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Abstract. A compact convergent integral representation for dimensionally
renormalized Feynman amplitudes is explicitly constructed. The subtracted
integrand is expressed as a distribution in the Schwinger a-parametric space,
and is obtained by applying upon the bare integrand a new subtraction
operator R’ which respects Zimmermann’s forest structure.

1. Introduction

Dimensional renormalization [1-9], first introduced by Speer and Westwater [1]
and applied in the study of gauge theories by t Hooft and Veltman [3], has proved
to be an essential tool in quantum field theory. Indeed, it preserves gauge
invariance, Lorentz invariance and avoids the infrared problem which appears
when subtractions are performed at zeromomenta. Another advantage of this
renormalization is that the Callan-Symanzik [10] function f(g) is then inde-
pendent of the dimension of space time (apart from a trivial (D —4) g factor) and is
also independent of the mass ratios which enter the theory.

In recent years, dimensional regularization and dimensional renormalization
were established on firm ground as were other kinds of renormalization, and we
refer to the literature [7,9, 11]. According to Bogoliubov-Parasiuk-Hepp (BPH)
recurrence, the usual method to calculate such an amplitude is first to renormalize
the smaller divergent subgraphs by extracting their poles at D=4, then to
introduce their finite parts into larger subgraphs and reproduce the same
procedure in a recurrent way. This method becomes very difficult at high orders of
perturbation, dealing with overlapping divergences, spinor, coupling derivatives
and gluon propagators.

On the other hand, the existence of a compact expression which, for a given
Feynman graph, gives directly the dimensionally renormalized integrand is still
missing. Some authors in the study of the properties of dimensional renormaliz-
ation come close to achieving this goal (for instance, the Cj operators of
Breitenlohner and Maison [7] or the 22, operators of Collins [6], organized in
forests of divergent subgraphs). But the successive applications of these operators,
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Fig. 1. The one loop graph attached to (1.1) and (1.2)

which include the implicit extraction of a pole singularity attached to a given
subgraph, without giving an explicit algorithm to isolate this pole, remain to be
made precise.

In this paper we solve this question and we construct explicitly a subtraction
operator R’, acting directly upon the bare integrand of any Feynman graph
expressed in the a-Schwinger-Symanzik representation; this operator gives the
dimensionally renormalized integral as a compact, convergent integral in the o-
parametric space. The action of R’ transforms the bare integrand into a
distribution expressible in terms of 6, § distributions and their derivatives. Such
distributions are shown to exist and to be integrable over the o-parametric
domain.

This paper is organized as follows: In the end of this introduction we describe,
using the example of a one loop graph, the principle of the method which shall be
used to obtain the dimensionally renormalized amplitude. Then, we recally the
integral representation of a dimensionally regularized integrand [12]. In Sect. 2,
we define the subtraction operator R’; we give two examples and we comment on
our result. Section 3 is devoted to the proofs and is divided into three parts: first,
we show that R’ defines a renormalization which satisfies the recurrence of
Bogoliubov-Parasiuk [13] and we describe the corresponding counterterms ; then
we show by recurrence that R” corresponds, subgraph by subgraph, to the
extraction of the pole singularities at D=4 and we prove the absolute convergence
of the finite parts (via the introduction of a regulator in order to avoid
distributions); finally, we remove the regulator and we prove the existence and the
integrability of the distributions which describe the dimensionally renormalized
integrand.

We now describe the principle of the method which shall be used to obtain the
dimensionally renormalized amplitude by considering the simple example of the
one-loop graph of Fig. 1 which diverges logarithmically at D=4. For Re D <4, the
amplitude of the graph is given by the integral representation

R exp(— (ot +ay)m?) exp(—S(ory0)/(er; +25))
I(S,m,D)y= | do,d . 1.1
(S, m, D) (j) o, doty o, o, (L1)
For 4<Re D <6, it has been shown in [12] that
o _ 2 —S -
o(Sm, D)= | dorydar, SR 1 OIS0 ) o 22 2]y
0 (g +05)

D . .
The function I4(S,m, D) behaves like I’ (2_3> ar large imaginary D and con-

sequently a contour integral around the single pole D=4 can be seen as the
integrals over two lines C, and C_ as shown in Fig. 2.
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Fig. 2. Integration contour around the pole of the graph of Fig. 1

The residue of the pole is found to be
r=— | do;do,6[ —% Ln(o; +a,)], (1.3)
0

and defining the dimensionally renormalized amplitude of G as

I®(S,m, D)=1I4(S,m,D)— —— .
G( ams ) G( 9m> ) D_4s (143)
which is equivalent to
, 1 14(S,mD)
R D — G\M»s s ’ 1‘
IG (S>m5 ) 217{ D,_D dD s ( 4b)

where the contour in the D’ complex plane encircles the two points D'=4 and
D'=D, we obtain
[e~ @ tag)m? ;= (Sayaz)/(ay +a2) —6{ _%Ln(al +a,)}]

(o, 2, (1)

I8(S,m, D)= | do,do,
0

where 0(x) is +1 for x>0 and 0 for x <0.

The above integral, for Re D <6, is absolutely convergent at o, +a, ~0 because
of the subtraction, and at «; or/and «, ~ co because of the absence of subtraction;
moreover, as wanted, the variables m? and S are treated equally in the subtraction
procedure. Another property of the above subtraction is that the zero mass limit of
I%(S,m, D) exists for 2<Re D <6.

The purpose of this paper is to generalize the above example to any graph G
and thus to obtain in compact form a convergent integral representation for I%.
Several difficulties are encountered :

The above procedure of subtracting away the negative powers of (D —4) in the
Laurent expansion destroys unitarity as soon as multiple poles occur because it
cannot be implemented by a counterterm formalism. It is necessary to suppress
these negative powers by using a forest (set of non-overlapping subgraphs)
subtraction formula with the condition that for each subgraph we subtract the
corresponding pole at D=4 and nothing else.



4 M. C. Bergeére and F. David

If we consider a graph with coupling derivatives or/and spinors, the de-
pendence in D of the a-integrand contains a polynomial in D. Each power of D is
obtained from a contraction g,* generated by a pair of coupling derivatives or/and
spinors. Now, when we calculate the residue at D =4 associated to a subgraph &,
one power of D should be included (excluded) in the calculation if the pair of
coupling derivatives or/and spinors belongs (does not belong) to . In other
words, when we proceed to the calculation of residues for a set of subgraphs
S, .., S how are we going to decide how many powers of D are generated by
each of the #7s? This problem already exists for scalar amplitudes because the
subtractions over divergent subgraphs generate coupling derivatives for the
corresponding reduced subgraphs. A convenient solution to these difficulties has
been proposed by Ashmore [8] who introduced a multidimensional formalism.
This formalism attaches a separate dimension to each subgraph and is exposed in
Appendix A.

The multidimensionally regularized Euclidian Feynman amplitude is given by
the integral representation

¢
[T doe, Yg(pi m, 0, D, ), (1.6)

a=1

G(pvm D CQ(/;

09—38

where
12
YG(pia m, o, D’ C‘)y’ {exp( H )SG(pisa’ D’ wy)

exp(—pd~ ' @p)Pole) "2 ] Py(arW}. (7

The functions Pg(®), Py(x) and pd~'(x)p are characteristic functions of the
topology of the graph and of its subgraphs. The function S4(p,, o, D, @) describes
the spin and coupling derivatives part of the amplitude. In (1.7) the dimension D is
the dimension of space-time and the variables w, are introduced according to
Ashmore’s formalism (Appendix A) to be the dimensions attached to every
subgraph <.

The integral (1.6) is absolutely convergent for {Re D, Re w,} sufficiently small
and defines by analytic continuation a meromorphic function of the variables D
and @,. As a generalization of the result obtained in [12], the analytic con-
tinuation of I4(p;,m, D, w,) is given almost everywhere (that is away from those
hyperplanes in D and «, where I4(p, m,D,w,) is singular) by the following
absolutely convergent integral representation:

w0 £
IG(phmaD’akﬁ): j H d%RYG(P,"m,aaD,a?«/)~ (18)
0 a=1
The subtraction operator R is defined in [14] as
R=T] (1—1 )= [1+Z (- ‘2""’))} (1.9)
FCG F SeF

where the generalized Taylor operators 1, 2*?) are defined in [14] and where the
sum over & runs over all forests of “divergent” subgraphs.
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2. The Subtraction Operator R’

We consider a graph G and its Feynman amplitude I4(p, m, D) as defined in (1.6-8)
with all m,’s=0. Let us consider three consecutive poles of I;:D~ <D* <D™ (if D*
is the smallest pole of I, D™ = — c0). From now on, we denote by B~ and B*
respectively the strips D™ <ReD <D* and D*<ReD<D™. We intend to define
the dimensionally renormalized amplitude at D*.

We note that the operator 7, %) introduced in (1.9) subtracts differently
whether we stand in the strips B~ or B™. Let us call 7, (respectively ) the
generalized Taylor operator relative to & and subtracting minimally (of degree
—2/(), where Z() is the number of internal lines in the subgraph &) in the strip
B~ (respectively B™). If & develops no pole at D*, ¢, =1 .

According to the requirements imposed by dimensional renormalization,
namely — subtraction of the Feynman amplitude in agreement with a counterterm
structure — extraction and subtraction of the singular part of the Laurent
expansion around D* for each divergent subgraph once its interior has been
subtracted — we found in the strip D™ <ReD<D* which contains D* the
following convergent integral representation for the renormalized amplitude:

w0 ¢
1§ (pym, D)= | [] dot,R'Ye(p,,m o, D, y,). 2.1)
0 a=1
The operator R’ in (2.1) acts upon the function Y4(p;, m, o, D, a,) in the following
way:
First, it subtracts the amplitude according to a forest formula of divergent
subgraphs
1+3 1 (=%, (2.2)

F SeF

where 7, are new subtraction operators defined as
o F(o, ) =1, Flo, o)+ () — 7, ) Flo, c0)0(x,) . (2.3)

The function 6(x,) is the Heaviside function and is introduced in order to perform
the Cauchy integration around D*. In this subtraction procedure the w, are
considered as small positive parameters which do not change the number of
subtractions of =" and 7.

. . 0 .
Second, it replaces the variables a, by the operators — acting upon the s at

X, =0. %
The latter operation performs for every w, the complex integration
1 otioo A(Z)ex(z—w) a
Z J_j;m d(Imz) — = A(CU + 5}?) O(X) (24)
[ ]

and generalizes to every subgraph the Cauchy extraction of the pole at D*
performed in the example of Sect. 1.

Once the operator (2.2) is applied on Y, the dependence of the integrand in
any , appears in terms of the form:

N(o, 0,)Q() ™™ "2, (2.5)



6 M. C. Bergere and F. David

1

(2N o
W/

3
Fig. 3. The two loops quadratic diagram of Example 1

where N is a polynomial of @, and Q some polynomial of the ¢’s. So the second
part above transforms (2.5) into either

-1/

0 2o 0
N (oc, @) 00 R ), o=N (a, @) 0[—5Log0()+%,1,, -5 (26)
which generates for every subgraph 6,0,0, ... distributions in the «-space, or

N (oc, 5%) o) 275;11 = N(z,0) (2.7)

if there is no @ function.
To sum up the action of the operator R', we shall write

R’=11+Z I (—r;)] (2.8)

F LeF

. 0
where 4 means the operation wyaglxyzo once all operators 7, have been

applied.
We now illustrate the rules given above by two examples:

Example 1. We consider the two loop quadratic diagram of Fig. 3 at D*=4.
oy %p0s >
0010, 00005 +a50
(04005 + 0p005 00300 )P T O 20, +00,) 22 20y +03) 723 2oty A0ty )32
(2.9)

exp(—(oc1 + o0, 4 0t5)m* — p*-

Yo(a,) =

* —

The divergent subgraphs at {D 4} are: {123} quadratically divergent; {12},
Wy

{23}, {31} logarithmically divergent
R'Y;(w,)
o003
0y 0Ly 0, 0l3 + 0300
(otg 00y 00p005 400300

Of{ —3Ln(o 0y +oty005+0300,)}

1——|(oc1 +oty +o3)m* +p?

= Y,(0)~

)D/Z

_ e ™oy ~3Ln(oy +o3)}
a0y +oy) PN

+ circ. perm.

N 0{ —3Ln(o, +o5)}[1 —o;m*0{ —5 Lo, (o, +0o3)]}]

+ circ. perm. 2.10
a?/z(az +a3)D/2 p ( )
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Fig. 4. The two loops diagram of Example 2

The above result differs from the usual R operation [14] (subtraction at zero
external momentum) first by the presence of 0 distribution, second by the fact that
the mass m? terms are subtracted, the consequence of which is that the subgraphs
{12}, {23} and {31} give non-zero subtraction terms although they are not
generalized vertices.

Example2 (Fig.4). This example illustrates the difficulties incoming from
coupling derivatives. We concentrate on the forest of the two logarithmically
divergent subgraphs at D¥=2, G={1,2,3,4} and & ={3,4}.

6 a - . —,
YG(%’):&?@? P(O() D+ G)/z(oc3+o(4) /2

& o000, 4 0y) 0040050 050401
expd — 3 g2z 1%t T S5 % %a0 o5 By 4” @l
p{ L, P o TPy By |, 2D
where
ZZ
A2 o=mioCi 4=123.4 (2.12a)
4o
— Zy Z
o B P 212
P mhity o (2.12b)
— Z1 Z3 Z4
R TR S 2.12
P2 =P 2ocl+2<x3 2004 (2129)
_ z,  zy oz,
—=p.,— 2 "3 4 “4 2.12
Py =Ps 20, 20c3+2oc4 (2.12d)
P(o) = (o0, +0,)(05 +01) + 0300, - (2.12¢)

In (2.12), the momentum p,eR?, the vectors z, and z,e R°P@®R®¢, and z, and
z,e RPAORSDR?.

o 0 0 . .
The derivatives e and Frs generate the following polynomial of w:
1 3
DDy (oy+oy ) +o,+o,)  Dyog  DyA* (o, +o,+ay)
4 P?(a) 2P3(x) 2P(x)
D,B*o;+a,) 2A4.Bo,
2P(x) P(x)

+A2B?, (2.13)
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with
— phay(oty o) + ph
AH = p10‘2(°‘3P(f;4)1) P2“3“4, (2.14a)
— pH + M
B — qulol‘;t(a)psfxz%’ (2.14b)
D,=D+uwg, (2.14¢)
D,=D+ws+aw,. (2.14d)
Then,
D D _(Dtowg+t2 _[(Dtogtoy+2
o) Yo(w,)= 143(ocl+a2) ( )(oc3+a4) ( 2 ) (2.15)
and finally
_ D_”*E)
[‘52;75,0]4 YG(%) = [(Oﬂl + 052)(053 + O‘4)] 2
D? D D
.{_4_0(;#_95,,4-35%@—}—19G95y+i5’0f0y+i5@5y}, (2.16)

where the derivatives 0%, means 0™[ —3Ln{(x; +o,)(ot3+0,)}] and 6° means
0L -3 Ln(o; +ay,)]

To close this section, let us comment on our result. The dimensionally
renormalized integrand is a distribution which is a sum of products of derivatives
of the 0 distribution. This fact raises a problem of existence of these products; it is
shown in Sect. 3 and Appendix C that the manifolds in « which are the support of
the 6™ distributions (n=0,1, 2, ...) are neither tangent between themselves, nor
tangent to the edges of the integration domain in «. To prove the integrability of
these distributions, in Sect.3 we introduce a regulator a>0 and we define the
functions 0™ which tend toward 0® when a—0. Then, we prove the absolute
convergence of the integrals at a>0 and finally we introduce test functions to
show that this limit is the result of integrating the integrand at a=0 in the sense of
distribution.

In the strip D~ < Re D < D¥, the integral representation (1.8) for the regularized
function I4(p,m, D) develops singularities at D= D*, because of divergences when
some o,—0. On the other hand, in the strip D*<ReD<D™", the subtraction
operator R in (1.8) in such that no divergences appear at D* when some o, —0, but
the divergences appear when some o, — o0 because the R operator also subtracts
the mass term. The R’ operator in (2.8) generates for each forest a product of 8
distributions (amongst other distributions) which organize themselves in such a
way that subtractions are present when o, —0 and absent when o~ 00, so that the
amplitude remains finite at D=D*.

When derivative couplings or spinors are present or when we have nested
quadratic divergences, we generate in Sq(p;, o, D, ) a polynomial in D of the type

Zy@wﬂ]D+§w4%
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this formulation tells what subgraphs are responsible for what power of D. The
terms in D? (without w}) generate only 6 distributions. As mentioned above, these
products of distributions are sufficient to make the a-integrals convergent at
D=D* in a way which is implementable by counterterms in a Lagrangian; this
finite part would violate field equations and Ward identities and another finite
renormalization has to be performed to restore them. The corresponding finite
counterterms are responsible for the 6* distributions.

It is known that dimensional renormalization depends on a mass scale; this
dependence is implicit in our renormalization operator R/, since in the Schwinger
representation, the o, have the dimension of the inverse of the square of a mass,
and the subtractions are performed by functions 6™ —3 LnQ,(x)].

In the massless case, the R’ dimensionally renormalized amplitude exists at D*
provided that the dimensionally regularized amplitude exists in a neightborhood
of D*, This is known to be the case for strictly renormalizable field theories at D*,
at non-exceptional momentum and when all masses are nul [7,15].

3. Construction of the Subtraction Operator R’ and Convergence of the
Renormalized Integral I5 (D)

This section is devoted to the proofs of the assertions of Sect.2. As explained in
Sect. 2, to separate the problems of convergence and those of the distributions in
the integrand, we regularize the 0 distributions by introducing C* functions 6%
given by (3.26). Then we define the regularized operator R/ in a similar way to R’
by a forest formula

(3.1)

R+ 211 (-5,

F SeF

4
where the generalized Taylor operator 7, is defined from 7, by regularizing the

0™ distribution. Obviously, when a=0, we recover the R' operator. The Taylor
operator 7, may be written

T, =% +tU, = T+ Vo, (3.2)

This section is then divided into three parts. In parts A and B we study the
operator R, for a=0. In part 4 we prove that the operator R/, acting upon a
regularized integrand, divides it into a sum of terms which, after integration, will
determine the counterterms, according to BPH recurrence. In part B we prove the
absolute convergence of the renormalized integrals

I§(p,m, D)= | | ]do R, Y5(p, m, o, D, ) (3.3)
0

in a neighbourhood of D* for any a>0. Simultaneously, we prove that the
corresponding counterterms are given by the extraction of the poles of I ; at D* via
the modified Cauchy integral (3.18). Finally in part C we study the limit a—0. First
we prove that the integral I58* tends toward a limit, which is the dimensionally
renormalized integral. Then, as explained in Sect.2, the subtracted integrand
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R'Y;= lim R)Y; appears as a sum of products of distributions in o space. We give
a—04

a sense to this object as a distribution. Simultaneously we prove that the “integral
of this distribution” I%" is perfectly meaningful and corresponds to the dimen-
sionally renormalized integral.

A. The Counterterm Structure of the Operator R). In this section we use the
notations of Sect. 2. The counterterm structure will be proved if in each strip B~
and B*, R/ acts upon the regularized integrand Y4(p, m, o, D, w) and gives the
following characteristic decomposition

R Y,(p,m, o, D, ®) Z) lﬂ Ct* (e, D ] Y6, (p:m,%, D), (3.4)
{7 %
where the sum runs over all (eventually empty) families {, } of connected, one
particle irreducible, disjoint subgraphs & which have a pole at D* and over the
families y of wp{¥) derivatives relative to momenta on external legs of & and to
internal masses of . (wy,, (%) is the superficial degree of divergence of . at D¥).
Here R* Yi6/us, are the dimensionally regularized integrands of the reduced graph
[G/US],, and are defined respectively in the strips B* and B~. C (x, D) are
functions of the «, relative to &, and are defined respectively in the strip B* or B™.
We prove this result in the strip B™.

Theorem 1.

R.Y4(p,m,0,D,w)= Y [][RYHe, D, )R Ygug (p,m 0, D), (3.5)
[Eavins
where the R™) operator is given by a sum over all forests in ¥ which do not contain
the graph & itself,

RO=-vU, [1+ Y T] (—r;y,)} . (3.6)

F3S S eF

Proof. To prove this result, let us look at the difference between the two operators
R} and R ™. In the proof, we shall forget the dependence on a, since we only look at
algebraic rules. We have

~R™ = LH (=)= [](-%)

(3.7)

F*0 PeF A

For any given forest &, we have the following identity
2= e)=2 11 o)l -2 11 (~r;»)}, (38)
SeF FeF (S >} i FCHh
where the sum runs over all non-empty families {;} of disjoint elements of &
(each &, giving a pole at D*). &> {%,} means that the graph & of  is either
disjoint or contains some .%,.

Let us now apply the operator (3.8) on the integrand Y4;(D, w). (For simplicity
of notation, we omit the dependence in p and m.) In (3.8) we may take the
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dimensions ), equal to zero before applying the Taylor operators, if & does not
belong to the involved forest #. Since (z,, — 1) is equal to (— U,,), we first apply
the result of Appendix B, giving the action of the operator (¢, —1,) on Y4(D, w).
We have from (B.10)

(Tyz T, )Y4(D, w)= Z [Gly]x (D, w)’%(D‘}‘ Z Wy, ) (3.9)

#37;
where the sum runs over all families of derivatives as in (3.4).
Noting by [ ] the operator (3.8), we obtain

[1%D.0)= ) ] (%)

i, 238 >

n{(_ in) ’yH (_TQ)}{H 19?‘}' Y[G/UV,],_,} : (3.10)
i 7\ i

Asin [12,16], any ¥* is a homogeneous function of « of such degree that it may
pass through the 7, operator by simply modifying its degree. We obtain
[1Y(D, w)= Z n [(‘T[}fuy,]) Y[G/U(/,]Z‘(Da w)]

(Fn 1 >

-H{ ﬂ( % [w(mz ay, )]} (3.11)

Sf;/

&

Then, to obtain the action of R'—R™ on Y, we have to sum (3.11) over all non-

-~

0 . .
empty forests # and to perform the operation w,— p Ix _o- Reorganizing this

sum as a sum over all non-empty families of disjoint divergent subgraphs and of
corresponding derivatives {7, x}, it is easy to obtain the identity (3.5). This ends
the proof of Theorem 1.

We have a similar result in the strip B*, whose proof can be performed exactly
in the same way and where in (3.5-6), we change R™), R~ and U, , Tespectively
into R{"), R* and ¥, . The operators R *) and R’ differ from R, only by the last
operator U, and Vy relative to the entire graph ; these operators do not subtract,
but on the contrary retain the divergent part at D* due to the graph &.

We thus have proved the identity (3.4). The functions C%" (e, D), which are
expected to give an integral representation of the counterterms in the strips B*
and B~ respectively, are given by

C£* (0, D)= R YA (e, D, w) (3.12)
Before going to part (B), we prove the following result, which will be useful in part
(B).

Theorem 2. Let G be a divergent graph at D*. If we consider the right hand side of
(3.4), where the sum is restricted to the families {&, x} (eventually empty) such that
the subgraphs & are strictly contained in G, we have the following identity in both
strips B* and B~

{(1—13’)(1-{- >o11 (—rj,y)) Yo(D, w)
FIG FeF ,
=) [H Rl(ﬂg D, a))] [G/UY],,(D) (3.13)
Fnls

I*G
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In the left hand side we sum over all non-empty forests # which do not contain the
graph G.

The proof is similar to the proof of Theorem 1. We apply the technique of
Eq.(3.7) to [1 + Y T1 (—r;y)} so that the subgraphs . in (3.8) are all different

FIG SeF

from G. Multiplying by (1 —tZ) we obtain (3.13).

B. Extraction of Poles and Convergence of Subtracted Integrals. We now consider
the problems of convergence. We want to prove that the subtracted integrand
R! Y;(o, D, ) is absolutely integrable for D™ <Re D<D™ and corresponds to the
extraction of the poles at D* via BPH recurrence. Let us recall that, if the
corresponding counterterms C7_ (D) are known for any divergent subgraph & in G,
the counterterm of the graph G itself is given by extracting the singular part at D*
of the function 4, _, which is defined by

A,o(p.m,D)=1Ig(p,m, D)+ Y [] C: (D)-I gy, (p,m, D), (3.14)

{f x} .4

where the sum runs over all non-empty families of divergent subgraphs & of G
different from G, as in Theorem 2.

We shall prove that the counterterms C% (D) are meromorphic functions of D,
whith a pole at D*, and are given in the strlps B* and B~ respectively by the
following convergent integrals:

Ct (D)= | [[du RV D)} it DeB- (3150
0
=Tﬂdoca{ﬁ;‘+’);¥(oc,D)} if DeB*. (3.15b)
0

This result will allow us to integrate over the o’s the identity (3.4) of Theorem 1 in
the strips B~ and B*. We shall then obtain the counterterm expression of the
subtracted integral

IR+(p,m, D)=1I¢(p.m, D)+ Y. [] CZ ()55, (p.m, D), (3.16.2)

@07
where the sum (&, y) contains ¥ =G, so that from (3.14)
I§4p,m,D)=A, _(p,m, D)+ Y Ct (D)6, (psm) - (3.16b)
4
In (3.16b), we see explicitly how the pole at D*, corresponding to the entire graph

G, cancels.
Let us now set the following theorem:

Theorem 3. For any a>0, the integral
I§'(p,m, D)= [ [ daR;" Yo(p,m, 0, D, ) (3.17)
0

is absolutely convergent for any D such that D~ <ReD<D™.
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The corresponding counterterms have poles at D* and are given in the strips
B~ and B* by the convergent integral representations (3.15a and b). Moreover,
this subtraction operator corresponds to the extraction of the singular part of 4,
at D* (defined by 3.16) via the Cauchy integral

, dz A, (p,m,z)e"= P
Iga(p>m’D):§)_ Gp

.18
2 2im z—D ? (3.18)

where ¢ is a complex contour containing the poles of 4, /z—D at z=D and at
z=D* (see Fig. 5).

Proof. As explained before, the function ¢*“~2” in (3.18) is introduced to control
the convergence of the integral when [Imz|— + co. To treat in a correct way the
question of absolute convergence, we have to use the L, norm on « integrals. Let
us note

116D, =[[]da|R™Yg(D)| if DeB~ (3.19a)
=[[]dolR* Yo(D)| if DeB*. (3.19b)

Since in B* and B~ the number of subtractions is different, ||I;]|, is analyticin B*
and B, but not defined on the line Re D=D%*,

Similarly, we define ||C% (D)|, and [Ig*(p,m, D)|, in B* and B~ from the
integral representations (3.15) and (3.17) (up to now, they are not proved to be
finite). We now perform the BPH recursion on the number of loops L(G) of a graph
G to prove the theorem. The recursion hypothesis will be the following:

a) for any graph & such as L(¥) < L(G), Theorem 3 is satisfied.

b) Moreover, for any & divergent at D* such as L(¥)<I(G), the function
ICE, (D)H1 (which is finite in B* and B~ from hypothesis a) is polynomially
bounded in BT and B™ as |Im D|— + oo for ReD fixed (of course for any a>0).

If L(G)=0, the hypothesis is trivially satisfied, since R,=1. Let us prove the
recursion hypothesis in the next order. According to a), the function 4, (p,m, D)
defined by (3.14) is given by the convergent integral representation in B* and B~
respectively
ﬂ R,(HX}(D o)R [G/UV]X(D) (3.20)

4,.(D)= :f [lds, S

(7,0}
S+G

Using Theorem 2, this integral representation may be written:

Age(D)= Of Hdaan—rél[w > 1l (=]

F 4G SeCG

Yo(D, w). (3.21)

We now perform the Cauchy integral (3.18) in order to remove from A4, its
singular part at D*. We have to take for C a contour around the two poles at D
and D*; this is always possible since D~ <ReD<D™.

We know, from Appendix D, that any || I, (D)]; is polynomially bounded as
|ImD|— + oo. This result and part b) of the recurrence hypothesis show that
|4, (p,m, D), is polynomially bounded in B* and B~ as |[ImD|—+ oo (ReD
belng fixed). So, |4, (p,m, 2)|| ,]e*“ ~ D?| i exponentially decreasing as [Imz|— + oo.



14 M. C. Bergere and F. David

C+

T oy

Fig. 5. Integration contour C, and C_, defined in (3.22-23), for the integral (3.18) in the complex z
plane

We may take for C (see Fig. 5) the two lines C, and C_ defined respectively by
C,={z=0,+iy} suchthat Sup(D* Re(D))<o, <D%, (3.22)
_={z=0_—iy} suchthat D~ <o¢_<Inf(D* ReD). (3.23)

The contour does not cross the line Rez=D*, so we may apply Fubini’s
theorem and invert the integrations in z and in . Since the a-integrand of (3.21) on
C* differs from the integrand on C~ by the subtraction operator 7/ —15, we
obtain:

N 1 dz
Ra = — T . a(z—D)2(_ + __ _—
184, m, D) = mda,,{[u hmn= 3z | e TG)}
'[1+ > Il (—r;p)] YG(p,m,oc,z,w)}. (3.24)
F 3GSLeF A

We note that the term (5 —1g) [1 + Y J] (=%)| Ys(p,m,0,z w)is a function of
TG SeF A
z which is a sum, relative to the forests &, of terms of the form: N(z)Q ~*2, where

N(z) is a polynomial of z. The Q’s are products of P(x) polynomials relative to
reduced graphs [#], of the forest. Using the relation

0

N{D+—

1 dz e“c~P’N(z) ( 6x)
ﬂm Py, R e 0(—3LnQ+x),—,, (3.25)

where 0, is the convolution product of the Heaviside function with a gaussian

+ o0 »?

0. (x)= %[%a@: g [ dye % -0(x—y), (3.26)

we deduce that the integrand in (3.24) is R, Y5(p, m, o, D, w).

From Fubini’s Theorem and (3.18), we have proved that the integral (3.17) is
absolutely convergent. Then, subtracting A, (D) from I§+(D), we obtain for the
counterterms relative to G the convergent integral representations (3.15a) and
*(3.15b) in the strips B* and B™. Theorem 3 is proved for the graph G, that is part
a) of the recursion hypothesis is achieved.
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To verify part b) of the recursion, let us come back to the Cauchy integral
(3.18). We denote by B;—rG(p, m,o, D) the integrand of the convergent integral
representation (3.21) of A4,.. The L, norm of /g is given, inverting z and o
integrations in (3.18), by

, L dz -
6t = J do| [ =5 7 Bl o 2), (3.27)
0 C

where C is the union of the two lines C, and C_. Denoting by ds the curvilinear
absciss on C (that is to say ds=|dz|), we have the inequality

, cte ? s _ itmis—Dy2
gl < e JTTdof D¢ AimE=DE B (p,m, o, 2)]. (3.28)
0 clé
And according to Fubini’s theorem
, cte . ds  _ o
IS5 g ™™ Ao m 2l (3:29)
tlz—

[A,,ll; being by hypothesis polynomially bounded as |Imz|— 4 oo, the con-
vergence of (3.29) is ensured by the exp[ — allm(z— D)|*], and | I3%], is obviously
polynomially bounded as [ImD|— + oo, as well as the counterterms relative to G,
by (3.16b).

So we have proved the second part of the recursion hypothesis. This ends the
proof of Theorem 3.

C. The Limit a—0, . We now look at the limit a— 0 in order to recover the counter-
terms corresponding to the operation R’. Two problems occur since in this
limit the integrand appears as a sum of products of functions and distributions in a
space:

First, the definition of such products: in Appendix C, we study the supports of
the distributions 6*[ —4LnQ(x)](n=1) which appear in the renormalized inte-
grand via Eq.(3.25). Each distribution is defined only if its support is a smooth
algebraic manifold. Moreover, the supports may intersect each other and/or the
limits of the integration domain. Products of the corresponding distributions are
defined only if these manifolds are not “tangent.” These two parts are made
explicit and proved in Appendix C.

Second, the integration of R'Y; over the a-space: this means that the
distribution R'Y, is applied over the test function 1 in the & space R4?. So it is not
sufficient to define R'Y; as a distribution over the usual spaces Z(IR?) or #(IR?) (see

[17]) to give a sense to | daR'Yy.

0

Let us compactify R’ by imbedding it in the /-dimensional sphere S, via the
stereographic projection and let us take for the space of test functions the space
E=C>(S,). The following theorem proves that R'Y; is a distribution on the space

E. This is sufficient for the integral | doR'Y; to be meaningful, since E contains the
0

function 1, and contains the usual space #(RR?).
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Theorem 4. Given a graph G, for any function ¢ belonging to E, the limit as a—0, of
the integral

o0

| T1 dxR.Y5(p,m, o, D, ) (ct) (3.30)
0 G
exists for any D belonging to the strip D~ <ReD <D™ ; and defines a distribution on
E. In particular, the renormalized amplitude I% (p,m, D) defined by applying this
distribution onto the function 1, corresponds to the usual dimensionally renormalized
amplitude.

To prove the existence of the limit of (3.30), we construct recursively the
integral (3.30) using a Cauchy integral generalizing (3.18), in order to control the
limit a—0,. Such a construction is the generalization of the construction
performed in the two last sections but is rather lengthy and will not be given here;
we refer to [18] for a complete proof. The existence of the limit (3.30) is sufficient
to define a distribution in E; indeed, the space E (with the usual topology induced
by the sup norm on its elements and all their partial derivatives) is a countably
normed space; it follows that its dual E’ is complete (see [17]), and consequently
the distributions R} Y, converge towards a distribution in E’, defined as R'Y;. This
ends the principle of the proof.

Appendix A. Multidimensional Regularization

In this appendix we remind and adapt to our notations the construction of the
dimenionally regularized Feynman integrands of [8]. Let us first recall how to
obtain the Schwinger parametric form at integer dimension N : Given a Feynman
graph G with d, derivative couplings {k*, ..., k"*4} on each line a (1 are the Lorentz
indices), each propagator is written as

0
{ | do, exp[ — o (kZ +m?)— kaza]} , (A1)
0 z,=0
where k, and z, are N dimensional vectors.
Integrating over internal momentum k, and taking into account momentum
conservation at each vertex, we obtain the usual Schwinger representation for the
Feynman integral at dimension N

)

£G)

IG(pi’ ”'l“) = d@a ’ YG(pz’ Wl”, o ) (A2)

Q= &

i
—_

a

where the Feynman integrand Y is given by

ZiG) dg
Yo (pi g, 0,) {H Il ( )ZG i, T, )} , (A.3a)

a=1i= z=0

and where Z is given by:

Zo\py i, o) =Pgla) N2 expl Y am?—Y Fd; l(a)ij’p;} ) (A.3b)
a i,j
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n (A3), dg(e);; and Pg(x) are the Symanzik functions, characteristic of the
topology of the graph; the dependence in the zs is reported in

mZ=m?—z2/4u2 ,
Pi =Dt Y €iZa/ 20 (A4)

where the p;’s are the external momenta incoming at a vertex i and where [¢;,] is
the incidence matrix of the graph G and is defined as

+1 if the oriented line a points away from the vertex i
g, = 1 —1 if the oriented line a points toward the vertex i (A.5)
0 if the line a does not contain the vertex i.

In (A.3), the dimension N may become a complex dimension D to define Z, as an
analytic function of D (see [12] for the definition of scalar products in dimension
D).

We now define a multidimensional amplitude [8] in the following way: To
each subgraph & we associate an additional positive dimension «,, so that the
internal momentum k, belongs to the space lRD@ IR, , while the external

(J7

momentum p; belongs to the space R, ) PR, At each vertex we impose energy-
FIi

momentum conservation in all space ]Rw—]RD@]RW
2

14
D= Z giaka' (A6)

a=1

(For practical use (as in Sect.2), the external momenta p, may be chosen in the
subspace R},.)
It is then possible to extend Schwinger representation (A.2-3) by introducing a
vector z, in R, PR, , and by computing (for w,, integer) the integrals
FDa

Y

3
I d Ak,
a=1
n D+ Z g 3
-exp( s a[kz-l—m Lk Dn [ _y eiaka], (A7)

a=1 =1

where the scalar products in [ ] are taken in IR, & IR
$Da

The above integrals may be factorized into contributions corresponding to
each subspace R,®R, and R, ., and (A.3) may be calculated in each of these

subspaces. In each of these subspaces R,, , we integrate over the internal momenta
of & (all internal momenta outside & have zero components in R, ). We obtain

w /£
IG(pia Wla, Qy) = 5 n dO(a YG(pﬁ may aaa ‘Qy’) > (Aga)
0 a=1
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with
Yo(pi My oty Q) = H H (82“) (Do My 0 Qy)..~0- (A.8b)
a=11i=
The function Y; is here
?G(p—ia Ea OCR, Qy) = I_[ ZT(p_ia m_a’ ag)lN:QT E) (A9)
TG

where Z, is defined in (A.3b): the quantities Q, are w, for ¥+ G and Q; is
(D+wg)-InZy, the scalar products are taken in Ry,  so that

(716 =m7 —[22]04/4%,
U771y =—[221g,/42, for T+G (A.10)

(plr=0[p]r+ Z &gl 2, 7/20,.

If the variables w, become complex variables, the integrand in (A.8) becomes an
analytic function of these variables and defines the multidimensional regularized
integrand.

Let us recall that a Feynman amplitude is obtained by associating y Dirac and
internal group matrices to (A.1) and by contracting some Lorentz and internal
indices, so that the dependence of (A.8) in the w’s appears in two ways: — first, by
the quantity P,(x)”“#/?, — second, by various contractions between Lorentz
indices which give some ¢g"", u and v being relative to some R, and R, . The final
contraction is then,

Y[ goy=Trp, g=w,. (A.11)
u S

(We do not emphasize the problems of the y matrices and of the y° anomaly which
have been extensively treated in the literature, especially in [7].)

With these algebraic rules, one defines the regularized Feynman integrand
which appears to be of the form:

YG(pb mw aaa QV) = H PT(O()’-QT/2 ) SG(pi> am Qy)
TCG

~exp[—2a 2—pidg M@)p;] (A.12)

where Sq(p;, o, Q) is a rational function of the variables o, which depends only
polynomially on the p;s and on the Q,,.

Let us consider the convergence of the integral (A.8a). The following theorem
is proved in [§].

Theorem. The integral (A.8a) is absolutely convergent for Re(Q,) sufficiently small,
and defines by analytic continuation a meromorphic function of the variables Q..

We now apply to this object the results of [12], which allow us to construct an
explicit convergent integral representation of the analytic continuation of (A.8a)
in all variables Q.,
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It is easy to prove that, following the definitions of [14], the integrand
Yq(p;;m,, 0, 24) admits a Taylor expansion in every Hepp’s sector for every {Q,,}.
So we can extend without difficulty the methods of [12] to obtain the following
theorem:

Theorem. The integral

0

Io(pim, Qg)= | [ do, {R Yy(pis s 2,0 )} (A.13)
0 a

is absolutely convergent for {Re(Q)} not belonging to one of the hyperplanes in R*
corresponding to a singularity of 14(p;,m,, Q). This integral defines the analytic
continuation of (A.8a) almost everywhere.

R is the subtraction operator defined in [14] and in Sect. 1.

Appendix B. Action of Taylor Operators upon a Multidimensional Regularized
Integrand

In this appendix, we intend to extend the results of [16] and to give the expression
for

Tny YG(pi’ ma’ O‘a’ QT) s (Bl)

where 7Y is a generalized Taylor operator defined in [14] and where Yj; is defined
in (A.8.9).

To obtain Y, in (A.8), we performed the Gaussian integrations of the various
components of the internal momenta k, in each subspace R, . We make here this
integration in two steps as in [16]: first, integrate the internal momenta of the
subgraph % (those momenta which have non-zero components in R, , that is
those corresponding to the lines of ¥ T) and obtain a factor

ZTmY (p_l_ Z 8iaka? nTa’ aa’ QT) 5QT[ Z (pz - Z giu a):l (Bz)
T ieTn? T s

CThy The

where scalar products are taken in IR, and where, in fact, we should write a
product of § distributions over each connected component of Tn%. In (B.2), we

denote by p; the components in Ry, of [pi + > aiaza/Zoca}. Then, we replace k, for
aeSnT

0 . .
ae by v(— 0_) and we integrate over the remaining momenta of T The result

TnS z,
of this procedure is that, for any subgraph %, we have

YG(p—i’ ;n—a’ ®gs QT)

0
= Zrng [ﬁi—i- Y & —,r’n_u,oza,QT)JZ T (P, 0, 2.  (B3)
TCG T 0z, TnF

N
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We may now group all functions Z;_, with the same subgraph (Tn%) on one

. . . T .
side, and all functions Z 1, with the same subgraph (Tm,?) on the other side.

Now if we take the product over all possible subgraphs 7, we obtain

- - — a —_— ’ —_— 1
Yo (P, 7, o0, Qp) = Yo | i + Z 8ia5,ma, Oy QT) Yo, (P g, 00, 27), + (B.4)
G a

ac—;

'

where

Q=) Q, (B.5a)

V such as
Vas=T

Q=) Q. (B.5b)
V such as
{V/y:T

Now, Y, is factorized into one function of a, for ae.# and one function of o, for

G : . . .
ae - It is then possible to apply the operator 1% ; in Sects. 2 and 3, all dimensions

oy are small and positive in such a way that the number of subtractions generated
by % depends only on n and on the dimension D.
First, let us take care of the coupling derivatives on the graph G by applying

— 0.
the derivatives (— 52—) in each subspace R, . We use for any subgraph X, the

property

d —
1_!:(_ 0z ) Zz[pi’ My, 0y Q]lz= 0= Sf(pi’ Oys Q)Zi[pi! Mg, %, ‘Q] > (B6)
where S; is a polynomial in p; and ; each monomial of S, satisfies the
homogeneity relation

h(p)—2h(w)=h, (B.7)

where h(p) and h(«) are respectively the degree of homogeneity in the external
momentum p, and in all the variables «, and h is the number of coupling
derivatives.

To apply the operator 7} over SyZ,, we dilate by ¢ all o corresponding to the
lines of X, and we apply 7} ; since Sy and Py in Z, are homogeneous in g2, we have
to apply Ty~ >"@* " over

exp{ - [; o g = 3 pilli; lpj}Qz } ,

where m, and p; are the internal masses and the external momenta of the graph X.
A Taylor expansion in 2 of this exponential is also a Taylor expansion in m, and
p;- Taking into account the polynomials of p; in S; we may write

n+ 24{%) + w(X) 1

0
wzd= Y a2 B3)

k=0 pi=mg=0
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where 7(2) is the number of lines of X, w(X) is the superficial degree of divergence
of X at D=D*, y, is a subset of k internal masses and external momenta of X and

0
F is the k™ derivative in regards to the variables in y, ; in (B.8) summation over all
Lk
1. 1s understood (as well as summation over Lorentz indices).
It is clear that the above homogeneity properties also hold over all functions

Zp for TCX and with Q7 small enough. We denote by

0

Xk ’

Yy(pl,m a, Q)| (B.9)

pi=mg=0
and by [G/¥7],, the reduced graph obtained by shrinking into a point the
subgraph % and by attaching to the reduced vertex the masses of y, and the
momenta of y, which are external momenta p, of & and internal coupling
s aa in (B.4).
The final result used in (3.9) can be read

derivatives of [G/¥] generated by ¢,

n+ 24(F) + (&)

Ty Ya(pis My, 0 Q1) = Z YZH(o, 27) YEG/Y]xk (Piymg, 0, Q7). (B.10)

k=0

Appendix C

We study here the properties of the distribution 6™ which appears in the
dimensionally renormalized integrands. For simplicity we shall use a vectorial
notation in o space: an element a={a,,a= 1,7} in R, shall be noted . If f(a) is a
differentiable function of the o’s, we shall denote the vector

of of
{5——,(1—1/} by a

a

We have seen in Sect. 2 that we have to define products of distributions of the
form

0 —3In[Qy #)I] n=0 (C.1)
where & is a forest of subgraphs of G (excluding tree graphs which are ne\;er
divergent), & a graph of # and where Q, 5 is a polynomial in o, defined as

0s.7= 11 Py . (C2)

S'eF
F'cs

In (C2), Py, is the Symanzik polynomial of the graph [#’]; obtained by
reducing to points in & every graph &” strictly contained in %"

We first look at the existence of the distribution (C.1). This distribution is
singular on the algebraic manifold V,, , defined by

Vo z=1{0:0y s)=1}. (C.3)
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According to [17], this distribution is defined if, on every point of V, , the
gradient

0
Ay s =2-Ln[0, @] (€4

is not zero (this means that V, , has no singular points). This is implied by the
following theorem:

Theorem C. 1. On every point of V,, 5, the vector A, 5 is different from zero.

Proof. From (C.2), Q, 5 is an homogeneous polynomial of degree L(¥), where
L(&) is the number of loops of & (which is non-zero since & is not a tree graph).
Applying the Euler relation to Q we obtain, if aeV,, 5

2
LS )=a2-0y y=a-By 5. (C.5)

This ensures that A,  is never null.
We now look at the product of such distributions. From Sect. 2, the integrand
in R? appears to be a sum of terms of the type

3
n 9'{115/»)[ _ % Ln Qy’, f(d)] . 1;[1 Q(oga) S (C6)

FeF

where & is a forest of subgraphs S(L(#)40) and the distributions 6(x,) are
introduced to take into account the integration over the positive o,’s only. Such a
product is defined if the various manifolds V,, , and the hyperplanes P, defined by

P,={o:0, =0} (C.7)
are never “tangent” at their intersections. This is ensured by the following theorem.

Theorem C. 2. Given any subforest 7, ={% ,ie I} of the forest # and any subgraph
S of G (eventually empty), if the intersection

V=(ﬂ Vybg)m( N Pa) (C.8)

el ac¥o

is not empty, at every point of V the vectors A, z(i€I) and the vectors n, defined as

0
na=£oca(ae L) (C9)

are linearly independent.

Proof. We first prove the theorem when the graph 7, is empty. Then, we first note
that according to (C.2), every polynomial Q, , may be written as a product of
polynomials R, relative to the graphs of the subforest %, contained in & :

0y 5= ] R;, (C.10)

jel: ¥, &,

where R; is defined as the product of the polynomials P, relative to the

subgraphs & of # which are contained in & but not contained in any subgraph
& of 7 strictly contained in &,
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From (C.8) and (C.10), the point a belongs to V if and only if, for any iel,
Rja)=1. Then, if a belongs to ¥, we have

0
Ay, zl@)= ) 75 Ri®. (C.11)
jel o
yjcy,

. . 0
By the same homogeneity argument used in Theorem C.1, the vectors ™ R(or) are
0

non-zero ; since they are orthogonal |that is %Ri(a) ~£Rj(a)=0, if i<j|, they are
linearly independent. This result, with (C.11), ensures that at every point of
() Vi, 5 the vectors A, _(a) are linearly independent.

iel

We now consider the case where %, is not empty. Since the vectors n, are
orthogonal, we may restrict ourselves to the subspace

E= () P,={o:0,=0:ae%,}. (C.12)

ac¥o

To any subgraph &% of # we associate the subgraph

F =[S F,] (C.13)
of [G/¥,] and we consider the forest
F={F FeT}. (C.14)

The restriction to the subspace E of the polynomials Py, may be proved to be
(see [16]):

P[y]q(d):P[S?]}; if L([‘S_p]ﬁ'):l‘([y]?)’

. - (C.15)
Py (0)=0 if L[]z <L([Z]s).

The manifold V defined by (C.8) is not empty only if for any & of # contained in
any &, we have L(¥n%)=0.

In that case, we are reduced to the problem of the independence of the vectors
A, 7 relative to the new forest 7 and the new subforest 77 =[7} in the subspace
E. The proof follows similar to the case ¥, empty. This ends the proof of
Theorem C.2.

Appendix D

This appendix is devoted to the proof of various properties of the dimensionally
regularized integrals as |Im D|— + co, which are used in Sect. 3.B.

Let G be a Feynman graph (with internal non-zero masses). According to [12],
its regularized integral has the following integral representation provided that
ReD is different from any pole characteristic of the graph G.

I4(p, m,D)=}o f[ do, R{Yg(p,m, D, o)} . (D.1)
0

a=1
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According to the appendix C of [12], Eq.(D.1) may be decomposed in absolutely
convergent integrals associated to different Hepp’s sectors and different equivalent
classes I' of nests. A Hepp sector is given by an ordering of the lines

s={o;0, 2o, .20, }. (D.2)

Gy = Q-1

We perform the change of variables into Hepp variables, that is to say

3
a,,= [1 B;- (D.3)
j=1
Then, each contribution is of the form
+w QDL tr-1 g PLi_ 1 ' o
[ appe. > [ I1app” 2 [I]dgd—n)”
0 0i=1 0 jeJ,

¢

oxp( = T i [+ B, o0 | Fpm DA T] 2 (D4
i=K jeJi

The variables x; jeJ; (J; is some subset of {1,...,r;,—1}), are introduced to take

into account the subtractions due to divergent subgraphs associated to the class I'.

K is some integer <7.

3
The variables y; _, in exp(— [] B}, _,) are present if and only if the graph G

is subtracted; if not, they are set ;qual to 1 in (D.4).
The exponents aj=1,7) and b; are such that:

0< Re(a{ - DTL) <1, if G issubtracted, (D.5a)
DL . .
Refa,— = >0, if G is notsubtracted, (D.5b)
D .,
ai—ai+§(L—L,.)>0, K<i<dt, (D.6a)
ai—D—ZL—i>0, i<K, (D.6b)
b;;O. (D.7)

The function E(p,m,f;,) is a continuous non-negative function of the f;’s
(i=1,/-1).
The function F(p,m, D, ;) is a continuous function of the f;s (i=1,/=1) and is
polynomially bounded as |ImD|— + o0.

The conditions (D.5,D.6 and D.7) were sufficient to ensure the absolute
convergence of the integral (D.4). We now study the limit |Im D|— + co.

Lemma 1. For ReD fixed, different from any poles of G, I5(p,m, D) is exponentially
bounded as |Im D|— o0 ; more precisely

- L(G)

N
o>

AM >0:|I4(p, m, D)| < Me~*Im Pl (D.8)
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Proof. Let us integrate (D.4) over f§,. We obtain

1 1

rla= ) a7 T apse "2 1]

0i<K 0 j

- ¢ . D—L——a, (ﬁ—u[)
(=) 11( Or=1)2 " - Flp,m, D, py)mi +E)' 2 : (D.9)
At ReD fixed, away from a pole, the integrals over the f’s and the y’s are
convergent (from the conditions (D.5, D.6 and D.7). The modulus is majored by
the integral of the modulus, which is polynomially bounded as [Im D|— + o0. So it
is easy to see that the integral is polynomially bounded.
From the asymptotic behaviour of the I" function:

Fx+iy)~)/ 2y 12 2" as |yl +, (D.10)
we deduce the result of Lemma D.1.

Lemma 2. For ReD fixed, different from any poles of G, the L, norm of the
regularized integral ||I4(p,m,D)|, as defined in (3.19) is polynomially bounded as
|Im D|— + 0.

Proof. Since Ig(p,m,D) is a sum of integrals of the form (D.4), its L, norm is
majored by the sum of the L, norms of the integrals (D.4). Those L, norms are
integrals of the form

+ o0 as _ReD.L 1 -1 ReDL
(I) s, ,f ﬂ app;” I l:[dx,(l—x,)”
¢ ReDL
-exp(— 11 - (m?K+E>) Fp.m Dol > . (DY)

|F|is a continuous function of fy, polynomially bounded as |Im D|— + co. Since |F|
contains the only dependence in |ImD| of (D.11), and since the integral is
absolutely convergent, the integral (D.11) is polynomially bounded as
ImD|— + co. The result of Lemma D.2 is then proved.
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