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Abstract. We construct and study a new class of quasi-free completely positive
maps on the C*-algebra of the canonical anti-commutation relations.

Introduction

We construct and study quasi-free completely positive maps between algebras
of the canonical anti-commutation relations (CAR) induced by contractions
at the underlying hilbert space level. We are motivated in part by some analogous
results for the Boson case, which however were obtained with less effort using
generating functions for example [7, 8,13,14,16,19,20]. We take as our starting
point for the CAR algebra, the theory of quasi-free states, quasi-free automor-
phisms and the work in [23, 31] (see also [9,20]) on quasi-free completely positive
maps which leave the Fock or anti-Fock state invariant.

In the first section, we consider a completely positive contraction on a C*-
algebra which possesses an invariant state. We study the given map with the aid of
the contraction it induces in the GNS Hilbert-space of the invariant state, and show
under suitable conditions that a completely positive contraction dominates its
spatial part in the GNS decomposition of an invariant KMS state.

In Sect. 2 the theory of quasi-free states on the CAR algebra is reviewed and
our notation established. In the third section we construct and develop the theory
of a single completely positive quasi-free map. In particular, the main result of
Sect. 1 is used to easily identify the pure ones.

In the final section we analyse semigroups of completely positive quasi-free
maps on the CAR algebra. In particular, we show that the infinitesimal generator
of such a semigroup is bounded at the C*-level if and only if it is of trace class at
the hilbert space level. This improves the results of [1] (see also [28]) for quasi-free
derivations, and a partial result of [9] for quasi-free generators of Fock-type.
Some dilation and perturbation questions are also discussed.

We work throughout with CAR algebras built over complex hilbert spaces,
but much of our work also holds for those over real spaces.
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1. Spatiality

Let T be a completely positive contraction on a C*-algebra A, which leaves a
state φ on A invariant. Let (π,#, ξ) be the GNS decomposition of φ.
Then by the Schwarz inequality for a completely positive map there is a well
defined contraction F = F(T) say on H such that

Fπ(x)ξ = πT(x)ξ, for all x in A. (1.1)

See [24].
In this section we study the relationship between the completely positive

map TonA and the completely positive spatial map F(-)F* on B(H). In particular
we are interested in showing that

x -* πT{x) - Fπ(x)F* (1.2)

is completely positive from A into B(H). Such a result has already been obtained
in certain circumstances, namely for certain quasi-free completely positive maps
on the CCR algebra [20], and for strongly continuous semigroups on a C*-algebra
which leave invariant a pure state [11].

We will use the definitions and notation of Tomita-Takesaki theory as set
out in [34].

Theorem 1.3. Let T and V be completely positive contractions on a C*-algebra
A, having a common invariant separating state φ such that

φ[T{x)y] = <p[xT'(j/)], for all x9y in A.

Then ίfF = F(T), the map

x -> πT(x) - Fπ(x)F* (1.3)

is completely positive from A into B(H).

Proof. Since φ is a separating state, it follows from [9, Theorem 4.2] that T and
T are spatial, i.e. there exist completely positive normal maps t and T on the
von Neumann algebra B = π(A)" such that

fπ(x) = πT(x\ and f'π(x) = πT'(x) for all x in A.

Then

<T(a)bξ,ξ> = <at'(b)ξ,ξ> (1.4)

for all α,b in B. The vector state h -» <&ξ,ξ}:beB, is a faithful normal state on
B with modular automorphism group {σt:teU} say, [34]. Then as in [5,25]
we see that f and V commute with the modular automorphism group σR. In
fact let S be the closure of the map bξ->b*ξ;beB. Then since Tand V are *-maps,
we see that F(f) and F(ff) commute strongly with S. But F(f') =F(t)* by (1.4)
and so F(f) commutes strongly with both S and 5* and hence also with the
modular operator Δ = (S*S)ί/2. Thus f commutes with the modular automor-
phism group σt = Δi\')Δ~it since ξ is a separating vector for B. Similarly f'σt =
σtf

r for all t in [R. Let Be denote the σ-weakly dense *-subalgebra of entire elements
oϊB.
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Then

σz(ar = σ-z(a*) (1.5)

and

<σz(a)ξ,ξ> = <aξ,ξ> (1.6)

for all a in Be,z in C.
Moreover f and f' leave 5 e invariant and

fσz(a) = σzf(a\ f'σz(a) = σzt'{a) (1.7)

for all a in Be,z in C. We will use the KMS condition in the form:

<abξ,ξ) = (bσ_i(a)ξ,ξ}, for all aeBe,beB (1.8)

Then for all x, y and £ e we have:

by (1.8)

]σ. < / 2 (x*)}ζ,O

= < σi/2(x)f \σij2y)t'[σl/2(yr]σί/2(x) ξ, ξ > by (1.5),
(1.6) and (1.7)

^ < ̂ M ^ T V M V M * ] VM*^> ^ > b ? t h e K a d i s o n -
Schwarz inequality

= <ff{σ_ί/2lσi(y)y^}σ_i/2(x^σ_i/2(x)ξiξ} by (1.5) and (1.8)

= < T'[σιJiy)y*']x*xξ9 ξ > by (1.6) and (1.7)

= <σιty)y*t(x*x)ξ,ξ> by (1.4)

= <y*t(x*x)yξ,ξ> by (1.8)

The result follows.
The theorem also holds for completely positive maps between different C*-

algebras with two suitable separating states. The following proposition is an
indication of the usefulness of the preceding theorem. Further exploitations of
these results will occur in the next section.

Proposition 1.4. Let {Tt:teU + } be a family of unίtal linear maps on unital C*-

algebra A and n a non-degenerate representation of A on a Hilbert space H. Suppose

{Gt :teU+} is a strongly continuous contraction semigroup on H such that lim GfGt

is a projection, p, and the map

x-*πTt{x)-Gtπ{x)Gΐ (1.9)

is positive from A into B(H). Then

lim GfnTt{x)Gt

t->αo

exists in the weak operator topology for all x in A, and is equal to pn(x)p.
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Proof. As ί-> GO,GfGt converges strongly to a projection p [33]. Let Jt denote
the positive map from A into B(H) given in (1.9). Then for all xeA + , teM+, ξeH
we have

<G?Jt(x)Gtξ,ξ> ^ \\x || <G*Jt(l)Gtξ, ξ>

= \\x\\<(G*Gt-G*GtG*Gt)ξ,ξ>

-• 0 as ί -> oo.

Hence by linearity we see that

lim G*πTt(x)Gt = pπ(x)p
t-*ao

for all x in A.

2. The CAR Algebra

Here we record what we need about quasi-free states on the CAR algebra, details
of which can be found in [1,2,4,12,21,27, 30, 32].

If H is a hilbert space, the CAR algebra over H, A(H) is the C*-algebra gene-
rated by elements {a(f):feH} where a is a conjugate-linear map from /ί into
A(H) satisfying the canonical anti-commutation relations:

for all/,0 in //, and where α*(/)
00

Fock space F(H) is defined to be 0 AnH, where A°i/ = C with unit vector
n = 0

Ω, and AnH for n ^ 1 is the rc-fold anti-symmetric tensor product of H. If T is a
contraction between hilbert spaces H and K,F(T) will denote the contraction
determined by

g.eH.

The formula

defines an irreducible representation of the CAR algebra A(H) on F(H) called
the Fock representation. Further representations of A(H) can be obtained as
follows. If H is a hilbert space, H will denote its conjugate hilbert space with the
canonical conjugate-linear isometry/->/of H onto H. For an operator R on H
with O ^ K ^ l , take positive operators oc,β on H such that ot2 + β2 = l and

Let Γ = F{ - 1) be the self adjoint unitary on F(H) such that ΓΩ = Ω and
Γα(/) = - α(/)Γ for all / in H. Then

π'R:a(f)-+πoa(af)®Γ+l®πoa(βf)*; fsH

defines a representation π'R of the CAR algebra A(H) on F(H)®F(H). We define
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the quasi-free state ωR on A(H) by

ωR(x) = < π'R{x)Ω ®Ω,Ω®Ω);χe A(H)

so that

We denote the GNS decomposition of ωR by (πR, FR(H\ ΩR), so that FR(H)
can be identified with \π'RA{H)Ω®Ω~]~,ΩR with Ω®Ω and π^ with a subrepresen-
tation of πR.

We can decompose H as H1®H2 where ffj = Ker [|l - 2R\ - 1] and
H2 = HΘHί. Then Ktf. c Hi for i = 1,2, and if K. = R\Hi we have Λ? = R^
The quasi-free state ωΛ is said to have no Fock part iϊH1 = 0, and to be completely
Fock if H2 = 0, or equivalently if R2 = R.

lϊR has no Fock part, the representation πR is already cyclic with cyclic vector
ΩR. Moreover in this situation, the state ωR is KMS at inverse temperature
β ^ oo, for the quasi-free group of automorphisms A(eiht) where the self-adjoint
operator h on H is given by coth(/J/j/2) = 1 — 2R.

3. Quasi-Free Completely Positive Maps

Let T :H -• K be a contraction between hilbert spaces H and K. We wish to
construct in a quasi-free fashion completely positive maps from A(H) into A(K)
extending T in the sense that a(f) must be mapped onto a(Tf). Moreover we
with this construction to be functorial and to reduce to the study of quasi-free
states for the case T = 0, and to quasi-free *-homomorphisms for isometric T.

Thus if T is an isometry we define A(T) to be the unique *-homomorphism
from A(H) into A(K) such that A(T)a(f) = a{Tf\ for all/in H.

Next we show that projections at the hilbert space level will give rise to condi-
tional expectations at the C*-level. Thus let H and K be hilbert spaces, and R an
operator on H with 0 ^R ^ 1. Consider the *-homomorphism π of A(KφH)
into A(K)®B(FR(H)) given by

πa(kφh) = a(k)®ΓR + 1 g> πRa(h\ kφheKφ H

where ΓR is the restriction of Γ <g) Γ to Fκ(#). We can then define a projection
iV from yl(X 0 H) onto ^(X) by

x->l<g>ώΛπ(x); xe^CKφ//) (3.1)

where ώΛ is the vector state ΩΛ (g) Ωκ on β(FΛ(H)). Then for any operator S onK
with 0 ^ S ^ 1, we have

ωsφR = ωs°N (3.2)

Note the existence of a conditional expectation N satisfying (3.2) follows from
[35] for case when R and S have no Fock parts, and then the general case follows
if one uses a limiting argument.
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Now let T : H -> K be an arbitrary contraction between hilbert spaces // and
K. Then if (7 denotes the unitary

Γ - ( l - TT*)1 / 2 T 1

and W[ and PF2 are the isometries ft-> (0,h)9heH;k-> (k,0)9keK respectively,
one has the unitary dilation T = W*UW[ for Γ [22]. In particular Γ = W*W±

is a decomposition of T into a co-isometry and an isometry where

Wίh=UWf

ίh = Th@(l- T*T)1/2h; heH.

If R is an operator on H with 0 ^ Λ ^ 1, we define the completely positive map
ΛR(T) by composition:

AR(T) = N°A(W1)

where N is the conditional expectation in (3.1) of A(K® H) onto A(K). Taking
R = 0, we recover the quasi-free completely positive maps constructed in [23, 31],
see also [9,20].

In the first place note that AR(T) maps the quasi-free states of A{K) into those
of A(H). Let S be an operator on K with 0 g S ^ 1. Then

where Q= W*(S(BR)W± = T*ST + (1 - T*T)1/2R(1 - T*T)1/2. (In particular,
ωγA0{T) = ωτ*τ, in accordance with [23]).

Thus if TR = ST we have

ωsAR(T) = ωR.

In fact even more is true:

ωs[AR(T)(x)]y-] = ωΛ[x4s(T*)(y)] (3.3)

for all x in A(H\ y in A(K\ since

= ωsNlA(W1)xA(W2)(y)']

2)(y)]
as [l/,SφΛ] = 0

Note that if (3.3) holds then it must be the case that TR = ST, by considering
x = a(h),y = a(k),heH,keK. Moreover if R and S have no Fock part, and if
ωs[AR(T)(x)y] = coR[xφ(y)~\;xeA(H\yeA(K) for some unital positive map φ
from A(K) into A(H\ then we see from the proof of theorem 1.3 that TR = ST.

Now let T be an arbitrary contraction between Hilbert spaces H and K and
R an operator on H, 0 ^ # ^ 1. Then if D = (1 - T*T)ί/2 and ̂ , . . . Jn, are ele-
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ments of H, we have from the definitions:

AR(T)la*(f1)...a*(fn)~\

= Σεa*(Tf1)...aHtfh)...a*(ffip)...a*(Tfn)

•ωR[a*{Dfi)...aHDfiβ (3.4)

Here af(f) denotes either a(f) or α*(/) but no normal ordering is necessary.
The summation extends over all subsets σ = {ίί,..., ip} of {1,..., m} in increasing
order; and if σ' = {j19... Jn-P} is the complement of σ in {1, ...,n}, in increasing
order, the ε is the signature of the permutation (1,... ,n) -• (σ,σ') Also over a
term af(f) means that this factor is omitted.

In particular ΛR(T) is a homomorphism on the algebra generated by {a(h):
heH}:

ΛR(T) [α(Λ)... α(/J] = αίΓΛ)... a(Tfn). (3.5)

If [R,T*T] = 0, then this expression simplifies (3.4) somewhat. Assume for
the remainder of this section that there exists an operator S o n K with 0 ^ S ^ 1,
and TR = ST. Then even greater simplifications take place as we shall discover.

If R = 0, S = 0, then we have [23]:

Also if R = 1,5 = 1, then

However the fock functor Ao does not have a simple expression on Wick mono-
mials, normally ordered with respect to the anti-Fock state ωγ, and vice-versa.
It would thus seem useful to introduce normal ordering with respect to arbitrary
quasi-free states.

Now if gx,..., gn and f x , . . . ,/m are elements of //, we have

'a(gn)-' a(gjp)...a{gjί)...a(g1)

^ H S (3.6)

where the summation extends over all subsets σ = {ίί, ...,/p} (respectively ρ =

{j19...Jp}) of {1,2, . . .,m} (respectively {1,2, . . .,n}) in increasing order, and if

σ' = {i\ ...i'm_p} (respectively p' = {j\ ...,fn_p} in increasing order is the comple-

ment of σ (respectively p) in {1,2,... ,m} (respectively {1,2,... ,n}) then ε is the

product of (— lyro-pHn-p) a n c j the signatures of permutations
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state ωR can then be defined by:

:a*(f1)...a*(fm)a(gn)...a(g1):R

= Σεa*(fί)...a*{fh)...a*{fip)...a*(fm)

•a(gn)--M9jp)---a(9j1)---a(g1)

•det[ωR(a*(fir]a(9j))]

where the summation is as described for (3.6).

We simplify the notation even further so that when we write :α#(/z1)... af(hn) :R

for some vectors h19... ,hn in H, it is always implicit that inside the dots, all the
creation operators are to the left, and the annihilation operators to the right.

Then if T is a contraction between hilbert spaces H and K which intertwines
with operators R and S on H and K respectively, with O^R^.1,0 ^S ^1, it
is shown in the appendix that:

AR(T)l:a*(h1)...aHhl):R]

= :a*(Th1)...a*(Thn):s (3.7)

for all hί9... ,hn in H. (However recall from the definition that ΛR(T) in no way
depends on S).

From this we can conclude that if V is another contraction from K into another
Hilbert space L, and that if there exists an operator Q on L, with 0 :g Q ^ 1, and
T'S = QT\ then

AS(T')AR(T) = AR{T'T). (3.8)

We now study the contraction FR S(T) from FR(H) into FS(K) given by:

FRS(T)πR(x)ΩR = πsΛR(T)(x)Ωs; xeΛ(H) (3.9)

If H = K and R = S, we write FR{T) for FRR(T). We claim that:

FRS(T) is the restriction of F(T) ® F( ί ) to FR(H) (3.10)

where Γ is the bounded operator x -» Γx on H. If T is an isometry then (3.10)
can be verified by a direct calculation involving the very definitions. But from (3.3)
we have FR S(T)* = Fs>Λ(T*), and so from F(T*)®F(f*) - [F(Γ)(g)F(f)]* it
will follow that (3.10) also holds when T is a co-isometry. Hence the decomposition
T = W^Wί and the definition of AR(T) allows us to deduce (3.9) in the general
case. (Note that SΘRWX = WγR and S®RW2 = W2S). It is interesting to note
that our knowledge of T -> -4Λ(T) being functorial is not required here. Thus
(3.9) and (3.10) can be used to prove the functorial property (3.8) in the first place
for R and S which have no Fock part in which case ΩR and Ωs are separating,
and secondly for arbitrary R and S by a limiting argument which will be described
in our next result, (c.f. [31]).

Let
Rn = l/n + (l-2/n)R

and



Maps on the CAR Algebra 61

Then Rn and Sn have no Fock parts, TRn = SnT, and Rn -> JR, Sn -> 5 as n -• oo.
Thus we conclude from Theorem 1.3 that

x -+ π s4Λ(Γ)(x) - Fπκ(x)F* (3.11)

is completely positive from A into B(FS(K)\ where F = FRS(T). In what follows
we will often dispense with the symbols πR and πs when taking representations.

If T is a co-isometry we have

AR(T)(l)-FRS(T)lFR,s(T)* = O

and so from the preceding paragraph, we have

AR(T) = F( )F*. (3.12)

In particular AR(T) has an ultraweak extension ΆR(T) from πR(A(H))" into
If R and 5 have no Fock parts it follows from (3.10) and (3.12) that

= A0(T)®Ά0(T)(x); xeA(H) (3.13)

Note however that simply by considering x = a(h\heH, that (3,13) fails if Tis
not co-isometric. This should be contrasted with the CCR situation (see [20])
where the analogous result is easily seen to hold for any contraction T.

Conversely suppose (3.12) holds for some contraction T. Then 1 = FR S(T) x
FRS(T*) = FS(TT*\ and by considering the action on πs(a*(h)) it follows that T
is a co-isometry.

The complete positivity of (3.11) can also be used to easily determine when
AR(T) is pure in the sense of [3,14 Definition 3.2]. If AR(T) is pure then we must
have

for some λ Ξ> 0. In particular we see

λΩs = λAR(T)(ί)Ωs = FRJT)IFRJT)*ΩS = Ωs>

and so λ = 1. Thus from the preceding Tmust be a co-isometry. Then from (3.12)
and [3] we see that if T is a co-isometry then AR(T) is pure if and only if the repre-
sentation πR is irreducible i.e. if and only if R is a projection.

We summarize these results as follows. Note that (iii) is in accordance with
[14] for the CCR algebra, which however has shown by an entirely different
method.

Theorem 3.1. Let T be a contraction between hίlbert spaces H and K, with R, S
operators on H and K respectively such that 0 ^ 1 * ^ 1 , 0 ^ 5 ^ 1 and TR = ST.
Then there exists an unique completely positive unital map AR(T)from A(H) into
A(K) such that

forallf1,...,fninH.
Moreover:
(i) ωs[AR(T)(x)y] = ωR\xAs{T*)ylxeA{H\ yeA(K)
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(ii) The map x -• πsAR(T)(x) - FπR(x)F* is completely positive from A(H) into
B(FS(K)\ and where F is the contraction from FR(H) into FS(K) given by
πR(x)ΩR^ πsAR(T)(x)Ωs. Also πsyiΛ(Γ)(;c) = FπΛ(x)F*, for all x in A(H)
if and only if T is a co-isometry, and AR(T) is a homomorphism if and only
if T is an isometry.

(iii) AR(T) is pure if and only if TT* = 1 and R2 = £, i.e. 4Λ(T) is a conditional
expectation with respect to a Fock state.

4. Semigroups of Quasi-Free Completely Positive Maps

Let {Tt:t*z0} be a strongly continuous contraction semigroup on a Hilbert
space iϊ, which commutes with an operator R on H, 0 :g R ̂  1. We now study
the dynamical semigroup ^(T,) on A(H).

Suppose, c.f. [33], we know that as t -» oo, T*Tt converges strongly to some
projection e on H, which reduces the semigroup Tt, and is such that Tt is isometric
on eH, and converges strongly to zero on (1 — e)H. Then as t -• oo, Fi?(Γί)*FΛ(Γf) =
FR(T*Tt) converges strongly to FR(e). Thus by Proposition 1.4 we see that as
t -> oo :

which can be interpreted as a conditional expectation onto the hamiltonian part
of the system.

To dilate the semigroup AR(Tt\ first take a minimal unitary dilation (Ut, K, V)
of the semigroup Tt [33], so that V is an isometric embedding of H as a subspace
of a hilbert space K, and Ut is a strongly continuous unitary group on K satisfying

K = v{UtVf:teUJeH}

and

Tt= V*UtV,t^O.

Let ft = Tt if t ̂  0, and f; = T*r if ί ̂  0. Then

is positive definite on U x U. Hence by [20, Theorem 1.12] there exists an unique
contraction S on K such that SUtV= UtVR, for all t in U. It is easily verified
that SV= VR, [5, ί/J = 0, and that 5 is positive. Thus we see from the preceding
theory that the semigroup of completely positive maps AR(Tt) on A(H) can be
dilated to a group of *-automorphisms A(Ut) on A(K):

AR(V = AJV*)A(Ut)A(V) for all t ^ 0.

Such dilations have been widely studied in the analogous CCR case [7, 8,16,
20]. Other types of dilations can also be obtained as in [20], based either on
Cooper's dilation [6] or on the co-isometric dilation of [10, Theorem 16.2] rather
than based on St. Nagy's dilation [33] as we have done above. See also [14].
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Again let {Tt:t^O} be a strongly continuous contraction semigroup on a
Hubert space //, which commutes with an operator R on //, 0 ^ JR ^ 1. If £
denotes the infinitesimal generator of the semigroup Tf, let *L4Λ(B) denote the
infinitesimal generator of the strongly continuous contraction semigroup ΛR(eBt)
at the C*-level. Consider now the problem of characterising for which B the
induced semigroup ΛR(eBt) is norm continuous. If AR(eBt) is norm continuous,
then B is certainly bounded since AR(eBt)a{f) = a{eBtf). Moreover a bounded
operator B on H gives rise to a contraction semigroup {eBt: t ^ 0} if and only
if B is dissipative; i.e. re(B) S 0. It was shown in [1], (see also [28]) that if B is
skew-adjoint or equivalently if eBt is a unitary group, then A(eBt) is a norm conti-
nuous group of *-automorphisms if and only if B is of trace class. Moreover,
it was also shown in [9] that a dissipative trace class operator B on H gives rise
to a norm continuous semigroup A0(eBt\ here o refers to the Fock-functor of
[23, 31]). These results will be improved in Theorem 4.1.

However, first consider a bounded dissipative operator BonH which commutes
with an operator i ^ o n H , 0 ^ R ^ l . Then from (3.7) we see that the *-algebra
Aι{H) generated by {a(h):heH} is contained in the domain of dAR(B) and

dAR(B)[:aΠhί)...aHhn):R]

= Σ :lna*ihj)a*{Bh} f[ a*{hj):R (4.1)

for all Z^,...,/^ in//.
Thus if Bx and £ 2 are dissipative operators commuting with R, then

dAR(Bx + B2)(x) - dAR{Bx){x) + <L4Λ(B2)(x) (4.2)

for all x in ^ ( i ί ) .

Theorem 4.1. Lei {eβί: ί ^ 0} fee α strongly continuous contraction semigroup
on a Hubert space H, which commutes with an operator R on H,0 ^R^l. Then
{AR(eBt): t ^ 0} is a norm continuous semigroup of completely positive maps if and
only if B is of trace class.

Proof Let B be of trace class. Then we know from [1,28] that dAR(B — B*) is
bounded. Thus using (4.2) it only remains to show that dAR(B + B*) is bounded.
We can find a complete orthonormal set {fn} in //, and real scalars λn,rn with
λn S 0,0 ^ rn ^ 1, n = 1,2,..., such that

and JR/π = rnfn, iϊλn < 0. Let J be the unique conjugation on H such that J/n =fn.
If p is the projection on Ker (B + B*), and Tt = exp(β -f JB*)ί, we see that >4pΛ(Γf) =
AR(Tt) if ί ^ 0. Thus we can assume that JR = JR J as well as JTt = TtJ. Let E
be the purification projection on H®H [29]:

_ / R R1/2(1-R)ί/2

\R1I2(1 - R)112 1-R
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Then [ J φ J , £ ] = 0. Let θ be the *-automorphism of A(HφH) given by

θa(f) = α((l - E)f) + a*((E)(Jθ J)/) M 0 / /

so that ω£ = ωoo0. Moreover, since [ J ® •/,£] = () we see that AE(Tt(BTt) =
θ~ 1A0(Tt φ 7;)0, for ί ^ 0. Hence {AE(Tt © Γf): ί ^ 0} is norm continuous by [9].
Thus AR(Tt) is also norm continuous since it is the restriction of AE(Tt φ Tt) to

Conversely suppose dAR(B) is bounded. As in [28], let Ho be a finite dimen-
sional subspace in H with complete orthonormal set e19...,en,en + ί,... ,em such
that BeteH0 for ί = 1,... ,n. Then for all x e H 0 ,

Bx = Σ
i=ί

so that

a(Bx)a(en + ί ) . . . a(ej = £ < B x , e . > a ( e i ) a ( e n + 1 ) . . . a(ej

as α(e.)α(ef) = 0. Thus if j ; = a(e x)... α(βπ), and x = α(e n + 1 ) . . . «(em), we see as in
[28] that

Thus

i=ί

= \dAR{B)iy)~\x + x*dAR(B){y*). (4.3)

Let z = yx; then z2 = 0, since α(β.)α(ef) = 0, moreover ωo(z*z) = 0, and ωo(zz*) = 1
where ω 0 is the Fock state. Thus (z + z*)2 = zz* + z^z, and ωo[(z + z*)2] = 1.
Whence || z + z* || ^ 1. It now follows from (4.3) that

Hence since B + 5 * ^ 0, we see that 5 + £ * is of trace class, with - tr(B + 5*) ^
21| d^CB) | |. It follows from the first part of the theorem that dAR(B + B*) is
bounded, (as well as dAR(B) by hypothesis). Thus from (4.2) we see that dAR(B — 5*)
is bounded and so B — B* is of trace class by [1,28]. Hence B is of trace class.

As an application of the theory we have developed, we proceed and take a
"Laplacian" which is the square of a quasi-free derivation and consider its pertur-
bation by a quasi-free generator of the type we have constructed already.

Theorem 4.2. Let hbea self-adjoint operator on a hilbert space H and K a bounded
dίssipative operator on H. Ifλ is a real scalar, 0 ^ / 1 ^ 1 , then there exists a strongly
continuous semigroup of completely positive unίtal maps on A(H) with infinitesimal
generator L such that A1^) is contained in the domain ofL and

L(x) = dAλ(ih)\x) + dAλ(K)(x) (4.4)

for all x in A\H).
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Proof. Let oc(t) = A(eiht) denote the strongly continuous group of *-automorphisms
of A(H) with infinitesimal generator iδ say: Let {/f: ί ^ 0} denote the convolution
semigroup in Lx(ίR) given by

Then from semigroup theory [15],

oc(ft)(x) = $a(s)(x)ft(s)ds,xeA(H)

defines a strongly continuous semigroup on A(H\ with infinitesimal generator
— <52, and which is clearly completely positive [7,8 p. 132].

Let Kn be a sequence of dissipative trace class operators on H, such that Kn-+ K
strongly, and \\Kn\\ ύ\\K\\. Then by Theorem 4.1, Sn=dAλ(KN) is bounded,
and so — δ2 + Sn generates a strongly continuous semigroup on A(H\ and for
each x in A(H)

+ J a(ftι)Sna(ft-t)^dti
o

m = 0

say, where

0 0

•SAft-J(χ)dt1...dtm

} . . . } ί e ί a s i S n e W s 2

For a l l ^ , . . . ,f in H we have

« | g 2 " | | / 1 | . . . | | / J | > (4.6)

Let y = a ^ ^ ^ . . a * ^ ) ^ , where g1,.-.,gp are unit vectors in H. Then from
(4.1), (4.5) and (4.6) we see that

\\An{m,t){y)\\ύ2ppm\\Kn\\mFlm

It is also clear from (4.5) that lim An(m,t)(y) exists. Hence lim ^ (~^2 + S n ) ί(χ) exists

for all t ^ 0, in A(H) and defines a strongly continuous semigroup of completely
positive unital maps, whose generator L satisfies (4.4).

Appendix

Proposition A.I. Let T:H->K be a contraction between Hubert spaces H and
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K, which intertwines with positive contractions R and S on H and K respectively.
Then for allf(ϊ)9...9f{m)9 g(ί\...,g(ή) in H, we have:

... a*(Tf(m)WΓg(n))... a(Tg(ί)) :s

Notation. If σ = (σ 1,... ,σr) is a sequence of positive integers, we let |σ | denote
its length r, and {σ} its underlying set {σ.}. If σι = (σ^,... ,σ .̂) rf = |σ f | , is a finite
number of sequences, we let (σ1,...,σp) denote the sequence (σ\,...,σ^,σ\,...,
σr

2

2,...,σf , . . . ,σy. If {(σ1, ...,σp)} = {^ > ... >jq}9 we let sgnίσ 1 , . . . ,^) denote
the signature of the permutation (jx,... Jq) -+ (σ 1,..., σp) when it exists. If σ = (σ.)
is a finite sequence, with 1 ^ σ. ^ w,r = jσ|, we let

1)) a(Tg(σr))

a*(g(σ)) =[aίg(σ))γ9 a*(Tg{σ))=la(Tg(σ))γ

We let Xn denote the set of all decreasing sequences σ = (σ.), σ1 > σ2 > ... > σr,
P

with r = | σ | ^ n . If σ,p\ ...,ppeXn, with {σ} = (J {p 7} and {pf} n {p̂ } = Φ, if

/ ̂ 7, we write σ = p 1 + ... + pp.

Lemma A.2. lfD = (l- Γ*T) 1 / 2, we have:

r(rc,..., 1))]

where the summation extends over all σ, σ' in Xm,p, p' in Xn, with σ + σ' = (m,..., 1),
p + p' = (n,...,l\and

f/ = (-l)'σ'sgn(p',p)sgn(σ».

Proof. By induction and the relation

ωT O Γ[α*(/)α(0)] = ωR[a*(f)a(g)] - ωD2R[a*(f)a(g)]

valid for all/and g in H, (which is the case m = n= 1).

Proof of Proposition A.I. We have

:a*(f(m9...9l)a(g(n9...9l)):R

= Σ^(fK))a(g(βo))ωRla^f(a))a(g(β))] (A.I)

where the summation extends over all α, α0 in Xm,β,β0 in Xn, with α + αo =
( l ) S S ( l ) d

Moreover for all α o e l m , βo

AR(T)[a*(f(ao))a(g(βom
= Σθa*(Tf(a")a(Tg(β"))ωD2R[a(f(a'))a(g(β'))-\ (A.2)
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where the summation extends over all α', α" in Xm, β', β" in Xn such that a! + a" =

6> = ( - l)l«1l« I-«-tjer-i\β-\sgn^α")sgn()?',β").

Thus from (A.1) and (A.2), we have:

AR(T)[:a*(f(m,...,\))a(g(n,...,ί)):R-]

where the summation extends over all a", a', α in Xm,β",β',β in Xn such that

a." + α' + α = (m,..., 1), β" + β'+ β = (n,...,l) and

fl = ( _ i)l«"l IΠ + I/H s g n (α> α ' ; α") s g n (β β', /?");

= Σεa*(Tf(a"))a(Tg(β"))ωτ,sτ[a*(f(δ))a(g(λ))-\

using Lemma A.2., where the summation extends over all α", δ in Xm,β",λ in
Xn, such that α" + δ = (m,..., 1), β" + /I = (n,..., 1), and

The Proposition follows.
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