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On the Backlund Transformation
for the GePfand-Dickey Equations
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Abstract. We study the Backlund transformation of the GeΓfand-Dickey
equations, and in particular how the factorization of nth order differential
operators leads to Lax type equations for first order operators, generalizing
work of Adler and Moser [1]. In a similar fashion we study the Toda
equations.

1. Introduction

In the study of the Korteweg-deVries (KdV) equation,

a Backlund transformation for (1.1) can be made to play an important role, as in
[1]. As is well known, (1.1) can be rewritten in the Lax form

Factoring

L = ATA, A = D — v, Aτ=—D — v,

we find q = q{v) = υx + v2, and the Backlund transformation for (1.1),
corresponds to reordering the factors of L, i.e.,

L = ATA\->L = AAT, q{p)\->q( — v). (1.3)

The crucial point is that the transformation q{v)\->q( — υ) preserves (1.1). The best
way to see that for our purposes is to observe that if υ satisfies the so-called
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modified Korteweg-deVries equation

»(=-f»2«>*+Kx,> (1-4)

then q(v) satisfies (1.1), and in fact (1.4) may be rewritten (see [1])

dA
^ , (1.5)

hence
dAτ

— =P(q(v))-Aτ-Aτ-P(q(-v)),

which upon differentiating L = ATA immediately implies (1.2). On the other hand,
if we differentiate L = AAT we get (1.2) with L{q{v))^L{q{-v)\ P{q{v))\->P{q{-v)\
and so equivalently q( — v) satisfies (1.1). Note that the fact that (1.4) is invariant
under υ\-* — v reflects itself in the invariance of Eq. (1.1) under the Backlund
transformation q{v)\->q( — υ). On the level of operators (at least formally speaking),
as A moves in the equivalence class defined by

L, L move in their similarity class according to

At this point it is good to note that formally L is similar to L however, rigorously
this may not be the case, and this transformation may be used to change the
spectrum of L (see [2]).

The above considerations were proven and used in [1] to very effectively study
rational solutions of the KdV, and in [2] to construct soliton solutions for the
KdV. The relation between (1.1) and (1.4) was first proven in [3], and the
factorization of L and its relation to (1.1) and (1.4) was first observed in [2].

Now GeΓfand-Dickey [4] have generalizations of (1.1), where q is replaced by
β = (#θ'#i> •••'̂ n-2)' a n d we have instead of (1.1), a system of partial differential
equations for A, and more to the point, (1.2) is maintained, only now with an L of
the form L = Dn + qn"2Dn~2 + ...+q0, and P = P(Q). Kuperschmidt and Wilson in
a recent paper [5], have observed that there is a factorization of the general L,
analogous to the one for L= —D2 + q, namely

n-ί

L = An_1 An_2 ...Ά09 Aj = D+ £ vfi>ij,

with ω a primitive nth root of unity. They also observed that there is a system of
partial differential equations analogous to (1.4) satisfied by V=(υl9 υ2, - - , vn_ 1), in
the sense that if V satisfies these equations then Q = Q(V) will satisfy the
appropriate generalization of (1.1). We show in this note that all the above
discussed considerations of [1] generalize to the present situation, and in fact the
proofs to be given here throw light on some of the mysterious proofs of that paper.
In the last section we discuss the Backlund transformation of the Toda equations
as Eq. (1.3) occurs in an unusual way in this situation which has not been reported,
to the best of our knowledge, in the literature.
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Finally, this note was motivated by some observations [6] of Ehlers and
Knorrer. They showed that if one worked with a finite-zone potential in the
Korteweg-deVries equation, i.e., if L commutes with some differential operator K
of degree 2/ + 1 and hence satisfies an equation of the form Q(L, K) = 0, Q(x, y) = y2

— f(x), f(x) = x2j+1 +CjX2j+ ... + c0, then the process of adding a soliton to q
changes the hyperelliptic curve y2 — f(x) = 0 to a singular curve of the form
y2 = (x — s)2f(x). Here s is the soliton parameter. The considerations in this paper
and [6] show that in the general finite zone potential case where L = Dn

+ qn" 2Dn ~ 2 + ... + q0, if the relevant curve is written Q(x, y) = 0, i.e., β(L, K) = 0, it
will be replaced in the soliton addition process by a curve of the form
Q{x,y/x — s) = 0, which in this context necessarily will be singular if Q{x,y) = 0 is
nonsingular. Finally Γd like to thank J. Moser for a useful discussion concerning
this work.

2. The General Backlund Transformation

Before stating the results of this section we need some preliminaries. Given an nih

order differential operator of the form

β a C°° function of the variable x, if we assign D a degree of 1, q. a degree n—j, then
L is homogeneous of degree n. Let s be a positive integer relatively prime to n, and
set P = P(Q) = (Ls/n)+=Ds + bs_1D

s~1 + ... + b0, the differential operator part of
the pseudo-differential operator Ls/n (see [7] for amplification). Then, as observed
by Gel'fand-Dickey [4],

degree [P,L] = n-2. (2.2)

They used this observation to define the Lax equations

— =[P,L], (2.3)

which are thus partial differential equations, the generalized Korteweg-deVries
equation, for β, of the form

β f =X(β), i.e., — = Ki(Q,DQ, . . . ,D m ι β), z = 0, ...,n — 2,

(2.4)

Kt a polynomial in its arguments. In fact much more is true of (2.4) as is reported in
[4,7].

We now factorize L according to [5], where the theory of matrix circulants is
used, but first we need some definitions. Given the function V— V(x) = (υί(x),
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v2, ...,vn_1), for j an integer, ω a primitive nth root of unity, set

Ώ-V=(ωv1,ω
2v2,ω

ivi,...,ω"-\_ι),

i=ί

(2.5)

and so Lj is an nih order differential operator of the form (2.1), as the coefficient of
n - l

Dn~x, Y^v^, vanishes since £ ωij = 0. In [5] it is shown that given L(Q) in the

form (2.1), there exists (at least formally) a V such that in the notation (2.5), we
have

J (Γ)\ T Λ . A . .A

Since the At's are functions of V, we think of the above as a partial differential
equation for V, Q = Q(V), and by solving it, we have factored the operator L. For

n = 2, Q = Q(V) = vx + v2. We now define the degree of vt to be one, that of—-1 to be
ox

two, etc., and this is consistent with the degree of Q. Note that by (2.5),
Lj = L0(Q(Vj)). We define Pj = P(Q(Vj)),j an integer and we now record

Lj = L0(Q(VJ>), Pj = P(Q(Vj)). (2.6)

We need also define the operator

Note the definition Ap Pj, Lj really makes sense for all integers j , and in fact since
ωn = l, they are all n periodic functions of j . Let us also define

^"Σ(Vl ^-2 A
s = 0 s + ι

-Bs-As_1 ..,Aj). (2.8)

(2.9)

We then have the following results.

Lemma 1.
L'j^PpLj-],

and hence degree ([Pj, Lj]) = n — 2.

Lemma 2. B0(V), hence Bj(V) (see (2.1)), is a multiplication operator and so may
be interpreted as a function of V and its derivatives, and shall be. In addition we have

Σ Bj(V) = 0. (2.10)

Set
We define the modified generalized Korteweg-deVries equations as follows:

It
(2.11)
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Since —-^ = Y ωjί—r1 = B .(V), we can only require (2.11) at first for
dt ft"l dt J

7 = 0,1, ...,w — 2, which since d e t [ ω ; ί ] ί = : 1 „_! φ θ , defines uniquely the modified
KdV equations j = o,...,«-2

^ = nn; (2.12)

n - l n - 1

this is indeed equivalent to (2.11), for £ Aj = nD, and (2.10), £ £ / F ) = 0, yields
j=0 j=0

and thus (2.11) for j = n— 1 follows automatically from the cases 0^j^n—2.
We can now state the main result:

Theorem 1. The generalized modified Korteweg-deVries equations (2.12) are equiva-
lent to the deformations

dA^'V^ = p(Q(QJ+ i.T)). A{Ωj - V) - Λ{Ωj V) P{Q{Ωj 7)),

0^/^n-l, (2.13)

which moreover imply the Lax-equations

- V)),L{Q{Ω' V))-], j = 0 , 1 , ...,n- 1 ,

am/ hence setting j = 0, (2.12) implies the generalized Korteweg-deVries equations

? (2 4)

/n addition, the Eq. (2.12) is invariant under the action

V-^Ω-V (and hence V^Ω' V),

i.e., {diag(ω, ω 2 , . . . , ω ("" 1 ))}~ γ Y(Ω- V) = Y(V).

Remark. Given the operator L and any factorization

L = Dn_1Dn_2...D0

as (£>„_!,...,ί>0) evolves through the equivalence class

^dmg(Un,Un_1,...,U1)-dmg(Dn_1,...,D0)idmg(Un_1,Un_2,...,U1,U0)
1

L evolves through its similarity class, L-> U0LUQ ι and if we define Lj with regard

to the above factorization in the obvious fashion L^UJUJ1. Now our
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theorem is an instance of this situation, where formally Uj is defined by

u ί t s = ϋ > = 1 - ΊΪΓ = UP>-
This theorem generalizes the situation for the case n = 2, as promised in the
introduction.

All the proofs are straightforward computations.

Proof of Lemma 1. By (2.7) and (2.8) we get the telescoping sum

L'Γ(PjLj-Aj_ιPj_1Aj_2Aj_3...A0A1...Aj)

j_ίPj_ίAj_2Aj_3 ...Ao ...Aj — Aj_1Aj_2Pj_2Aj_3 ...Ao • Ά )

j_ ί . . . A 0 . . .Aj+ ίPj+

Proof of Lemma 2. Write B0(V) = b(V)Ds+ ..., s^O. Then by (2.8) and (2.5),

= \Σ b(VMDn~1+s+ lower order terms.
Wo /

But L'o is an n — 2 order operator by Lemma 1, and since s^O, we must have
n-l

Σ 6(J^) = 0. If 5^1, B(V) = b(V)Ds + b(V)Ds~1 + . . . , and the coefficient of the

pn-i+s t e r m n ^ ^ ^ 1 ^ m u s t be zero, is

F i - l ^ k n - 1

Σ (n-t-ϊ) — {V<)+

and if we consider L'k instead of Z/o, that amounts to substituting V\->Vk and so we
get the general identity

n~1 db n~1 ~
Σ (n-/-l)^(V,+k)+ Σ b(V,+k)+ Σ b(V,+k)(Am+k-D) = 0, (2.14)

where we have used (Vk)^=Vk+^, as follows from (2.5). Note that the last two terms
n- 1

on the left hand side of (2.14) are actually k independent, while since Σ b{V€) =

n-i n~1db n~1 db
Σ b(V,+k) = 0,(n-l)' Σ o-(^ + *) = 0. We may conclude that £ < — (V,+h) is h

n-ί

independent, and thus by homogeneity considerations, so is Σ ^K^+J> a n ( i i n

particular we have <f=z°
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This equation yields, upon subtraction and making use of £ b(V^) = 0,

and so b(Vo) = 0, hence b = 0 if sΞ^l. This proves Lemma 2.

Proof of Theorem 1. We have the equivalence of (2.12) and (2.13) by definition,
given Lemma 2, which made all the definitions meaningful. Note that (2.12) and
equivalently (2.13) imply the Lax equations of the theorem, and hence (2.4) follows

from (2.9) and the identification of Z/ with —-^ as a consequence of (2.11). Observe
J at

that (2.11) by periodicity is the same as (2.11) for all j , which is obviously
equivalent, due to periodicity, with the same statement with Ω- V substituted for V.
Since (2.11) is equivalent to (2.12) the same statement can be made for (2.12). This
concludes the proof of Theorem 1.

3. The Backlund Transformation for the Toda Equations

We first study the periodic equations [10], where the theory is most analogous to
the previous section, i.e., we study differential equations of the form

dΛ=ai{bi+i_bh ^ i = 2(αf-αf_ 1 ) , ai + n = at, bi+n = bt. (3.1)

Equivalent to (3.1) is a Lax equation for infinite rc-periodic matrices. Namely let T
stand for the shift operator on infinite vectors y, x = (...,x_1, x0, x1 ? ...)ejR°°,

(Tx) = χ.+ 1 , (3.2)

and define the multiplication operator y by

(yΆ=yiχi a n d y2=y-y> (3 3 )

and so for example (y2'Tj(x))i = yfxi+j. Then if a, b are the infinite rc-periodic
vectors

ia\ = at, (&), = &,, (3.4)

and if L, P are the infinite π-periodic matrix operators

L=T-1a-+b-+a-T, P=-T~1a +a T, (3.5)

we find the n-periodic Toda equations (3.1) to be equivalent to the Lax equations

f = [f.I]. (3.6)

To verify this observe

at dt dt

-(T ~γa- +b +a'T)(-T~1a- +a T)

= T-1(a-T(b)-a-b) +2(a2-T-1(a2))'+(a T(b)-a b) T,
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and upon equating similar terms we have — = α T(b) — a-b, b = 2(a2—T x(α2),
at

which is just Eq. (3.1) in vector notation. We could, by the Kac-Moody isomor-
phism of rc-periodicinfinite matrices with nxn matrices over an indeterminate, use
finite matrices, as was done in [8], but we shall prefer to use the notation of infinite
matrices, and the reader can consult [8] for the recipe to turn all the infinite
matrices into finite ones.

The iV = 2rc-periodic Kac-van Moerbeke [13] equations, as is known, play
the role of the "modified-Toda equations". These differential equations are of
the form ,

d<Xi (2 2 Λ an

— =α i (α? + 1 -αf_ 1 ) , αf = α i + J V , (3.7)

and if a is the infinite vector such that (oc)i = α/5 we may, as is well-known [9], write
(3.7) in the Lax form

Ίh

and from (3.7) we certainly have

= - T - 2 ( α T(α)) +(α T(α)) T 2 ,

(3.8)

(3.9)

As Moser observed [9] in the nonperiodic case, (3.8) leads to the Toda
equations, and in fact it yields two Toda equations. If we reorder the ordered basis

df

of R j = δij}ieIh^{le2JieI, [e2i+i].ei}> a n d interpret this as a permutationj j

transformation of Rm, this just amounts to acting on operators, and hence on (3.8),
by conjugation with a permutation matrix S. We find that (3.8) then block
diagonalizes, in fact if we define the infinite N = In periodic vectors β, y by

then one easily computes

+(β y) τ,

(3.10)

and so (3.9) is equivalent to

(3.11)

Note Lv L2, Pv P2 are n-periodic infinite matrix operators. Observe that (3.11) is
obviously a pair of equations of the form (3.6), (3.5), i.e., it is two Toda equations
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with the fc's and α's of (3.5) being respectively

bd) = β2 + T-l{y2)ί aa) = β.y.

We view the b{ί) = b{\a\ a(ί) = α(ί)(α), L^L^α), P = Pf(α), ί=l ,2, as functions of α,
and in fact

hence (3.13)

L1(Γ(α)) = L2(α), P1(nα)) = P2(α).

Thus the iV = 2rc-periodic Kac-Moerbeke equations (3.7) for α imply the rc-periodic
Toda equation for the bi9 aί9 i=l,2, of (3.12). Now define the rc-periodic matrix

A = β + γ-T9 (3.14)

then one verifies immediately from (3.10) that

Lγ=A^A, L2 = AA\* (3.15)

We remark that this type of factorization of a Jacobi matrix is standard in
numerical analysis.

It is now clear that we should interpret the map

( ^ V ' U i M ^ V 2 ^ ) , i e., α-+T(α),

as a Backlund transformation of the rc-periodic Toda equations. This map is
effected by the involution (up to basepoint) on Ll9L2 achieved by the map
αι->Γ(α), which obviously preserves the Kac-Moerbeke equations (3.7). The map
απ>Γ(α) plays the role of the map v^ — v'm (1.4), the modified Korteweg-deVries
equation. The factorization (3.15), and the relation between LVL2 is the precise
analog of (1.3), the Backlund transformation on the operator level for the
Korteweg-deVries equation.

Finally we show that, as one would expect from the last section, the pair of
Toda Lax equations (3.11) is equivalent to

A = P2A-APί, (3.16)

which thus must be equivalent to (3.7) and (3.8). To see this, observe that since
P\ = -Pv P\=-P2, (3.16) is equivalent to

A^ = P1A"f-A"fP2, (3.17)

but clearly by (3.15), (3.16) and (3.17) imply (3.11). Now given (3.11), (3.14), we must
have

AU + A"fA = lPvLJ, AAt + AA"f = lP2,L2], (3.18)

which may be regard as a linear system for the unknown A. Since omit (3.16) is
a solution to the inhomogeneous linear system (3.18), to show it is the only

means transpose
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solution, we must verify the related homogeneous system has only the trivial
solution, i.e., we must show that

δ^A + A^δ = 0, δAt + Aδ^ = 0 (3.19)

implies (5 = 0. Thinking of α as an indeterminate, we may formally compute A'1,
hence Eq. (3.19) implies respectively δ= — (At)~1δtA, δ= — Aδ\A^)~ι, and so
A* Aδ* = δ* AA*. Set δt=εA~1 in the last equation, yielding

A T Λ o A — PA** Q/^ I

This implies, remembering the correspondence between the infinite and finite
matrices which enables us to use the spectral theory of finite matrices, that
ε = p(A*A), with p(x) a real algebraic function. In the above we are still thinking of
α, hence A, as an indeterminate. Substituting δ* = εA~1 into δA* + Aδ* = 0, and
using [ε, A* A] = 0, yields:

Since ε = p(A*A) and εf + ε
We have thus proven:

1=0, so 0 =

= 0, we have 2p(A^A) = 0, thus ε = 0.

Theorem 2. The N = In-periodic Kac-van Moerbeke equations

dot; , o ,, x

dt

dt L '

imply the n-periodic Toda equations

da- „ τ , db:

dt
) ,L], L=T-xa-+b-+a-T,

with the respective pair of (b, afs being given by

and the respective L = L(oc) being

= β.+γ-T.

(3.7)

(3.8)

(3.1)

(3.6)

(3.12)

(3.15)

Moreover, the Lax-equations for the L , 1=1,2, are equivalent to the deformation
equation

A = P2A-AP1. (3.17)

We thus may interpret the map
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as the Backlund transformation for (3.1), effected by the map

Remark 1. An analogous statement can be made for the nonperiodic Toda matrix,
except here the Backlund transformation is not effected by so simple a map as
ακ>T(α). In addition, all the maps now become birational in α2, b, a2, instead of
just uni-rational and can be explicitly computed.

Remark 2. It would be interesting to see what the analogous factorization and
hence Backlund theory would be for the m-band matrices of Mumford-van
Moerbeke [11].

Remark 3. We note that the only really new facts in Theorem 2 are the statements
concerning (3.15), (3.17), and even these may be known to some specialists;
however, we feel that tfte close analogies in the cases of Sect. 2 and 3 warrant the
insertion of Sect. 3.
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