

© by Springer-Verlag 1980

Note

The Operators Governing Quantum Fluctuations of Yang-Mills Multi-Instantons on S^4 and Their Seeley Coefficients

M. Daniel

Theory Division, CERN, CH-1211 Geneva, Switzerland

Abstract. We give explicit expressions for the Seeley coefficients of the fluctuation operator and the operator that appears in the Faddeev-Popov determinant, which arise in the calculation of quantum fluctuations around Yang-Mills multi-instantons.

In the calculation of quantum fluctuations around multi-instanton configurations it is of interest to know the Seeley coefficients for the fluctuation, and the gauge fixing operators [1]. In this note we shall give explicit expressions for these coefficients.

We work on S^4 , the one-point compactification of \mathbb{R}^4 . Let \square be a second order, self-adjoint, non-negative elliptic operator on S^4 . Then it is well known [2] that the series

$$h_t(\square) = \sum_{1} e^{-t\lambda}$$

converges for any t>0. The summation extends over all eigenvalues, λ , of \square with the appropriate multiplicities. Furthermore, $h_t(\square)$ has an asymptotic expansion

$$h_t(\square) \equiv \operatorname{Tr} e^{-t\square} \sim t^{-2} \psi_2(\square) + t^{-1} \psi_1(\square) + \psi_0(\square) + O(t^{\delta}), \delta > 0$$

for $t \downarrow 0$. The $\psi_k(\square)$'s are known as the Seeley coefficients of \square . Moreover each $\psi_k(\square)$ can be expressed as an integral over S^4 of a certain measure $\psi_k(x|\square)$ dvol. $\psi_k(x|\square)$ depends polynomially on the coefficients of \square and their derivatives. They can be expressed in terms of curvature invariants. In fact, the above asymptotic expansion is a consequence of a local expansion. Indeed, if $K_t(x, y)$ is the kernel of the operator $e^{-t\square}$ then

$$K_t(x,x) \sim t^{-2} \psi_2(x|\square) + t^{-1} \psi_1(x|\square) + \psi_0(x|\square) + O(t^{\delta}).$$

From this it also follows that

$$\hat{\psi}_k(x|\lambda\square) = \lambda^{-k}\psi_k(x|\square), \quad \lambda \in \mathbb{R}^+, \quad k = 0, 1, 2.$$

96 M. Daniel

Let $P_k(S^4, G)$ be a principal bundle on S^4 , characterized by its second Chern class, k. A multi-instanton with topological charge k is a connection on P_k . E is a bundle associated to P_k with a standard fibre the Lie algebra of G, on which G acts by the adjoint action.

Consider, now, the complex [3] which linearizes the self-duality equation F(A) = *F(A).

$$0 \longrightarrow A^0 \xrightarrow{d_A} A^1 \xrightarrow{\sqrt{2}Pd_A} A^2 \longrightarrow 0, \tag{1}$$

where $A^p = \Gamma(\Lambda^p \otimes E) = p$ -forms taking values in the Lie Algebra of G, and P = 1/2(1-*), the projection operator into anti-self-dual 2-forms. (We have introduced 1/2 for convenience.) From Eq. (1) we construct the Laplacians

$$\Delta_0^A = d_A^* d_A^A$$
, $\Delta_1^A = 2d_A^* P d_A^A + d_A^* d_A^*$.

It is well known [1] that Δ_1^A corresponds to the fluctuation operator, which governs quantum fluctuations around the self-dual connection A, whereas Δ_0^A is the operator which appears in the F-P determinant. It is not surprising that the complex (1), which linearizes the self-duality equation, gives also the fluctuation operator, because the latter is obtained from the second variation of the action by retaining only quadratic terms.

Indeed, if we vary the Yang-Mills action, $\mathfrak{A}(A)$, along a straight line $A^t = A + t\eta$, then we get [4]

$$\frac{1}{2} \frac{d^2 \mathfrak{A}(A^t)}{dt^2} \bigg|_{t=0} = (\eta, 2d_A^* P d_A \eta) + O(\eta^3) \equiv (\eta, \tilde{\Delta}_1^A \eta) + O(\eta^3).$$

However, $\mathfrak{A}(A)$ is gauge invariant. So we must eliminate variations along gauge orbits. Thus, the correct fluctuation operator is given by a pair of equations

$$\tilde{\Delta}_1^A \eta = 0$$
, $d_A^* \eta = 0$ (background gauge)

or, equivalently by

$$\Delta_1^A = 2d_A^* P d_A + d_A d_A^*$$
.

The operators $\Delta_p^A(p=0,1)$ are self-adjoint, second order and elliptic [1]. $h_t(\Delta_p^A)$ has, then, an asymptotic expansion. In what follows we shall calculate the Selley Coefficients functions $\psi(x|\Delta_p^A)$.

We shall use the conformally flat metric $g_{\mu\nu}(x) = \Omega(x)\delta_{\mu\nu}$, where $\Omega(x) = R^4/(x^2 + R^2)^2$ and R is the radius of S^4 . This is obtained from the stereographic projection on \mathbb{R}^4 . (There is a factor of four missing in $g_{\mu\nu}$ so that $g_{\mu\nu} \xrightarrow{R \to \infty} \delta_{\mu\nu}$.) In this coordinate system

$$\begin{split} & \boldsymbol{\Delta}_{0}^{A} = -\,\boldsymbol{\Omega}^{-\,1} \{ \boldsymbol{\partial}_{\mu} \boldsymbol{\partial}_{\mu} + (2\boldsymbol{A}_{\mu} + \boldsymbol{\Omega}^{-\,1} \boldsymbol{\partial}_{\mu} \boldsymbol{\Omega}) \boldsymbol{\partial}_{\mu} + (\boldsymbol{A}_{\mu,\,\mu} + \boldsymbol{A}_{\mu} \boldsymbol{A}_{\mu} + \boldsymbol{\Omega}^{-\,1} \boldsymbol{\partial}_{\mu} \boldsymbol{\Omega} \boldsymbol{A}_{\mu}) \} \\ & (\boldsymbol{\Delta}_{1}^{A})_{\mu\nu} = -\,\boldsymbol{\Omega}^{-\,1} \{ \boldsymbol{\delta}_{\mu\nu} \boldsymbol{\partial}_{\sigma} \boldsymbol{\partial}_{\sigma} + [\boldsymbol{\delta}_{\mu\nu} 2\boldsymbol{A}_{\sigma} + \boldsymbol{\Omega} \boldsymbol{\partial}_{\mu} \boldsymbol{\Omega}^{-\,1} \boldsymbol{\delta}_{\sigma\nu} - \boldsymbol{\Omega} \boldsymbol{\partial}_{\nu} \boldsymbol{\Omega}^{-\,1} \boldsymbol{\delta}_{\sigma\mu}] \boldsymbol{\partial}_{\sigma} \\ & \quad + [\boldsymbol{\delta}_{\mu\nu} (\boldsymbol{A}_{\sigma,\,\sigma} + \boldsymbol{A}_{\sigma} \boldsymbol{A}_{\sigma}) + \boldsymbol{\Omega} \boldsymbol{\partial}_{\mu} \boldsymbol{\Omega}^{-\,1} \boldsymbol{A}_{\nu} - \boldsymbol{\Omega} \boldsymbol{\partial}_{\nu} \boldsymbol{\Omega}^{-\,1} \boldsymbol{A}_{\mu} + \boldsymbol{\Omega} \boldsymbol{\partial}_{\mu} \boldsymbol{\partial}_{\nu} \boldsymbol{\Omega}^{-\,1} \\ & \quad + \boldsymbol{F}_{\mu\nu} + * \boldsymbol{F}_{\mu\nu}] \} \,. \end{split}$$

The Seeley Coefficient functions $\psi_k(x|\Delta_p^A)$ can be calculated by a cononical procedure applied to the coefficients of Δ_p^A [5]. $\psi_k(x|\Delta_p^A)$ are expressible in terms of

curvature invariants which involve the curvature of the sphere and the bundle. $\psi_k(x|\Delta_p^A)$ are invariants of order (4-2k) in the derivatives of the metric. It turns out that the curvature invariants of S^4 (of order ≤ 4) are all

constants.

Table 1

Order	Invariant
2 4	$K(g) = R^{\mu\nu}_{\nu\mu} = 48/R^2$ $R^{\mu\nu}_{\nu\mu;\sigma\sigma} = 0$ $K(g)^2 = 2304/R^4$ $ R(g) ^2 = R^{\mu\nu\varrho\sigma}R_{\mu\nu\varrho\sigma} = 384/R^4$ $ Ric(g) ^2 = R^{\mu\sigma}_{\sigma}^{\nu}R_{\mu\sigma\sigma}^{\sigma} = 576/R^4$

Thus the calculation of $\psi_k(x|\Delta_p^A)$ is simplified by choosing x=0. The results are tabulated below.

Table 2

k	$\psi_k(0 \Delta_0^A)$
2	$1/(4\pi)^2 I$
1	$1/(4\pi)^2 8 \cdot 1/R^2$
0	$1/(4\pi)^2 \left[1/12F_{\mu\nu}(0)F_{\mu\nu}(0) + 464/15 1/R^4\right]$
	$\psi_{k \mu u}(0 {\it \Delta}_0^A)$
2	$1/(4\pi)^2 I\delta_{\mu\nu}$
1	$1/(4\pi)^2 \left[F_{\mu\nu}(0) + *F_{\mu\nu}(0) - 4\delta_{\mu\nu}/R^2 \right]$
0	$1/(4\pi)^2 \left[\delta_{\mu\nu}^{\mu\nu} 1/12 F_{\rho\sigma}(0) F_{\rho\sigma}(0) + 1/2 (F_{\mu\kappa} + *F_{\mu\kappa}) (F_{\kappa\nu} + *F_{\kappa\nu}) \right]$
	$\frac{1/(4\pi)^2 \left[\delta_{\mu\nu}^{} 1/12F_{\varrho\sigma}(0)F_{\varrho\sigma}(0) + 1/2(F_{\mu\kappa} + *F_{\mu\kappa})(F_{\kappa\nu} + *F_{\kappa\nu}) + 1/6D_{\varrho}D_{\varrho}(F_{\mu\nu} + *F_{\mu\nu}) - 4/3 \cdot 1/R^2 *F_{\mu\nu} - 16/15\delta_{\mu\nu}/R^4\right]}{+ 1/6D_{\varrho}D_{\varrho}(F_{\mu\nu} + *F_{\mu\nu}) - 4/3 \cdot 1/R^2 *F_{\mu\nu} - 16/15\delta_{\mu\nu}/R^4\right]}$

Where $D_{\varrho} = \partial_{\varrho} + A_{\varrho}$ is the covariant derivative in flat space. It follows from Tables 1 and 2 that

$$\begin{split} & \psi_1(x|\Delta_0^A) = 1/(4\pi)^2 \cdot K/6 \,, \\ & \psi_0(x|\Delta_0^A) = 1/(4\pi)^2 \left[1/12 \, F_{\mu\nu}(x) \, F_{\mu\nu}(x) + a K^2 + b |\mathrm{Ric}|^2 + c |R|^2 \right], \end{split}$$

where 2034a + 576b + 384c = 464/15. In fact, it is possible to show that a = 1/72, and c = -b = 1/180. Moreover,

$$\begin{split} \psi_{1|\mu\nu}(x|\varDelta_{1}^{A}) &= 1/(4\pi)^{2} \left[F_{\mu\nu}(x) + *F_{\mu\nu}(x) - 1/12K\delta_{\mu\nu} \right], \\ \psi_{0|\mu\nu}(x|\varDelta_{1}^{A}) &= 1/(4\pi)^{2} \left[1/12\delta_{\mu\nu}F_{\varrho\sigma}(x)F_{\varrho\sigma}(x) \right. \\ &+ 1/2(F_{\mu\kappa}(x) + *F_{\mu\kappa}(x))\left(F_{\kappa\nu}(x) + *F_{\kappa\nu}(x) \right) \\ &+ 1/6D_{\varrho}D_{\varrho}(F_{\mu\nu}(x) + *F_{\mu\nu}(x)) \\ &+ (a'K^{2} + b'|\mathrm{Ric}|^{2} + c'|R|^{2})\delta_{\mu\nu} \\ &- \frac{1}{36} *F_{\mu\nu}(x)K \right], \end{split}$$

where 2304a' + 576b' + 384c' = -16/15.

98 M. Daniel

A calculation of $\psi_k(0|\Delta_p^A)$ was also done by Lüscher [6] with identical results.

Acknowledgement. I thank V. Glaser for reading the manuscript.

References

- 1. Schwarz, A.S.: Commun. Math. Phys. 64, 233-268 (1979)
- 2. Atiyah, M., Bott, R., Patodi, V.K.: Inv. Math. 19, 279-330 (1973)
- 3. Atiyah, M., Hitchin, N., Singer, I.M.: Proc. R. Soc. London A 362, 425-446 (1978)
- 4. Atiyah, M., Bott, R.: On the Yang-Mills equations over Riemann surfaces. Preprint, 1978
- 5. Gilkey, P.B.: The index theorem and the heat equation. Mathematics Lecture Series. Publish or Perish, 1974
- 6. Lüscher, M.: Private communication

Communicated by R. Stora

Received October 29, 1979