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Abstract. Low temperature phase diagrams of two-dimensional 0*(φ) quantum
field models are constructed. Let 3P lie in an (r— l)-dimensional space of
perturbations of a polynomial with r degenerate minima. Perform a scaling

and assume λ<ζl. We construct k distinct states on .
.

hypersurfaces of codimension k— 1 in the space of perturbations. An expansion
is used to exhibit exponential clustering of the Schwinger functions of each of
these states. At the core of the construction is a general technique for finding
the thermodynamically stable phases from a collection of competing minima.
We draw on ideas of Pirogov and Sinai [24] for this problem.

Table of Contents

Part I. The Phase Diagram

1. Introduction .................................. 262
1.1. Background and Main Results ........................ 262
1.2. Physical Ideas and Outline ................ . ......... 265

2. Mean Field Expansion ............ .................. 267
2.1. Polynomials and the A->0 Limit ........... . ............ 267
2.2. Expansion in Phase Boundaries ........................ 270
2.3. Translation of ψq . . ........... . ................ 271
2.4. Decoupling Expansion and Mass Shifts ..................... 273
2.5. Estimates Needed in Chaps. 3 and 4 ...................... 279

3. The Search for Stable Phases : Ratios of Partition Functions .............. 281
3.1. The Physics : Surface Energies and Collapsing Expansions ............. 281
3.2. Contour Models ............................... 284
3.3. Expansions for the Pressure and Surface Energy ................. 285
3.4. Contour Models with Parameters : An Inductive Construction ........... 288
3.5. An Equation that Yields the Ratio of Partition Function Estimate ......... 297
3.6. Solving L = ̂ (L) by Iteration ......................... 298
3.7. The Phase Diagram ............................. 301

* Supported in part by the National Science Foundation under Grant No. PHY-79-16812
** National Science Foundation predoctoral fellow, 1979-1980. Currently Junior Fellow, Harvard
University Society of Fellows

0010-3616/81/0082/0261/S08.80



262 J. Z. Imbrie

Part II. The Schwinger Functions

4. An Expansion for the Schwinger Functions 305
4.1. Constrained Expansions 305
4.2. More General Ratios of Partition Functions 306
4.3. Exponential Clustering and Asymptoticity of the Perturbation Series 309
4.4. The Convergence Lemmas 317

5. Convergence Estimates 320
5.1. Structure of the Estimates 320
5.2. Wick Ordering Lower Bounds 321
5.3. Vacuum Energy Bounds 324
5.4. Lower Bounds for ZΔm and ZΣ 329
5.5. Estimates on Mass Shift Normalization Factors 331
5.6. Decoupling Expansion Estimates 334
5.7. The Bounded Spin Approximation 338
5.8. Smoothness in μ 341

I. Introduction

ί .1. Background and Main Results

This paper presents a detailed analysis of low-temperature 0>(φ)2 quantum fields
models. The last several years have seen considerable development of constructive
field theory techniques for studying multiphase models. However, the range of
models that can be treated remains rather limited when compared with the large
class of polynomials to which expansion techniques ought to apply. We close this
gap by giving cluster expansions for the Schwinger functions of essentially
arbitrary low-temperature έP(φ)2 models. Moreover, we construct coexisting states
on various hypersurfaces of a phase diagram homeomorphic to the classical (zero
coupling) phase diagram. A unique feature of this investigation is the fundamental
role expansions play in determining the stable phases of a theory.

The study of phase transitions in quantum fields models was initiated by
Glimm, Jaffe and Spencer [18] with their proof that two phases exist in the
double-well (λφ4 — ̂ φ2)2 model. Subsequent results include existence of phase
transitions for models without a symmetry [9] or with continuous symmetry
[11,12], and absence of symmetry breakdown for vector models in two
dimensions [2].

Gaw^dzki [13] proved that the parameters in a φ6 polynomial can be adjusted
so as to achieve three distinct phases at one point. Summers [28,29] established
that two phases coexist on lines leading up to that point. These results justified
classical ideas about the structure of the phase diagram of that model.

Of course, there are a number of methods available to construct models
corresponding to general polynomials [14,10]. But these methods do not lead
directly to results on multiplicity of phases or phase transitions.

When dealing with a model that is a small perturbation of a massive Gaussian,
cluster expansions usually give the most detailed information, e.g. on the relation
between the Schwinger functions and their perturbation series [6,8] or on cluster
properties [16,17]. This has been the case for multiphase theories also. Glimm et
al. [19] developed a convergent expansion for the Schwinger functions of the

model (with |μ|^A2<^l), establishing also the mass gap of the
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theory. Their mean field expansion has formed a basis for studies of other models
with deep, widely separated minima. The technique was used for the Coulomb gas
[3,4], for a two-component φ4 model with three phases [5], and for the
pseudoscalar Yukawa model in the two-phase region [1]. Summers [28] used it in
the φ6 model mentioned above, although his expansion did not converge in a
neighborhood of the asymmetric phase transition lines. (He was nevertheless able
to prove asymptoticity of perturbation theory across the phase transition
lines [30].)

The work cited above goes very far in the description of quantum fields at or
near first-order phase transitions. However, all the results depend in an essential
way on special properties of the models considered. In all of the models, the space
of parameters in the interaction has an a priori reduction to 0 or 1 dimensions with
the use of symmetries or correlation inequalities. Thus all work has depended on
either

(i) the existence of a preferred point in parameter space at which the phase
transition should occur (e.g., a symmetric point) or

(ii) the existence of a preferred direction in parameter space along which one
can pass to obtain the phase transition.

The Glimm-Jaffe-Spencer analysis of (λφ4 — ̂ φ2 — μφ)2 [19], and Frohlich's
proof of phase transitions without symmetry breaking [9] rely on the external field
as the preferred direction. Gaw^dzki's proof of the existence of three phases [13]
uses both (i) and (ii): a φ-^ — φ symmetry prevailed all along the direction of
variation of a quadratic term in the polynomial. Summers's analysis of the phase
diagram of that model [28,29] also used the quadratic coefficient as the preferred
direction, even though the diagram was two-dimensional. Baίaban and
Gaw^dzki's work on the two-phase Yukawa model [1] used a boson symmetry
φ-+ — φ. Brydges and Federbush [3,4] and Constantinescu and Ruck [5] also
used symmetries in their multiphase expansions.

The limitations (i) and (ii) rule out a wide range of situations where one expects
phase transitions. A general polynomial will have many local minima. The
process of adjusting the coefficients of the polynomial to achieve many phases at
once involves many parameters nontrivially. One of the main contributions of this
paper is a technique for finding the hypersurfaces on which various phases of a
polynomial coexist. If r phases are involved, this involves a search through an
(r— l)-dimensional space of parameters, with no preferred directions and no
symmetries.

We also obtain detailed properties of each of the phases by giving a cluster
expansion which converges throughout the space of parameters. This represents a
considerable advance in expansion techniques, since up till now all cluster
expansions have relied on symmetries [19,3-5,1], correlation inequalities
[19,20,28], or large differences in classical energy densities [28]. When correlation
inequalities are used, one is in case (ii) above. A large difference in classical energy
densities necessarily excludes neighborhoods of phase transition hypersurfaces
from consideration.

The main difficulty with applying expansion techniques to general polynomials
has been in obtaining ratio of partition function bounds. These bounds are
absolutely crucial in getting the boundary conditions to select a stable phase.
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Except in situations (i) and (ii) above, it is not clear which minima are stable and
which ones are unstable at a particular choice of parameters. Quantum fluc-
tuations can suppress some minima relative to others, making the classical
polynomial an unreliable guide. One can only hope to obtain good bounds on
ratios of partition functions when a stable partition function is in the denominator.
Thus the difficulty is compounded by the fact that one does not know which ratios
of partition functions one should attempt to bound.

This problem has been solved in lattice statistical mechanics where spins take
values in a finite set. Pirogov and Sinai [23,24] have developed a powerful
technique to give a complete analysis of the phase diagrams of such models at low
temperatures. They show that in the (r — l)-dimensional space of perturbations of a

M
Hamiltonian with r degenerate ground states, there exist hypersurfaces of
codimension k— 1 at which k phases coexist. ^ '

We solve the ratio of partition function problem by drawing on the ideas of
Pirogov and Sinai. Quantum field models, and unbounded spin systems in general,
have a number of properties which make a straightforward application of the
Pirogov-Sinai theory impossible. The difficulties arise from the nonpositivity of
terms of the decoupling expansion, from different classical masses in different
minima, and from the unboundedness of φ. These will be discussed in the next
section, and as they arise in later chapters.

The techniques of this paper should also be useful in solving problems outside
of 0*(φ)2 theory. At no point do we use symmetries or correlation inequalities to
obtain the expansion. The techniques should apply to the low temperature
statistical mechanics of continuous, unbounded spins (not covered in [23,24]).
They may be applicable to the problem of proving Debye screening for arbitrary
relative activities of charge species. (See [4] for a statement of this problem.)

We now state the main results. Let μ vary in some neighborhood of the origin
in R1""1. Let &Ίtμ(ξ) be a polynomial with local minima at ξ = ξl(μ)9 ...9ξr(μ).
Suppose these minima are degenerate when μ=0, and suppose 0>fί,μ(ζq) = mq(μ)>Q
for q = l9...9r. Assume ^ μ is bounded below and its minima ξί9...9ζr are
separated by potential barriers. We give a more precise statement of the
requirements on ^\ μ in Sect. 2.1. The parameters μl must break the degeneracy
properly, and the classical energies ̂  μ(ξq\ cannot be too far apart.

With

0>λitι(ξ) = λ-20>lfμ(λξ)9 (1.1.1)

we construct finite volume expectations as follows. Define

Vq=ϊ\ P* ,(</>(*)) -*Vμ(£«)- ̂  :(ΦM~Q2'•}a*
Λl * J

where ψq(x) = φ(x) — ξq. Wick ordering is defined with respect to the covariance
( —zl+ml)"1, where qe{l9...9r} is fixed throughout. Let dμm2(ψq) denote the
Gaussian measure in which ψq has mean zero and covariance ( — A +mq)~1. The
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expectation with boundary condition q is

m2

The measure dμm%(ψq) supplies the missing mass term -~:ψq(x)2: in Λ, while

outside A it forces the field to lie near the qth minimum. The scaling (1.1.1)
preserves the shape of 0*ίtμ, while separating the minima by factors of λ~1 and
raising potential barriers by factors of λ~2. Quadratic terms are unaffected, while
cubic and higher coefficients are multiplied by powers of λ.

Theorem 1.1.1. Let λ be sufficiently small. There exists a Lipschitz continuous
mapping of a neighborhood of the origin in parameter space onto a neighborhood
of the origin in the boundary of the positive octant in JRr. I This is the set of r-tuples

(α1, ...,</) satisfying infα^=0.j The mapping inverts and the inverse is also

Lipschitz continuous. Let μ be a parameter set which is the inverse image of a point
with aq = Q. At μ, the infinite volume limit of the Schwinger functions

Π Φ(xj) (1-1.4)
i = l /Λ,q

exists and the limiting functions satisfy all the Osterwalder-Schrader axioms [22]
with exponential clustering.

The perturbation series for the qth-state Schwinger functions are asymptotic as
(Λ

λ-+Q whenever aq(μ) = Q. As a consequence there exist hypersurfaces ofw
codimension k — 1 in parameter space at which k distinct phases coexist.

In the course of proving this theorem we give rather precise estimates on the
positions of the phase transition hypersurfaces. In Sect. 3.7 it is shown that they
deviate by 0(λ512) from the positions inferred from perturbation theory through
order λ° for the vacuum energies.

This paper incorporates and extends the author's doctoral thesis [21], where
the central ideas were worked out in a less general setting.

1.2. Physical Ideas and Outline

In this section we present some of the main ideas behind the proof of
Theorem 1.1.1. An organizational overview will be given at the same time. More
detailed discussions and analyses of technical problems will be found at the
beginnings of Chaps. 3-5.

Chapter 2 gives a version of the mean field expansion that is suited to variable
mass polynomials and to the constructions in Chap. 3. The basic objects used in
the rest of the paper are defined, and estimates on them are stated in Sect. 2.5. In
Sect. 2.1 we give a precise statement of requirements on polynomials, and we single
out aspects that ultimately determine how small λ must be taken. A concise
statement of the choice of constants used in the expansions is also given in
Sect. 2.1.
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The basic idea of the mean field expansion is to decompose the theory into low-
and high-momentum modes. The low-momentum part resembles a lattice spin
system; it is controlled with a Peierls expansion. The high-momentum part
resembles a single-phase model it is controlled with a decoupling expansion in the
spirit of [17]. The low-momentum component (the "mean field") is defined by
averaging the field over a square. Rigorous bounds on the deviation of the field
from its average value justify the splitting and provide a basis for the vacuum
energy bounds.

The mean field expansion expresses the theory in terms of a statistical ensemble
of objects defined on finite regions of IR2. (Actually, it is not a true statistical
ensemble because the objects are not in general positive.) This is the starting point
for the analysis of Chap. 3.

In Chap. 3 the stable phases are determined and the all-important ratio of
partition function bounds are established. We use many of the ideas of Pirogov
and Sinai [23,24], though the constructions we give are quite different from
analogous ones in [24]. We emphasize partition function language over the
contour language of [23,24]. We must avoid taking logarithms of the basic
objects, since there is no way to keep them positive and bounded away from zero.

The constructions proceed through approximations to quantities representing
the "relative energies" of the different phases. For each set of approximate energies,
approximate partition functions are constructed. The physical basis of the
construction is the idea that transitions out of an unstable phase should have a
probability growing exponentially with the volume of the fluctuation. The
coefficient should be proportional to the energy of the phase relative to the stable
phases. In contrast to the true partition functions, the approximate partition
functions can be estimated at this stage.

Estimating approximate partition functions is the technical crux of this work.
The estimate depends on the fact that there is a form in which the expansion has
positive terms. In order to be able to reduce to that form at any point, we must use
a complicated inductively defined construction for the approximate partition
functions. The "relative energies" acquire a dependence on the size of fluctuations.

The approximate partition functions are estimated in terms of pressures and
surface energies. The pressure terms correct the approximate relative energies, and
the surface terms are incorporated into the ensemble. This new information yields
a better approximation to the partition function, and the procedure repeats. When
the iteration converges, we have expansions for the true partition functions. The
stable phases are the ones with zero relative energy. The estimate mentioned above
can be applied to give good bounds on ratios of partition functions, provided a
stable phase is in the denominator.

In Chap. 4 the information on partition function is used to obtain an
expansion for the Schwinger functions. Ratios of constrained partition functions
must be dealt with before dispensing with the machinery of Chap. 3. Constraints
on the expansion for J RQ~Vqdμm2(ψq) can be handled with some techniques of Kunz
and Souillard (see [1]), and the normalization §e~~Vqdμm2(ψq) can be factored out
explicitly. This yields estimates on (RyΛ)q independent of Λ9 for q a stable phase.
Other consequences of the convergence of the expansion are the mass gap and the
asymptotic nature of perturbation theory.
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Chapter 5 contains proofs of the estimates required for Chaps. 3 and 4. It is
essential to take account of the effective vacuum energy arising from changes in
mass. We also require some smoothness in μ for each element of the expansion. To
obtain smoothness of partition functions associated with a single spin con-
figuration, we need a new type of estimate approximating the field as a bounded
spin. This estimate is what allows us to go beyond [21] to give a complete picture
of the phase diagram.

2. Mean Field Expansion

2.1. Polynomials and the λ-+Q Limit

In this section we specify precisely the polynomials and perturbations that will be
treated in this paper. Our philosophy will be to specify a polynomial ̂  and then
scale ̂  and its argument according to

0>λ(ξ) = λ-2&ί(λξ), λe(0,l]. (2.1.1)

This scaling has the effect of separating minima by λ~l and increasing barriers
between minima by λ~2. The curvatures at the minima of 3Pλ are independent of A.
The coupling constant λ can be identified with h1/2, so that as λ tends to zero we
approach the classical limit. Alternatively, we can think of the scaling as a
continuum version of the low temperature limit for the lattice Hamiltonian
# = f I F0I2 + ̂ χ (0). With λ = β~1/2, j8>l, the change of variable φ-+λφ sends βH

The scaling is particularly useful in studying ^(φ)2 theories that possess many
phases, because it preserves whatever multiple-well structure ^ has. In this
respect it differs from λ^(φ) — φ2, λ<ζl and g&(φ\ 0>1, which should yield only
one- or two-phase theories [25].

We shall give a convergent r-phase expansion for the Schwinger functions
when λ <^ 1 and &λ has r important minima. (The meaning of "important" will be
specified precisely below.) As parameters in έPλ are varied, a minimum may rise so
far above the others that it becomes irrelevant. If this happens, we are able to give
overlapping r-phase and (r— l)-phase expansions. Thus we can handle general
polynomials except in neighborhoods of critical points.

In order to achieve coexistence of up to r-phases, we need to consider
perturbations of polynomials with r degenerate minima. Quantum corrections will
destroy the degeneracy, and we must be able to restore it by making small changes
in the perturbing parameters. Let μ = (μ1, ...,μr~1). We take &*ί=0*ίfμ and
suppose that ̂  0 has r degenerate minima.

We shall need some lower bounds on ̂  to insure that the minima ξl9...9ξr are
isolated by potential barriers and to prevent any one minimum from dominating
the others too strongly. We require a weak quadratic lower bound near each
minimum. Between minima, but outside a neighborhood of each minimum, we
allow the lower bound to diverge quadratically towards — oo at a faster rate than
the local bound/This allows ^λ(ξq)-^λ(ξq') to be 0(λ~2\ but no larger. Thus, the
lower bounds restrict the range of μ. See Fig. 2.1.1. The diverging lower bounds
will be controlled by the expansion in phase configurations (Sect. 2.2). The
expansion makes it unlikely for the field to lie outside of a prescribed well.
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P ( g )

Fig. 2.1.1. Lower bounds required of 0*(ξ). ζ is fixed, while f? ̂  ζ/4 may be taken to be small. However,

We now give a precise statement of the requirements on ^\ μ and
^l, μ), . . . , ξr(l, μ). { l̂f μ, ξl9..., ξr} will be called C^C-admissible if for all' μ. with

(i) ξl9..., ξr are local minima of &ltβ.

(in) Define d and ajΛ(μ) by the formula

d
\ vi = > n,.' *—* j» <

Then rf is even, d^C, \ad q(μ)\^C~\ and \a} q(μ)\^C, j^2. Of course βj 4(μ)=0.
Write α2ι» = i

(iv) ξ^i-
(v) There is a #e{l, ...,r} such that eq = Eq

c — E* satisfies the following
ίdeq\

condition. If A is an eigenvalue of the matrix l^-Lφ- , then |vl|e[C 1

9 C].

(vi)
d2eq

^brflA. ^ C, and
6μidμ

(vii)Put ξ0=-oo, ξr+ί = co.
For q = l, ...,r,

_ (̂  c^ ^ > ^/ ^l,μV<V =
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Fig. 2.1.2. If η is decreased from
consideration

to η2, then the right-hand minimum can be omitted from

The constants ζ, η, and C that appear in the above definition arise as follows, ζ
is a constant chosen consistently with some upper limits arising in the proof of the
vacuum energy bound (Sects. 5.2 and 5.3). η may be chosen at will in the range
(0>£/4] However, the lower bounds (vii) allow for a reasonable range of
perturbations μ only if η is a small fraction of ζ. Also, the lower bounds imply that
wiq ̂  2τ/ for all q. As η tends toward zero, we must restrict λ to smaller ranges. By
adjusting η, one can exclude a minimum from consideration in a restricted range of
μ (Fig. 2.1.2). Thus the domains of convergence of expansions with different values
of r overlap. The constant C parametrizes various aspects of the polynomial which
ultimately will affect the maximum allowable λ. Thus C and η~l may be chosen
arbitrarily large, but we require λ<λQ(η,C).

Requirement (v) insures that the parameters μ1 break the degeneracy of ̂  0

and establishes a scale for μ1. With E*(λ, μ) — &λ>μ(ζq\ we have that a change δμ in
the parameters induces a change δEq

c = O(λ~2)δμ in the classical energies of the
minima. Requirement (vi) is used to prove convergence of successive approxi-
mations to phase coexistence points. We need (v) and (vi) only in Sect. 3.7, where
coexistence is established.

The ^-derivatives of the aj>qs can be expressed as nonsingular rational
functions of μ-derivatives of the coefficients of &. (Singularities appear only when
some mq tends to zero.)

The bound ξq+1 — ξq ̂  C~1 orders the minima and helps to avoid any potential
critical points. Together with the lower bounds (vii), it insures that fluctuations
between minima incur a certain energetic cost. The minima of 0*λtfl are at ξq(λ)
= λ'1ξq (λ=ί). Thus they are separated by 0(λ~*).

Two length scales will be used in constructing the mean field expansion. One is
the scale on which distant regions are decoupled in the cluster expansion.
Decoupling lines are placed on a lattice with squares of length /. We choose I to be
a large integer, depending on C and η. I need not diverge with λ. However, λ must
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be chosen sufficiently small, depending on /. The qualification λ <ζ 1 <^ I will always
refer to this choice of constants. Once λ and / are chosen as described above, all our
results apply to any Cf/C-admissible family of polynomials. A second length L
provides an upper bound on the scale of effects of fluctuations between minima.
We take L to be the next multiple of / after (log/I)2.

More general polynomials can be brought into Cf/C-admissible form by
performing two operations. A dilation ^->e>2^, x-+δ~ 1x can be used to bring the

masses into the range [ j/2τ/, |/2C] or to increase the range of parameters
consistent with the lower bounds (vii). A preliminary scaling 0>(φ)-+y~2έP(yφ) will
leave the masses fixed while bringing the leading coefficient into the range

2.2. Expansion in Phase Boundaries

In the next three sections we present the mean field expansion [19] that we will use
throughout this paper. It consists of four parts : an expansion in phase boundaries,
a translation of the field, decoupling expansions, and mass shifts. The last two
operations are intertwined in a way that generates an expansion with the right
locality properties. Shifts of mass from the measure to the interaction or vice versa
are needed so that the decoupling expansion is always controlled by factors of λ.
These multiply cubic and higher order terms in the interaction, but not quadratic
terms. The object of all of these operations is to represent an integral
§RQ~Vqdμm2(ψq) as an appropriate statistical sum of quantities defined on finite
regions in R2. In Chaps. 3 and 4 we use the representation as a starting point for a
sequence of transformations that ultimately leads to the desired estimates on the
Schwinger functions.

To define the expansion1, we put two lattices on IR2. One is a unit lattice, with
elementary squares A\ having lower left corners at z = (i0, iJeZ2 £R2. The other is
a coarser lattice, with elementary squares Aj having lower left corners at (ί/0, IjJ
with /> 1. We take the interaction region A to be a square composed of /-lattice
squares.

In each unit lattice square AlQA, we decompose the measure into r parts, one
for each minimum of 0>λffl. This is accomplished by inserting partitions of unity
into the measure. Suppressing the dependence of ξq on λ and μ, we define

φ(A1) = J φ(x)dx = φ(χ), xεA1

(2.2.1)
(ίβ + ««+ι)/2

xΛ0 = π~1/2 f *-«-*)adz, q = l,...,r.
(ξq-ί+ξq)/2

r

Then £ %q(ζ) = l Let σt take the values 1, ...,r at the unit square AlQΛ. The
q=l

expansion in phase boundaries is a result of the identity

π (Σ
Λ\£Λ\σi=\.Λ\£Λ\σi=\.

Σ Π xΛM1)). (2 2 2)
{σf} ΔgA
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Here {σf} = Σ is a spin configuration, that is, a function on the unit squares in A
taking values 1, ...,r. Define

fc= Π KΛM1)) (2-2.3)

and insert (2.2.2) into the measure to obtain the expansion

. (2.2.4)

The formula may be interpreted as follows. Since χq(ξ) is close to 1 for ξ near ξq

and close to zero elsewhere, the factor χΣ tends to make each φ(Δ\) lie in the
vicinity of the minimum ξσ.. By estimating the fluctuation field δφ(x) = φ(x) — φ(x\
we shall see that φ(x) also tends to lie near ξσ.. For expectations with boundary
condition q we set σt = q if Δ\ | Λ. The boundary condition presses φ(x) to lie near
ξq in ~Λ without the help of χ-factors.

Whenever σ f φσ r for neighboring squares A\ and A\,, χΣ forces a fluctuation
between wells of 0>λ>μ. When this happens, the edge common to A\ and A\, will be
called a phase boundary. We shall see that each configuration Σ is associated with
a strong convergence factor e~0(1}λ~2^, where \Σ\ is the total length of the phase
boundaries in Σ. Thus the tendency is for σ to be constant over large regions.

2.3. Translation of ψq

In defining the finite volume expectation with boundary condition q, we translated
from φ to ψq = φ — ξq, anticipating that <φ> should be approximately ξq in the qih

phase. With the χ-factors present in the measure, we need a space-dependent
translation in order to recover a small mean. We expect <</>(x)> to behave roughly
like

h(x) = ξσt, xeΔ\. (2.3.1)

Taking into account the kinetic energy term in the action, a better approximation

would be \ - w /Λ 1 1\(2.3.2)

where 77 is the constant appearing in the lower bounds (vii), Sect. 2.1.
As in [19] we localize the definition of the translation function g(x) so that it

depends only on σf for dist(zl^,x)^L/2. Choose a C$ function ζ(x) satisfying

(2.3.3)

Then define

g(x) = η^(-A+ηΓ\x- y)ζ((x ' y)/L)h(y)dy , (2.3.4)

where
i, ζ-

 1 = f ( - 4 + η) ~ \yK(yiL}dy . (2.3.5)

Due to the localization of the kernel ( — Δ+η)ζ, we have that g(x) and
( — Δ+η)(g — gc)(x) are independent of h(y) for dist(x,y)^L/2. Thus if dist(x,Σ)
^L/2, then g(x)^h(x) and (-
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Define

= Φ(x)-g(x)

g(χ). (2.3.6)

The meaning of ψ depends on Σ, though the dependence is not explicit in the
notation. Let dμm2(ψ) denote the measure in which ψ(x) has mean zero and
co variance ( — A +m^)~1. We claim the following formula is valid:

(2.3.7)

where

β= ί D^uW M): -E«c-ϊη:(φ(x)-h(x))2:-±(m2

q-η):ψ(x)2 .ldx
Λ

(2.3.8)

x, (2-3.9)

-η) J (g-ξq)
2dx, (2.3.10)

^x, (13.11)

F*=(m2

q-n) f rtxfa-ξjdx. (2.3.12)
~Λl

The formula for translation of a Gaussian measure is

dμmι(ψ + f ) = πp(-^M-A+m2

q)fy-<ψ,(-A+m2

q)fy)dμmί(ψ). (2.3.13)

Thus

= exp( - <φ + i(g - ξf ( - Δ + mtyg - ξq)y)dμmί(ψ) . (2.3. 14)

Since Vq = J [ :0>(φ) :-E*--^-:(ψ + g- ξq)
2 :]dx, the claim will follow from

q
A

(2.3.15)

The terms linear in φ are

. (2.3.16)

Using /ι = ξ^ on ~Λ and (2.3.2), these combine to form F3 + F4. Of the remaining
m2

terms, ± ~γ(g-ξq)
2 cancel in A to leave

m2

ί -^(g-ξ
~Λ Z

=Fι+ ί (g-^-k^Q-dx. (2.3.17)
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Using again h = ξq on ~Λ9 the proof is complete.
The grouping of terms in (2.3.7)-(2.3.12) is convenient for the vacuum energy

bounds of Chap. 5. The term — \(m2

q— η) :ψ(x)2: will be absorbed into the
Gaussian measure. The negative term —%η :(φ — h)2: must be controlled by the
χ-factors and by estimates on the fluctuation field δφ. [Compare with the lower
bounds (vii) of Sect. 2.1.] Fl is the dominant effect of phase boundaries, and
produces a factor e-°wλ~2\Σ\m p^ p^ and F4 are error terms.

2.4. Decoupling Expansion and Mass Shifts

In this section we take each term in the expansion in phase boundaries and express
it as a sum of products of terms defined on bounded regions. The localized terms
are the basic objects of study in Chaps. 3 and 4.

In order to implement factorization we will use covariances with space-
dependent masses and with full or partial Dirichlet data on bonds of the /-lattice.
Let ω(x) take values in the set {raj, ...,w;?} and be constant on every unit lattice
square. Let Γ be a set of /-lattice bonds and write AΓ for the Laplace operator with
zero Dirichlet boundary conditions on Γ. We will use decoupling parameters {sj,
where b indexes bonds of the /-lattice, and sbe[0, 1]. With s = {sj, m= supmq(μ),
define

cm*(s)= Σ Π^ΓKi-α-^Γ+wT1,
(2.4.1)

where Γ° is the complement of Γ in &, the set of all /-lattice bonds. When sfc = 0,
Cω(s) has zero Dirichlet boundary conditions on b and when sb = 1, Cω(s) has no
Dirichlet data on b. If sb = Q for all beΓ9 we call Γ a Dirichlet contour.

Let dμ^ s(ψ) denote the Gaussian measure in which ψ has mean zero and
covariance Cω(s). We call {sb} decoupling parameters because

$RγR~γdμω)S(ψ) = $RγdμωίS(ψ)$R^γdμ(0)S(ψ) (2.4.2)

whenever 37 is a Dirichlet contour. (Rγ, R^ γ are supported in 7, ~ 7, respectively.)
We now give a decoupling expansion for each term of the expansion in spin

configurations. Let &(Σ) £ J* be the set of /-lattice bonds that are at least a distance
L from all phase boundaries of Σ. We use the sup norm dist(x, 3;) = sup \χ. — y.\ in

i = 0,l

discussing distances between phase boundaries and /-lattice bonds. We keep sb = 1
for bφ&(Σ) throughout. Rather than expand in all the s-parameters at once, we
break 0S(Σ) into subsets. After expanding in the s-parameters corresponding to
some subset, we make a mass shift. We may then proceed to the next subset and
continue until all bonds of 3S(Σ) have been differentiated or decoupled.

In order to define the subsets of &(Σ\ we construct inductively a sequence of
subsets of R2:R2=D12D22...2I)II(Σ)+1=0. p(b), the phase of a bond in 8t(Σ)9 is
defined to be the common value of nearby spins. Let D2 be the region bounded by
bonds be&(Σ) with p(b)ή=p(bQ)9 where bQ is any bond far outside of A. [Bonds with
p(b) = p(b0) may be contained in D2.] Then define Λ£Σ) = &(Σ)n{b : bζD1\D2}. In
general, Dk will consist of a number of connected, simply connected components
D"k. With b0ζdDl define Dj;+1 to be the region bounded by bonds bgD"k
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Fig. 2.4.1. The decomposition of 38(Σ) into subsets (̂Γ), @2(
Σ)> separated from each other by the

phase boundary Σ

with p(&)Φp(60) and be£(Σ). Then put 0k + 1= (JD£ + ι and #*(£)
α

n{&:ί?£D fe\D fc+1}. The construction terminates when the bonds of (St(Σ)
are exhausted, and we have a(Σ) = Λ£Σ)\j ... v@n(Σ)(Σ). See Fig. 2.4.1.

We associate to each k a space-dependent mass ωk(x). Define p(Dl)=p(b0)
where b0edDl if k^2 and b0 is far outside of A if fc = 1. Then put co^xj^m^^. We
obtain ωfc+ 1 from ωfc by modifying it on each

(using again the sup norm) :

Associated to each ωfc we have a mass-shifted interaction

βωk(Σ, Λ, q) = Q(Σ, Λ,q)+\ \(m\ - ωk(x)) :
A

Notice that Qωι = Q.
The decoupling expansion uses the identity

: dx . (2.4.3)

for each be&k(Σ) for some fc. For k = l we obtain

ι finite

Σ JdsΓl Σ ί Π
IJ.Γi finite

(2.4.4)

(2-4-5)



Phase Diagrams. I 275

We have used the following notations :

beΓ

et of partitions of Γ,
c c

See [7, 17] for details.
Before proceeding to the next block of bonds, we shift mass from Q to dμ :

e'Q^μω^SΓι(ψ) = e-^dμ^SΓι(ψ)Zωιω2(sΓι) , (2.4.6)

.̂̂ (sr,)"!*' 1/2(β>lW~<8!l(3e))!*(3t)a!<l"dμ).1..rι(ψ) (2A7)

Absorbing the mass term into dμ changes the covariance to Cω2(sΓl), given in
(2.4.1). We shall never apply s-derivatives to Zωι(θ2 factors. As a result of the mass
shift, contractions to Qω2 from the next block of s-derivatives will bring down
powers of λ.

Proceed through the blocks of bonds &2(Σ)9 Λ3(Σ), ...,&n(Σ}(Σ) shifting mass-
squared from ωk to ωk+1 after deriving bonds in $k(Σ). We allow s-derivatives to
act on covariances arising from earlier blocks. The result is

Γ finite
Π
=l

Π Zωfcωt+1(sΓk). (2A8)

We have used the following notations :

Γk = Γn

k(α) is the first integer k such that

sb if beΓk

0 if be((l0UΣ)\\Γk

1 otherwise,

sΓ = sΓn,
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We now write (2.4.8) in factorized form. Define Q(Z) as in (2.3.8H2.3.12) but
restricting all integrals to ZnΛ or Zn~A Define βωfc(Z) similarly from (2.4.3).
Let {Zκ} be the closures of the connected components of IR2\{s = 0 bonds}. (The
5 = 0 bonds are those in &(Σ)\Γ.) Then

We let ΣnZ denote the restriction of the spin configuration Σ to Z, and define

Xmz= Π
Δ\gZc\

so that

Using the fact that Cω(α)(sr) vanishes between Zκ and Zκ,, and the fact that Cω(α)(5Γ)
restricted to Zκ depends only on sb with b£ZK, we can apply (2.4.2) to obtain

fΛΓ Σ ί Π f^-β— Π
πe^(Γ) j=l αeπ

Tre^ίΓnZK) y = l |

Π \k%CnμrYΔJR^^e-*^dμ^ψ). (2.4.9)

We have assumed that K is a product.
The Gaussian integrals Zωkωk+ί(sΓk) also factor, although not as fully as above.

We associate the factors to Zκ's as follows :

), (2-4.10)
K

where
ωk+ι(χ)> ^ in a connected component of

suppt(ωfc+1 — ω.) whose boundary lies in Zκ

f \ Λ (2A11)

ωk(x) , otherwise .

Notice that suρpt(ωfc — ωj+1) is always separated from suppt(ωfc — ωj'+1)
by bonds with sΓk = 0. Hence (2.4.10) is valid. In addition, ZωkωK+ί(sΓl) depends
only on sΓkn2κ.

Using (2.2.4), (2.3.7), (2.4.8), and (2.4.9), the full mean field expansion becomes

Σ Σ Π
Σ Γg@(Σ),Γ finite K

^> Π
J

(2.4.12)
fc=l
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Note that the construction insures that all spins within L of a connected
Dirichlet contour have the same value. If the common value is m, we call the
contour an m-contour. By the locality of the construction of g(x) and ωπ(x),
Qωn(Zκ) does not depend on Σr\Zκ, for κ'Φκ;. (It still depends on Λ and the
boundary condition q.)

Before making further transformations on (2.4.12), we introduce the notion of a
cluster. A cluster is a triple (Z,Σ"nZ,ΓnZ) satisfying certain conditions.

(i) Z is a connected union of a finite number of /-lattice squares.
(ii) Σ = Σr\Z is a spin configuration in Z.

(iii) Γ = ΓnZ is a set of derivative bonds in Z.
(iv) dist(δZuΓ, Σ) ̂  L. Here Σ denotes the phase boundaries corresponding to

the spin configuration Σ.
(v) 5ZnΓ = 0.

(vi) Let Γc denote the set of all bonds bφΓ such that dist(b,£)^L. Z\ΓC is
connected.

We use the symbols X, Y, TL to denote clusters. We shall often speak of clusters
as if they were simply subsets of R2. Set theoretic operations u, n, \, etc. should be
interpreted accordingly. Let |2£| denote the number of /-lattice squares in TL. The
boundary of a cluster TL consists of a number of loops with boundary conditions
determined by Γz, the spin configuration of TL. One loop surrounds all the others
and is called the external loop of TL. Its boundary condition is called the external
boundary condition of TL. If the external boundary condition of Z is m, then TL is
called an m-cluster.

We define ρA q(Έκ)to be the κ-term of the product over K in (2.4.12). The mass
shifts, etc. were designed so that ρΛtq(%κ) is determined uniquely by Zκ, Λ, q, and
RZκ. (It does not depend on Γn~Zκ or Γn~Zκ.)

We may write (2.4.12) in terms of clusters. Most of the compatibility conditions
among Σ, Γ, and {Zκ} are handled by (iHvi) above.

J Rs-r dμ.JvJ- Σ Π^,4(ZK) (2-4.13)
{Έκ} nonoverlapping, filling IR2 K

agreeing on common boundaries, Σ^ = q in %K\Λ
only finitely many %K have \ΈK\ > 1

Adjacent clusters must have their Σ's match along common boundaries. Note that
if TL is a single square in ~Λ with no ^-factors, then g(Z) = 0 and ρA q(Z) = l.

At several places in Chaps. 3 and 4, we shall need to resum the expansion
(2.4.13) within a region of R2. The sum in (2.4.13) is not a true statistical sum
because not all the terms are positive. Resummation restores the positivity that is
needed for certain arguments. Resummation also produces the finite volume
partition functions which will be the fundamental objects of study in Chap. 3. We
will need to make some adjustments in classical energies to allow for the effects of
mass shifts. Define Wick ground state energies

(Recall that mΆ is the Wick-ordering mass, and qe{l9...,r} is fixed throughout.)
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Note that

dμm^' (2A15)
see Sect. 5.5.

Let V £ yl be a connected region composed of /-lattice squares. Let ¥ consist of
V together with a single choice of boundary condition p(¥) for all the boundary
loops of V. Let Z1 be a spin configuration in V compatible with the boundary
condition. [Compatibility entails that dist(Z,3F)^L.] Let dμ^ dv(ψ) be the
measure with mass mp(v), and with s = 0 on δ¥ and s= 1 elsewhere. Define

^ (2.4.16)

Since ¥£yl, ZΣ(V) does not depend on Λ. Moreover, the factor e~Eq<^\12 cancels
the dependence of Q on q so that ZΣ(V) is independent of q. ZΣ(W) is manifestly
positive. We shall also need the "partition function"

Z(¥)= £ Z^¥)^0. (2.4.17)
Σ compatible with V

ZΣ(W) and Z(¥) are defined in general by taking Λ large enough to include ¥. If ¥
has several components, ZΣ(W) is defined by taking a product over the
components.

Apply the decoupling expansions and mass shifts to (2.4.16) to obtain

Σ
{TLK} nonoverlapping, filling ¥

Summing over Σ yields an analogous formula for Z(¥):

Σ UQA.M- (2A19)

{ΊLK} nonoverlapping, filling ¥ K
agreeing on common boundaries and with 5¥

Equations (2.4.18) and (2.4.19), applied in reverse, resum the mean field expansion
inside ¥.

In the special case where WQΛ is a single /-lattice square with boundary
condition m, we define

(2.4.20)

Only one term contributes to the sum over Σ, because L ̂  /,
We put (2.4.18)-(2.4.19) into a form where the lack of dependence on Λ,q is

more apparent. Define
q^l\ (2.4.21)



Phase Diagrams. I 279

where A has been taken large enough so that TLζ.Λ and dist(cM,3Z)^:L. As with
ZΣ(V), the e~E*W2 factor cancels the dependence on q, making ρ(K) independent of
A and q. Equations (2.4.18) and (2.4.19) may be rewritten as

{Zκ} nonoverlapping, filling V
Σz" = ίnZκ (2.4.22)

£ ΠβW-
{Έκ} nonoverlapping, filling V K

agreeing on common boundaries and with 3V

2.5. Vacuum Energy Estimates and Bounds on Terms of the Expansion

In this section we state the main technical estimates used in Chaps. 3 and 4. The
proofs will be deferred to Chap. 5.

The most important estimate is the vacuum energy bound. It provides
estimates uniform in λ, despite the fact that the classical energies E™ are 0(λ~2)
relative to one another.

Let (n(Δ\)} be a set of nonnegative integers, one for each Δ\ξ* Yr\Λ. Define

and put

X&r= Π xSf'W1))- (2-5.2)

Let |Σ'| be the number of Δ\ with n(Δ\)
Let \Ύ\m be the volume (in units of /2) of the portion of Y with Σ = m, and let

151= ΣlyL Recall that m= supmq(μ).
m <l*V

Proposition 2.5.1. There exists £>0 such that for all C>2, ?/e(0,ζ/4] there exists
τ2Of,C)>0, φ,C)>0, and λ0(η,C)>0 such that for all λe(0,Λ0], all

η
λ,μ>ζv-'iζr} ζηC-admissible and all pe 1,1 +

30m2

e \\LP(dμωn>Sr(ψ))

y Γiίvq — £m\|y|

c ' -

The Lp estimate is needed so that we may be able to split a general integral into a
Gaussian part times an integral as above via Holder's inequality.

The next proposition provides a lower bound needed to support the interact-
ing measure and prevent normalization factors from vanishing.

Proposition 2.5.2. With £, C, η, α, A, and 0>λfμ as in Proposition 2.5. 1 except that λ0

depends also on /,
(2.5.4)
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We next state bounds on the terms of the mean field expansion. First consider
the case where there are no field monomials, that is, R = 1. Clusters with no field
monomials will be denoted by the letter Y. For the others we use the letter X Let
p(TL) denote the external boundary condition of Z. If mφp(Z), define DntwZ to be
the region bounded by boundary loops of 7L that are in the mth phase. Every
component of IntmZ is given boundary condition m.

Proposition 2.5.3. Suppose λ<ζl<ζl. There exist τ1(η,C)>0, τ2(η,C)>0 such that

| Ym| Σ (E? ~ E® - EξM + £^V))/2|ihtm Y|
-e e»«*p(Y) . (2.5.5)

Take R to be of the form

R=ίl ψJ(xfl , (2-5.6)

'and let degβ = Σ ^i Let || \\LP> denote the norm for Lp \Y[ Ai L where At is the
i=l \ / = l /

/-lattice square containing xt. (The J/s need not be distinct.) Assume that ^.gXfor
all i. Define N(A)= £ fef.

i:Δi = A

Proposition 2.5.4. Given p'e [1, oo), let λ <ζ 1 <^ /. There exist positive constants τί9 τ2,
K depending on p'9 η, C such that for degR^ 1, |X| ̂  1,

^ (2.5.7)

// Σx=m, fhen the factor A~degΛ may be omitted.

Differences such as E™ — E™ appear because of the mass shift normalization
factors included in the definition of QΛfq(%). These factors will extend into ΠntmZ.

The next two propositions give some smoothness in μ to elements of the
construction of Chap. 3. They are needed in Sect. 3.7, where the phase diagram is
constructed.

Proposition 2.5.5. Suppose λ<ζl<ζl. There exist τ1(η,C)>Q, τ2(η,C)>0 such that

Y|
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Proposition 2.5.6. With ζ, C, η, λ9 and \μ as in Proposition 2.5.1, there exists K(η, C)
such that

Λ i *v&\*-'λΛ v / w / = •«•»-"' * ι v ι \Z.J.y)

Without Proposition 2.5.6, only limited information on the phase diagram may
be obtained - see [21].

In the next two chapters we shall use extensively the following normalized form

(2 5' (

Using Propositions 2.5.2-2.5.4, we see that the energy factors cancel, yielding the
bounds

Δ

-de8*, Γχφm

1, Σ^ =

In case TL is well inside Λ, (2.4.21) implies

= ρ(Z), (2.5.12)

where we have made the Λ9 ^-independence clear by dropping the subscripts on ρ.

3. The Search for Stable Phases: Ratios of Partition Functions

3.1. The Physics: Surface Energies and Collapsing Expansions

Chapter 3 constitutes the core of this paper. The main result to be proved is the
following bound on ratios of partition functions:

_ZW_<e*ι"Ί"l (3 I D
Z(Wqo) ' lAi.i;

Here ¥ and ¥α° occupy the same simply connected region in 1R2 but ¥^° has
boundary condition qQ. The fact that (3.1.1) holds for arbitrary ¥ for some

: {1,..., r} will be of the utmost importance in all subsequent developments. It is
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the definitive sign that q0 is a stable phase at a given point in parameter space. One
could not hope to give a convergent expansion for Schwinger functions without
first attending to a bound of this type.

Pirogov and Sinai [23, 24] have developed a technique for obtaining bounds
like (3.1.1) in theories lacking the special properties discussed in the introduction
(symmetries, correlation inequalities, or large differences in classical energy
densities). Their work applies to lattice spin systems where the spins take values in
a finite set. We adapt many of the ideas in [23, 24] for the problem at hand. We
encounter additional problems from the unboundedness of φ and from the contin-
uum limit. In Chap. 4 we deal with a third additional complication : In contrast to
[23,24], the passage from (3.1.1) to a construction of the stable states is nontrivial.

The difficulty in proving (3.1.1) lies first of all in the fact that both numerator
and denominator have exponential dependence on the volume of ¥. Yet the bound
states that Z(Wq°) dominates up to a small surface term. Second, there is no a priori
way of knowing which phases q0 should work in (3.1.1).

Heuristically speaking, the stable phases should be the ones of least energy.
There is, however, no simple measure of the energy of the unstable phases. For
example,

(3 L2)

is presumably the same for all m, because the theory should tunnel into a stable
minimum if unstable boundary conditions are imposed.

A way of constructing a measure of the energy of unstable phases is given by
Pirogov and Sinai in [24]. A theory is first expressed in terms of contours
separating uniform distributions of spins. Unstable boundary conditions m should
be characterized by the fact that fluctuations out of the mth state should have a

probability growing like — ̂  — ea^ Volume of contour|, for some αm>0. The constant
Norm.

am is a measure of the energy of the mth state.
In order to achieve a situation where the partition function is given by such an

ensemble of contours, one must proceed through successive approximations to cΓ.
In our ^(φ)2 model,

am= -\ogZAm- infί-logZ^) (3.1.3)

is an excellent first approximation, as it contains the Wick ground state energy and
also some fluctuations about the mth minimum.

When one attempts to describe the theory using this approximation to the
relative energies, one finds two types of errors. The approximate partition
functions we use have an expansion

Iogί2(¥) = s|¥| + zl(¥), (3.1.4)

where the pressure s is independent of ¥ and where |zl(¥)|^/l1/2|d¥|. A difference
of pressures corrects the first approximation to {αm}. Surface energies A(W) must be
incorporated into the description of the theory by including them with the
"energy" of contours bounding ¥.
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After making the corrections, the new approximate partition function is
expanded as in (3.1.4) and the procedure is repeated. As one proceeds through the
iteration, higher and higher order surface effects are taken into account. When the
iteration converges, one has a description of the true partition function Z(V) in
terms of an ensemble of contours with factors e*mlVolume of contourl. The phases q0 for
which aqo = 0 can then be shown to dominate the others as in (3.1.1). If several
phases have aq° = Q at some point in parameter space, then they will all coexist at
that point.

Collapsing expansions are the principal tools for carrying out the procedure
described above. They arise from the following construction.

Compatibility of clusters on shared boundaries is a very difficult condition to
work with. Therefore, one resums the mean field expansion inside the outermost
clusters (the ones not surrounded by other clusters). The result is a partition
function Z(V) for the regions surrounded by clusters. If the outer clusters are

Z(V)
multiplied by — Z(Vq) and if Z(Vg) is expanded in the numerator, then one

returns to the original boundary condition q and there is no compatibility
condition for the outer clusters.

To be completely relieved of compatibility conditions, one must apply the
above procedure to the clusters that make up the expansion for Z(Vβ) and
continue to smaller and smaller clusters. In the end, one has an expansion purely
in terms of ^-clusters with no compatibility conditions. Each cluster is multiplied
by a ratio of partition functions. This form of the expansion makes it clear why
(3.1.1) is so important.

One can reverse the above procedure to recover the original expansion. When
this is done, we say the expansion has collapsed.

Collapsing expansions were first used in quantum field theory in [20]. They
were used to make the step from Z/Z bounds to a cluster expansion, rather than to
prove Z/Z bounds.

The biggest problem we encounter lies in bounding partition functions that
involve the factors e«

mlVolumel. Only the crudest estimates are available for such
objects. (A more familiar situation is where contours have probability e-

tlLensthl> in

which case expansion techniques give very precise bounds.) The crude bounds
depend on every term in the partition function sum being positive. Unfortunately,
ρ(Y) is not in general positive.

We discuss this problem in greater detail in Sect. 3.4. The resolution of the
problem entails that each iteration step consist of an inductive construction
designed so that the expansion may be collapsed at any point. Certain bounds are
proven in the collapsed form of the expansion, while others are accomplished in
the uncollapsed form. The constants αm acquire a dependence on the diameter of
clusters.

A second major problem arises in proving smoothness of the construction in
the parameters of £P. Smoothness is needed to solve for the parameters that yield
an arbitrary set of αm's, as was done in [24]. The difficult bound is Proposition
2.5.6. One must control the bounded-spin approximation for φ and obtain lower
bounds on ZΣ(V). These problems will be covered in Chap. 5.
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3.2. Contour Models

In this section we introduce certain statistical ensembles which will be used
throughout this chapter. Recall the definition of clusters given in Sect. 2.4. In most
of this chapter we restrict attention to clusters with more than one /-lattice square.

Definition. Let F be a real-valued function of clusters. F will be called a contour
functional if

\\F\\ = supeτ ι /l¥l+ τ 2 λ"2l^l|F(¥)|<oo. (3.2.1)

The restriction of F to q-clusters will be denoted Fq and called a q-contour model.
\\Fq\\ is defined by restricting the supremum in (3.2.1) to q-clusters. Note that F(Y)
need not be positive.

Let Y be a finite, connected, simply connected union of l-lattice squares together
with a choice of boundary condition. Such a Y will be called a simple domain. A
domain is a finite union of simple domains. The components of a domain may have
different boundary conditions. |Y| will denote the number of l-lattice squares in ¥ and
|δ¥| will denote the number of l-lattice bonds in the boundary of ¥

For any contour functional F, we define a partition function as follows.
Suppose ¥ is a simple domain with boundary condition q. Then

(3.2.2)
s

Y| g V, nonoverlapping

The sum over {Yf} is over collections of nonoverlapping g-clusters in Y, and
|Yf|>l. If {Yf} = 0, the product is set equal to 1. Note that every cluster in the
collection has the same external boundary condition as ¥ and that neighboring
clusters may disagree on boundary conditions. This is different from the expansion
of Sect. 2.4, where neighboring clusters agree, and where clusters with any external
boundary condition may appear.

To define Ω(F,¥) for general domains, let {¥.} be the simple domains that
make up ¥. Then

(3 2 3)

An example of a contour functional is ρ, with no field monomials present
CR = 1). [See (2.5.10) and (2.5.12).] From (2.5.11) we see that ρ(Y) has the requisite
decay. In fact, there is room to spare in the exponential bound on |ρ(Y)| so that

FL(Y)Ξρ(Y)e^> (3.2.4)

is also a contour functional if L(¥)^τ1ί|Y|.
Much of this chapter is devoted to finding an L(Y) such that the true partition

function is given by
) = Ω(FL,W). (3.2.5)

This will only be possible if ¥ has thermodynamically stable boundary conditions.
(For the other boundary conditions, we will need the generalized contour models
introduced in Sect. 3.4.) L(Y) will be a sum of several terms, one of which is

) for some F and for ¥ a domain surrounded by Y. In order to preserve
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the bound LίY^τJIYI we will have to cancel the volume growth of logΩ and
leave just a surface term. In the next section we will show how to separate the
surface effect from the volume effect and obtain bounds on each.

3.3. Expansions for the Pressure and Surface Energy

We make use of some algebraic properties of partition function sums in order to
write Ω(F, V) as an exponential of some quantity. Then taking the logarithm and
separating surface effects from volume effects will be easy. The main barrier to
taking the logarithm of the expansion (3.2.2) is the constraint that no two clusters
can overlap. Following [1], we implement the constraint using functions of
clusters £7(Y15 Y2). The technique can be traced back to similar ideas in statistical
mechanics [26] and in quantum field theory [8]. The l/'s defined here are special
cases of ones in Chap. 4.

Define

,33 ̂1 otherwise. l ' ' }

Assume ¥ is a simple domain with boundary condition q. Then the expansion for
Ω(F,V) (3.2.2) becomes

£ Y[ U(Yq

Si,Y
q

S2)YlFq(Ύ«). (3.3.2)
k *>' (¥?,...,¥«) sι<s2 s

We have changed from summing over sets of Yfs to summing over ordered
families of Yfs, hence the 1/kl. The terms in this sum involving only nonover-
lapping Yfs are unchanged, while the others vanish. In the remainder of this
section it will be assumed that all clusters have external boundary condition q and
the superscript q will be omitted.

Define some more operations A = U — l, and expand the product of l/'s using
the formula

(3.3.3)

Here ίf is a set of unordered pairs of clusters (called lines <£). G is a subset of £f
and can be visualized as a graph connecting clusters with the lines &. Equation
(3.3.2) becomes

Ω(F> v) = Σ A Σ Σ Π ̂ ) Π TO (3.3.4)
k K. (γ l 5...,¥k) G &<=G s

A graph G is called connected if the lines in G form a connected graph joining all
the clusters in G. Every graph breaks into its connected components (which may
consist of single clusters with no lines). Let G15 ...,Gn be the connected com-
ponents of G. We sum separately over the Ys's and G/s in each component, using
the identity

ΣTΓ Σ Σ^Σ^ήίΣίTT Σ Σ) (3 3 5)
k K (¥ι,...,¥k) G n n- j=l\kj ^j (¥φ,... ,¥(£) Gjl
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To understand where the factorials come from, fix k, n, and {ky}. The sums on the
right do not allow for the Ifs in the connected parts of G to be chosen arbitrarily
from (Ύ1? ...,Yfc), but always consecutively. Therefore the right-hand side should
have a factor of the number of choices of n subsets with sizes k1? . . . , fc n from k

kl
objects, or ——'—j—r Having made this correction, the right-hand side counts

k t . ...kn. ^
permutations of the components of G as separate terms. Hence a factor — must be

included to cancel this overcounting. Dividing both sides by k! yields (3.3.5).
The expansion for Ω(F, ¥) takes the form

Ω(^=Σ-Jτ Π (Σ^ Σ Σ Π AW ft W)). (3.3.6)
n n- j=ί\kj K j l (γO),...,γU)) Gj &eGj s=l I

n

This formula is valid because the A's in each term of ]~[ do not depend on clusters
7=1

n

in other terms. We observe that all the terms of Y\ are identical. Therefore we may

take the logarithm to obtain -7"1

logΩ(F,V) = Σ^Γ Σ Σ Π Λ(^) Π W), (3.3.7)
k Kl (γ l f...,γk) Gc JS?εGc s=l

where the subscript c on G serves to remind us that the graph is connected. There
are no connected graphs on zero clusters, so the k = 0 term vanishes.

The number of clusters in ¥ is finite, so the sums £ , ]Γ in the above
(Yι,.. ,Yk) G

discussion are all finite. The sums over kj are infinite in (3.3.6), but since they are
absolutely convergent sums (see below), there is no problem in deriving (3.3.6)
from (3.3.4).

To see where the volume growth in (3.3.7) comes from, observe that translating
all the Ifs in some term produces another legitimate term, provided the Vs do not
run across the boundary of ¥. Therefore, summing only over families of Y's such
that \J Ys contains some /-lattice square A should, up to surface effects, yield the

s

coefficient of volume growth of logί2(F,¥). Actually, we should divide each term

by because that is the number of times the term is counted when we sum
s

over zJg¥.
In the remainder of this section, we suppose that F(Y) is invariant under

translations of Y. This property holds for ρ(¥) because of its construction via a
sufficiently large A. The pressure associated to a translation invariant contour
model Fq is defined as follows:

1 k

— V V l l l ¥ ί ! ~ 1 V Γ Γ A(Ψ\Y\ Fq(Ύq} Π 3 8Ϊ== / / \\ I **• n / I I •ίlloZ' ) I I L \ J l o , / . \J.J.OIZ-ί/. i Z-< W s z_ί 1 1 v / i l v s/ ^ ^

Here, the clusters are not restricted to lie within a particular domain, as was the
case with (3.3.7). The pressure is independent of the square used to define it, by the
translation invariance of F. Note that s(Fqι) will in general be different from s(Fq2).
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Subtracting sOF4)!"^ from logΩ(F,¥) should leave a remainder growing as
Define

Δ(F, V)=logΩ(F, V) -

Σ
(Yι, . . . ,Yk) , ,

Vn (J Ys Φ 0 Φ ~ Vn (J YS

Σ Π Π F W (3 3-9)

The second line follows from (3.3.7) and (3.3.8). All the terms of (3.3.7) are
cancelled, leaving graphs containing squares of both ¥ and ~¥. These do not
appear in logΩ(F,V)9 but appear exactly ¥n (J ¥s times in s(Fq)\W\.

s

If V has several components ¥ , each with the same boundary condition, define

We now estimate the pressure and surface energy, using a lemma proven in
Sect. 4.4.

Lemma 3.3.1. Suppose λ<ζ 1 <ζl. If Fq is any q-contour model with \\Fq\\ ^ 1, then

Σ Σ Π
k

Π ^k\\\Fq\\e~Til(k+N)/4. (3.3.11)

There are two sources of convergence. The first is that ,4(Y1? Y2) = 0 unless Ύ1

overlaps ¥2. The second is the exponential decay of F(¥) with |¥| and with \ΣΎ\
[see Eq. (3.2.1)].

Proposition 3.3.2. Suppose
model with ||Fβ||^l. Then

l. Let Fq be a translation invariant q-contour

\s(F*)\£\\F*\\, (3.3.12)

where s(Fq) is defined in (3.3.8). Moreover, if ¥ is a domain with only q-boundary
conditions, then

with

\A(F,W)\^\\Fq\\ \dW\ (3.3.14)

and Λ(F,W) given by (3.3.10) and (3.3.9). Finally, if F\ and Fq

2 are two q-contour
models as above, then

\s(Fq)-s(Fq

2)\ ^ \\F\ -F\\\ (3.3.15)

and

\A(Fl,W)-A(Fq

2,V)\^ \\F\-Fl\\\dV\. (3.3.16)

Proof. By summing over fc^l and NΞ>2 in (3.3.8) and applying the lemma, we
obtain (3.3.12). Every graph in (3.3.9) must contain a square at the boundary of ¥.
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Applying Lemma 3.3.1 to each such square, and using
Y.

5g 1, we obtain

the bound |J(F,¥)|^ \\Fq\\ \dW\. Equation (3.3.14) follows by summing over the
components of ¥. To prove (3.3.15), interpolate between F± and F2 in the formula
for s(Fq). Let F?(¥) = ίF|(¥) + (l-ί)F«(¥). Then

\s(Fl)-s(Fl)\ =

?2J s

^ \\FI-F\ 'k\

1ΣU

Σ Π x& Π

Σ
s=l s = l

S Φ S

k

s=l

(3.3.17)

where F«(Y«) = e"τιI|γ2 |"τ2λ"2|ι;v-1. The sum over s is controlled by -i , and we

have used ||Ff|| ^1. Applying Lemma 3.3.1 as before, we obtain (3.3.15).
For (3.3.16), interpolate as above. The sum over squares A lining δ¥ yields the

factor |δ¥|, as in (3.3.14). The factor k from the sum over s is controlled by e~
τίlk/s,

taken out of (3.3.11). Π

3.4. Contour Models with Parameters : An Inductive Construction

In this section we introduce ensembles whose purpose is to describe the unstable
phases as well as the stable ones. The basic idea is as in [24]. Contour functionals
are multiplied by factors that grow exponentially with the volume of interiors of
clusters. The coefficient of volume growth can be thought of as the loss in energy
density (gain in probability) achieved by fluctuating into a stable phase. The result
is not a contour functional, but the new partition function can be crudely
dominated by the old one times an exponential factor. When we have managed to
express the partition function of our 0*(φ)2 model as a partition function for a
contour model with parameter, the crude bound will yield the ratio of partition
function estimate that this chapter is devoted to.

Carrying out the above plan in the context of quantum field theory produces
some problems. The most serious is the fact that ρ(¥) is not in general positive.
Therefore, multiplying terms of associated partition function sums by factors
greater than 1 does not necessarily increase the sums. There is, however, a form in
which the mean field expansion has positive terms. This is after the expansion in
spin configurations, but before the introduction of decoupling lines. Our strategy
will be to multiply terms of the expansion by volume-divergent factors when it is
the undecoupled form, and then use the decoupled form to make estimates that
depend on decoupling. In order to work things so that one can go back and forth
between the two forms at any time, we are forced to use a rather complicated
procedure. We must exploit at each stage the collapsing expansions that result
when terms are multiplied by ratios of partition functions. (In [24] a collapsing
expansion was obtained only after the iterations had converged.)
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We will work with contour functionals FL, where

(3.4.1)

and where certain growth conditions are imposed on L.

Definition. Let (5(Y) denote the largest dimension of Y, measuring distances in units
of I along the directions of the l-lattice. We call δ(Ύ) the diameter of Y. L, a real-
valued translation invariant function of clusters, is called a vacuum functional if

:α) (3A2)

and
^(Y)^^/|Y|. (3.4.3)

In d dimensions, we would use δ(Ίf)d+ί in place of (5(Y)3. We could also use the
norm of [24] which allows |L(Y)| to grow exponentially with |Y|. Our stronger
growth condition is possible because in the iteration of Sect. 3.6, errors accumulate
more slowly with δ(Y) than they do in [24].

The splitting of FL into ρ and eL avoids the problem of taking the logarithm of
ρ. Notice that eL(¥)canbe very small, but it cannot be very large, by (3.4.3). From
(2.5.11) we have that FL is a contour functional if L is a vacuum functional.

(3A4)

Given a contour functional FL, define for each q

aq(FL) = - s(Fi) - logZJβ + const, (3.4.5)

where the constant is adjusted so that

mfaq(FL) = Q. (3.4.6)

From (3.4.4), Proposition 3.3.2, and Proposition 2.5.2, we see that up to 0(λ112)
corrections, aq(FL)/l2 is the Wick ground state energy of the qih well of & relative to
the smallest such energy. Thus aq(FL) may be as large as O(λ~2l2).

Definition. The interior domain of Y, denotedΉntΎ, is defined as follows. Suppose Y
has external boundary condition q. Consider the closure of the union of all the
q-squares of Y (the ones with p(Δ 1 ) = q). Of its connected components, let Yext be the
one bordering on the outer boundary of Y. Call a boundary loop of Y inner if it is not
contained in Yext. Int Y is defined as the region bounded by the inner loops of Y, with
each component given the boundary condition associated to the loop bounding that
component. |Πnt Y| will denote the number of l-lattice squares in Int Y.

Define Yint = (YuIntY)\Yext. Γ¥int, the spin configuration associated with
Yint, is defined by extending Z"YnYint to Int Y so that the phase that exists on the
boundary of a component o/IntY persists in all of that component. See Fig. 3.4.1.

We define the partition function for a contour model with parameter in a
manner closely related to Eq. (3.2.2). If Y is a simple domain with boundary
condition q, then

Σ ΠW)^)|yV?Ί (3-4.7)
{¥«} s

Y| ς V, nonoverlapping
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Fig. 3.4.1. The construction of the regions Πnt Y, Yίnt, ¥ext associated to a cluster Y. Let Y consist of
regions 1, 2, 4, 5 with curved lines indicating the phase boundaries of Y. Then Yίnt is the union of
regions 1, 2, 3, 5 UntY is region 3 and Yext is region 4. Yint is decomposed into subregions {.Rf}ί= l f 2,3-
One labeling is as follows: Rί= region 1; R2 = regions 2,3; R3= region 5. With this labeling,
Πntjj. Y= 0 for i = 1,3 and ΠntΛ2 Y= region 3

aq(F -ΊV Y« ln

Except for the factors e L ls s ', this is the same as Ω(FL,V). More general
domains, with possibly different boundary conditions on different components ¥ί?

are handled by taking a product:

V.). (3.4.8)

α%FL), the coefficient of interior volume, will vary from component to component,
because q varies from component to component.

Starting from a vacuum functional L, we construct a new vacuum functional
^(L) by successively making changes in L(Y) for Ys with larger and larger
diameters. The vacuum functional that results when changes have been made
through d(Y) = n will be denoted Ln. We then define

(3.4.9)

where n is any integer greater than or equal to c)(Y).
LΠ(Y) is defined to be zero if Y is a cluster without phase boundaries with

δ(Ύ)<.n. If n^2L/l9 the only other possibility is δ(Y)>n, in which case LK(Y)
= L(Y); This begins an inductive construction.

Given L1? ...,Ln, we construct Ln+1. Define Fk = FLk for k^n. Suppose Yhas
external boundary condition q. If <5(Ϋ)Φn+l, LΠ+1(Y) = LΠ(Y). For (5(Y) = rc+l,
we proceed as follows. Let {R^ be the connected regions of constant phase in Y1111.
Squares are considered connected if they abut on an edge or on a corner. See
Fig. 3.4.1. Let Intβ.Y denote the components ofϋntYthat are contained in Rt. Let
Πnt|.Ϋ be the domain obtained by placing ^-boundary conditions on every
component of Int^.Y. Let ^ = [(5(1̂ )] be the integer part of the diameter of R{.
Then we define

I U"f h llnt_ \Yl I

(3.4.10)

where A(Rt) is defined as follows.
#2 is said to surround R1 if every smooth path from R{ to infinity intersects R2

in a curve of positive length. #2 is called the closest region surrounding Rl if every
other region from {R.} that surrounds R1 surrounds R2 also. Denote by HR^) the
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volume (in units of/ 2 ) of the union of Rt with all the regions surrounded by Rt. Let
p(Rt) denote the phase of JR£ and let m(Rί) denote the phase of the closest region
surrounding Rt. If no regions surround Ri9 then m(Ri) = q, the phase of Yext which
surrounds all the regions.

If Rt is not surrounded by any other R, then

Γ 7 1

(3.4.11)

Otherwise, let Ri2(R.) be the closest region surrounding .R .̂ Then

(3.4.12)

This completes the inductive construction.
Notice that the construction of Ln+ x used F19 . . . , Fn9 not just Fn. The reason is

so that when we assemble a set of clusters with their factors eL, the am(Rί\Fn)
coefficients associated with various regions will depend only on Σ9 and not on Γ.
This will permit us to resum the decoupling expansion, leaving only an expansion
in phase boundaries where all terms are positive.

To prove that the construction does not produce LM's that are not vacuum
functionals, and to obtain useful properties of the Ω's, we state a proposition and
carry it along as an inductive hypothesis.

Proposition 3.4.1. Suppose λ<ζl<ζl. Let L be any vacuum functional, and for any n
let Lί,L2,...,Ln be constructed from L as described above. Then Ll9 ...,Ln are
vacuum functionals, and \\\Lk\\\^\\\L\\\ + 0(λ~2l2) for ί^k^n.

Suppose Y is a simple domain with diameter <5(V) and boundary condition q. A
representation for Ωq(Fj,W) may be obtained for j^n as follows. For any spin
configuration in ¥ define regions Rt as in the construction given above. Define ni9

p(Ri), m(Rt)9 and i2(Ri) as above. If Ri2(Ri) does not exist, then set ni2(R.} =j. If <5(¥)
then

(3.4.13)
Σnv 1 1 Z

compatible with V A c v

The ordinary contour model partition function Ώ(F p ¥) is given by the same formula
except that for i such that -Rίa(Λί) does not exist, the corresponding term in Y[ has

am(Rί\FΛi2(RJ replaced by zero. By the nonnegativity of ZΣ, we have l

¥) ̂  Ω(Fp V)ea9(F^ . (3.4. 14)

Proof. To avoid confusion, we suggest setting E™ = E™ and Z J W=1 for a first
reading. We proceed by induction on n. For small n, Ln(¥) = L(¥) or zero, and the
bound on \\\Lk\\\ is trivial. There can be no phase boundaries in ¥, so HntY= Yint

= ̂  = 0 for all Y£¥. Therefore, Ωa(F p ¥) = Ω(Fp ¥) = Ω(ρ, ¥). The decoupling
Z _ (¥)

expansion for ^q is exactly Ω(ρ,¥), so (3.4.13) follows.
1 1 Zj*
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To prove the proposition at stage n, suppose it holds for n<n. We need the
following bounds on LW(X), for δ(\) = n:

¥|. (3.4.15)

Suppose Y has external boundary condition q. Visualize the accumulation of
terms in £ A(Rt) as follows: For each i, A(Rt) associates terms ± am(Ri\F)/l2 and

— to every unit square contained in, or surrounded by, Rt. Many of the
1 ZΔP(Rί)

1

T2± — logZA terms cancel. If Rl surrounds or contains a unit square and R2 is the
1' 1
-^-logZ.p^) cancels with —-
r r

closest region surrounding R19 then ^-logZJjp(jR2) cancels with - —logZJm(R.).

The only uncancelled terms are -ylogZ^R^) and —^-logZ.q, the latter
I ~ r

coming from the region with no R{ surrounding it.

The terms ± am(Rί\F)/l2 in (3.4.12) would cancel if Fn. were the same as Fn.2(R).
Keep track of them as follows. For each unit square A1 of Yint, let Riί(Ai) be trie
region containing A1, and let Ri2(Aί),Ri2(Aί), ...,Riω(A1) be the successive regions
surrounding A1 such that each one is the closest region surrounding the last. Since
iΛ(Δ^) is independent of A1 as long as A1 is chosen from a fixed region, we can
define more generally 1Ά{X) = ίJ(Al £X) ίorX a subset of some 1̂ . This agrees with
our definition of /2(^i) above. Riί(Ai), •• »^iω_1(ji) contribute differences of tfs and
Ri(o(Ai) contributes only —aq(Fn. (Δ1))/12 We have derived the following equation:

ύ=- Σ Σ (am(R^\Fnί +ιul))

(3.4.16)

Consider first the terms zl^Y^nY. The difference of α's is small because
Fn. differs from Fn. only on clusters with diameter larger than nt . Thus for

eveVyphasep, " i^j-^y^i^-^ii

^g-tικ»,.+ D^ι/2 φ (3.4.17)

We have used Proposition 3.3.2 and the fact that ρ has extra exponential decay
[see (2.5.11)] so that the possible growth from eL and the large factor in the norm
can be dominated and a factor e~

τίl(nia+1) remains. Using the definition of am

(3.4.5)-(3.4.6), we obtain

! )\-ζ2λί/2e~τιl(ni«(Δί)}

Therefore,

,-C -̂l
α = l

(3.4.19)
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We are using the fact that Fn.χ and Fni<χ+ι differ only on large clusters for large α.
Hence the corresponding change in a is small.

The terms -α^ + logZ^-logZ^ are handled by noting that

α* - ap = s(Fp) - s(F9 + logZΔP - logZΔq , (3.4.20)

so that
) - s(Fp)

. (3.4.21)

Hence the contribution to L from A1 Q Y is bounded by 0(Λ1/2)|Y].
Next consider zl1 £¥, where ¥ is a simple domain of UntΎ. We bound

α = l

as before, but noting that niK(Ai)^o(W), which greatly reduces (3.4.17). Equation
(3.4.19) becomes

ω(Al)-ί

Σ (am(RiβtiΔiy)(p \
\ \ "i«+ι(Δί)'

τιίW. (3.4.22)
α = l

Summing over zl^V and over VgllntY yields a bound 0(/11/2)|¥| for the
contribution of these terms, since the number of components of IntY is less than
|¥|.

Up till now we have been bounding the effects due to making the α-factors
depend only on spin configurations. We next attend to the contribution from the
ratio of partition functions, which is physically the interesting term. Consider each
simple domain ¥ of Unt Y separately. Note that ΰ = wίl(v) < n because δ(Ril(v)) ^ <5(¥)
-2L. Thus we can apply an induction hypothesis from Proposition 3.4.1 :

(F,, v) ^ (3.4.23)

Here p(¥) is the phase of ¥, and we have used Proposition 3.3.2. In addition,

(3.4.24)

where Wq is ¥ with boundary condition changed to q. We can now bound the
remaining contributions to Ln from ¥ as follows :

- s(Fϊ) - a«(Fnί^) + log ZΔPW - logZ,,)

= Δ(F-n, V) - A(F-n,

|e-
 τ'ίί(V)

(3.4.25)
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Using the definition of the α's, we see that all of the volume factors would have
cancelled exactly, except for the difference between aq(F^ and fl%F,,ie(V)). This
difference is bounded as in (3.4.18). What remains is a surface effect. This near-
cancellation of volume effects is simply the result of a judicious choice of volume
terms in L. Summing over YglintY, and using the other results above, we obtain
the bound Ln(Ύ)^0(λ1/2)\Ύ\.

We proceed to the lower bound on LM(Y). Except for (3.4.25) and (3.4.21), all of
the above bounds are bounds on absolute values and can be used for the lower
bound. From (3.4.14), we have

Ωa(FfrW) ^Σ = qW

l)\\\. (3.4.26)

In the last step we have used the decoupling expansion to show that

Σ
{Yf } : Iγ«= 0 , nonoverlapping s

(3.4.27)

where F0(Y) = ρ(Y) if ' ΣΎ = 0 and F(Y) = 0 otherwise. Since ||F0||
Proposition 3.3.2 yields (3.4.26).

The other terms -αβ(FBiβ(V))+logZdP(V)- logZ^ occurring in (3.4.25) and
(3.4.21) are bounded below by 0(λ~2l2). Altogether we have

^-0(/T2/2)(5(Y)2. (3.4.28)

Thus |||Ln(¥)|||^0(A-2/2) + |||L|||. We include |||L||| in this estimate because of

contributions to Ln from Ys with <5(Y) > n. The need for the 3 factor in the
definition of |||L||| will not appear until later in this chapter. ^ '

We now prove (3.4.13) and the analogous statement for Ω(FJ9W). The proof is
the core of our construction. Four basic steps are involved. The expansion for
Ωα(Fj, ¥) is collapsed, and the induction hypothesis is applied for EntY with Yg V.
Then after a complicated matching and cancellation of volume factors, the
decoupling expansion is resummed to complete the proof. The first step relies on
our technique of modifying L one diameter at a time. The matching and
cancellations are possible because we have anticipated in L and in (3.4.13) the
structure of the terms that arise. The resummation is possible because the volume
terms depend only on Σ (not on Γ).

We can assume δ(V) ^j = n because the other cases are covered by the inductive
hypothesis. Given {Yf}, a set of nonoverlapping clusters in ¥, define the outer
clusters to be the ones not contained in Int Yf for any Yf in the set. In (3.4.7) we
separate the outer clusters from the rest and sum over the rest first. This sum
factors into separate sums over each component of (J IntYf. In each

¥« outer

component, the sum is an unconstrained partition function sum as in (3.2.2).
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can be determined from the outer clusters only. Thus we have

{W*} outer s
Yf ζ V, nonoverlapping

(3.4.29)

We have changed the boundary conditions of IntYf to q in ^(F^lInt^Yf) because
all clusters must have external boundary condition q.

Divide Ln(Y) into three parts [for

= L«(Y) + Lί(V) + L?(Y) . (3.4.30)

L£ contains all the α-terms in (3.4.11) and (3.4.12); L^ contains the logZ^ terms;
and Lζ is the \ogΩa/Ω term in (3.4.10). The partition functions in (3.4.29) cancel
with the ones in eL"(¥) because Fn differs from Fn{ |(V) only on clusters that do not
contribute to Ω(Fn,W

q). This cancellation is the signature of a collapsing
expansion. Here Wis a component of UntYf. We obtain

WgΠntVf

> j-[

WgίntYf

π el - α

InW 1 1

(~

Π z..
«υJntV|

Π f Σ ZΓ(W)Πe["am(R')(F"i)+Λm<R)(F" '<I"))1K(Λί)]. (3.4.31)

We have applied the inductive hypothesis (3.4.13) to V, which must have diameter
less than n. In the last step, we have used our previous analysis of I^(Yf) : It is a

sum over A1 £Yfnt of 4log%^. For Δ1 £Yf, ZAP{*} cancels the l/ZAP{*} factor
/ -^jq

in ρ(Y?). For zl^IntYf, it cancels the 1/ZΔPW in (3.4.31). The end result is that
ρ(Yf ) is changed to ρ(Y?) with the inclusion of some energy factors and the Z /s are
as in the last line of (3.4.31). Recall from Proposition 3.4.1 that ni2(R.} = nίί(^ if Rt

has no region surrounding it.
Combine (3.4.29) with (3.4.31). Each term in the sum

Σ ΠίΣ
{̂ |} outer W [ΣnW

determines a spin configuration Σv in all of Y. We fix Σv and sum over all {Yf }
compatible with Σ^. Compatibility here means that the Yf s do not overlap, that
they agree with Σv, and that no Yf is contained in any IntYf,. After some shuffling
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of energy factors, the result is

IV {Vf} outer
compatible with ΣV

•Π Π Π

JW)Π<
_ V ΓΊgC Π

{¥«} outer s
compatible with Σv

Π Π . (3.4.32)

We have combined all the ea factors^into a simple form that depends only on the
regions Rt associated with Σv. For a region Rt in some W such that R 2(R .} does not
exist in W, we have

= m(Rύ (F )v m2(Ri)"

where for the second equality z2(^i) and m(Ri) are defined in terms of the regions
associated with Σv. For regions RI such that Ri2(Ri) does not exist in V, the
am(Ri\Fn.2(R)) is defined to be aq(Fn) and such terms arise from the overall

I factor. [This would be absent if we were dealing with Ω(Fn, V) instead

of ί2%Fπ,V).] For all the other regions, the last step is a straightforward
transcription of terms from the previous step [from Lffll) or from W-terms].

Equation (3.4.13) now follows from the following string of identities:

ΣΠE ]-
{¥«} s

•Π

Δ ς V

Σ

l l ^ Δ i {V|} outer
Δ ς v compatible with £v

Π
wςπntYg

Π 71 1 ^Mβ {¥«} outer
zl ς v compatible with Σ v

Π

rJ nonoverlapping, |¥Γs| ̂  1 rs

Σyr =Σyn Ύrs , filling ttnt ¥|

{¥ } nonoverlapping, I Ys|^
2Vβ = ίyπ Ys, filling V

ρ(A«)

(3.4.33)
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The first step uses the identity ZAq = e(E9c~E™)l2ρ(Aq) to rearrange energy factors.
The second and last steps are simply the cluster expansion performed at fixed Σ
[see (2.4.18) and (2.4.21)]. Note that Ύfg and Ys need not have ^-boundary
conditions, and they may be single /-squares. The third step follows because the
inner sums and the presence of the ρ(Jβ)'s outside relieve the constraint that {Yf }
be a set of outer ^-clusters, yielding an overall summation over {YJ as above.

The analog of (3.4.13) for Ω(Fn,V) follows exactly as above, with the only
«9(^'n)|U'Viint|change being the absence of the factor e ' s s '. This leads to the modification

in (3.4.13) stated in Proposition 3.4.1. Equation (3.4.14) follows immediately. This
completes the proof of Proposition 3.4.1. D

3.5. An Equation That Yields the Ratio of Partition Function Estimate

In the last section we defined a transformation L\-*Jf(L) of vacuum functional.
We now explore the consequences of having a fixed point for this transformation,
that is, a vacuum functional L that solves the equation

L = Jf(L). (3.5.1)

If L solves (3.5.1), then L1?L2, ... must all be equal to L, because of the way
Λ%L) was constructed. Thus FLn = FL for all n and the terms -am(Ri\Fn)
+ am(Ri\Fn. ( J R )) in (3.4.13) exactly cancel. Therefore, Proposition 3.4.1 implies that

. ,,,2,

where ¥ has boundary condition q. Place a subscript 0 on letters denoting phases q
such that aq(FL) = 0, for example q0. There must be at least one such phase because
of the condition inf α%FL) = 0. These phases will turn out to be the thermodynami-

cally stable ones. If ¥ has boundary condition g0, then there is no difference
between Ωa(FL, ¥) and Ω(FL, ¥) because the elimination of the term αm(Λl)(FΠMΛι)) in
(3.4.13) has no effect. Therefore,

q° . (3.5.3)

Theorem 3.5.1. Suppose L = ,Λr(L) and λ < ζ l < ζ l . Let ¥ be a simple domain with
boundary condition q, and let Y90 be the same domain but with some stable boundary
condition (aqo(FL) = Q) replacing q. Then

7Y\ιΛ
zw.gβ«

l"l«1. (3.5.4)

Proof. From (3.5.2) and (3.5.3) we have

Z(V)



298 J. Z. Imbrie

where (3.4.14) has been applied from Proposition 3.4.1. Using the estimates of
Proposition 3.3.2, we obtain

^ (α%FL) + s(Fί) - s(Ff) + logZ,g - logZ,J|V|

(3.5.6)

The terms proportional to |¥| cancel exactly, by the definition of the aφs. This
completes the proof. D

Theorem 3.5.1 will be of crucial importance in Chap. 4, where an expansion is
given for the Schwinger functions in the stable phases.

3.6. Solving L = Λ^(L) by Iteration

Starting with L = 0, we produce a sequence 0, ̂ Γ(O), ̂ (̂ (0)), ... and show that
the sequence converges in the norm ||| |||. The limiting vacuum functional will
satisfy L = JV(L). Convergence is very rapid, with each iteration making a change a
factor e~T2λ'2 smaller than the previous change. This is due to the fact that LΞ=O
except for Ifs with some phase boundaries. Proving convergence involves
obtaining Lipschitz conditions on various aspects of the construction of Jf(V).

Lemma 3.6.1. Suppose λ<ζl <ζl. Let L and L' be two vacuum functionals such that
L(Ύ) = L'(Ύ) on Ws with no phase boundaries. For each q, the following bound holds:

\\FL-FL,\\^e-^λ~2\\\L-L'\\\. (3.6.1)

Proof. By definition, F[(Y) - ρ(Y)eL(¥). By Proposition 3.3.2, the lemma follows
from the bound

eLm-ρ(Y)eL'm\^e~*τ2λ~2\\\L-L'\\\. (3.6.2)
v

Let Z/(Y)=(1 - t)L(¥) + ίL'(¥). Then

Γ*'

1/|¥|. (3.6.3)

The bound (3.6.2) follows because e~τίl^δ(^ ^ 1 so that the decay of ρ(¥) (2.5.11)
dominates both the diverging factors of (3.6.3) and the growth from the definition
of || || . The fact that Lή=L' only on clusters with phase boundaries insures the
presence of the factor e~4τ2λ~2 from |ρ(50|, since the minimum length of phase
boundary is 4. , D

Let \μ1—μ2\ denote sup \μ\ —μ?2\

Lemma 3.6.2. Suppose λ<ξl<ζl. Then for L a vacuum functional,

^l (3.6.4)
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Proof. We need the bound
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(3.6.5)

Apply Proposition 2.5.5 to ρ^W and to

to obtain

QΛ

|ρOOlΣΠO,

(3 Λ

Since eL ̂  etlZ|γ|, (3.6.5) follows. D

Lemmas 3.6.1 and 3.6.2 imply that

11*;̂  - JW ^ iiίΊ. L, --p^Lji + \\FμιL2-pμ2L2\\
ue-^^\\\L, -L2\\\ + A1/2K -μ2\

Proposition 3.3.2 then yields the bound

(3.6.7)

μ2\. (3.6.8)

Proposition 3.6.3. Suppose λ<ξί<ξl Let Ln be constructed from L,LV ...,Ln_l at
the parameter set μ1 as in an elementary step of the construction of J/\L). Let L'n be
constructed from L',L\, ...,L'n_ t at parameter set μ2. Write \\\δL\\\ for

™x{\\\L-L'\\ί\\\L1-L'1\\\,...,\\\Ln_ι-L'n_1\\\},

and assume all vacuum functionals vanish on clusters with no phase boundaries. Then

\μί-μ2\. (3.6.9)

Proof. We have from (3.4.10) that

A.OO = Σ W) + logί2«(Fni,ΠntRj(¥)) - logΩ(FΠ(,ΠntKi(¥))] . (3.6.10)

Consider the logΩ(α) terms first, and use (3.4.13):

. (3.6.11)
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Here μt = (1 - i + tμ2 and

α* = (1 - t)^R'\Fn) + tam(Ri\F'n)

This may be estimated as

sup\
ί

where

The first two terms are bounded uniformly in Σ by 2rkλ~2l2

Proposition 2.5.6. Equation (3.6.8) produces the bound

K-α*| + |α**-*ΓI

Here, Propositions 2.5.5 and 2.5.2 bound the derivative of

J. Z. Imbrie

i) ' (3.6.13)

ί-μ2l by

(3.6.15)

by λί/2eaλl2

9 and similarly for q. The derivative of 12(E«-E1) is 0(λ'2l2\ by
condition (v), Sect. 2.1. The derivative of

c w 8π m|

is 0(1), by conditions (vi), (vii), and (iii).
Hence,

8π

+ sup - !̂). (3.6.16)

The supremum is bounded by /3(5(Y)3 because each unit square is counted no more
than lδ(V) times in ^ and there are no more than /2<5(¥)2 squares to consider.
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Thus (3.6.16) is bounded by

The same bound applies to the terms logΩ(FΠί,ΠntΛ.(¥)).
Consider next the terms

A(Rt) = [ - α* + (α**) + logZ^(Λ|) - logZ^*,,] V(Ri) . (3.6. 17)

(The α**-term may be absent.) The change in α*, α**, or \og(ZAP/ZAm) going from

μ1?L to μ2>^' is bounded as before. Thus the change in £^4(1 )̂ is bounded by

This completes the proof of Proposition 3.6.3. D

Theorem 3.6.4. Suppose λ <^ 1 <ζ I. The equation L = Λ^(L) has a solution in the space
of vacuum functional^ that vanish on clusters with no phase boundaries. Let Lμ

denote the solution obtained by successive iteration of L = 0 at the parameter set μ.

Tken \\\Lμι-LJ\^0(λ-2l5)\μι-μ2\. (3.6.18)

Proof. We verify the bound

(3.6.19)

where Λ^Λ^ are the mappings corresponding to parameter sets μl9μ2. We
assume L,L' vanish on clusters with no phase boundaries - this property is
preserved by the mappings. Proposition 3.6.3 contains the required bound on the
difference between ^(L)^n) = Ln(^n] and Λ^U/XYJ = L'n(Ύn) as long as
l l lLfc-Li l l l^ l l lL-L'IH for all fcgn-1. Assume by induction that |||Lk-Zi|||
^|||L — L'HI for all k^n — 2. (For small n this is trivial because then Lk = L and
Li = L'.) Then

sup

£\\\L-L'\\\. (3.6.20)

The second term in the supremum is bounded by Proposition 3.6.3, using the
induction hypothesis. This proves (3.6.19).

Proposition 3.4.1 implies that |||̂ (0)||| ̂ 0(λ~2l2). Therefore, the Lipschitz
condition (3.6.19) implies that the mappings ^KUα have fixed points Lμ<χ satisfying
the bound (3.6.18). This completes the proof. D

3.7. The Phase Diagram

This section is devoted to analyzing the phase diagram of our model. We expect to

find hypersurfaces of codimension k — 1 in parameter space on which aq = 0 for
\k]

kq's. On such hypersurfaces, we will be able to construct k distinct states. The
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diagram is constructed by showing that the mapping μ-^ai(FL ),..., ar(FL ) can be
inverted and is in fact Lipschitz continuous in both directions. (The image of the
map is a neighborhood of the origin in the boundary of the positive octant in IR1*.)

To invert the map μ-+{aq}, choose αj, ...,ar

Q with infα§ = 0 and such that

{(#0"ao)/l2}q*q is in the neighborhood of the origin spanned by {eq(μ)}qή:q for
\μ\ ̂  C~ Y2. We wish to find a parameter set μ such that aq(FLμ) - aq(FLμ) = aq

Q- d\.
Rewrite this equation as

where

zq(μ) = Γ \ - \ogZΔq(μ) + logZ,,(μ) - s(Fl) + s(Fq

Lt))-Eq

w + Eq

w

e« =E

q -Eq =eq- ̂ log^ + ml'ml
^w ^w ^w V Q ιυ& 2 ^ 0on m- on

Lemma 3.7.1. Suppose λ<ζl<ζl. Then

|z«(μι)-zί(μ2)l^2A1/2|μ1-μ2|. (3.7.3)

Proof. Equation (3.6.8) and Theorem 3.6.4 imply that

μ2\. (3.7.4)

Propositions 2.5.5 and 2.5.2 bound the change in

by Γ2λ1/2eaλl2^λί/2

9 and similarly for q. This completes the proof. D

Theorem 3.7.2. Suppose λ<ζl<ζl. Let a\ satisfy infαg = 0 and suppose (aqQ~a\)/l2

lies in the neighborhood of the origin spanned by eq(μ) for \μ\^C~1/2. Suppose
further that £^(μ0) — £|(μ0)

 = (αo ~~ αo)/'2 Then there exists a parameter set μa such
that aq(FLμ) = aq

0. Moreover, \μa-μ0\^0(λ5/2) and

\μaι ~ μa2\ ̂  0(λ2Γ 2) sup \a\ -aq

2\, (3.7.5)

\aq(FLμ) - aq(FLJ ^ 0(λ~ 2l2}\μ, - μ2| . (3.7.6)

Proof. Define

The matrix index q does not take the value q. By condition (v), Sect. 2.1, the
deq

eigenvalues of ̂ 2 ̂ -7 are in some interval [C"1, C]. The //-derivatives of the other

terms in (3.7.7) are 0(1), so λ2Dqi(μ) has the same property, for λ small enough. Let
D:q

ίDqj = δij. Then the matrix D is 0(λ~2) and D"1 is 0(λ2).
Given some μ, define 7μ, the next approximation to the coexistence point, by

' = μ< - DΓ \μ)(zq(μ) + eq

w(μ) - (fl§ - 4)//2) . (3.7.8)
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Convergence of this iteration depends on a Lipschitz condition. Let
μ\ = (l-ί)μί + t/4 Then

i(7j£2)'-(ϊϊ*ι)'i= Ulw-v

^ sup

-(αδ-4)/ί2)]

i , ί --ι.

+ sup (3.7.9)

The term — μ\ canceled with Diq

1(μt) — e^(μt). All three terms in the last line have

one more D"1 than D, yielding a factor O(λ2). Condition (vi) bounds second

derivatives of eq(μ,λ=l) and m2(μ\ so that —^Dmj^ 0(1)1 ~2.

Suppose that l^— μ0|, |μ2 — μ0| are 0(A5/ ). Then
5^O(Λ1/2) and the first term is less than O(λ5/2)\μ1— μ2|, as is the second. Since
s(Fq

LJ and Γ2log(ZAq(μ2)el2E™) are 0(A1/2), we have \zq(μ2)\^0(λ1/2) and thus

Start the iteration at μ = μ0 (We can always find μ0 by the implicit function
theorem.) Then

Applying (3.7.10), we see that successive iterations never leave the range
μ = μ0 + 0(λ512). The Lipschitz condition now implies the existence of a fixed point
μa such that Γμα = μαand |μα-μ0|^0(A5/2). This in turn implies that zq(μ) + eq

w(μ)
= (aq-aq

0)/l2, and therefore aq(FLJ = aq

0.
It is clear from (3.7.8) that

2 2 )sup|αj-α||, (3.7.11)

which implies the corresponding bound on the solutions, (3.7.5). The bound (3.7.6)
follows from (3.6.8) and Theorem 3.6.4, as in the proof of Lemma 3.7.1. This
completes the proof. D

Theorem 3.5.1 now yields the bound

(3.7.12)

whenever μ = μα with αg° = 0.
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