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Abstract. This paper concerns Hamiltonian and non-Hamiltonian pertur-
bations of integrable two degree of freedom Hamiltonian systems which
contain homoclinic and periodic orbits. Our main example concerns per-
turbations of the uncoupled system consisting of the simple pendulum and the
harmonic oscillator. We show that small coupling perturbations with, possibly,
the addition of positive and negative damping breaks the integrability by
introducing horseshoes into the dynamics.

1. Introduction

This paper concerns Hamiltonian and non-Hamiltonian perturbations of inte-
grable two degree of freedom Hamiltonian systems which contain homoclinic and
periodic orbits. Our main example concerns perturbations of the uncoupled
system consisting of the simple pendulum and the harmonic oscillator. We show
that small coupling perturbations with, possibly, the addition of positive and
negative damping breaks the integrability by introducing horseshoes into the
dynamics.

We begin with an unperturbed n + 1 degree of freedom Hamiltonian in
canonical coordinates q = (qί, ...,#"), p = (p^ - ,pn\ x, y of the form

HQ(q,p,x,y) = F(q,p) + G(x,y). (1.1)

Starting in Sect. 3, we will assume n — 1, but for some of the development n can be
arbitrary. Allowing x and y to be multidimensional will be the subject of another
publication.

We shall assume that G admits action-angle variables i.e. there is a canonical
change of coordinates to (0,7) such that θ is 2π periodic, 7^0 and G becomes a
function of 7 alone we write G(7) for this function and assume that

G(0) = 0, Ω(I) = G'(I)>0 for 7>0. (1.2)
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F-System
Fig. 1. The unperturbed system

G-System

Note that (1.2) implies the existence of G 1.
The equations of motion are

dF

) = Ω(7), 7 = 0.

(1-3)

(1.4)

We shall assume that the system (1.3) contains a homoclinic orbit
(q(t — £0), p(t — ί0)) joining a saddle point (q0, p0) to itself. Of course (1.4) contains the
2π-periodic orbits θ(t) = Θ0 + ίΩ(70), 7(ί) = 70. Thus, for the system (1.3)-(1.4), we
have orbits which are the products of the homoclinic orbits and the periodic orbits
(See Fig. 1.) [The case in which F has a heteroclinic orbit may be treated by similar
methods.]

Our principal example in this paper is the pendulum-oscillator Hamiltonian

1
- (y2 + ω2x2), (1.5)

which takes the form (1.1). Action-angle variables for the oscillator are

x = /—sinθ, y = co /—cosf9, so that
/ ω / ω

where F(φ,v) = ̂ v2 — cosφ, . }> (1.6)

and G(7) = ω7.

The Hamiltonian system associated with F possesses the two homoclinic orbits

Φ(t) =±2 arctan [sinh(ί - £0)],

v(t)= ±2sech(ί-ί0).
(1.7)

We deal with Hamiltonian perturbations of (1.1) in Sects. 2, 3, and 4. We
assume that our perturbed Hamiltonian depends on a small parameter ε in the
form

H\q, p, θ, 7) = F(q, p) + G(7) + εHl(q, p, θ, I) + 0(β2), (1.8)

where Hί is smooth and 2π periodic in θ. We shall show that a Poincare map
associated with HB contains Smale horseshoes on each energy surface for ε small
and H1 satisfying certain conditions.
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The equations of motion corresponding to Hε are

... dF dH1 . dF dH1

dH1 . dH1 (1.9)

Our method for finding horseshoes involves the Melnikov function technique
that has been used in Melnikov (1963), Arnold (1964), Holmes (1979, 1980),
Holmes and Marsden (1981a) and Greenspan and Holmes (1981), to show the
existence of transverse intersections of stable and unstable manifolds and hence
the existence of horseshoes. The Melnikov technique is used after the system has
been reduced to a non-autonomous single degree of freedom system (as in
Whittaker (1959) Chap. 12, and Birkhoff (1966), Chap. VI, Sect. 3). In particular, in
Sect. 4 we prove that the pendulum-oscillator (1.6) develops a horseshoe on each
energy surface near the value H=l, when it is perturbed using the coupling term

H1(φ,v,x,y) = ̂ x-φ)2. (1.10)

Churchill (1980) suggested the possibility of this approach but did not examine
any specific examples. Section 5 concerns the more delicate case in which (1.4) is
given an additional non-Hamiltonian perturbation. We prove that at least one of
the horseshoes persists under this perturbation provided there is a suitable energy
transfer mechanism. In Sect. 6 we apply this theory to the pendulum oscillator
example once more.

In another paper [Holmes and Marsden (198 lb)] we use these methods to
address the question of nearly integrable multidegree of freedom systems and
Arnold diffusion [cf. Arnold (1964)]. Holmes and Marsden (1981c) treats
Hamiltonian systems with symmetry in which (part of) the phase space is the
coadjoint orbit of a Lie group. This provides a natural framework in which to
consider non-integrable perturbations of rigid bodies.

In many examples of physical interest, such as weakly nonlinear problems, the
unperturbed system H = F(p,q) + G(I) does not possess a homoclinic orbit, but
some averaged system, after truncation, does have homoclinic orbits [cf.
McGehee and Meyer (1974)]. In such cases the Melnikov function, computed
with the use of second order terms normally neglected in averaging, is typically
exponentially small and conclusions on the intersections of manifolds do not
immediately follow without a careful study of the errors. The elastic pendulum in
the limit of a very stiff rod, with linearized frequency ω/ε and Hamiltonian

H= — -cosφ + ωl-ε / — sin - cos φ, (1.11)
2 |/ ω \ε/

also falls into this class. The study of such systems is planned for a future
publication. The problems of the motion of four point vortices treated by Ziglin
(1980), the three wave interaction model, and the motion of charged particles in
the earth's magnetic field [see Braun (1981)] possess related difficulties.

We expected that the methods developed here will be applicable to a number of
Hamiltonian systems exhibiting complex dynamics. Two examples that seem to



526 P. J. Holmes and J. E. Marsden

involve homoclinic phenomena are the Henon-Heiles system [see Churchill,
Pecelli, and Rod (1979)] and the mixmaster model in cosmology [Barrow (1981)].
The results in Sect. 5 should also enable one to deal with nearby systems with
forcing and dissipative terms.

For other papers in which horseshoes are found in two dimensional mappings
by very different techniques, see Devaney and Nitecki (1979) and Tresser, Coullet,
and Arneodo (1979). The Melnikov technique in a non-Hamiltonian context is
also studied in Chow, Hale and Mallet-Paret (1980).

2. The Reduction Method

We now recall how to reduce the n+l degree of freedom system (1.9) to an n
degree of freedom non-autonomous system. This is a special case of the general
reduction procedure by which a Hamiltonian system with symmetry is reduced to
another Hamiltonian system with fewer degrees of freedom. The standard
reference is Whittaker (1959, Chap. 12); see also Birkhoff (1966) and Churchill
(1980). The case of concern in this paper is the symmetry of time translations, with
energy being the corresponding conserved quantity. The procedure is also a
special case of that of Marsden and Weinstein (1974) in the context of time-
dependent mechanics, as in Abraham and Marsden (1978, Sect. 5.1).

Energy is conserved for (1.9), so we consider the equation

H°(q9p9θ9l) = h. (2.1)

dHε dHl

Now-— - = Ω(I) + ε——. On any compact subset oϊ(q,p, 0, /) space not containing

dHε

1 = 0, we can choose ε small enough so that -̂ — >0, since Ω(/)>0 for 7ΦO, by
ol

assumption. Thus, in such a region, we can solve (2.1) for I to obtain

I = Le(q9p9θ9h)9 (2.2)

Now define L° and L1 by writing

L*(q, p, θ, h) = L°(q, p, h) + εL%, p, θ, ft) + O(ε2) . (2.3)

2.1. Proposition. We have

L°(q9p9h) = G-l(h-F(q9p))9 (2.4)

and

" ) >

Proof. Substituting (2.2) into (2.1) gives

F(q9 p) + G(L° + εLl + 0(ε2)) + εHl(q, p, 0, L° + εL1 + 0(ε2)) = h ,

i.e.

[F(q9 p) + G(L°) - h] + Ω(L°) (εL1) + &H\q9 p, 0, L°) - O(ε2) .

The ε° and ε1 terms of this expression give (2.4) and (2.5). Π
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Having passed to the level set Hε = h and thereby eliminated /, we now
eliminate the variable conjugate to H, namely ί. (In reduction, an even number of
variables is always eliminated.) Since Ώ(/)>0 and Hε is not explicitly ί-dependent,
and θ is (for small ε) an increasing function of f, we can eliminate t by inverting
θ = θ(t) and expressing q and p as functions of θ. We write ql = dql/dθ and
Pi= dpi/dθ, ί = 1,..., n — 1 so that

.4
' rj

and

d#ε /<3#ε

:^i~dΓ'

dHε ldHε
(2.6)

However, implicit differentiation of (2.1) gives

dHε dHε dU _+ ~
and

dHε dHε

dpi ' dl
Λ

=0.

(2.7)

Substituting (2.7) into (2.6) we get

and

Using (2.3), this becomes

dU

dp,'
(2.8)

(2.9)

Since L° depends only on (q, p), but L1 depends on q, p, and θ, the system (2.9) has
the form of a 2π-periodically perturbed n degree of freedom Hamiltonian system.
For n = l, (2.9) becomes a forced oscillator equation. This is exactly the situation
which occurs in our pendulum-oscillator problem.

3. Melnikov's Method: The Existence of Horseshoes

For «=1, the system (2.9) is in the form analyzed by Melnikov (1963), Holmes
(1979, 1980) and Greenspan and Holmes (1981). [For (Θ,I) vectorial or n^2,
analogous techniques were developed by Arnold (1964) and Holmes and Marsden
(1981b) and will be the concern of a subsequent paper.]

For ε=0, the system (2.9) reduces to (1.3) and thus also contains a homoclinic
orbit. The Melnikov method involves integration of thePoisson bracket {L°, L1}
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around the homoclinic orbit of the unperturbed system. Let us first use (2.4) and
(2.5) to express {iΛL1} in terms of {F.H1}.

3.1. Proposition. Holding θ and h fixed, we have

Proof. Using (2.4), we have

Λ — V^ / Λ 7 "•"*-*• Λ — \ v/ i — ,
dql \ dql) dPi

 ; \ dpj

while (2.5) gives

1 /dH1 dH
+ r̂— -τrτ\ +dq1 Ω(L0)\dql ' dl ~d~qr) ' [Ω(L°)]2" " ^< '

and

5L1 1 /afί1

^ — / ^ / r O \ Λ τ Λ T O ' r/^/i- O \ τ 7 ^^ ώώ ~^op^ Ω(L)\dpi ol opί J \_Ω(L)] oιρi

Thus,

dLQ dLl dLQ dL1 (G"1) \dF IdH1 dH1 dL° 1 , 5LC

-^---5 = ^- = - r hr^ K— + crH1^ΰq opί dp. oq Ω(LQ) [oql \ opί ol opί Ω(L ) 3pf

_ ^^ ί̂  + ̂  ̂  _ __L_#iβ'±χ.
dpi \ ί̂?1 37 dg1 ί2(L°)

(G-^ΊaFaH1 aFδH1

l dPi dPί dc

But (G'^'^ί/Ω^0) and so we obtain (3.1). Π
The cancellations that occur to yield (3.1) reflect the general fact that the

Poisson brackets before and after reduction correspond. Similarly, if K is a
function of (q, p) we obtain the formula

Thus, if K is a first integral for F, then (3.2) becomes

{K,Ll}= — --{K,H1}. (3.3)
Ω

In particular, in the multidegree of freedom case in which all but the first of the
n variables (q,p) are in action angle form so that {pfc,F}=0, k = 2,...,n then with
K — pk, (3.3) becomes

ί πi ! r mi 1 δίfl

{p^L1}---^,//1}----^. (3.4)
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Relations of this type are useful in the study of perturbations of integrable systems
when n^2.

In connection with the identities (3.1)-(3.4) the following observation is useful.
Along an orbit for the unperturbed system, F is constant, so if h > F, L° will not

vanish and 0 - will be a finite constant. Thus, on such an orbit, {L^L1} will
Ω(L )

differ only by a multiplicative constant from {F.H1}.
We are now ready to state our main result for Hamiltonian perturbations in

case n=ΐ.

3.2. Theorem. Consider a two degree of freedom Hamiltonian system of the form

H\q, p, θ, I) = F(q, p) + G(I) + εH% p, θ, I) , (3.5)

and assume that F contains a homoclinic orbit (q(t — t0\p(t — t0)) connecting a
hyperbolic saddle to itself (or to another hyperbolic saddle point). Suppose
Ω(I) = G'(I)>Ofor />0. Let h1 =F(q,p) be the energy of the homoclinic orbit and let
h>hv and ^° = G~ί(h-h]) be constants. Let {F,Hi}(t-tQ) denote the Poisson
bracket of F(q,p) and H1(q,p,Ω(/Q}t^Q) evaluated at q(t-tQ) and p(t-tQ). Define

M(ί0)= ] [F9H
l}(t-t0)dt, (3.6)

— co

and assume that M(t0) has simple zeros. Then for ε>0 sufficiently small the Hamil-
tonian system corresponding to (3.5) has a Smale horseshoe in its dynamics on the
energy surface Hε = h.

This result follows from our previous development (the reduction and
Proposition 3.1) and the Melnikov theory given in the references at the beginning
of this section. Equation (3.6) can also be obtained from the evolution equation for
F along the unperturbed orbit

F = {F,&}, (3.7)

cf. Arnold (1964).
For our analysis in Sect. 5 we shall need some facts about the construction of

the horseshoe, so we collect them here. First we pick an energy surface Hε = h>h1

and consider the Poincare map Pθ

ε°:Σ
0o^Σθ° (which we just denote Pε below)

associated with the periodically perturbed system (2.9). Here

is a global cross section for the flow of (2.9). By hypothesis, for ε = 0, Pε has an
invariant manifold filled with a continuous family of (nontransverse) homoclinic
orbits. If M(f 0) has simple zeros then this manifold breaks into a countable set of
homoclinic orbits: the generic case found in advanced classical mechanics texts
[cf. Arnold and Avez (1967), Abraham and Marsden (1978)] see Fig. 2a. For
more details on homoclinic orbits of maps see Moser (1973) or Newhouse (1980).
Here we merely note that the Smale-Birkhoff homoclinic theorem asserts the
existence, near any transverse homoclinic point, of a zero dimensional invariant
Cantor set A on which some power of the map, Pf , is homeomorphic to a shift on
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W u ( x )

a) The perturbed homoclinic orbit

- W s ( x )

b) Horizontal and vert ical str ips

Fig. 2a and b

two symbols. Since Pf |/L possesses a dense orbit, it follows [Moser (1973)] that
(3.5) possesses no analytic second integral. Also see Smale (1967).

To construct the horseshoe one takes a small rectangle, R, partially bounded
by pieces of the stable and unstable manifolds and containing a transverse homo-
clinic point. Integers ή, /2 can be chosen such that the forward and backward images
P^(R), P~*2(R) lie in a neighbourhood U of the saddle point, x. The linearized map
DPε(x) can then be used to approximate the motions in U and it can be shown that
there are an integer N<co and two disjoint "horizontal" strips HίCP*ί(R) = B
whose images under Pf are disjoint "vertical" strips VtCB (Fig. 2). The map
P^'.H^VI is the horseshoe.

To obtain estimates necessary to prove hyperbolicity of Λ, one needs to find
certain sector bundles which are mapped into themselves by DPf. In our case this
implies that the choice of N is related to ε, the perturbation strength, since the
angle between the tangent vectors of the manifolds at a (transverse) homoclinic
point is 0(ε) (M(ί0) measures the 0(ε) component of the distance between the
perturbed manifolds). In Appendix B we show that JV~ln(l/ε). Thus, for each ε>0
sufficiently small and each h>hl9 there is an invariant set Λh near every transverse
homoclinic point in each energy surface Hε = h (cf. Fig. 4, below). However as ε gets
smaller, N must be increased. This dependence of N on ε plays an important role in
our discussions of dissipative perturbations on Sect. 5.
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4. Example: The Coupled Pendulum-Oscillator

We now apply Theorem 3.2 to the Hamiltonian (1.5) with H1 given by (1.10), and
the homoclinic orbit for F given by (1.7). In terms of the variables (φ9v,θ9I)9 we
have

v2

2
and

(4.2)
Δ\y W I

Thus

{F9H
1}=-vφ + ]/— vsmθ. (4.3)

[/ CD

The energy of the homoclinic orbit (1.7) is ^ = 1, so we let h>l and let

/°= i(h-l). Thus (3.6) gives
ω

00

M(to) = — j {4 sech (t — 10) arctan [sinh (ί — 10)]
— 00

± — sech(ί - ί0) sm(tω)}dt.

The first term is odd and so vanishes, leaving

00 2]/2(h — 1)
M(ί o) = ± J —!--̂  sech (t -10) sin (ίω)dί . (4.4)

— oo CD

This is evaluated by the method of residues as in Holmes (1979), yielding

/ lnco\
M(ί0)= ± 2π |/2(Λ -1) sech I — j sinωί0. (4.5)

Since M(ί0) has simple zeros and is independent of ε we conclude that, for ε>0
sufficiently small, the conditions of Theorem 3.2 are satisfied and we have
horseshoes in the Poincare map associated with the pendulum-oscillator on each
energy surface h>!9 where

V2 ε / , f t j \ 2

- — sinθ-φ =h.
2 2 / ω

Thus, we have proved :

4.1. Theorem. The Hamiltonian system with energy function

v2 1 ε

has horseshoes in its dynamics on each energy surface H> I, for ε sufficiently small,
and hence possesses no analytic second integral.
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5. Non-Hamiltonian Perturbations

We now wish to consider perturbations under which the total energy H is not
conserved. In many physical problems one system produces energy which is
subsequently adsorbed by a second system, so that the coupled systems can
achieve a "dynamic equilibrium" in which (in a suitably time-averaged sense)
energy is preserved. This often manifests itself in the presence of negative damping
in one system and positive damping in the other. We will take an integrable
Hamiltonian system which possesses continuous families of non-transverse homo-
clinic orbits, add a Hamiltonian perturbation Hε, as before, which breaks these
manifolds to give transverse homoclinic orbits, and then add dissipative effects
which cause a net drift in the energy H for perturbed orbits lying near the
homoclinic manifold. Under suitable hypotheses, such dissipative perturbations
can leave invariant isolated pieces of the continuous family Λh of horseshoes
discussed in Sect. 3. For simplicity we shall restrict our discussion to two degree of
freedom systems (n=l).

The Hamiltonian system (1.9) is modified to include dissipative terms as
follows:

. dF dH

dF

dq dq

dH1

dl

where F, Ω = G', and H1 are as in the previous sections and/), 0f are functions of
(q, p, /, θ\ 2π periodic in θ. Specific hypotheses on f., gt and on the dissipation
parameters yί? δt will be stated subsequently.

The energy function H = Hε = F(q,p) + G(I) + εHl(q,pJ,θ) is no longer con-
served, and our earlier Eq. (2.1) which was used to eliminate / is now replaced by

dH* dH° dHε dHε

+0(ε2) (5.2)

Note that when y. = <5. = 0, (5.2) gives H = 0 and (5.1) becomes (1.9) with con-
servation of energy.

The five Eq. (5.1)-(5.2) are redundant and we can eliminate the variable / by
regarding / as a function of p, q, θ, and H i.e. by solving Hε = H implicitly for / but
remembering that H is a variable with its own evolution Eq. (5.2). From (2.2)-(2.5)
we have

/ = L°(q, p, H) + 8L%, p, θ, H) + O(ε2) , (5.3)
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where

and

-H\q^θ,LQ(q,p,H}}

Ω(L0(q9p9H))

As before, we have

q' = q/θ, p' = p/θ,

and from the implicit equation Hε(q, p, θ, Lε) = H we obtain

dHε dHε

533

(5.4)

(5.5)

(5.6)

dp dl dp
n=0, etc.,

so that

becomes

dp

'dHε

__δL° /«?£' yj, 8L°δl9l

~ dp ~S(dp ~ Ω ~~W Ω

A similar computation for p' and use of (5.2) yields the three dimensional system

dp \dp Ω dp Ω

P = dq \dq Ω dq Ω
(5.7a,b,c)

Equations (5.7a,b,c) constitute the system we now study, with the dependent
variables q, p, H and the independent time-like variable θ. For y^ — δ^O, (5.7)
reduce to (2.9), as expected.

To deal conveniently with the slow variable H compared with the fast variables
(q, p), we use a slight modification of the usual averaging theorem in which the O(ε)
term in the right hand side of (5.7c) is replaced by its ^-average.

(5.8)
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W s(cM) = W u ( c 0 ι 0 )

P i
W u ( c , j δ )

0, δ = 0

Fig. 3

1 2π

where an overbar denotes the time average -̂ - j
2π o

$. The modified averaging

procedure is discussed in Appendix A. Its use is not essential, but it makes
calculations somewhat easier. Retaining the same notation for the averaged
variables, our reduced system is now (5.7a, b) plus

Let δ = (yί,y2,δί,δ2) denote the dissipation coefficients in our system. Also, let
Pεtδ = Pθ

ε°δ denote the Poincare map associated with the system (5.7a,b) and (5.9).
Thus, jPj°a maps (an open subset of) 1R3 to IR3 and is given by advancing the
independent variable θ by 2π, with starting value 00.

Let us assume that the homoclinic orbit (q(θ\ p(θ)) for F has energy = /z t and
joins a hyperbolic saddle point (q,p) to itself. (The case of a heteroclinic orbit is
similar.) Thus, for each value of H>hί9 (q,p,H) is a fixed point for PQ°O. Let c0 0

denote this curve of fixed points. Since we are assuming (q, p) is a hyperbolic fixed
point for F, c0 0 is a hyperbolic invariant manifold for PQ°O, with H restricted to an
interval, say hί<HQ^H^H1. Since hyperbolic manifolds are preserved under
perturbation, we have:

5.1. Lemma. For δ bounded and ε sufficiently small, there are invariant curves cθ^δ

close to c0 ? 0/or Pθ

ε°δ. Moreover, the stable and unstable manifolds of cθ

ε°δ, denoted
Ws(cθ

ε°δ) and Wu(cθ

ε°δ) are "Cγ close" to those ofc0 0 and each is two dimensional (See
Fig. 3).

Notice that if δ = 0 then cε 0 is still a curve of fixed points by conservation of
energy and we recover the situation of Sect. 3. For (5ΦO, points on cB*δ can "drift"
under iteration of Pθ

ε°δ since energy is not conserved. However, they will stay on cθ

ε°δ

(until H leaves the interval [H0, HJ).
For δ = 0, suppose Theorem 3.1 is used to show that Ws(cθ

£^} intersects Wu(cθ

ε°0)
transversely. This persists for δ sufficiently small, by the stability of transversal
intersections under perturbation. Because of potential drift in the H variable, this
alone does not permit us to conclude the existence of horseshoes for δ φ 0. Rather,
we must control H. The crucial hypothesis that enables this to be done will be
given next.
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Let N be an integer fixed so that (Pθ

ε°0)
N has a horseshoe, as described following

Theorem 3.2. Thus, N is large enough so that (PΘ

E°0)
N maps two horizontal strips in B

back around to two vertical strips in B again, where B is a rectangle lying in a
neighborhood U of the saddlepoint (Fig. 2).

Let
πN Γ πN/Ω

AH = ε J -dθ = ε J hdt, (5.10)
-nN™ -πN/Ω

where h is given by (5.8) and h, Ω are evaluated on the homoclinic orbit (q(θ),p(θ))
at an energy value H. (Recall that Ω is constant on this orbit). From (5.9) we see
that AH represents the approximate change in energy in following a point starting
near the homoclinic orbit for N iterates i.e. for a total 0-time 2πJV. For N large but
finite Pε δ maps points in the horizontal strips in rectangle B in Fig. 2 back to the
vertical strips in rectangle B after N iterates. Thus ΔH represents the leading term
in the energy change while going from B back to B. Of course AH is a function of H
and depends on ε, δ and N. Strictly speaking, (5.10) should be evaluated on
trajectories just inside the homoclinic orbit, but as we show in Appendix B, as ε-»0,
JV-»oo and the horizontal and vertical strips, Hi9 VtCB must be taken closer and
closer to the homoclinic orbit. Thus, since we only need ΔH to leading order in
what follows, evaluation on the homoclinic orbit is sufficient.

Now we state our basic energy-transfer condition:

Condition (H). Assume there is a value HC>1 of H at which AH given by (5.10)
changes sign transversely, i.e.

>, if
), if H>HC,

and
A

ΦO.

Under this condition and ε sufficiently small, we have

5.2. Lemma. There is a smooth function H(q, p) defined on the rectangle B such that
if(q,p}eB then (P°B^(q9p9H(q9p)) has the form (q, p, H(q, p)).

Proof. Since the exact energy change differs from (5.10) by 0(ε2), persistence of
transversality guarantees that condition (H) is also true for the exact energy
change for ε sufficiently small. For (5 = 0, the surface H = constant = Hc is preserved
by (P£°O)N. For δ φ 0 the surface Hc is preserved and contracting to first order in ε.
By persistence of hyperbolic invariant manifolds, there is a nearby surface exactly
invariant under (Pθ

ε°δ)
N this surface is the graph of H. Π

Thus, we have identified a surface, say Σc near H = HC such that (Pθ

ε°δ)
N maps Σc

to Σc.
Now we wish to show that there is a horseshoe in this surface Σc. By the

arguments in Holmes and Marsden (198 la), Appendix A), we must check that
Ws(cθ

ε°δ) and Wu(c°ε°δ) continue to intersect transversally, for δ φ 0. To do this, we
form the Melnikov function at energy value Hc for the system (5.7) and (5.8).



536 P. J. Holmes and J. E. Marsden

If M(ί0) is given by (3.6), then, using Proposition 3.1, the Melnikov function for
(5.7a) and (5.7b) is given by

(Note that the δ^g^ term cancels out.) Thus, using (5.4), we get

5.3. Lemma.

1 Γ ° °/(9F dF \ 1
Mό(t0)=-τ\M(t0)+ f I γlfl- γ2f\(t-t0)dt\. (5.11)

ί<s I - oo \ ̂ y UP / J

We will assume that δ is chosen such that M(ί0) continues to have simple zeros.
In Appendix B we discuss the relationship between N and ε. As ε gets smaller,

the number of iterates required of the Poincare map to guarantee a horseshoe gets
larger. It is shown that :

5.4. Lemma. There are constants α, β and an integer L such that

where M(HC) is the supremum of M(tQ) over ί0.

This result applies to the case of Hamiltonian perturbations (δ = 0). When δ φ 0
there is an analogous result N = N(ε, δ) in which α = u(δ) and M(HC) is replaced by
Mδ(Hc). However, in our application we set δ = εμδto be O(εμ), so that εδ = εi +μ<5 <^ε
for ε<^ 1 and the effects of δ in (5.12) can be ignored, cf. Appendix B.

From (5.11) we obtain a condition on the size of γ^ and y2 if M(ί0) has simple
zeros and oscillates with an amplitude M(HC), then (5.11) gives us conditions of the
form

c < «

which must be satisfied for Mδ to still have simple zeros.
We summarize our findings as follows :

5.5. Theorem. Suppose that N, HC9 and δ can be chosen so that conditions (H),
(5.12), and (5.13) all hold. Then the iterate (P f̂ of the Poincare map of the
reduced system (5.7) has, for ε sufficiently small, a horseshoe in its dynamics the
horseshoe lies near the homoclinic orbit in the (q,p) variables and near the (non-
invariant) energy surface H = Hc.

6. Example: The Oscillator-Pendulum
with Positive and Negative Damping

We now wish to show that for ε sufficiently small the pendulum-oscillator system
considered in Sect. 4,
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continues to have a horseshoe when dissipation is included. Specifically, we add
negative damping ( — δ) to the oscillator so that it drives the pendulum, which now
has positive damping (y) :

v— — sin φ + ε(x — φ) — εyv ,

x = y,

y = — ω2x + ε(φ — x) + εδy .

In action-angle variables, (6.1) becomes

= v,

v= — sinφ + ε / — sin$ — φ] —εyv,

sinfl — φ\ , — ε<5sin#cosθ,
2/ω

/= -ε—swθ-φ

Note that δ<Q represents damping while δ>Q represents negative damping
(energy production). The energy evolution equation (5.2) is

(6.1)

(6.2)

or

H'=~(2δωIcos2θ-yv2)+O(ε2),
ω

where the dependent variable is now θ. Using

/ = L°(φ, υ,H)=-(H- (v2/2 - cos φ)) ,
ω

from (2.4), (6.3) becomes

H'=-
CD

(6.3)

(6.4)

(6.5)

Although we do not need them explicitly in the calculations to follow, we also give
the reduced evolution equations for φ, v :

,, I f ε / ίφsmθ sin2

t=—\v+—\v[
,ω]/2A

, 1 . , ε . ^
t; = — —smφH— smφ

ω\ ω

ς . Λ ^ 2λ+<5smθcosθ +0(ε2),
III

-y sin $ cos 0

+O(ε2), (6.6a,b)

where A = H + cosφ — v2/2. Equations (6.6a,b) and (6.5) correspond to (5.7a,b,c).
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We now average (6.5). The transformation (φ,v,H)-*(φ,v,H) is given by

(φ9v9H) = (φ9υ9H + εu(φ9υ9H9θ))9

where

du du(v\ duf smφ\ δ, 9 / λ
T- + aT H + IT = -(H + cosφ-v2 2 cos2<9, (6.7
flί dφ\ω) dv\ ω / ω

from (A. 8). This is satisfied if we take

u= —-(H + cosφ-v2/2)sm2θ, (6.8)
2ω

and then (6.5) becomes, dropping the overbars,

ff = - [<5(H + cos </> - *;2/2) - F2] 4- 0(ε2). (6.9)
ω

We now check condition (H). Inserting the unperturbed solution (1.7) we have

H + cosφ(t)-v(t)2/2 = H-l

and (6.9) becomes

H'= - \δ(H -1) - 4y sech2 -
ω [ \ω

or

H-ε[^(H-l)-4ysech2ί]+0(ε2). (6.10)

Hence

πiV/ω

= ε J
-πJV/ω

ε[ ω 7 an \ ω / l ?

and so condition (H) is satisfied if we have

We next compute the Melnikov function M(ό y)(ί0) from (5.11). From Sect. 4
and (3.1) we have

M(ί 0) - ± ΛΓ 2π 1/2(H-1) sech ( ̂  ) sin ω 1 0 . (6. 1 3)
ω \ 2 /

Using F = v2/2 — cosφ, y1f1=0y and 72/2^ ~7ϋ in (5 l l ) j the second term of
M(<5,y)(ίθ)is

- ϊ ϋ(-^)Λ= 2 ί (2sech(ί-ί0))2dί^ .
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Thus we obtain

1

ω

def

πω\ .
2π]/2(#-l)sechl— sin ωt0 + 87

=* M(H) sinωί0 + 8y/ω2. (6.14)

To complete our verification of the hypotheses of Theorem 5.5, we note that,
for M(δ<7)(t0) to have simple zeros, we require

M(Hc)>8y/ω2,

or

c π2sech2(πω/2)

while for satisfaction of condition (H) we have

'ΊB
We also have the relationship

N = N(ε) = L + α In(j8/e ]/#c-l) (6. 17)

from (5.12), where the remaining constants in M(δ>y}(tQ) are accumulated into β.
From (6.16) and (6.17) we have

(Hc-l)[L + αln(j8/e]/Hc-l)] = C2y/δ. (6.18)

To satisfy (6.15) and (6.18) simultaneously we pick γ and (5 to be of the same
order in ε, say y = εμγ, δ = εμδ', μ>0. Then (6.18) may be rewritten as

(Hc-l)[l + C3ln(j8/ej/Hc-l)] = C4. (6.19)

A simple exercise in calculus shows that, for ε small, (6.19) has a unique solution Hc

near Hc=ί and for any fixed σ, 0 < σ < 2,

#c-l>εσ, (6.20)

for small ε "how small" depends on how close σ is to 0.

Proof. Rewrite (6.19) as

where x = Hc — 1. By considering the graphs of 3; = ε |/x and j; = c/>(x) one sees that
for small ε, (6.19) has a unique small solution x(ε)~>0 as ε->0. Moreover, as φ
vanishes to all orders at x — 0, φ(x)^xp for p^ 1/2 and x small. It follows that x(ε)

is larger than the solution of ε|/x =xp for small ε; i.e. x(ε)^ε2/(2p~1} for small ε.
Letσ = 2/(2p-l). D

Picking σ<2μ, (6.15) is now satisfied, since

#c-l>cX>(Vy2 (6.21)
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for ε sufficiently small. For example, we can take μ= 1/2, since then the damping
perturbations ε(εμ<5), ε(εμy) appear at O(ε3/2) and the O(ε2) terms ignored in our
computations do not affect the results. Thus, we have proved:

6.1. Theorem. The system (6.1) has a horseshoe in its dynamics provided we choose

£y=r£ 3 / 2 y and εδ = ε3l2δ and ε sufficiently small.

Of course it is possible to vary the orders of <5 and γ with some latitude and still
maintain the hypotheses. Specifically, 6.1 remains valid if we choose y = εvy and

Conclusions

In this paper we have developed applicable techniques for establishing the
existence of chaotic dynamics in the sense of the presence of a horseshoe for both
Hamiltonian and non-Hamiltonian perturbations of systems with two degrees of
freedom containing homoclinic orbits and periodic orbits.

While horseshoes are not strange attractors, they are often visible and behave
like them in numerical experiments (perhaps due to small background noise) cf.
Franks (1981). Arnold diffusion is a higher dimensional manifestation of the same
phenomenon and is certainly seen in many examples [see, for instance Lieberman
(1980)].

For conservative perturbations the method is a straightforward combination
of a classical reduction scheme with a method of Melnikov. For non-conservative
perturbations a delicate energy balance argument is needed to ensure that at least
one horseshoe survives near the energy balance point. Near other points there is a
"ghost horseshoe" which decays because of energy drift. If the dissipation terms all
contribute to energy loss then, while no invariant set remains near the homoclinic
orbit (since H decreases on all orbits), the manifolds Ws(cθ

ε°δ)Wu(cΘ

ε°δ} continue to
intersect and the resulting ghost horseshoes would give rise to complicated
dynamics on finite time intervals, as orbits move through the energy band.

The results are shown to apply to typical perturbations of the pendulum-
oscillator system, thereby showing that this classical example has complex
dynamics and, in particular, is non-integrable.

Appendix A. A Modified Averaging Theorem

For the basic averaging theorem see Hale (1969). Here we consider a system of the
form

y = εh(x,y9t)9

where x = x(t) and y = y(t) are the fast and slow variables, the functions /, g9 h are
sufficiently smooth and the latter two are T-periodic in ί.
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Al. Proposition. There exists a near identity time dependent change of coordinates
(x, j/)-»(x, z) under which (A.I) becomes

X = f(χ) + sg(χ Z t) + 0(ε2)

(A.2)

I T
where h — — J h(x, y, t)dt is the t-average of h.

TQ

Proof. As in the usual averaging theorem, we set

y = z + εu(x,z,t). (A.3)

Differentiating (A. 3) with respect to time, we obtain

y~z + εύ + εDxux + εDzuz, where ( ) = d/dt. (A.4)

Using (A.1), (A.2), and (A.4):

(Id — εDzu)z = y — εύ — εDxux — ε[h(x, z -f εu, t)

— εύ(x, z -f εu, ί) — Dxuf(x)~] . (A. 5)

We can write

h(x, z, t) = h(x, z) + h(x, z, ί) , ( A.6)

where h is T-periodic in t and has zero mean. From (A.5)-(A.6) we have

(Id - εDzu)z - ε[ή(x, 2) -f Λ(x, z, ί) - ώ(x, z, ί) - /)xφ, z, ί)/(x)] + 0(ε2) . ( A.7)

Thus, if we set

du
f(x) = h ( x 9 z , t ) , (A.

we have, from (A. 7)

) , (A.9)

and, using (A. 3) in (A.I)

It remains only to check that the linear partial differential Eq. (A.8) admits a
solution w = w(x,z5ί). However, (A.8) has the solution

t
u(x(t\ z, ί) = M(X, z, 0) + j ft(x(s), z, 5)̂ 5 , (A. 1 1)

0

where x(t) satisfies x(0) = x and x = /(x). G

Finally, the hyperbolicity noted in Sect. 5, together with the usual Gronwall
estimates, implies that solutions of (A.2) near the homoclinic manifolds remain
within 0(ε) of those of (A.ί) for times of O(l/ε). Since we wish only to integrate
for times of 0(AΓ) = 0(ln(l/ε)) [Eqs. (5.10) and (5.12)] the averaged equation may
be used in computations. Note that the transformation w(x, z, t) is not in general
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T-periodic, since solutions of (A.8) depend upon the (nonperiodic) flow x(t)
of x = f(x). One must therefore be careful in inferring the existence of T-periodic
solutions of (A.I) corresponding to fixed points of (A.2), as in the usual averaging
theorem.

Appendix B. The Iteration Number: Proof of Lemma 5.4

In this appendix we derive a relationship between JV, the number of iterates of the
Poincare map Pj!°0 necessary to guarantee that F = (P^0)

N has a horseshoe, and ε,
the perturbation parameter. Henceforth we drop the sub- and superscripts on Pθ

ε°0.
Let x be the (perturbed) saddle point of P and y a transverse homoclinic point

lying outside a ball Bμ(x) of radius μ about x. The Melnikov theory tells us that the
maximum distance between the manifolds near y is

dnKL = εK1M(Hc) + 0(ε2)9 (B.I)

where M(HΓ}= sup M(ίΩ) and Kλ is a constant.
ίoe[0,T)

We next need a basic result from dynamical systems theory, the "lambda-
lemma" [Palis (1969), Newhouse (1980)], which enables us to make our choices of
horizontal and vertical strips in the horseshoe map more precise :

B.I. Lemma. Let x be a hyperbolic saddle point of a Cr diffeomorphism P and
D C Wu(x) an open disc in its unstable manifold. Let A be a disc ofdim(Wu(x)) meeting
Ws(x] transversely at a point y. Then [J Pn(Λ) contains discs arbitrarily Cr close to
D. " = °

This result implies that, if yeWu(x)nWs(x) is a transverse homoclinic point,
then Wu(x) and Ws(x) accumulate on themselves, giving us the structure of
Fig. B.I. We assume that the map is orientation preserving, as are the Poincare
maps occurring in the application of this paper.

We pick a rectangle £ bounded by pieces of Ws(x\ Wu(x) as shown. Since μ is
fixed independent of ε, there are fixed integers Lv L2 such that PLί(R),
p-L2(R)CBμ(x) and the "height" and "width" of PLί(R) and P~L2(R) are εK3M(Hc),
εK4M(Hc) respectively. Once in Bμ the dynamics is dominated by the linearized
map, which, working in suitable coordinates, we can take to be

To obtain the horseshoe structure P~(L2 + N2)(#)nPLl + ]Vl(.R) as shown, we require
further iteration numbers JV. = JV .(ε) such that

A sufficient condition is thus

N t + N2 = α In (β/εM(Hc)} , (B.2)

where

α = max (l/ln(y), \/\r\(λ'1)} , β= max [μK5/K3, μK6/K4} .
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P'Uy)

P"L2(R).

P l y )

Fig. Bl. The iteration number

Thus the total number of iterates is N = L1+L2 + N1 +N2, or

N = N(ε) = L + α In (β/εM(Hc}),

where L is a fixed integer and α,/? are constants.
When <5ΦO M(HC) should be replaced by Mδ(Hc) and λ, y by

leading to

(B.3)

where

α(<5) - max { 7<5) ~ l)} = δ + 0(δ2

(B.4)

(B.5)

and K9 is a positive constant. Thus N(ε,δ)>N(ε) in general. However, in our
application we take δ of order εμ, μ > 0 (for example ε1/2) and thus εδ = e1 +μδ, say,
and the dependence of N on δ is weaker than its dependence on ε, and hence can
effectively be ignored in the limit ε-»0.
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