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Department of Mathematics, Moscow State University, Moscow V-234, USSR

Abstract. Clustering operators, when restricted to k-particle invariant sub-
spaces, are shown still to cluster.

1. Introduction. The Formulation of the Main Theorem and the Plan of its Proof

This work is the continuation of [1], where the theorem was announced that for the
clustering operator with sufficiently small values of the clustering parameter (see
below), a) there exist invariant “k-particle” subspaces, and b) the restrictions of the
clustering operator upon these subspaces are unitarily equivalent to some clustering
operators. In [1] part a) of this theorem was proved. Here we prove part b)
constructing this unitary equivalence explicitly. For the reader’s convenience this
work is almost self contained.

We consider the Hilbert space 1, (C,.) of functions f(T'), TeC,. where C . is the
family of all finite subsets (including the empty set) of Z*, v = 1. The operator 4 in
1,(Cg), defined as

AN = Y arrf(T) TeCy (1.0

T'eCypy
and commuting with unitary group {U,,t€Z"} of translations in /,(C):
UNT)=fT-1), TeCy,, teZ’, 1.2
T—t={x;—t,i=12..,|T)},if T={x;,i=1,2,...|T|}and x,€ Z*, i=1,2...,|T|,
is called clustering if its matrix elements ar ;. satisfy the cluster expansion

arr= Y (Ty,e..Tp). 1.3)

Let Yo={0} xZ'cZ"*' be a zero-time slice of Z'*!' and Y,={1}
XZ'cZ'*!. Let ny: Z°—> Y, and n,: Z°— Y, be identity maps. We define 7; to
be a pair (7;,T;) of subsets of Z*. We shall often identify t; with the subset
no(TY)umn, (T}) of Yo uY,. The summation in (1.3) is over all partitions (t,,...,T;)
of ng(Tyun, (T =(T,T").
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It is assumed that w, are symmetric functions satisfying the following
conditions:

0) ©,@,0)=0 1.4
and if either T; =0 or T; =0 for some i then
0 (15,70 =0, k=1,2,.... 1.5)
1) For any 7,,..., 7, and any s,,8,,..., Sx€Z"
wk(11+sl,...,‘ck+ Sk)=0)k('tl,...,‘ck). (1.6)

where for t=(7,T")

T+ s=T+s5T'+5s), se€Z’.
If for some 4, j, (z;+ 5;) N (t;+ ;) * @ then (1.6) is the unambiguous definition of w,
in such cases. So w,(ty,...,7,) if defined for all 7,,...,7,

2) There exists ff, 0 <f <1 (clustering parameter), M > 0 and translation
invariant integer-valued metrics ¢ on Z**! such that for any k, 1,,..., 74,

k
log(ty, ., ) | S M T B, 1.7
i=1

where d, is the minimum length of the tree connecting points of 1< Y, uY,; and the
lengths of edges of this tree are measured in the metrics .

It was proved in [3] that the transfer-matrix of the Ising model for high-
temperatures ' is the clustering operator if we take

v+1

ot )= '21 [0 — 19, tj=(t§1):-~~9t§‘v+1)), j=12. 1.8)

13

We shall consider mainly the metrics (1.8) for the sake of simplicity.
Let us define subspaces: n=0,1,2, ...,

"= {f:f(D) =0, |T|+n}ch(Cy)

=@L, ve{0,l,..}=[0,).

neV

Operators A4 acting in L” will often be considered to be defined in all /,(C,.) in the
following way

Af=0 for feLbo\7,

Let the selfadjoint clustering operator 4 be given; we define the selfadjoint
operator B with matrix elements

0,|T|+[T"|

bT,T' = Zwk(({t1}9{t:{, })> (REE] ({tk}> {tl/k })) (19)
if T={t,....t,4<Y, T'={t},....t5:} <Y,
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L . 1...k

and summation is over all permutations i g such that g(¢,¢;)=1 for
1 Y k

=1,...,k. Then B is called the main part (main symbol) of A. The operator 4 is

called regular if there exist constants C >0 and L > 0 such that

B> B,, (1.10)

where B, = By(C,L) is diagonal and its matrix elements
by =L(CP)Y" 6. (1.11)

Remark. In the metrics (1.8) Bitself is diagonal and its matrix elements are equal to

by = orr o ({11}, {11}), oo ({ths {tk})) (1.12)
So here regularity means that
ou(({t:}, {11, ... (&, {8)) > L(CB)Y"-. (1.13)

The main result of [1] is

Theorem 1.1. Let A = (M, B, 9, L, C) be the class of selfadjoint regular clustering
operators satisfying (1.7) and (1.11). Then for any integer N=1 there exists
Bo=Bo(N,M,L,0,C), such that for all B < B, any operator A€W has N + 2 mutually
orthogonal invariant subspaces H,=L° H,,..., Xy, #y=1,(Cp). They are
invariant also with respect to translations {U,, teZ"). The spectrum o(A| x) of the
restriction of A onto 3, satisfies the following conditions

o(Al) S K, B% K B, k=1.2,...,N,

o(dlw) S[- K ¥, K Y, (1.14)

where K; > K, >0, K; = K,(N,L,M,C,9) i=1,2 do not depend on f. Of course

o(A|)={0}.
Here we prove the following.

Theorem 1.2. Assuming conditions of Theorem 1.1, let A®, U® be restrictions of A
and U, onto #,,k=1,...,N. Then there exist unitaries:

Vy: #,—-L k=1,...,N, 1.15)
such that
ViUPV =U, |y, (1.16)

and moreover V, APV 1 in L* is clustering.

Let us recall the construction of invariant subspaces . For this, first the
increasing sequence of invariant subspaces

Hy=Loc L cl,c...cLyclL,(Cp) 1.17)
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is constructed and then we put

H=%,0%,,
H,=L,0%,,
(1.18)
‘#N =ZyOZN1,
Hy=1,(Cz)O Zy.
To construct (1.17) we put, for k>0
Lsk=[10K and L>k=[LL-k+Lw)
Then
1,(Cyp) = LsF@ Lk
and A has a block structure
K 40
= el 19

where A{) =P «AP,« and so on. Here P, is the orthogonal projection onto
Qc,(Cy). We shall look for &, ; |Sk <N as a graph

Zi={p+8%, elL=} (1.20)

of some mapping S®

(We recall that we consider S® defined on /,(C;.), and we define it to be 0 on
L=k ) Invariance of &, with respect to 4 is equivalent then to the following equation
with respect to

S0 = ABALD T+ AYSOAY T - SOAYSOU)TL @2

It was proved in [1] that for small 8 (1.21) has the unique solution S® with ||S® ||
sufficiently small. In Sect. 3 we prove

Lemma 1.3. For sufficiently small B, i.e. for p<fo=Bo(N,L,M,0,C), all S®,
k=1,..., N, are the clustering operators with clustering parameter B*, 1> 0.

Let us sketch the proof of the main theorem. One can find details in the next
sections. We must find in 3£, k=1,2,..., N, the orthonormal basis

{hg‘)’ TGCZ"’ ITI =k}a
such that for each zeZ* and T,
UPHY =h,, (1.22)
and matrix elements of 4® in this basis
(A9, hP) = aff.

admit the cluster expansion with some clustering parameter

B=B®B), -0 if p-0.
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Whe shall look for {A{} as
B = Ve, (1.23)
where e;(T") = ;1 and operator ¥® is such that:
1) KerV® =1,(Cp)© L¥, ImV® = #,,
2) V®: Lk #, is unitary,
3) YO =P+ T®, (1.24)

where I'® is clustering with its norm sufficiently small. It follows from (1.23) and
(1.24) that

= (VO AVOY 1 = ap g+ (T A+ (AT O+ (TV)* AT Oy .
(1.25)
Here (B)r,r- are the matrix elements of B in the basis {e;,TeCy}. We prove in
the following sections that the product of clustering operators is the clustering
operator again, and so (I'®)*4,AT® (IF'®)*AT'® are clustering.

From this and from (1.25) it follows that matrix elements 4%} obey the cluster

' expansion. The equality (1.16) follows from (1.22). So we must construct ¥'® with
all these properties. First we construct ® with all these properties except unitarity.

Lemma 1.4. The operator
V® =(E—Pg,_)(E+S®)PLo 1.2)

has the properties 1) and 3) of V®.

See the proof in Sect. 3.
Let us consider the system

(AP =V%er, |T|=k}.
This system is complete in 5, and its fundamental matrix is equal to

CH = RP,BP) = (VO PO, |T|=|T"|=k. (1.27)
Let us note that
D® = (POy* P

is selfadjoint positive and KerD® =1,(C,)© L*. InD® = L*.
Lemma 1.5. The operator (D™)~'/2 is defined in L* and
(D¥) ™12 = P+ 4®, (1.28)

where A is selfadjoint clustering operator in L* [i.e. ImA® = L* Kerd4®
=1,(Cz)© L*]. See the proof in Sect. 3.

It is evident that ¥'® = P®(D®)~1|2 maps unitarily L* onto #,. Moreover
V® = (Pp+ F®)(Pp+ A®)=Pp+ FPPp+ Ppd®+ FPA® =P+ T®, (1.29)

where
IT®=r®p, 4 paA®4 F® 40

Now the following Lemma 1.6 completes the proof of the Theorem 1.2.
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Lemma 1.6. The operator I'® is clustering.

See the proof in Sect. 3.

2. The Algebra of Clustering Operators
Let Ag,...,A4,-, be clustering operators and let their cluster functions
wi(t,,...,1,), i=0,...,k — 1 satisfy the following bounds

lofi (e, t) | S M T B (2.1)
ji=1

Let us put
Y ={} x2’<c2’*'T'=nT, T<Z’,
and =, is the identity map n;: Z*— Y.

Theorem 2.1. Let (2.1) hold. Then the operator B= A, _,...A, A, is clustering and
its cluster functions

k—1
l0?(er,...,w)| £ [] M T(CRY vt 1= (T}, T)) (2.2)
i=0
where C is some absolute constant (not depending on s, 8,k, A, ... Ay _;, but depending
onv).
Proo{ Let y={y}} be any finite (unordered) system of finite subsets of
Y={)Y,cZ**" such that
0
a) yic YUYy, vinY#0, yinY, ., +0, forany i=0,1,....,k—1, (2.3)
b) (Uy}‘l)in =<Uy;i)nY,., (2.4
J J
¢) yinyi =@ forany j+j’ andany/i, (2.5)
d) y is connected (see [3, p.9]). (2.6)

Let us call a bond any such system y and put
i=Ur;, T'O)=9nY;
i

We shall consider also finite (unordered) systems I" = {y(1), ..., y(m)} of bonds.
Let us call such system I" regular if

T°GONT M) =9, i*j
T*oMNT o) =9, i+j

Q.7

and completely regular if
YONTG) =0, i*j. (2.8)



Invariant Subspaces of Clustering Operators. II 217

Let us denote for any I
= 'U1 (D).

So I"is the system of subsets {yi(k)}, Iis called connected if I is connected ([2, 3]).

Let I be given and let 7/(I') be the system of all yi(k) for all possible j and k.
Let s; be their number and 1,,...,7,= Y, UY; be their translations by the vector
(—4,0,...,0). Then we put

wA‘(Ti(F)) = CO:v‘fi(ﬂ["l RS ‘Csi)a

2.9)
o) =@ ) ot (). of (*1I).

If byo v are matrix elements of B then
bpop= Y, afs A ... af (2.10)

T,T%,..., Tkt

One can see from (2.9) and (2.10) that
bpop =Y o(I) (2.11)

r

where the summation is over all completely regular I = {y(1), ..., y(m)} such that
(N = U1 T°GG)=T°% THI)= ~U1 T°(y()=T". (2.12)
J= J=

Definition.
02(T1, T, .. (T, TNEY D) ...D(T') w(Tyulyu... ULy, (2.13)
where the summation is over all regular I'y,...,I'; such that the system I,
I=1,...,sis connected and
T°(r)="1°, THI)=TF I=1,...,s. (2.14)

To define D(I') for any I' = {y(1), ..., y(m)}, let us consider graph G = G with ver-
tices 1,..., m. There is the (inique) line between vertices i and j iff 7)) Ny (j)=+0.
Then we put

D(I') = g, (©, T) (2.15)
(see [2,3]), i.e. D(I') is the M&bius function for the lattice Uy (see [2,3])
Lemma 2.2 If w? are defined by (2.13) then
brr=Y 0B(Ty,Ty),...(T,,Ty), (2.16)
where the summation is over all s, T;,T; such that
T=uT,, T=ul, T.nT;=0, TinT;=0, i+j.
To prove this lemma it is sufficient to consider the sum

Y D(I';)...D(Ty)
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over all I'y,...,I'ysuch that I'y yI', U... ul' =T for some fixed I" and to prove
that this sum is equal to 1 for completely regular I" and zero otherwise. But this
easily follows from the definition of the Mdbius function and formula (1.14),
ChapterII of [3] (see also [2]).

Lemma2.3. w2 are translation invariant, i.e. (1.6) holds for them.

This is evident from the definition (2.13) as the summation in (2.13) is over
independent I'y,...,I.

Remark 2.1. Obtaining translation invariance was the main reason for the
definition of w?. One can begin with the sum over all completely regular Iy, ..., [,
with D(I')=1 and then compensate nonregularity of I'y ul,u... Ul by
induction. We note also that if B is clustering then its clustering function w? are
uniquely defined.

To end the proof of Theorem 2.1 we shall prove (2.2). We use LemmalIl.1.2
and TheoremII.2.2 of [3] (see also [2]) to eliminate D(I"). More exactly if

r'={yQ),...,y(m)}, then

(D) | £ [] C%w <[] Chiw (2.17)
k=1 ij,k
and C= C(v) is an absolute constant.
So
k—1
ZHCRRCATES § B VA Y § (/) 2.18)
i=0 ry,..., Iy ikl
where

n={kn}, I=1,..,s wn=T,T) i=1,..,s.
Let us note that for any I'y,..., I}

Y dyanZ Y driors (2.19)
i=1

ij,k.1
To prove (2.2) let us consider arbitrary sequences (d,, ..., dy) of subsets of
k

Y =7, containing point 0€Z**1,|5;| = 2. It is clear that
0

Y Y V(CP)at st +dsy < (C, B)¢ (2.20)
N ds 4+ dsyzd
for some absolute constant C;.
Now we shall describe the mapping of the set of such sequences (9, , ... , dy) onto
the set of {I'y,...,I';}. As the first step we choose the first (in lexicographic order)
point ¢, of T,, and translate d, to thos point. As the kth step we must decide whether

k-1 -
to translate &, to the next point (in lexicographic order) of the set 70 U{ (J 5,}, 5, is
i=1

the translation of §; constructed in earlier steps, or to translate J, to the point of
(k — 1) step, or to return to 7° and begin construction from the very beginning, thus
constructing new y(k, /). It is evident that any {I',...,I';} can be constructed in this
way. As we have 3 possibilities on each step, Theorem 2.1 follows from (2.20).
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Remark 2.2.If Fis transfer-matrix then the cluster property of F* for any k follows
also from the results of [3] if instead of Y, Y, one considers Y, UY,.

Corollary 2.4.

|08y, 21 S [T MACHE ] (CPy. (2.21)

This follows from
droop2d,+k—1

for any

1= (T,T).

3. The End of Proof of Theorem 1.2

Lemma 3.1. For B sufficiently small, B < Bo(N), the operator (AF)) ™ = G, in L=* is
clustering and its cluster functions satisfy the following estimate

|08 2y, )| < CN@-‘)M“”I?[(/?")% 3.1)

forany A, 0<i< and Cy is the absolute constant.

N+1
Proof. One has

AY) =BY+A4Y (3.2)
where BY) is the main symbol of 4%}, 4 = 4¥) — BY¥), B¥ is diagonal if the

metrics is (1.8). We consider this matrics for simplicity. Then (B{))™! is also
diagonal and its matrix elements satisfy the bound

BN | <(Cof)~2™, IT| k. (3.3)
We have
@A)~ =B E+BYTAHBID ) BT (34
Let us put
Ve =(B{)" AN B (3.5

Then ¥® is clustering and its cluster functions
0 ~1
|07 2, .1 | S (CoB) 2 T] . (3.6)

The main symbol of ¥® is zero. So w?“(14,...,1,) do not equal 0 only for those
Ty,...,T; where d, 2 2 for at least one i. So

s
zdr,;% Z ||+ 1.

i=1
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Then for any ', 0 <A’ <1

As
(CoB) 2. gE% < ¢y ¥ gy ~H R E L ] (). 3.7)
Using

¥ lul<2N,
one can find for any 1’ <(N+ 1)~ ! that
02 e )| S G T B (3.9)
As the norm of ¥V® does not exceed 1 for B sufficiently small, we have
(E+V®)1=E—y®4 iz Oy (—1)m, 3.9)

Using Theorem 2.1 and Corollary 2.4 we get that the operator (V®)™ is clustering
and its cluster functions satisfy the following estimates (m > i)

|00 (51,0, 7) | S G (CAH D[] (CBAY*-. (3.10)
1

00
It follows that the operator ) (F¥®)™(—1)" is also clustering and its cluster
functions are bounded by 2

D¥s [T(CB*)d=. (3.10a)
Let us note that E is also clustering with cluster functions
wf(rl,...,ts)=1f[cof(1i), 3.11)
where
oFO=lo e

Moreover as d, ) =1

S G (O (3.12)
for any A. If A < A’ we get Lemma 3.1 from (3.3), (3.4), (3.8)—(3.10), (3.12).

Proof of Lemma 1.3. The operators
B, = (A AR (A1)~6+D (3.13)
s,q =0, are integers, and act from Lsk to L>*. We shall look for S® as a series

SO=Yx,  .B,AYB, AY.. AYB,, (3.19

1re0es
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where the summation is over all sequences of pairs («;,..., ®,) r =1, &; = (8;,4;), S;

20,¢4,20,i=1,...,r,and x,__,, are real numbers to be found. Inserting (3.14)
into the equation (1 21) one can get recurrent equations for x, , . Forr=1
X 3 = X —1,9-1)> fOI‘ S>O, q>0,

(5,9) (s—1,9-1) (3.15)
X0,0) = 1, X(o’q)=X(s,0)=O, S,q>0.
Forr>1 _
xal ..... oz,= Gy, 0y, . Z ..... ap'xa,“,...i,ﬂ (316)

p=1
where for « = (5,q) we denote & = (s — 1, ¢), &= (s, ¢—1). From (3.15) one can get
immediately that

Xsg= 6:,11 5,920, (3.17)

where J; , is the Kronecker symbol.

For any sequence («y,...,q,), r>1, o;=(s;,q;) we introduce the sequence
S;,0),i=1,...,rof pairs S;=(s; + s, + ... + 5),0;=(q, + g, + ... + q;). Let us
put

K=0,-S;—-@G-1), i=12,..,r.

We call the sequence (a;,...,,) regular if
K.=0, i=12,...,r—1, K, =0.

Ifay,..., o isnotregular then (&, , o5, ..., d,) is not regular also and for any P one of
the sequences («;, ..., ®,) Or (¢, 11, ..., &,) is not regular. Then (3.16) will be satisfied
for nonregular sequences if we put

X, .=0 (3.18)

for any nonregular sequence («y,...,®,).

Then x, , for regular sequences are uniquely defined from (3.16-3.18). We
shall consider further the solutions of (3.15), (3.16) just defined. Let us consider
recurrent relations

yal ..... az,=yzi1 ..... o?,+ Z yozl,.“,az‘,yaz,,,\1 ..... &, (319)

and consider solutions of these relations which are not equal to 0 for regular

sequences. We have
Vayoona, 20, (3.20)

Let us define
y.S,r_:Zyozl ,,,,, @, (321)

where the summation is over all (regular) sequences with S,=S (and so
Q,=S—r—1). It follows from (3.19) that

yS,r=yS—1,r+ Z yS,,pySZ,r—pﬂ (322)

15p<r-1
S, +8,=8
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where
Y-1,=0, rzl, yg=1 (3.23)

Then yg, are uniquely defined by (3.22). (3.23). Let us consider the function
w=w(z,0) of two complex variables z,{. Let w satisfy the following equation

w={+zw+w?  w(0,0)=1. (3.24)
Then w is analytic for z and { sufficiently small and can be expanded in a power
series
w(z,{) =) ws, 25", (3.25)
S,r
which is convergent for small z,{.
It follows from (3.24) that w,, satisfy (3.22), (3.23) and so
wS,r=yS,ra Sgoa rgl,

and the series

XX xS (3.26)

rs1 (@g,...50,)

is convergent for z,{ sufficently small. We turn now to the investigation of the
operators

B, . .=B,AYB, .. .AYB, (3.27)
for regular

Lemma3.2. If (a.;, ..., ,) is regular then B, , is clustering and its cluster functions
satisfy the following bounds

g1, ... T) | < (LB + 2= [ (B (3.28)

where L is an absolute constant.

Proof. As Y d, 23 |t;| —s, we get
i=1 1

[ [T 02| Sl - !

where 0 < 1 < 1 and so the cluster functions of the operators 4®, § = (12), (21), (22)
have the following estimates

|0 (x4, 7)| < MBA-PO+D T (o). 3.29)
i=1

Using Corollary 2.4 and (3.1) one can get that cluster functions of B,
following bounds for small f

o, satisfy the

.....

st(Tl eres Ts) | < (Mﬁ(i —A(N+ 1))S,+2r—1 [CNﬂ—N(l+ 1)](Q,+ r) (Cﬁl)(S,+ Q,+3r—2)s fI (Cﬁl)d;, .
i=1

(3.30)
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Using the fact that 9, = S, + r — 1 for regular sequences and A < (N+ 1) "%, we can
get (3.28) from (3.30). From (3.28) and (3.26) we get convergence of the series (3.14)
for small f. The sum of (3.14) is the clustering operator and

[0S (ty,...,15)] < Kﬁ“f[ (CB*)= (3.31)

i=1

for some constant K > 0.

Using (3.31) one can check (see [1]) that the sum of the series (3.14) has a
sufficiently small norm and coincides with the unique solution of (1.21) having a
small norm. Lemma 1.3 is proved.

Proof of Lemma l.4. We have
ImP® =70k #,.
We shall prove ImF® = #,.
We shall show first that
E—Pgu-n=[E—(S* D)|[Ep-u-n+ ST (SE )]
[Ppeen — (SEDVY*P, 0], (3.32)
where

[E;>0-0+ S(k——l)(S(k—l))*]—l actsin L~V
In fact for any fel,(C,)

Pg(k—l)f:(p—'—S(k_l)q), (PEL§(k—1)

(E—Pouv) f=y+ (SE D)y, yeL>® D, (3.33)
As
SDper>k=1  (§h-Dyxy g stk-1)
one has that
Prsunf=¢p—(S* Vyry
Pownf=y+ (S*  V)e.
It follows that
Y+ SEUESE DYk y =P ooy f— SED Pren f, (3.34)

and
¥ =[Epuen+ SED(SE DY ]" 1P sy — SEDP, o) £

Finally, (3.32) follows from (3.33).
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Lemma3.3. The operator Ej»«-»~+ S® V(S ~y* s invertible in L%~ and its
inverse is equal to

[Epumn+ SED(SEDY] "1 = oy GED,

where G*~ 1 is the clustering operator with clustering parameter B*. Moreover the
norm |G*~ V|| is sufficiently small for B sufficiently small.
The proof follows from the expansion

[Epas+ SEDESE D471 = Epruy + ¥ (— 1) [S*D(SE DA

by Corollary2.4 and (3.31). The estimate of the norm can be obtained by
calculations similar to those in [1]. Let us note that it follows from (3.32) that for
JeL>® "V (E— Pgu-v) f=[E— (S* V)*I(f+ G* V), and s0

PO f=fy fof,
where
fo=_ (S(k— 1))* _ (S(k— 1))*s(k) + S® 4 G&=D
—(SEDyrGE—1 4 GE-DGh _ (k= DYk Gl=1) gl

Again using Lemma 3.3, Corollary 2.4 and the estimate (3.31), one can find that '®
is clustering with clustering parameter % and sufficiently small norm. So we proved
that property 3) of P®.

We shall prove property 1) of V®_ If P® L¥< 5#,, then there exists & € 5#, which
is orthogonal to all vectors f+ S® fe #®, where feL*. Without restricting the
generality one can assume that

lell=1. (3.352)

As ¢ #® one can write

P=0+S5Yp=f+0,+5Y(f+ 0, (3.36)
where

o=@+ feL=* @, eL=¢"V  felk
We have
1=]2l*=llel*+ 1S¥e]?,

and then

lell<1. (3.36a)
Moreover from the equality

lol? =llo. 1>+ 11117,
one can find that
le = llell. (3.36b)
We have also
0= +SYfd)=(p,+85Wo,, [f+SVNH+I|If+SVfI>. (3.37)
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As
p1+ 5%y,  f+SUNI=18Ye;, SONISISOI oIl
and
If+SPLIP =11 +USDLI,
one can find from (3.37), (3.36b) that

ISl
s —sorz SO (3.38)

Acting on both sides of (3.36) with the operator E — Py«-n, One can get
@ = (E— Pgu-s)(py + S¥,) + PO,
Let us note that
(E = Pou-s) (91 + S ,) = (E— (S*~V)%)
(Epre-n+ G D) [-SE Do, +5W g, ].
From here and from (3.36a), (3.36b) it follows that
I(E = Pgu-v) (@1 + SPo )| < K18, (B), (3.39)

where K, is the absolute constant, ¢, (f)— 0 if §—0.
From (3.38) one can find that

17O £ < Kae(B)s (3.40)

where K, is the absolute constant, ¢, () — 0 if § — 0. Estimates (3.39) and (3.40) for
B sufficiently small, contradict (3.35a).
So we proved that

VOLk =,
AsV® f=f+ F®ffor feL*, where ['® has small norm, 7® f+0 for all fe L¥, f+ 0.
Then KerV® =1, © L*. Lemma 1.4 is proved.

Lemma 1.5 follows from the fact that D, = (P®)*P® is the positive operator
ImD, = L*, KerD, =1, ® L¥, and moreover

(PO P = Pyt (FO)) B+ T)

=Pu+ Pul®+ T®O*py+ (PO O =P+ 0, (3.41)
where
[®. [k k
is a selfadjoint clustering operator with small norm. It follows that
[(POyp0]=12 =P, 4 V" o (D), (3.42)

s=1
where o are the coefficients of the expansion

A+ %" =14 Yax", |x|<1.
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After applying Lemma 1.21 to each term of (3.42), the proof of Lemma1.5 is
completed. Proof. of Lemma 1.6 is quite evident.
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Note added in proof. I. Kashapov and the first author proved recently for the similar class of clustering
operators that zero is not an eigenvalue of clustering operator.





