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Abstract. We show that any measure on R" possessing the Lee—Yang property
retains that property when multiplied by a ferromagnetic pair interaction.
Newman’s Lee—Yang theorem for one-component ferromagnets with general
single-spin measure is an immediate consequence. We also prove an analogous
result for two-component ferromagnets. For N-component ferromagnets
(N =3), we prove a Lee—Yang theorem when the interaction is sufficiently
anisotropic.

1. Introduction

The Lee—Yang theorem on the zeros of the partition function is an important
tool in the rigorous study of phase transitions in lattice spin systems [1]. In
addition, it has applications to the proof of existence of the infinite-volume limit [ 2]
and of a mass gap [3, 4], and to the proof of correlation inequalities [5, 6] and
inequalities for critical exponents [4, 7, 8].

In this paper we shall give a new proof of a generalized Lee—Yang Theorem.
Our methods lead to an essentially complete result for one-component and
two-component (classical) ferromagnets with quite general single-spin measures.
We have also some promising partial results for N-component ferromagnets
(N = 3). We end the paper with some conjectures.

Consider, for purposes of orientation, the model of one-component “spins”
¢, defined by the partition function

Z= fexp[ Z J;0.0,+ ). hiqo,} [Tdv(e)). (L)

ij=1 i=1 i=1
Here the dv, are suitable probability measures on the real line; the pair interaction

coefficients J;; are nonnegative (“ferromagnetic”); and the magnetic fields 4,
are allowed to take arbitrary complex values. The Lee—Yang theorem then states
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that, for suitable measures dv,, the partition function Z(k,, ..., h,) is nonzero when-
ever Re i, > 0 for all i. The theorem was originally proven by Lee and Yang [9]
only for the spin-; model

dv(9) =1[8(p — 1) + 5( + 1) ]do, all . (1.2)

Subsequently, numerous alternate proofs for the spm-i case were found
[10-17, 41], and the theorem was also extended to more general single-spin
measures dv, [ 18, 19, 15, 16, 42, 43]. The best result is that of Newman [15], which
allows arbitrary even measures dv, with the property that

[e*dv (@) # 0 for Re i 0, all i. (1.3)

This result is essentially the best possible: it states that the Lee—Yang property
holds for all J; ;=0 if and only if it holds for J ;;j = 0. But while the condition (1.3)
is exceedingly natural, Newman’s method of proof is quite indirect: he shows
that (1.3) is a necessary and sufficient condition for the model (1.1) to be approxim-
able in a certain sense by spin-I models; and then he appeals to the already proven
Lee—Yang theorem for the spin-} case. The original motivation of the present
work, therefore, was to find a direct proof of Newman’s result, utilizing directly
the condition (1.3). We did discover a rather elementary such proof; it is given in
Appendix A. But we also discovered a far-reaching generalization of Newman’s
theorem, one which we believe clarifies the underlying structure of the Lee—Yang
theorem.
Our method is based on the identity

" a 0
Z(h,, )—exp[ Z J”@h T :|Z (hy,...,h) (1.4)
where
Zo(hys.oh) = jexp[ Y hi(pi] [T dv(e,). (1.5)
i=1 i=1

Now the hypothesis (1.3) ensures precisely that Z, has the Lee—Yang property;
so what we need to show is that this property is preserved by a certain (infinite-
order) differential operator. Noting additionally the identity

exp[ Z Jjz.z j}: hm [T (04K z2) (1.6)
i,j=1 k>0 =1
and taking account of the hypothesis J ;j =0, the Lee—Yang theorem is then
reduced (modulo the approximation of entire functions by polynomials) to the
following proposition about polynomials: if P(z,,...,z,) and Q(z,,...,z,) are
polynomials which are nonvanishing when Re z, > 0 for all i, then the polynomial
Szy,...,z,)=P0/0z,,...,0/0z,) Q(z,,...,z,) also has this property (or else is
identically zero). Now this is a well-known result in the case n = 1 (Proposition 2.1);
butitis also true in general, as we demonstrate (Proposition 2.2).

In fact, we deduce immediately the following generalization of Newman’s
result: Let du, be any measure on R” (not necessarily a product measure) posses-
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sing the “Lee—Yang property” (defined precisely in Sect. 3); then, for any set
of J, i >0, the measure

du(p) = eXP[ > Iy <picp,~]duo(<p) (1.7)
ij=1
also has the Lee—Yang property. In other words, ferromagnetic pair interactions
(among others) are “universal multipliers for Lee—Yang measures”.
Similar considerations yield a gemeral Lee—Yang theorem for two-component
ferromagnets: Let

n 2 n 2
zZ- yexp[ Y Y I0eEew 1 Y Z B w] [T dv{e). (1.8)
ij=1la=1 i=la=

where J{) > |J{?| for all i, j, and each dv, is a rotatlonally symmetric measure on
R? whose projection onto one of the coordmates has the Lee—Yang property.
Then Z # 0 whenever Re 4" > |Im 4| for all i. This generalizes a result obtained
by Dunlop [20] for the plane-rotator model

dv(@)=5(p|? — 1)dg,all i (1.9)

by infinitely more complicated (though intriguing) methods.

Sadly, we are unable to give a similarly complete solution of the Lee—Yang
problem for N-component ferromagnets with N = 3. At present, we have only
the following partial result: in the obvious generalization of (1.8), one has Z # 0
whenever

N 1/2
Re iV > [ Y (Im hg"))z] for all i, (1.10)
a=2
provided that
N
JP = §2|J§;)|foralli,j. (1.11)

This is a Lee—Yang theorem for highly anisotropic N-component ferromagnets,
the first such result (known to us) for N > 3. On the other hand, it is clearly un-
satisfactory: the condition (1.11) ought to be replaced by

JP =z max [J?|for alli, j, (1.12)

2<a<N

as is known by entirely different methods [10, 11, 21, 20] for N = 3 (with a restric-
ted class of single-spin measures). This result (for all N) would indeed follow by
an extension of our methods, as we indicate in Sect. 5, provided that an as-yet-

unproven generalization of Proposition 2.2 is true. But we are unable to find a
proof—we hope that others will be more clever!

2. General Theorems

We begin with a result about polynomials of a single complex variable, which
gives the flavor of our methods.
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Proposition 2.1. Let P and Q be polynomials in a single complex variable, with
the property that P(z)#+0 whenever Rez >0, and Q(z) +0 whenever Rez> ¢
(c real). Then S(z) = P(d/dz)Q(2) is either nonvanishing whenever Re z > ¢ or else
is identically zero. Moreover, S(z) = 0 if and only if P(z) has a zero at z = 0 of order
m > deg Q.

Proof. P can be factored as

deg P

Pz)=a |] z—a)

i=1
with a # 0 and Re «; <0 for all i. Hence it suffices to prove the proposition for

P(z) =z —oa,Rea <0; the general case follows by repeated application of this
special case. Now Q can be factored as

deg Q

Q(Z)Zb l_[ (Z—ﬂj)

j=1
with b # Oand Re Bj Zcforallj. Then

Q) “@? 1

0(2) ,Zl z—p;
and this has strictly positive real part whenever Re z > ¢ (unless deg Q =0, in
which case it is identically zero). Hence Q'(z)/Q(z) # o whenever Re z > ¢ (unless

deg Q =0 and « = 0); that is, P(d/dz) Q(z) = Q'(z) — «Q(z) # 0 for Re z > ¢. The
last assertion of the proposition is easily verified. QED.

Remarks. 1. Proposition 2.1 is actually a special case of a much more general
result of Takagi [22] (see Marden [23, pp. 82-84]). The proof given here is a
simplification of the method of Benz [32]; it is modeled on the standard proof of
the Gauss—Lucas theorem [23, p. 22].

2. The arbitrariness of ¢ is a trivial consequence of invariance under translation
of the variable associated with Q. Note, however, that the variable associated with P
cannot be translated ; here zero is a distinguished point.

3. Proposition 2.1 was implicitly noted by Newman [15] in the course of the
proof of an intermediate result (his Proposition 2.4). It was our attempt to under-
stand the role of this proposition in the proof of the Lee—Yang theorem that led
to the present work.

Proposition 2.1 is already sufficient, together with the approximation theorems
given later in this section, to prove Newman’s version of the Lee- Yang theorem;
this proof is given in Appendix A. But it is in fact possible to prove a yet more
general result which makes clear (we believe) what is really going on in the Lee—
Yang theorem. To do this, we need a multi-variable generalization of Pro-
position 2.1.

Notation. If z=(z,,...,2,)eC" and c=(c,,...,c,)eR", then Rez>c means
that Re z, > ¢, for all j; analogously for Re z = c. 0/0z means the n-tuple (6/0z,, ...,
0/0z,).
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Proposition 2.2. Let P, and Q1 <i =k) be polynomials in n complex variables,
and define

k
R(v, w)= ), P,()Q,(w)

i=1

and

k
S(z)= Y, P,(0/02)Q,(z).
i=1
(@) If R(v, w) # 0 whenever Re v >0 and Rew = c(ceR"), then S(z) # 0 whenever

Rez>c.

(b) If R(v, w) # 0 whenever Rev >0 and Rew > c, then either S(z) + 0 whenever

Re z > c,or else S(z) is identically zero.

This Theorem generalizes Proposition 2.1 in two major ways: first, the single
complex variable is replaced by n complex variables; and second, the single product
PQ is replaced by a sum of k such terms. The second generalization can be thought
about as follows: write R(v, w) as a sum of monomials with all variables v standing
to the left of all variables w; then S(z) is obtained by replacing each v,(1 <j <n)
by 0/0z;, and each w; by z;. This representation makes clear that S depends only
onR, not on the partlcular decomposmon of Rinto ) P,Q,. This second generaliza-
tion is of no particular interest for the application we have in mind, but it turns
our to be quite natural for the proof of the propositions.

Note first that by translation invariance (Remark 2 above), we can take ¢ = 0.
We then proceed in a series of lemmas:

Lemma 2.3. Let Q, and Q, be polynomials in a single complex variable, and assume
that R(v, w) = Q,(w) + vQ, (w) # 0 whenever Rev 20 and Rew =0. Then S(z) =
Q,(2) + Q) (2) # 0 whenever Re z = 0.

Proof. Setting v=0, we find that Q(z) # 0 whenever Rez > 0. If @, =0, this
completes the proof; so assume that Q, # 0. Then, letting ¢ — + oo, we find that
Q,(z) #0 whenever Rez >0 (for otherwise, by Hurtwitz’ Theorem [23, p. 4]
applied to v 1Q, + Q,, there would exist zeros of R(v, w) with Re w > 0 for any
sufficiently large |v|). Moreover, if Q,(z,) =0 and Re z, =0, then Q' (z,)/Q,(z,)
is real and nonnegative (for otherwise, by the implicit function theorem, there
would exists zeros of R(v, w) with w near z, and Re w > 0 for suitable (large) v
with Rev > 0). Finally, we note that Re[Q,(z)/Q,(z)] >0 whenever Rez >0
and Q,(z) #0 (for otherwise there would exist a zero of R(v, w) with Rev =0
and Re w = 0).
Now Q, can be factored as

deg Q4
Q,(=b [ -5)
j=1
with b # O0and Re §; < Ofor all j. Then

Q\(z) e
0, siz—B;
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and this has nonnegative real part for Re z = 0 (except at the zeros of Q,, where it
is undefined). Hence

0,0+ 010-0,6| 25819 |4

0.(2) 0,02

whenever Rez >0 and Q,(z) # 0. On the other hand, if Rez=0 and Q,(z) =0,
then

%®+&@=%@P giJ+o

This completes the proof.

Remark 1. It is indeed possible for Q, to have zeros on the imaginary axis:
consider, for example, Q,(w) =1 +wand Q,(w) = w
Remark 2. A related result has been obtained by Dieudonne [24].

Lemma 2.4. (Grace [25]). Let K = C be a circular region (i.e. a closed disc, the
closed exterior of a disc, or a closed half-plane), and let

N
Fx)= ) a, x"
m=0

be a polynomial which is nonvanishing whenever x€ K. Next let x, ..., x, be complex
variables, and let E, ..., Ey be the elementary symmetric functions of the {x},
ie. E,=1,E =) x,, and

X, e X

Then the polynomial

N -1
Flx,,....xy)= Y. a, <N> E (x;,....Xy)

m

is nonvanishing whenever x, ..., xy are all in K.
Proof. See Obreschkoff [26, pp. 23—-24] or Marden [23, pp. 62-63].

Proof of Proposition 2.2. Let N be any integer > the maximal degree of R(v, w)
in any of the variables v;; and introduce new variables v{,1 <k < N. Now let
R(V, w) be the polynomial obtained by expanding R(v, w) as a sum of monimials
and replacing each factor v by

N -1
(m) Em(v}l),...,v;N)).

By repeated application of Lemma 2.4, R(V, w) is nonvanishing whenever
Re 0§ =0 for all j, k and Re w; =0 for all j. Now R(V,w) is of degree at most 1
in each variable v(®; so we can repeatedly apply Lemma 2.3 to convert each
v into /0w, while all other variables are fixed in the closed right half-plane.
The result of this process is easily seen to be S(w). This proves (a).
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To prove (b), let ¢>0 and define P{*(v) = P(v, +¢,...,0, +¢), and likewise
for 01; and define R® and S in the obvious way involving P® and Q”. Now
clearly R®(v, w) # 0 whenever Re z >0 and Rew >0, so by part (a), SP(z) #0
whenever Re z = 0. But $®(z) converges to S(z) as ¢l0, uniformly on compacts;
so Hurwitz’ theorem on C”" implies that either S(z) is nonvanishing on the open
set Re z > 0, or else S(z) is identically zero. This completes the proof.

Remarks. 1. Part (b) of Proposition 2.2 can also be proven by an “elementary”
argument (i.e. one avoiding Grace’s Theorem); the proof is based on the identity

n 0 0
S(w) = I: 1_—[ exp <6)—uﬁ>]R(v, w)

More precisely, we define R® as above, and note that

so =t ([ F(4m (e o) Jevem) )

uniformly on compacts. Now the differential operator in brackets is a product
of polynomials each of which is of degree 1 in each variable and which is non-
vanishing when the real parts of all variables are nonnegative; so it follows from
Lemma 2.3, by a repetitive argument similar to that used above, that this operator
preserves the nonvanishing of R® for Re v >0, Re w = 0. The conclusion of part (b)
then follows by Hurwitz’ theorem.

2. If the coefficients in P, and Q, are allowed to depend analytically on an auxi-
liary variable { varying in a domain D < C" and the hypothesis of the proposition
holds for all {e D, then in part (b) of the proposition, S(z; {) can vanish identically
for one value of { only if it does so for all {eD. This is an immediate consequence
of including the variable { in the Hurwitz argument.

3. Grace’s theorem has been employed in a similar way by Millard and
Viswanathan [27].

Our next goal is to extend Propositions 2.1 and 2.2 to suitable classes of entire
functions. If fis an entire function C", and b > 0, we define

17, =sup, [ exo(~0 5 J2f7 s | ey

Then, for each a 20, let /", be the space of entire functions f'such that | /], < o0
for all b > a. That is, .o/", is the space of entire functions of exponential order
strictly less than 2, or of order 2 and type at most a. We equip /%, with the family
of norms |-|,,b>a (or equivalently, the countable family | -|,, .k integer);
then /% is a Fréchet space. Note also that .2/!, is closed under differentiation;
this is a simple consequence of the Cauchy integral formula. Finally, we note two
other elementary facts about .o/”  [28]:

1. A bounded sequence (or net) in /7  converges in the topology of /7,
if and only if it converges pointwise on C” (or even on an arbitrarily small non-
empty open subset of C).

2. For any fe/", , the partial sums of the Taylor series of f converge to f
in the topology of 7, . Hence the polynomials are densein ./ _ .

v=0
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Letf(z) = Yo _z™and g(z) = Y B,z
m m

be entire functions on C" ; then we can define the formal power series

[/ ©)g]@) = X X o4B,(0/024)z™. 2.2

[Here m= (m,,...,m,) is a multi-index, z™ = [ [z and 0/0z* = 9/0z"" ... 6z ]
i=1

For suitable fand g, we can actually make sense of (2.2):

Proposition 2.5. Let a, b >0 with ab <1, and let ¢ > b/(1 — 4ab). Let f, g be entire
functions on C" with ||f|,< o0, g, <oo. Then the series (2.2) is absolutely
convergent for all z, and defines an entire function such that

|1 @l = Kol £l gl (23)
for some K < oo independent of fand g. It follows that

abc
(f,9)—f©)g
is a continuous bilinear map from o/}, x oy, into sy, ., for any a,b =0

with ab < }.

Proof. By asimple estimate using the Cauchy integral formula,

oy < 171, TT eafky?
i=1

|ﬁm| <llgl, I 2eb/m)ym

i=1

(with 0° = 1). Since (k/2e)? = C, I'((k + 1)/2) with C, > 0, it follows that
oo = C, [l £l TT a*72/Alky)
i=1

184 < C, g, T15™72/ 0m) 24)

i=1
where we have defined A0)=1, AQs+1)=AQ2s+2)=s! for s=0,1,2,....
Therefore the proposition reduces to the case n = 1 with
fl@2)=1+(z+z»)exp(az?)
g(z) =1+ (z + z*)exp (bz?)
and z real and positive. Clearly the terms 1 are unimportant. The evaluation of

the double series (2.2) is then a combinatorial problem that can be handled as
follows: For x real, write

exp(ax?) = C,(a) T exp( — t*/a + 2tx)dt 2.5)

- 0

and use this (formally) with x = 0/9z. Since

exp(2t0/0z)g(z) = g(z + 2t),
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we have

exp(a 0%/0z%)[(z + z*) exp (bz?) ]

=C,(a) ? [(z+2t)+ (z+2t)*]exp[ — t*/a + b(z + 2t)*]dt

— 0

=P, (a, b; z)exp(c'z?)

where ¢’ = b/(1-4ab) and P, is a quadratic polynomial in z whose coefficients
depend only on a and b. Then

(0/0z + 0*/0z%) exp (ad?/0z%) [ (z + z%) exp(bz?) ]
=P,(a,b;z)exp(c'z?)

where P, is a quartic polynomial in z whose coefficients depend only on a and b.
The rest of the proof is easy.

Remarks. 1. A partially alternate proof can be based on the methods of [29,
Theorem 7] or [30, Lemma 14.1.1.].

2. We do not know whether the estimate (2.3) is true for ¢ = b/(1 — 4ab). We
suspect that it is not, but we have no counterexample.

For any set A = C", let 2"(A4) be the set of polynomials on C" which are non-
vanishing on 4 and let 27 (4)be the closure of 2"(A)in </", . It follows immediate-
ly by Hurwitz’ theorem that any fe2” (A) is either identically zero or else is
nonvanishing in the interior of A. However, the converse is not true: as we shall
see shortly (Proposition 2.7), there exist entire functions fe.o/” , nonvanishing
on A, which are not approximable by polynomials nonvanishing on 4.

Let D" denote the set {ze C":Re z > 0}. Then Propositions 2.2 and 2.5 immedi-
ately imply:
Proposition 2.6. Let a,b>0 with ab<3, and let fe?. (D") and geZ} (D"
Then h(z) =£(0/0z) g(z) is in Pt - aaby+ D"
For a partial converse to Proposition 2.6, see [31, 32] and [33, Sect. IX.6].

For our application we shall need to know which “pair interactions” lie in

#h . (D"). The criterion is simple:

Proposition 2.7. Let B be a (complex) nxn symmetric matrix, and let
f(z)=exp(}_B, 2i2;)- Then the following are equivalent

J

(@) B; ngfor all i,j.

(b) f€ P}y . (D"), where || B| is the norm of B considered as a bilinear form on
C”" (or R") equipped with the Euclidean norm.
(c) There exist polynomials { P, } in #"(D") converging pointwise tof.

Proof. To prove (a) = (b), note that
fl2)= klirg H(l +k™'Bz,2,);
L,J

and since B;; 2 0, the polynomials on the right are all nonvanishing in D". More-
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over,

[T +k !B, z

ij

k
ij 12)

éexp@BileilZ,-l)

sew( 181 £12).

i=1
from which the convergence in g [+ easily follows [28]. Clearly (b) implies (c).
Finally, note that (c) implies that 1Lor fixed (z,,...,z,)eD"" !, there exist poly-
nomials {Q,} in 2'(D') converging pointwise to

f(z)—exp[B“z +<2 Y. B,z j) ]

ji=2
Now Q,e2'(D') implies that |Q,(z)| =|Q,(z')] whenever Rez =|Rez| and
Im z =Im 7', and this inequality clearly carries over to f. But it is not hard to see

that this implies B, =0 and Re Z B, z; 2 0. Since this holds for all (z,, ..., z,)e
=2

D" !, we must have B,; =0 for 2 <j <n. Analogously one shows that B =0
for all i, j; hence (c) implies (a). QED.

Remarks. 1. | B|| <max )'|B,,|, by a simple argument using the Riesz—Thorin

i
interpolation theorem (or Holder’s inequality).
2. Polya [31] and Obrechkoff [34] have shown that fe 9’" . (DY) if and only if

r =k (1= 2 e 26
J J

with 0 < <a, Rea, 0 for allj,ZIa] <0, and Rey> — ZRea . For a

proof, see Levin [33, Sect. VIIL 1] Analogous results exist for various other
regions in C' [33, 35].

For each a > 0, let 7 be the space of tempered distributions T on R" such
that

T(x)= exp[ —a) x} :I T,(x) 2.7
i=1

for some tempered distribution T,. We equip 7 with the weak topology generated

by the test functions

f(x)=exp [a Y x? ]fa(x) (2.8)
i=1

with f e #(R"). That is, a sequence (or net) of distributions TWeJ " converges

to TeJ " if and only if the distributions TV [defined as in (2 7)] converge to

T, in the ‘usual (weak) topology of #'(R"). Also, we define 7" = () 7, equipped

a>0

with the obvious topology.
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Lemma 2.8. Let 0 < a < co. Then the Laplace transform T Tdefined by
T(x) = [e**T(x)dx (2.9)

is a sequentially continuous linear map of 7 into /", ., . That is, if a sequence T
convergesto T in T, then TV converges to Tinst" aat -

Proof. Assume first that O <a<o0. Then T(z)= T.(f,), where f(x)=
exp(z-x — ax?). Since T,€#'(R"), we have.

TN = Ksup(L+[x[") 3 (07 (2.10)

el =N
for some K, M, N. Now
sup(l +|xM) Y |o*f(x)| S C(1 4|z exp(|z]*/4a) (2.11)
la| =N
for a suitable constant C (depending on M, N, a). Hence Te.o/! j4a+ - NOW fix
B> 1/4a and let g(x)=exp(z'x — ax* — f|z|?). Then it follows from (2.11)
that {g,},.c.is @ bounded family in &#(R"). Hence, since weak and strong con-
vergence are equivalent for sequences in &'(R") [36, pp. 74, 238] TY(g,) con-
verges to T,(g,) uniformly for zeC"; in other words, T converges to T in .2¢" L ias -
The case a = o0 follows immediately from the foregoing, since convergence

in 7" [resp. .o/}, ] is equivalent to convergence in 7" for all a < oo [resp. in
/", foralle >0]. QED.

Remark. We would get continuity instead of just sequential continuity if we had
equipped 7 with the strong topology.

Proposition 2.9. Let 0 <o < f < o0; let T be a distribution in I 73 whose Laplace

transform T lies in 2" ,4{,+(D ); and let fe@ +(D"). Then, for every y<pf—oa
[and for y = o0 if B = oo] the distribution f Tlies in ', and its Laplace transform
SfTliesin 2 ,, +(D)

Proof. Clearly fTe 7). To prove the statement about the Laplace transform,
assume first that fis a polynomial, i.e. fe #"(D"). Then clearly

ST =10/02)T(2)

sO by Proposition 2.6 [ with a = o, b = 1/4f] we have
fTeg’I/W aH(D")CQI 4,+(D"). For general fe?" (D"), let { f,} be a sequence
in #"(D"). For general feg’” (D", let {. f; } be a sequence in 9"(D") converging
tofins/;, . Then { f;T} converges to f Tin 77, so by Lemma 2.8, { f, T} converges
tof Tin VQZ{'M .- Since 72 jay+ (D7) 18 closed in 47/ ! jay+ > this proves the proposition.

Finally, let us append a remark which clarifies the “strong Lee-Yang theorem”
of Newman [15, section 3]:

™| Z(x + iy)|* > 0 whenever x€(0, co)" and yeR",
for every multi-index m. (2.12)

(Here we write x = Re 4, y = Im A. The ordinary Lee—Yang theorem is just the
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case m = 0.) The point is that (2.12) is actually a consequence of our form of the
Lee—Yang Theorem:

Proposition 2.10. Let f be an analytic function on D" which is a limit, uniformly on
compacts, of polynomials Pe ?"(D"). [In particular, fe 2% (D") for some o suffices. ]
For xe(0, )" and yeR", let F(x,y)=|f(x +iy)|* and let G, (x,y)= 0™F/0x™.
T hen, for each multi-index m, we have either

(i) G, (x,y) >O0forallxe(0, )" and all yeR" or else

(i) G, (x,y) = 0forallxe(0, o) and all yeR".

Proof. Consider first the case f= Pe2"(D"). Let Q(z) = P(z); clearly Qe2"(D").
Now define

R(z,z") = P(z + iz')Q(z — iz'). (2.13)

Note that if x and y are real, then R(x, y) = F(x, y). Moreover, R is a polynomial
which is nonvanishing on the open set

| <aforl<i<n}

Q,={(z2):Rez;>aq,

for each a > 0. By Proposition 2.2 (and Remark 2 following its proof), we have
for each multi-index m either
(i) 0™R/0z™ #01in Q,

or else
(ii) 0™R/0z"=0inQ,.

Moreover, if (ii) holds for one value of a then it holds for all ¢, by analytic continua-

tion; and () Q, contains the set (0, c0)" x R" of real points. Thus, to complete
a>0

the proof for the case f= P, we need only determine the sign of G_(x, y) in case (i) ;
we use induction on each component of m. Clearly G,(x,y)= 0. Suppose that
G, (x,y) = Oforall xe (0, 0)" and all ye R”, but that G (x', y') < 0for some x"€(0, )"
and y'eR", with r=m+(1,0,...,0). Then, by the above, G (x,y)<0 for all
x€(0, 0" and yeR". Fix w=(x,,...,x,)€(0,00)" ' and yeR", and consider

G,(x,,w,y)and G (x,,w, y) = 0G,/0x, as polynomialsinx, . Let G (x,) = Y. ¢,
k=0
with ¢, # 0 (we suppress the dependence on w and y, which are fixed once and for
all). Clearly ¢, >0, since otherwise G (x,) - — o0 as x, - + oo, contrary to the
hypothesis on G,,. Therefore either G,(x,) = 0for all x, (if K = 0) or else G (x,) >0
for x, — + oco. But either possibility contradicts G (x, y) < 0 for all xe(0, co)* and
yeR". This completes the proof in the special case f = P.
Now let f= hmP with each P. e?]’”(D") Form R; from P; as before; since
J"OO
the convergence is uniform on compacts, all derivatives converge as well, so we
have
G, (x,y) = lim 7' R (z, 7|

. z=x,z'=y
Jj— o

for each multi-index m. Fix m. Then, by the above, each O7R; is either strictly

positive on U Q or elseidentically zero there. It is then easy to see using Hurwitz’
a>0
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theorem and perhaps passing to a subsequence, that lim 07'R; is either strictly

jm o
positive on the connected open set | ) €, or else is identically zero there. This
a>0
completes the proof.

Remarks. 1.1If G, = 0 for some m, then obviously G, = Ofor allm’ > m ; moreover,
F(x, y) must be a polynomial in x of degree less than m (with coefficients depending
on y). This happens, of course, iffis a polynomial; but it also happens in other cases,
e.g f(x)=expliz) withn=1,m=1.

2. If f is the Laplace transform of an even, positive measure y not supported
at the origin, then case (ii) of the proposition cannot occur for any multi-index m,
since F(x,0) must increase at least exponentially rapidly as x — oo in a suitable
direction in (0, c0)". This observation, combined with our form of the Lee—Yang
theorem, will immediately imply (2.12), Newman’s strong Lee—Yang theorem.

3. One-Component Models

The proof of a very general Lee—Yang Theorem for one-component ferromagnets
is now essentially complete; all we have to do is to collect the pieces from the
preceding section.

Definition 3.1. A finite (positive) measure p on R"(u # 0) is said to have the Lee—
Yang property (with falloff B) if ue 7 j and ie 2% , ;. (D").

Since p # 0 implies that i # 0, it follows that fi(z) # 0 for Rez > 0; this is the
usual conclusion of the Lee—Yang theorem. Note, however, that fie 2} 145 +(D")
is a stronger hypothesis: it says not only that /4 is nonvanishing in D" but that it
is approximable by polynomials with this property.

Theorem 3.2. Let p, have the Lee—Yang property with falloff B; and let
feZ, . (D")[a < ] be nonnegative on the support of j,, and strictly positive on a
set of nonzero u,-measure. Then u = fu, has the Lee—Yang property with falloff y,
foreveryy < —o[andy = o if f = o0]. In particular, we can take

flo)= expl: i ‘Iijq)i(pjj|

i,j=1

with all J;; 20, provided that o= || J | < . (Here || J | is the norm of J considered
as a bilinear form on R" equipped with the Euclidean norm.)

Theorem 3.2 follows immediately from Propositions 2.9 and 2.7; the positivity
conditions on fare needed only to ensure that 4 >0and u # 0.

Corollary 3.3. Let {v;}, .., be measures on R', each having the Lee—Yang
property with falloff B, and let J be a symmetric n x n matrix with nonnegative
entries [ | J || < B7. Then the measure y1on R" given by

du(o) —epr: > J0:0; ]H dv(e (3.1)

i,j=1

has the Lee—Yang property with falloff v, for every y < —|J| [and y= oo if
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B = oo ]. In particular, we can let each v, be an even measure in I }, satisfying condi-
tion (1.3).

Proof. Only the last sentence (which is Newman’s [15] Lee—Yang Theorem)
requires further explanation; it is a consequence of the following lemma:

Lemma 3.4. Let v be an even measure in I ,11 satisfying condition (1.3). Then
veg’l/4ﬂ+(D ), and

2 h?

§(h) = Ke™ ﬂ<1 + F) (3.2)
J j

withK >0,0<b <1/4fand 0 <o, <o, < ..., with ) o> < 00 here the sequence

{o;} may be empty, finite or infinite.

Proof [15, 5]. Since ¥€ 7}, ¥ is an entire function either of order strictly less than 2,
or of order 2 and type at most 1/4f. Moreover, ¥ is even and has only pure imagin-
ary zeros, which we shall denote + o If v is of order p <2, then (3.2) [with
b=0] follows from the Hadamard factorization theorem [33, Sect. 1.10] after
grouping conjugate pairs of factors. If v is of order 2 and finite type, then (3.2) follows
similarly from Lindelof’s extension of the Hadamard factorization Theorem
[33, Sect. L11]; we must have b real, since 9(h) is real for 4 real, and we must have
b =0, since otherwise (k) would vanish as & — =+ oo, which is impossible for the
Laplace transform of a measure. It easily follows [28] from (3.2) that ¥ 2| 1/48 + (DY),
since the obvious approximating polynomials form a bounded sequence in
45+ [they are all bounded in absolute value by 9(|A])] which is pointwise
convergent to . QED.

Remarks. 1. For non-even measures v, condition (1.3) is not in general sufficient

to imply V€2, " +(D ). For example, consider v=190_, so that ¥(h) =exp (ah).

Clearly this satisfies (1.3); but ve@i 14 (DY) only if @=0. In general one must
test whether ¥ is of the form (2.6).

2. Lemma 3.4 may also be extended to even measures v satisfying a weakened
form of (1.3):

a’

e"dv(p) # 0 for |Re h| > c, (3.3)

for some ¢. Then the o in (3.2) no longer need be real, but come in complex-
conjugate pairs and satisfy |Im o, | < c. Still, it is easy to show that Z|oc |72 < 0.

Moreover, we have y€ 2| , . (D). where D, = {z:Rez>c}. As an example ofa
model for which this extension is useful, consider the spin-1 measure
1 —x
V=K +—5—0,+5_) (34
with 0 <x < 1;here
¥(h) =k + (1 — k) cosh h. (3.5)

For 0 <k <1, vhasthe ordinary Lee—Yang property (1.3). Buteven fori<rx<l,v
satisfies (3.3) with ¢ = cosh ™! (k/(1 — k)). Hence we can apply the obvious generaliz-
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ation of Corollary 3.3 in which the region D" is replaced by D”. (This is the reason
for the otherwise pedantic insistence on arbitrary ¢ in Propositions 2.1 and 2.2.)
The physical consequences of this theorem is that a ferromagnetic model with
single-spin measure (3.4) is free of phase translations in the region 4 > ¢ (and by
symmetry i < — c). Of course, for k >3 there will in general be phase transitions
at £+ 0; indeed, at suitable temperature one expects the appearance of three
distinct phase as 4 is varied [37, 38].

In Appendix B we compare our approach to the Lee—Yang Theorem with the
Asano contraction method [10-14,43], and give an “explanation” from within
our own approach of why the Asano method works.

4. Two-Component Models

We now begin the application of our methods to Lee—Yang theorems for N-com-
ponent classical ferromagnets (N >2). First we must determine the zero-free
region for the Laplace transform of the single-spin measure: this is the largest
region for which one can even hope for a Lee—Yang theorem.

Proposition 4.1. Let veT 2’ be a rotationally invariant measure on RY (N =2)
satisfying

eV dv(¢p) # 0 for Re h #0. 4.1
Then the Laplace transform V is of the form
N
Yh)=F < Y h(")2>, 4.2)
a=1

where F is an entire function (of order at most 1) with only real negative zeros. More
precisely,

0(h)=aebgn<1 +oc_(:2> (4.3)

J

a=1

N
with{= Y h®",a>0,0<b<1/4fand0<a, <a, < o With )y o7? < oo here
Jj

the sequence {o;} may be empty, finite or infinite. Finally, Ye2Y ,, (L), where

Ly=LiJL; (44)
and
N 1/2
ti={neres =] $amar |7} “3)
a=2

Remarks. 1. Weindicate the components of a spin by Greek superscripts in paren-
theses, running from 1 to N ; we label the spins on a lattice by lower-case Latin
subscripts, running from 1 to n.

2. (4.1) says that the projection of v onto the first coordinate has the Lee—Yang
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property as a measure on R*. It does not say that v has the Lee—Yang property as a
measure on RY. Indeed, (4.2) implies that v cannot have the Lee— Yang property as
a measure on R (unless v is Gaussian, so that {o j} is empty): for one can always
find he RN with Re 4® > 0 for all « such that { = ) 4™’ takes an arbitrary negative

a

real value.
Proof. By rotational invariance, ¥(h) is a function only of { = Y 4®”. By hypothesis

(4.1), (h) has only pure imaginary zeros in A when A® Z . —h™=0, The
representation (4.2) follows. Indeed, Lemma 3.4 implies the representation (4.3)

Then Ve 2" 1ap+(Ly) follows as in Lemma 3.4, as a result of the following lemma.

N
Lemma 4.2. Let L, be defined by (4.4) and (4.5) and let he L. Then { = Y h®’ is
never real and negative a=1
Proof. Write h = (x" + iy™™), x + iy) with x, yeRY~ 1. Then Re { = xV* — y” 4
[x]* —|yl* and Im{=2(xMyM+x-y). If Im{=0, then |y|=|xV|?D|/|x]
by the Schwarz inequality. But he L, means that |x"| > |y|; hence |x|>|y®].
It follows that Re{ >0. QED.

It is convenient, following Dunlop [20], to introduce the variable
h=#®,in®, ..., ik™. Then the set he L, becomes the tube

Reher, | Jr_, (4.6)

N 1/2
r,= {x: + x® >[ > x‘“’2:| } 4.7

a=2

where

are the forward and backward light cones. Our ultimate goal is a Lee—Yang
theorem for the region (1.10), that is, for the tube

Reherl, foralli. 4.8)

We study first the case N = 2. This case is particularly simple because the
tube (4.8) is equivalent by linear transformation to a product of half-planes. That
is, introducing the new variables

hE =27 V2D 4 @)= 27 125D 4 52, (4.9)
the tube (4.8) becomes
Re b >0,Re h; > 0 for all i. (4.10)

We are then precisely in the situation studied in Sect. 2; the Lee—Yang Theorems
of Sect. 3 carry over immediately. We need only note that

exp AW + hP @] =exp[hT o™ +h o], 4.11)

so that differentiation of the partition function with respect to 4* brings down a
factor of ¢ *. Thus, a “ferromagnetic pair interaction” is an entire function of the
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form

f(¢)=eXp[ Y UG of +I 0l 0f T 0l 0f +Ji}'<p[<p,~‘)] 4.12)

ij=1
with all coefficients J :—; £ > 0. Rewriting this using (4.9), we find that

f(«p)=eXP[ > Y %m] (4.13)

i,j=1la,p=1
subject to the conditions [20]
JiV and J3? are real
J? and JGV are pure imaginary
a1 o y22) (12) _ j21)
IR NI NN 41
an _
Jij Jij gljlj +Ji
foralli, j. In particular, in the usual case in which
(12) __ g(21) _ TR
Jii 7 =Ji =0 for all ,j, (4.15)
we recover the well-known [21] condition
JGP 2 |JE? | for all i, j. (4.16)
We then have the following immediate analogues of Theorem 3.2 and Corrollary
3.3:
Theorem 4.3. Let u, be a finite (positive) measure on R*"( = (R?)") with p, # 0,

o€ ;" and o€ P17, , (LLY') 5 and let fe 22 (L)) [ < B] be nonnegative on the
support of Iy, and strictly positive on a set of nonzero u,-measure. Then = fu is
a finite (positive) measure with 1 # 0, pe 772" and file 7 ((LL)"), for every y < f —
[and y = w0 if p = oo]. In particular, we can takefof the form (4.13) — (4.16), provided
that o« = || J | < B. (Here || J| is the norm of J considered as a bilinear form on R*"

equipped with the Euclidean norm.)

Corollary 4.4. For 1 <i<n,let vied ; be a rotationally invariant measure on R*
satisfying condition (4.1); and let J be a symmetric real 2n x 2n matrix satisfying
(4.5) — (4.16) [ || J || < B]. Then the measure u on R*" given by

du(p) = exp[ oy ij‘“’gn(“)w;“’] [Tdvie) 4.17)
i=1

i,j=la=1

has p # 0,u€ 72" and e 2, ((LLY"), for every y < p—| J||[and y = oo if = o0].
In particular, the partition function

it = fexp| & 3 ol fauto @13)

i=1la=1

is nonvanishing if

Re iV > |Im 4| for all i. (4.19)
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Remarks. 1. The last sentence of Corollary 4.4 has been proven by Dunlop [20]
for the special case of the plane rotator (1.9), by quite different methods. His proof
also extends [21] to the two-component | ¢|* model.

2. The zero-free region obtained in Corollary 4.4 can in some cases be extended
by exploiting the covariance (or invariance) of the partition function under
(complex) rotations [20, Theorems 1 and 3]. For example, if the interaction is
isotropic (J§; " = J? for all i, j), then the partition function is invariant under the
simultaneous rotation of all spins; hence the region (4.19) can be extended to

U, {h:u-Reh, > |u x Imh,| for all i } (4.20)
uelR
Juj=1

5. N-Component Models (N = 3)

The main result of this section is Corollary 5.5, a Lee—Yang Theorem for N-com-
ponent ferromagnets in which the interaction is sufficiently anisotropic [see (1.11) ].
As explained in the Introduction, this result—unlike those in the previous sections
—is not “best possible”. But it is the only Lee—Yang Theorem we know of, for
N > 3! Moreover, we believe that our methods can probably be extended to derive
a “best possible” Lee—Yang theorem for general N.

The case N = 3 is considerably more difficult than the case N = 2, because the
tube (4.8) is no longer equivalent to a product of half-planes. The trouble is that, in
three or more dimensions, the light cone is round! As a result, our fundamental
theorems— Propositions 2.2 and 2.7—are no longer adequate. Rather, we require
generalizations of these propositions to tubes more general than products of half-
planes. We state these conjectured generalizations in the form of two questions, to
which we can provide at present only some partial answers.

Question 5.1. LetI' = R" be a closed convex cone, and let
Ir*={xeR":xy>0forall yel'} (5.1)

be its dual cone. Let R(v, w) and S(z) be defined as in Proposition 2.2. Now assume
that R(v, w) # 0 whenever Re vel™ and Re wel + c. Does it follow that S(z) + 0
whenever Re zeI" + ¢? If not, for which cones I' and which polynomials R is it
true?

Question 5.2. (a) Let I', «R™ and I', = R" be open convex cones, and let B be
a (real or complex) n, x n, matrix. For which B is the function

flw,z)= exp< >y Bijwizj> (5.2)
i=1j=1
approximable by polynomials nonvanishing in the set
T, x Tp,{(w,2):Re wel',,Rezel,}? (53)
(b) [Restricted form] In the above, letn, =n, =nand I'y =I', = I', and let B
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be symmetric. For which B is the function

mhm%iB%Q (54)

i,j=1
approximable by polynomials nonvanishing in the set
T, ={z:Rezel'}? (5.5)

With regard to Question to Question 5.1, we have the following result, applicable
to special polynomials P, :

Proposition 5.3. Assume that there exist vectors AV, ..., A™eTI and polynomials
Fi(l <i <k)in M complex variables, such that

P,(v) = P(AV-v,..., A™v) for all i, (5.6)

and such that
k
RGw = 3 B @M (57)
is nonvanishing whenever Re © =0 and Re wel + c. Then

k
Sz)= Y. P(0/02)0,(2) (5.8)
i=1
is nonvanishing whenever Re zeI' 4 c.

To understand this proposition, note that the vectors AV, ..., A™ el define
“supporting hyperplanes” for the cone I'*. Thus, if Re vel™, then Re A¥-v >0
for 1 </ <M. Hence the hypothesis in R implies the usual hypothesis on R. In
fact (and this is the weakness of the proposition), it is stronger: it implies that R(v, w)
is nonvanishing whenever Re wel” + ¢ and Re ve {4, ..., A® }*; and this latter
cone is in general larger than I'*. (If I'* is “round”, it is necessarily larger.) Hence
not all R can be accommodated.

Examples. 1. Take k = 1 ; then the hypothesis on R reduces simply to the require-
ment that P(#) #0 whenever Re & >0. But by (5.6) this implies that P(v) # 0
whenever Re ve{AV), ..., A™}* As an example of a polynomial P(v) which is
nonvanishing for Re v in I'* but not in this larger set, let I' = I'* = f+, the closed
forward light cone in R"(n = 3); and let

P) =1+ (v, + 2)* — i v (5.9)

with o > 0. By Lemma 4.2, P(v) is nonvanishing if Re ve I'*. But for v real, the zero
manifold of P is a spacelike hyperboloid which is asymptotic to the cone I"*. Hence,
if I is a convex cone strictly larger than I'*, P necessarily has a zero in I*

2. AgainletI'=T* =T, and take P of the special form

P@v) = ﬁ Pv,,v)). (5.10)
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Then the hypothesis of the proposition can be satisfied: take M =2n—2;
AN = M) 4 o@ 22 = o) — @) etc. [the e (1 £j <n) are the unit vectors];
and take

13'(5)2 ﬁpj(ﬁlj—?a+52j—2’52j—3_52j—2>‘ (5.11)
=2 2 2

But this is possible because the special form (5.10) implies that P(v) is nonvanishing

not only for Re veI™* but also for Re v in the larger cone

F={0 a0 = [y x1> max |x,|}. (5.12)
Sjsn

Proof of Proposition 5.3. Introduce also the new variables W'V, ... w*eC, and
define

R(®, w, w) = i ﬁi(ﬁ)Qi<w + % WW)). (5.13)

=1

Now R is a polynomial which is nonvanishing whenever Re # =0, Re w >0 and
Re wel + c. So fix w with Re we I + ¢, and apply Proposition 2.2. It follows that

k

Sow Z (0/ow)Q, <w + Y w“W“) (5.14)

=1

is nonvanishing whenever Re w =0 and Re wel + ¢. But

Fi(a/aW)Qi<W + % Va(f)l(f))

=1

:13‘<,1<1>.aa ., A0, aa > < %W(%w))
‘ w w P

= Pi(a/aw)Qi(w + % WW)) (5.15)

=1

by (5.6). Setting W = 0 completes the proof.

Remark. There is also an analogue here of Proposition 2.2 (b); its proof is essentially
identical.

With regard to Question 5.2, we are able to make only a few remarks:

1. We state Question 5.2. in two forms—the general form and the “on-diagon-
al” form—because here, unlike in Proposition 2.7, the two forms are not obviously
equivalent. (They may be nonobviously equivalent.)

2. A necessary condition in case (a) is that

na

Z Z ux; 20foralluel’;, xel,. (5.16)

Uiy =

This follows by takmg w = au, z = ax with aeC and applying the n =1 case of
Proposition 2.7. Perhaps (5.16) is also a sufficient condition. This is certainly the
case if I'; and I, are the “positive hyperoctants”

I, ={xeR":x,>0foralli},etc., (5.17)
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since in this case (5.16) reduces to the requirement B;; = 0 for all i, j, and the result
is true by a minor modification of the proof of Proposition 2.7. However, we have
been unable to prove this conjecture for more general I', I',.

3. In case (a) we do have the following sufficient condition:

Proposition 5.4. Let uV, ..., u™el'* and 2V, ..., ™ eI} Now define

Pw,z)= fﬁ (T + k7 (- WA 2)
=1
Then P, is nonvanishing in the set (5.3), and
lim P (w, z) = f(w, z), (5.19)
k-
where fis defined by (5.2) and
B, = % uOAD. (5.20)
¢=1

Moreover, the limit (5.19) holds in the topology of /™" " for sufficiently large a.

a+

Proof. Since I'; is open, we have
rsE={0}{J{x:xy>0forall yel', }.

Hence, for Re wel',, we have either 4w =0 or Re u?-w > 0; and likewise for
-z 1t follows that P, is nonvanishing in the set (5.3). The limit (5.19) follows
from

lim (1 4+ k™ 1x)* = exp(x).

k=0
The converenge in «/%1"" is proved as in Proposition 2.7.

Note that every matrix B of the form (5.20) satisfies (5.16) [as it must!]; but
the converse is not in general true. For example, let I', =1I', =I"_, the forward
light cone, with n, = n, = n = 3. Then for a diagonal matrix B, (5.16) is equivalent
to

B,, = max |B,], (5.21)
25jsn
while (5.20) is equivalent to
B,z |Bjj|. (5.22)
j=2

[ To see that (5.22) is a necessary condition, note that (5.20) implies tr(BG) = 0 for
every diagonal matrix G with G, =1 and G;;= + 1(2 <j <n). It is easy to see
that (5.22) is a sufficient condition: it suffices to take M = n — 1, for eachj(2 <j <n)
to take
pI=D = | B |2 (e + &)
JJ J
M=D = |B |2 (6™ +sign(B,;)e?) (5.23)

with suitable o, = 1. ]
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These remarks imply a Lee—Yang theorem for N-component ferromagnets
with highly anisotropic interactions:
Corollary 5.5. For 1 £i<n,let ved 2’ be a rotationally invariant measure on RY
satisfying condition (4.1); and let JP[1<i,j<n,1 S« <N] be real numbers
satisfying

JP = Z |J9| for all i, j. (5.24)

Then the measure p on RV given by

du(e) = eXp( > Jﬁj"@.“’(ﬂ‘“’) [Tdvie) (5.25)

j=1la=1 i=1

has p # 0, ue 7" and ,ueg’l’y 4y + ((LY)"), provided that B is sufficiently large (how large
depends on J and y). In particular, the partition function

n N
fih)={ eXp< > hﬁ“’(ﬂﬁ“’)du(fp) (5.26)
i=la=1
is nonvanishing if
N 1/2
Re AV > ( Y (Im hg“’)2> Sor alli. (5.27)
a=1

Proof. This follows from Proposition 5.4, the above remarks, and Proposition 5.3
in the accustomed manner [note that (5.18) satisfies the hypotheses of Proposition
5.3. for essentially the same reason as (5.10)]. QED

Remarks (continued). 4. In case (b) of Question 5.2, a necessary condition [ana-
logous to (5.16) ] is that
Z B, x.x.>0forall xerl. (5.28)

YTy =
i,j=1

However, this is clearly not a sufficient condition: (5.28) would allow any positive
definite matrix B, for any I', which clearly contradicts Proposition 2.7. We suspect
that (5.16) may be a necessary condition in case (b) as well as in case (a).

5. For the special case I' =I"_, the forward light cone, (5.21) is a sufficient
COIldlthIl for case (b): for by a minor modification of Lemma 4.2, (5.21) implies that

Z B,z;z; = Z Bz} is never real and negative, for Re zeI'; so we can write
i,j=1 i=1

f(z)zexp< Y. Bz J): lim<l+k~ Z B2z J)k, (5.29)
k

i,j=1 =0 i,j=1
a limit of polynomials nonvanishing in Re ze !
6. The preceding remark would allow us to handle rotators with isotropic
interactions, for arbitrary N, provided that we could find a satisfactory answer to
Question 5.1 in this case. This is so because we can write

exp[J;0,¢;]= exp[%‘]ij((roi + ‘Pj)z] exp[ — %Jij((PiZ + ‘P?)], (5.30)
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and the last factor is a harmless constant for the plane rotator measure (1.9). The
same remark applies to single-spin measures which, though not of the form (1.9),
satisfy the following strong version of (4.1) :

e =<9 dy(¢) + 0 for Re h + 0, for all ¢ =0 (5.31)

—for in this case we can absorb the last factor in (5.30) into the single-spin measure.
Newman [39] (see also the remarks at the end of [40]) has found all rotationally
invariant measures satisfying (5.31) ; aside from (1.9), they are

dv(g) = C|o[" exp(—alo[* =blo)[ (L +[o[*/of) exp(—|o[*/a}) (5.32)

with C >0, m =0 integral, @ >0, b real, and o, >0 with Zoc“‘ ; here the

sequence {oc } may be empty, finite or infinite. In particular, by taking m = 0 and
{a;} empty, we obtain the N-component | ¢ |* lattice field theory. Finally, note that
this idea also handles some anisotropic interactions, in particular those which can
be writtenasa product of terms each of which looks like (5.30) except that (¢, + ¢ 1)2
is replaced by ¢? ;> with

9;=(0{"+ ¢, o £ 0@, ..., o™ £ o) (5.33)

for some sequence of + signs. This allows some (but not all) interactions of the form
(1.12).

The moral of this rather long story is that the N-component Lee— Yang theorem
(N = 3)rides on finding a satisfactory answer to Question 5.1, for the case where I"
is a product of forward light cones. But this we must leave as an exercise for the
ambitious reader.

Appendix A: Alternate Proof of Newman’s Lee—Yang Theorem

In this Appendix we shall give an alternate proof of Corollary 3.3—which is a
slight generalization of Newman’s [15] Lee—Yang Theorem—based on the ele-
mentary Proposition 2.1 instead of the more difficult Proposition 2.2. (Actually,
we shall prove only the ff = oo case of Corollary 3.3 ; see Remark 1 following the
proof.)

Note first that since J,; = 0, we can absorb the factor exp(J,,¢7) into dv,(¢,) and
preserve the Lee—Yang property of the latter [15, Proposition 2.4]; this follows
from the n =1 case of Proposition 2.7. and 2.9. Hence we can assume that J; = 0.

The proof is now by induction on n. By hypothesis the theorem is true for n = 1.
So assume that it is true for n = N — 1, that is, assume that the function ﬁN——l
defined by

-1
/jN—l(hl""’hN—l): IeXp< Z Jl](pqo + Z hq’ ) H dVi((Pi) (A.1)

iLj=1 i=
liesin 2} L(D¥~1). Now by definition of /i Ay (and Fubini’s theorem), we have

s h) = [y by + T 0o by + Ty o) O5duy(0y) (A2)
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with
Ji=Jy+ =21 <i<N-1) (A3)
Now the point is that since J, ; = 0, the function
g((PN)=ﬁN-1(hl+j1<pN,---,hN_1 +'7N—1<DN) (A4)
lies in 2, (D"), for each fixed (h,,...,hy_,)eD"~"; and so, by the n =1 case of
Proposition 29, py lies in 2, (D') as a function of h, for each fixed
(hl, hy_,)eD" 1. Of course, this is not quite what we need to prove (though

it is the essential idea of the proof). To complete the rigorous proof, let { 5 } bea
sequence in 2V~ (DY) converging to I, _, in /)" ; that is, for each ¢ >0 we
have

iy (. )= c“"exp[ ilhi"‘jﬂ’z«lz]

i=1

écf)exp[ze”fqhilz+f3<om] (&)

i=1
for some sequence of constants {c}”} converging to zero. Inserting this into (A.2),
and using the hypothesis

jexp(bq)f,)va((p) < oo for all b, (A.6)

we find easily that

)= [ A et ndv ()] = Kel? exp[Zs % lhilz] (A7)

i=1

for some constant K < co. Hence the integral converges to /i, in </} , . But the
integral equals

~ 0
fl by + T hy Ty Je"~endv (@y)
oh oh,,
— a h .
= gj<%>fe Nndvy(@y) (A.8)

(since fj is a polynomial, this equality is trivial), and ¢ jegl(Dl) whenever
(hl, woshy_,)eDV"1. Now let {p,} be a sequence in 2'(D') converging to 9,
in .o/} 4 Then by Proposition 2.1, g; (0/0hy)p(hy) is a polynomlal in (hy,...,hy)
which is nonvanishing in DV (or else is identically zero'). But by Proposmon 2.5
and an easy estimate, g,(0/0hy)p,(hy) converges in /Y, to (AR)as k — co. Hence
the function (A.8) is in 2 , (DV);s0 by (A.7), ity PY , (D) as well. This completes
the proof.

I We use Remark 2 following Proposition 2.2 (or an equivalent argument based on the last sentence
of Proposition 2.1) to ensure that g j(é/ahN)Pk(h ) vanishes identically in A, for one value of (&, ...,k
only it does so for all (h,,..., h

N~l)
N—l)
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Remarks. 1. By keeping careful track of the rate of Gaussian falloff in the above
proof, one can also handle f finite but sufficiently large (depending on the matrix J).
But the inductive structure of the proof, which treats the n spins asymmetrically,
is unlikely to allow the optimal result || J | <  proven in Corollary 3.3.

2. The inductive idea—considering the spin ¢, as a “magnetic field” acting
on the spins ¢, ..., @y _, —is also the basis of the proofs of the (spin-3) Lee—Yang
Theorem due to Newman [ 15, Theorem 3.1] and Sherman [14].

Appendix B: Comparison with the Asano Contraction Method

The present approach to the Lee—Yang theorem is based on the idea that certain
functions F—namely, Fe#?" (D")—are “universal multipliers” for Lee—Yang
measures: that is, whenever du, (@) has the Lee—Yang property, so does F(@)du ().

The Asano contraction method [10-14, 43 ], by contrast, is based on the idea
that certain measures p, have the following property: if F, (¢)du,(¢) and
F,(@)duy(p) have the Lee—Yang property, then so does F (@)F,(@)du,(¢). This
idea is extremely powerful, since it allows one to prove the Lee— Yang theorem for
a large model simply by verifying it for each elementary interaction, and this is
often a trivial computation. Unfortunately, however, the only base-measure p,
for which this idea is known to work is the uncoupled spin-} Ising measure

duo(@) = [11L0(0, — @) + (0, + a) 1dop, (B.1)
i=1

That the Asano property is not a general property of Lee—Yang measures can be
seen from two simple examplesinn = 1:
1. Let u, be the usual spin-1 measure

Ho=300_,+0,+0,] (B.2)

Then exp( — be?)dp,(¢) has the Lee—Yang property if and only if b <log2.
So take F (@)= F,(¢)=exp(—bp?*) with § log 2 <b <log2; then the Asano
property fails.

2. Let p,, be a spin-1 Ising measure in a positive magnetic field:

dpo(@) = e"’[3(@ — 1)+ d(p + 1)] do (B.3)

with 4y > 0. Now let F,(¢) = F (@) = exp(— h ) with h /2 <h, <h;the Asano
property again fails.

On the other hand, we can “explain” in terms of our own approach why the
Asano property does hold for the measure (B.1): the point is that if F,(¢)du,(¢)

has the Lee—Yang property, then there exists a function P ,(¢), equal to F,(¢) on
the support of y, which is a universal multiplier [ in fact, P, € #"(D") |; hence

F(@)F ,(@)duo(@) = P (@)F ,(@)dpy()
has the Lee—Yang property. To be explicit:

Proposition B.1. Let F(o,,...,0,) be defined for {o,,...,0,} = +t1, and let
P(o,,..., ¢, be the unique polynomial of degree at most I in each variable which
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coincides with F, i.e.

n

P@yng)= Y o Y Flog,ia)[[ 012 (B4)

cr==%1 on==%1 i=1 2

Then the following are equivalent:

@ Qz,,....z)= ) ... ) F(al,...,Gn)ﬁzﬁl/z)“_"‘) (B.5)

g1=*1 on=1*1 i=1

is nonvanishing if all lzil < 1 [ this is the Lee— Yang property in the activity variables
z,=exp(—2h)];
(b) P(@,,..., ¢,) is nonvanishing if all Re ¢, > 0.

Proof. The transformation

z;=(1=9)/(1+¢) (B.6)
maps |z;| < 1 onto Re ¢, > 0; and moreover
L (pi
P(@,,....0)=0z,,...2) | | 5 (B.7)

i=1

Since (1 + ¢,)/2 # 0 for Re ¢, > 0, this completes the proof.

Remarks. 1. Although example 1 above shows that the Asano property does not
hold for the spin-1 measure, a modified Asano property does hold [27] for spin 1
and in fact for all the classical discrete spins: there is a weight function G(¢)
[certain binomial coefficients] such that if F,(¢@)du,(¢) and F,(@)du,(p) have the
Lee—Yang property, then so does G(¢)F,(¢)F ,(@)du,(¢). It would be interesting
to have a deeper understanding of this phenomenon. Is there any direct generaliz-
ation, for example, to classical Heisenberg spins?

2. The Asano contraction method has the advantage over the method of the
present paper in that it is suited to studying zero-free regions other than half-planes
(or circles in the activity variables) [ 12, 13].

Acknowledgement. One of us (A.S.) wishes to thank Barry Simon for a helpful conversation.
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