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the Scattering Operator II
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Abstract. We study the energy dependence of the scattering operator for a two-
body model of electron scattering from a neutral molecule. We show that the
methods of the first paper can be applied even though the dipole moment of the
molecule is non-zero, and prove continuity of the scattering operator S(E) as E
varies, in a very strong sense.

1. Introduction

We study the elastic scattering of an electron from a neutral molecule in the
two-body approximation. That is, we study the scattering between H = — A and
K = H+VonJtf? = L2(R3), where

v{x) = ί bΓ

We assume that the charge distribution μ is a signed measure of finite total mass and
zero net charge, that is

We also assume that the dipole moment a of μ, given by

a = \yμ{dy)

is non-zero, so that the potential V has the asymptotic form

at infinity, where r = \x\. To ensure that a is finite we assume μ has support within
{x:\x\^R} for some R < oo. Our methods could, however, easily cope with a
charge distribution with exponential tails at infinity.

The potential V is fairly well-behaved, and there are a variety of techniques [1,7]
which ensure that the wave operators between H and K exist and are complete.
We are interested in studying the energy dependence of the scattering operator
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in the following sense. We let ~ denote the unitary isomorphism of L2(U3) with
L2((0, oo), jf) defined by

where jf = L2(S2\ £e(0, oo), ωeS2, and " denotes the Fourier transform. Since the
scattering operator S commutes with H, we have

(Sf)~(E) = S(E)f(E)

for all/eL2([R3), where S(E) are unitary operators on Jf. We wish to determine the
form of the operators S(E) and to show that they depend continuously on E. Our
main result is given in Theorem 10.

We start we reviewing some recent literature. There have been some papers
[2,5,6] proving finiteness of the total cross-section for similar problems. However
since our potential V(x) = O(r~2) at infinity, one does not expect the total cross-
section to be finite for our problem. (This appears to be an open problem even for a
pure dipole potential.) Even if the methods of [2,5] could be adapted to the present
problem, they would not provide information about sharp energies, but only about
the average behaviour of S(E) over small energy intervals.

Apart from [4], the only method we know which provides pointwise information
about the scattering operators S{E) is that of eigenfunction expansions. We refer to
[3], which includes the class of potentials we study here, and to [1, p. 421] and
[7, p. 107] which do not apply to our class of potentials unless the dipole moment
vanishes. All of these approaches have the disadvantage of involving a possible
exceptional null set in (0, oo), because of the use of the Fredholm alternative, and do
not yield results as sharp as those of Theorem 10. It is noteworthy that we do not
have any exceptional set of energies in our approach, in spite of the fact that we do
not eliminate the possibility of positive point spectrum, and make no use of the non-
existence of singular continuous spectrum [7].

The main limitation of our method is that we have to assume that the charge
distribution has a non-trivial symmetry group. This implies that the quadrupole
moment of the potential at infinity vanishes, which is absolutely essential for the
application of trace-class methods. It would be very interesting to see analogous
results without this condition.

The obvious way of dealing with our problem, and one which was in our minds
throughout, would be to take

as the free Hamiltonian instead oίH. Note that H' is formally of degree — 2 under
scaling, and the use of the scaling group is absolutely essential to our analysis, as in
[4]. If the dipole moment is small enough, namely \a\ < ^, then H' can be defined as a
form sum and this approach can probably be carried out. However for larger values
|α|, H' is not even bounded below on Cc°°([R

3\0), so there is no possibility of
developing a scattering theory between K and any self-adjoint extension of H'.
Interestingly, the approach we adopt does not have any obvious discontinuities as
\a\ increases.
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2. Properties of the Potential

We gather together in this section some technical calculations concerning the
potential which will be used subsequently. Our main assumption is that the charge
distribution μ has a non-trivial symmetry about some axis. Taking this to be the
z-axis, we assume precisely that μ is invariant with respect to the rotation

~cos# sin θ 0"

- sin θ cos θ

0 0

for some θ ^ 0, π. Using the expansion

1 1 x y 3(x-y)2 —x2y2

\x — y\ r r r

as r -> oo, we find that

x-a

as r-> oo, where the dipole moment is

a = \yμ{dy)

and the quadrupole moment is

Lemma 1. If the charge distribution has a non-trivial symmetry about some axis,
and the dipole moment is non-zero, then it is possible to choose the origin on that axis so
that the quadrupole moment at infinity vanishes.

Proof. Since A is a real symmetric matrix of zero trace, and since a and A are both
invariant with respect to U, they must have the forms

ΓOΊ Γβ 0
a=\ 0 , A= 0 β

L M J LP 0

0
0

-2β_

so that

Now changing the origin by

y' = y + λa

the dipole moment is unaltered, while the quadrupole moment becomes

A = \{\\y + λa} (y + λa\ -\{y + λa)2)μ(dy)

= A + 3λ\a}(a\-λa2,

which vanishes if λ = β/a2.
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For the rest of this paper we assume that the origin can be chosen so that the
quadrupole moment of the potential at infinity vanishes (this actually uniquely
determines the origin). The symmetry of the charge distribution will not be used
again.

Lemma 2. The potential V(x) is L2 within {\x\ ^ 2R}. It is also C°° within {\x\ > R}
and has asymptotic form

at infinity. In particular VeL2(U3).
Of central importance in this paper will be the scaling group Rs defined on L2(U3)

by

and in the representation L2((0, oo), JΓ) by

It is easy to verify that the free Hamiltonian H has the scaling property

H = e~sRsHR_s.

We now define the potential Vs on U3 by

V = e~sR VR

or equivalently

Lemma 3. The potential (Vs + t - Vs) lies in L1{U3)for all s,teU. Moreover

Vs + t-Vs)=Ws (1)
ί->0

exists as an L1 norm limit for all seU. The potential WseL1(R3) satisfies

Ws = e~sRsW0R_s (2)

and depends continuously upon s in L1 norm.

Proof If we put

1

\x-y\

and

s(x) = e~sRsXR_s(x) = l χ _ e S / 2 y l >
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then formally at least we have

Ayr λJ(
δ s[X) 2\

e~sl2

Ayr λJ
δs s[X) 2\x-es/2y\3 2\x-esl2y\'

Therefore the appropriate definition of Ws is

which is the potential due to a mixed distribution of charges and dipoles. The
remainder of the proof consists of a rigorous verification that this choice of Ws has all
the stated properties.

Since each term of the integrand is L1 within {| x | ^ 2R} so is Ws. Moreover Ws is
clearly C00 in {\x\ > R] and tends to zero at infinity. Moreover as |x| -• oo

(x — u)'U 1

\x — u\3 \x — u\

1*1 2 |x | 5 2\xγ

Therefore

2\x\

as |x|->oo. But the total charge and the quadrupole moment of μ vanish by

hypothesis so

as |x|->oo, and WseU(U3). The identity (2) is elementary and implies that Ws

depends continuously on s in L1 norm. The rigorous proof of (1) is now obtained by
verifying that

both pointwise and in L1 norm.

3. Some Operator Theory

We combine the above calculations with a modification of the theory of [4], with
which this section must be read. We write ^~(jf) for the space of trace-class
operators on jf with the trace norm || \\l9 and define gβ as in [4] to be the Banach
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space of all integrable ^(JΓ)-valued functions on (0, oo) with the norm

||/|| = ill/(£) ME.
o

We also let M(H) be the set of φ in L2((0, oo), JΓ) which are essentially bounded, and
define the contraction t, from 3Γ(j/F) to & by

OO 1 00

$<X\E)φ(E\ψ(E))dE = — J <e~iHsXeiHsφ,ψ)ds (3)
0 Z π -oo

for all φ,ψeM(H) and Xe^pf) , so that

Unfortunately the factor — on the right hand side of (3) was omitted in Theorem 2 of
2π

[4], which causes various minor errors later in that paper. In particular the
constants on the right hand side of various estimates in [4], for example (8), (9), (24),
(37), (38), (40) must be increased by factors of 2π. We thank G. Coombes for pointing
out this error to us.

If Ss is the scattering operator for

Ks = H + Vs = e~sRs(H

then it follows as in [4, Lemma 7] that

for all seU and a.e. EeU + .

Lemma 4. Ifφ,φeM(H) and α > 0 is large enough then

= J (e-ίHsXeίHsφ,ψ}ds,
— 00

where X e ^ φ f ) is defined by

Hence SS(E) — S0(E) is of trace class for a.e. E, and

Proof. This follows the proof of Theorem 3 of [4]. The assumption there that F o , Vs

were in ί/([R3) (as well as their difference) was only used to ensure the existence and
completeness of the wave operators. In our context, however, this may be proved by
a variety of other techniques [1,7]. We use the Kato-Birman theory only to study
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the scattering between K o and Ks. The identity

does not depend upon the Kato-Birman theory but only on the definitions and the
existence of the wave operators. The proof that X is trace class depends upon writing
X = A B C D where

A = - iΩj*(K0 + α)~ *(# + a\

The operators A and D are bounded since H, Ko and Ks all have the same domain,
while B and C are Hilbert-Schmidt because \VS - V0\

1/2 lies in L2{U3).

Lemma 5. IfBse& is defined by

then Bs is norm convergent as s->0.

Proof. We see from Lemma 4 that

where Y s e ^ p f ) is defined by

and

Now by Lemma 3, 2?s converges in trace norm to

B = {H+ a)W0{H + *Yιe

as s-+0. Also

C ; 1 = (Ks + α)(H + α ) " 1 = 1 4- VS{H + α ) ' 1

converges in operator norm to

1 + V(H + α Γ 1 = (Ko 4- α)(fl + α ) " 1

as s -> 0, so for large enough α > 0, Cs converges in operator norm to

as s -• 0.
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Finally

= RSΩQR_S.

Therefore Ω~ * converges strongly to ΩQ * as s -• 0. Combining these results we
deduce that Yt converges in trace norm to ABCΩQ as s->0.

4. The Main Theorems

If we let s ->0 formally in (4) we find that there exists Te& = !/(((), oo),«^(jf))
such that

This enables us to deduce that for all 0 < E < F < oo

- S(E) = J ώc, (5)

so that although S{E) - 1 need not be trace class for any Ee U +, S(F) - S(E) is trace
class for all E, Fe U+. Most of this section is taken up by a rigorous proof of (5).

Lemma 6. IfTe J* and the continuous ^(Jf)-valuedfunction on (0, oo) is defined by

Proof Since

ι=7
X

the left hand side of (6) is dominated for s > 0 by

0<E<;c<esE<Oo
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The proof for s < 0 is similar.

Lemma 7. In the circumstances of Lemma 6 one has

Urn 5~x {R(esE) - R(E)} = T(E). (7)
s->0

provided (7) is interpreted as an L1 rcorm /ίmiί.

Proof. It follows from Lemma 6 that

J | s | " x I! K(es£) - R(E) | |, d£ g (e - 1) j || Γ(£) || t rf£,
0 0

provided \s\ ̂  t and Te&. By approximation arguments it is therefore sufficient to
prove (7) for a set of T which generate ^ . Such a set is given by

n x ) τ ^ λ e b ,
(x + α)2

where 0 < λ < oo and fre^XJf). For this choice of T

so

2 (
S{E -\- CC) ^J_/ "Γ ικ)

This converges point wise, and also in L1 norm by the dominated convergence
theorem, to T.

We now take T to be the norm limit as s ->0 of Bs, defined by (4) and we define
A(E) by

A{E) = S{E) - R(E)

so that, formally at least, A has zero derivative.

Lemma 8. The operator A(E) is bounded for a.e. E and

-dE<oo (8)

for all seM and φ9 φeJf. Moreover

lim
s->0 i
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Proof Since takes its minimum value at x = α we see that

Therefore

£ 1 Λ
E

for all 0 < E< oo, which implies (8). Now

A(esE) - A(E) S(esE) - S(E) R{esE) - R(E)

s{E + α)2 s(£ + α)2 ~ s(E + α)2

lies in ^ for all se(R and converges in J'-norm to zero as s -+0 by Lemmas 5 and 7.
Therefore

α

converges to zero as 5 -> 0.

°>\\A{e?E)-A(E)\\idE

6 5(£ + α)2

Theorem 9. There exists a fixed bounded operator A on Jf ami a function

}((0, oo),

/or a.e. £ wiί/z 0 < E < oo. In particular S(E) is (equal a.e. to) a continuous function ofE
with

for allO<E<oo.

Proof We finally show that A(E) is equal a.e. to a fixed bounded operator. Let ^ be
the Banach space of measurable complex-valued functions on (GΓ°o) with the norm

and let Us be the strongly continuous one-parameter group on <€ defined by
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We have shown that

lies in the domain of the generator Z of Us with Z / = 0. Therefore Uj=f for all
SEU, SO

/= J UJds

or

(9)

for a.e. x. But the right hand side of (9) is a continuous function of x, so / i s (equal a.e.
to) a continuous function. Using the identity Usf = / again we see that / is constant.
Thus (A{x)φ,ιj/y is equal a.e. to a constant for all φ, ψejf, and this implies that
there exists a bounded operator A such that A(x) = A a.e.

The above theorem does not identify the operator A. This is done in the proof of
the following theorem.

Theorem 10. There exists a bounded operator B, depending on the dipole moment of
the charge distribution alone, such that (S(E) — B)isa trace class operator for all £ > 0,
and such that (S(E) — B) depends continuously upon E in trace norm.

Proof We repeat the calculations of this paper for the Hamiltonian K' = H + V.

where

(x2 + α 2 ) 3 / 2

and a is the dipole moment of the original charge distribution μ. We discover that the
scattering operator S' has the form

a X

where TΈ0&. Now by a modification of Lemma 4 we see that

o (E + α)2

and this implies that (A — B) is of trace class.

Note 1. The operator B is not uniquely determined by Theorem 10, but only up to
the addition of a trace class operator. However if the dipole moment is small enough,
we can find a canonical representative for B. Namely if \a\ < £ then we can take the
comparison Hamiltonian to be
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as explained in Sect. 1. Now H and K' are both homogeneous of degree — 2 under
scaling, so S(E) = B is independent of E. We conjecture that if B were evaluated by
this method ϊor\a\<%, then it would turn out to be an analytic function of \a\ for all 0
< \a\ < oo, and that the operator so obtained would be a suitable choice for B even
when \a\ ^ \.

Note 2. It is obvious that the theory we have developed could be used to obtain
explicit pointwise bounds on

\\S(E)-S(E)\\1

as E and F vary, with some further effort. Although we know of no other method of
obtaining such bounds, we do not believe that those obtained by this method will be
optimal. For the high energy behaviour of (S(E) — B) probably depends upon the
nature of the local singularities of Ws. We have only used the fact that these
potentials lie in L^IR)3, which allows considerable worse local singularities than Ws

actually possesses.
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