y\Θ) = {(ψ,c)GΘδx<βδ:cGImφ and 9I^(c)^SI^}.

For such 6>, the analog of Proposition B.2.1 is

Proposition E.2.3. Let Θ be as described above with 9IΘ^4π|w| + ε. There exists
δ(Θ)G(0,2

J] such that given δG[0,δ(Θ)) and ρ>0, there are (ψ,c)GYδ(Θ) with

(1) max{«l'(v>(y):
(2) \\VSΆ%<ρ,

(4) if c = (A, Φ), then V%VAΦ = 0 and c also satisfies Eq. (B.2.1).

Proof of Proposition E.2.1, given Proposition E.2.3. By mimicking the proof of
Proposition B.I.3 (see Proposition B.3.1) one obtains for each δ e (0, δ(Θ)) a critical
point c\Θ) of 2Γ5 in &;| with critical value WL%. This uses Assertions (1), (2), and (4) of
Proposition E.2.3 to construct a good sequence with the properties that
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Proposition B.3.1 requires. The convergence assertion of Proposition B.3.1 and
Assertion (3) of Proposition E.2.3 imply that γf+ 2(c(Θ)) ̂  0 (see Proposition 4.13 of
[6, Part II] and its proof). Now, if 9ί(Θ)<4π|n| + ε, Proposition E.I.I implies
Proposition E.2.1. If 2I(Θ)>4π|n| + ε, then by copying word for word the proof of
Proposition C.I.I, one obtains the existence of a subsequence, {ci}?L1

C{cδ(Θ): δe (0,<5(Θ))} which converges in ©„ to a critical point c(Θ) of $1 with
critical value 2IΘ. This convergence implies that γι + 2(c(Θ))^0 (see, again,
Proposition 4.13 of [6, Part II]).

Proof of Proposition E.2.3. Since 9IΘ ̂  4π\n\ + ε, there exists δ(Θ) e (0, \~\ such that

for all δ<δ{θ), max{9ϊ^(y)):yeS /}<9t^--. For <5e[0,<S(θ)) and a given

ρ ε (0,1), the proof of Proposition B.2.1 is readily adapted to provide (ψ9 b) e Y\Θ)
for which Assertions (1), (2), and (4) of Proposition E.2.3 hold. Indeed, the

homotopies in Sect. B.2 can be readily altered so that each fixes the set < c ε $S*:

3l*(c) < 9l | - I > for all t e [0,1] and hence fixes φ(Sι). In fact, the homotopies in

Sect. 3 allow one to construct, given ρ > 0, a pair (ψ9 b) e Y\Θ) such that Assertions
(1) and (2) are satisfied, and Assertion (4) is satisfied not just at b, but at all

for which <Άδ(c)>(Άδ

Θ- ^-. That there exists celmψ with S l ^ c ) ^ ^ , and such
16

that || F2l;?ll* + m a x ( 0 > -y%l + 2)) are small (0(ρ1/3)) is argued by showing that the
alternative leads to a contradiction. Indeed, should this number be uniformly large
on Imφn(9I*)~ 1([9ί|, oo)) then the construction in Sect. 5 of [22] and specifically
Lemmas 5.1-5.3 of [22] readily adapts to the present problem and would produce
a map t//e<9 with max{Mδ(ψ'(y)): yeBι + 1}<SΆδ

Θ. The adaptation of Sect. 5 of
[22] to the present circumstances is straightforward, given the uniform bounds in
Proposition A.4.3 and given the continuity of yδ

c{ϊ) as a function of ce©*5

(Proposition A.4.5).
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