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Abstract. We propose a partial resummation for a weak coupling cluster
expansion. The resummation gives one particle lines with in/out field pro-
pagators. We give a Bethe-Salpeter equation in which one particle subtractions
are defined using physical one particle states. By these methods, we show that
P(φ)2 quantum fields in the weak coupling region have only isolated bound
state spectrum below the 2m threshold. Here P is not restricted to be even.

1. Introduction

We present a new method for the study of mass spectrum, asymptotic complete-
ness and related questions. The method uses exact subtractions of the physical one
particle states technically, it is based on the π-particle cluster expansion [8], and a
(new)partial resummation which identifies the physical one particle lines in closed
form.

Previous work [3, 4,11,12] on spectral properties of P(φ)2 quantum fields was
based on the Euclidean program of defining n-particle irreducible amplitudes [13].
In this program, the vacuum subtractions are performed exactly, while one and
higher particle subtractions are replaced by an orthogonalization of the poly-
nomials in the Euclidean field φ. Thus in this program, a j-particle irreducible n-
point function is defined by projecting φ(x1)φ(x2)...φ(xn) onto the orthogonal
complement, in the Euclidean Hubert space $> = L2(&",dμ\ of the subspace
spanned by the vectors

φ(y1)...φ(yl)9l^j9yv€K.2. (1.1)

While the resulting subtraction agrees with the subtraction of (physical) j-particle
intermediate states for 7 = 0, it does not agree in general, and in particular if bound
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states occur. Forj ̂  1 spurious zeros and poles (CDD poles) can be introduced by
these subtractions.

The Euclidean program has been successful when j = 0 (the vacuum) was the
only subtraction required. Within this limit, particles and bound states below the
continuum threshold have been analyzed, and for even theories asymptotic
completeness up to energies below the four particle threshold is known. Various
extensions of this work have been given [1, 2, 7, 9]. This work makes it appears
likely that the j particle Euclidean subtractions can be incorporated into the
spectral analysis program.

We study here the simplest problem requiring a one particle subtraction : the
analysis of the four point function up to energies below the three particle
threshold, for a general (not necessarily even) interaction at weak coupling. These
methods appear useful in the study of higher spectral properties in field theory,
and presumably they have an analog in statistical mechanics.

In §2, we define normal ordering: φ(xί90)φ(x2,0): of the square of the time
ί = 0 field by subtraction of the physical one particle state. In other words, if |Ω> is
the vacuum state in the physical Hubert space Jf , then

:φ2 :|Ω>_L|one particle states) . (1.2)

The central object of the study in this paper is then

Γ):|Q>, (1.3)

where Ω=l is the Euclidean vacuum state, and the inner product is in the
Euclidean Hubert space $. We let < ) now denote an expectation in the Euclidean
vacuum Ω. Let

+ <φ(xl90)φ(y29 T)> (φ(x290)φ(yl9 T). (1.4)

We replace the Euclidean Bethe - Salpeter equation of the form (in momentum
space)

S~=G>GTΓS~, (1.5)

by an equation of the form

S0,τ = Λ,τ + Σ B0ιTSJtT. (1.6)
O^J^T

By summing over T, this leads to an equation

U Σ So,r d 7)
O ^ Γ \0^ j

with the solution

Σ s 0 > Γ =fι- Σ^c
O ^ T \ O^j

since 50 T = S/ τ+p etc We see that £ B0 j plays the role of G~K~in the Bethe-
O ^ j

Salpeter equation. As with G~K~, we achieve a factorization of £ B0 r The first
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factor contains the free field behavior of the four point function, and has a square
root singularity with a two-sheeted analytic continuation. The first factor arises
from two physical one particle lines, up to the time of their first interaction. The
second ("amputated") factor is analytic up to energies less than 3(m —ε), and
contains the effects of interaction between the one particle lines. Moreover

^ B0 . is compact on a suitable space of functions, analytic in p. The spectral

properties of the field theory, for E ̂  3(m — ε), follow from these facts.

2. One Particle Subtractions

In this section we review properties of one particle subtractions and establish
notation. To simplify the formulas, we assume

0. (2.1)

In other words, for a general theory, we make the substitution φ-^>φ = φ
Let |p) be the one particle state of momentum p. with the normalization

1δ(p-p'), (2.2)

where μ(p) = (p2 + m2) and m is the one particle mass. Then with

= x x C x ,

we have

g\2, (2.4)

where μ = ( — d2/dx2 + m2)112. The field strength renormalization constant Z is
defined by

(y\Z-1/2φ(x,ty\Ωy=(2μΓ1(x-y\ or equivalent^ (2.5)

Z1/2 = (2π^2e^2μ(pKp\φ(x)\Ωy . (2.6)

By Lorentz in variance, Z is independent of x, y, p.

Let M0 = |Ω><Ω| and let

(2.7)

be the orthogonal projection onto one particle states. In general, Ma is the
projection onto states of mass M = (H2 — P2)1/2^am. Then M0φΩ = Q,

(2.8)

and

(2.9)
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In weakly coupled P(φ)2 theories, as considered in this paper, I — M1 projects onto
states with energy greater than 2(m0 — ε), where m0 is the bare mass. Thus

)Γ. (2.10)

We use this formula in § 5 to identify resummed one particle lines.
We define the (physical) normal ordering, so that :φ2:\ΩyλM1. Let

(2.11)

(2.12)

Then

:φ(x90)φ(y90):=φ(x90)φ(y90)-oiQ(x-y)

-^1(z-x9x-y)φ(z90)dz. (2.13)

We require for later use regularity properties of α0 and oq. Note α0, as a
truncated Sch winger function, is C°° except at x — y = 0, where it has a In
singularity, and oc0 and all derivatives are exponentially decreasing as x — y-»oo.
The estimates on α1 in this section are elementary. They will be improved in §5.
We work mainly in a space of fixed total momentum p9 and so we seek a bound on

(2.14)
2 ' Γ 2 '

Let J^(p) denote the Hubert space of fixed total momentum p. with inner
product <, yp. It is convenient to exclude Ω from 3f(Q\ so that

(2.15)

In general, vectors in jtf (p) are continuum states in ffl . We can, however, given Φ,
Ψe34f-{λΩ} write a formula for <Φ(p), Ψ(p)yp9 namely

da, (2.16)

where Ta = eipa is translation by a.
From the exponential cluster properties of the truncated Schwinger functions,

we see that

{φ(x,0)φ(y,Q)-a0(x-y)}Ω (2.17)

has finite norm in J^(p), with a bound uniform in x, y. Optimal estimates give

$f(x-y){φ(x90)Φ(y90)-*o(x-y)}Ωd(x-y) = 0 (2 18)

a finite norm in jtf* (p) when / is in the Sobolev space H_ 1 , and in fact

H^ll^const.^-1/!!^. (2.19)

Such bounds are true more generally of vectors

(2.20)
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with all ίy^O and no two (Xpt^s coinciding. Such estimates are proved by
integration by parts, cf. [5], to obtain optimal momentum space behavior (i.e. free
field singularities at coinciding points in x space). Such vectors Ψ (when smoothed
with test functions to become elements of jjf) are dense in jff. Thus the
corresponding vectors (2.20) are dense in J^(p) for a.e. p. Furthermore they are
continuous in p in the sense that (\pι(p\ Ψ2(p)yp is continuous in p.

With /e^, let

θt = φ(e">f, t)Ω = f φ(x, t) (<f»f) (x)dxΩ. (2.21)

A calculation with the Lehmann spectral formula shows that as £->oo, the vectors
θt converge in 2tf at the rate O(e~t(m~ε}). The same is true, furthermore for θt(p) in
ffl (p\ with convergence uniform in p. The limit is

timθt = ZU2Φex(f)Ω9 (2.22)

where the time zero asymptotic field Φex is given by standard Haag-Ruelle
scattering theory. We now use Φ to denote the real time (Minkowski) field, and Φex

its asymptotic limit. At time zero we identify the Euclidean and Minkowski fields

We claim that after mapping Φex(f)Ω into Jf(p0) by (2.16), we may take the
limit f(p)-+δ(p — p0) in the test function. Thus we identify Φex(p)Ωf(p) as the
component of Φex(f)Ω with momentum p.

To justify this exchange of limits first appeal to the uniformity of the
convergence in (2.22) as t->oo in each tff(p). It follows that the inner product
(Ψ,Φex(f)Ω>P

 is a continuous function of/?. Take/(p)=/1(p)/2(p). By (2.16)

< Ψ, Φex(/)Ω>p = < Ψ, ΦexC/i)Ω>pΛ(P) - (2.23)

Because of the continuity of the inner product in p, we can take the limit

f2(P)-+δ(P-Po)> where /1(p0)=l.
Thus

< Ψ , Φ.x(Po)β>* =!<<?> <U/)Ω V? (2-24)

and we define Φex(p0)Ω as an improper element of jtf*. The vector Φex(p)Ω has a
finite inner product with all vectors Ψ of the form (2.20). Thus also by (2.23),

< Ψ, Φex(Po)Ωyp = < Ψ9 Φex(p)Ωy^δ(p - Po) . (2.25)

Since the definition, |p0> = Φex(p0)Ω, it follows that (Ψ\poy is also well defined
and bounded uniformly in (x^ί,-) for all ίy^O and no coinciding points, unless
n = 2. In particular, since <p0|Ω>=0, it follows that a^p.x — y) is bounded as a
function of x — y. Furthermore, α1(p, x — y) is Holder continuous in x — y with
exponent less than 1/2.

In terms of the function spaces Aδ of §6, α^p, )eAδ for δ1 ^3/2 — ε, (52<0. To
obtain this improvement on the Holder continuity above, we write
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and the bound the norm of e~H(I — M0)Φ(x1)φ(x2)Ω in Jj?(p). The improved
smoothing comes from e~H and can be exhibited by integration by parts formulas
as above. Then (2.19) is replaced by ||μ~3 / 2 + ε/||L2.

3. Span of :ΦW:

Let

:Φj(f,ή:=eίtH:Φ(x1)...Φ(xj):e-ίtH (3.1)

where : Φ(x ί ) . . . Φ(x;.) : denotes normal ordering defined so that : Φ : = Φ, M0 ΦΩ = 0,
and

(3.2)

Theorem 3.1. Choose n integer ^2, ε>0, and λ<λ(n,ε). Then states of the form

(3.3)

span (Mn+1_ε — M1)J^. Here f ranges over y(IRw), and t belongs to an open interval
(a,b).

Remark. Taking w = 2, the vectors M 3 _ ε :Φ
2 :(/, t)Ω span all bound states and two

particle states with mass in the interval (m,(3 — ε)m). In other words, all states with
mass in this interval occur in the four point function S0>Γ.

Proof. Let Ea denote the projection onto states with energy ^am. Let
\f9tyj=:Φ*:(f9t)Ω. We show that E n + 1 _ e \ f 9 t y j 9 j = 29...9n9 span E^.tf-MJtf.
By Lorentz invariance, the states MM + 1_ ε |/,ί> J. then span (Mn + 1_ ε — Mjjf. For
states Ea |/, ί)7 we note that the total momentum P satisfies

P2^(α2-l)m2. (3.4)

Secondly we remark that Ea\f, ί>7 is an entire function of t. Thus if

a\f,tyj = Q9 f°r ίe(a,fc), it follows by analytic continuation that
J/,ϊf>/ = 0 Thus it is sufficient to show that En+1_ε\f9ityj9j = 29 3, ...,n, ίeZ+
E^^^-EJJf.

It has already been proved by the cluster expansion [8] that the states

9 (3.5)

span En+ 1 _ε^. In fact the same method [8], taking (3.4) into account, shows that
Φ(/, 0)ί2 can replace Φ(/, t)Ω in (3.5). Thus a dense set of states χ in En+ί_E34? have
the form

χ = En+1_ε{aΩ + φ(f)Ω + ψ} (3.6)

where φ is in the span of |/,zί>, ίe^+ and 2^j ^n. In (3.6), we restrict /to have
Fourier transform f(p) vanishing unless p2 ^ [_(n+ 1 — ε)— l]m2 c.f. (3.4).

We take a sequence χn of such vectors, converging to a χe(l — MJ^f. Then



The Resummation of One Particle Lines 273

so that αn->0. Since the norms /->||0(/)Ω|| and /->||M1φ(/)Ω|| are equivalent,
and since

φ(fn)Ω-+Q also. Thus ψn^>χ and the proof is complete.

4. Integration by Parts

The basic expansion steps depend on integration by parts. Let

,y), (4.1)

and let C be a co variance of the class considered in [8]. This class is generated
from C0 by two operations : (a) the block diagonalization

(4.2)

for X a rectangle in IR2, and (b) the convex sum

For this class of covariance operators, we define the normalized measure on

dμc= limΛm2Z(Λ)~1 exp(- $Λ0>(φ(x)}dx)dμc, (4.4)

with existence of the limit following from [8].
With R(φ) a polynomial in φ, the formula

DR(Φ) - x™/JL/. .vJ n / J L Λ / 4 J \

Dφ(y) dφ(y)

defines D/Dφ(y) as a densely defined linear operator on S. Integration by parts is
the identity

" * * ~' D >, (4.6)

valid when substituted in the integral

\φR(φ}dμc. (4.7)

We use (4.6) to decompose φ into a sum of "annihilation" and "creation"
operators :

(4.8)

- (4 "
Next consider a time interval (s, t) without contours. This means

, y) = C0(x, y\ s ̂  x0 , y0 ^ t .
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Then for x0 ̂  z0 g y0

C(x9 y) = f C0(x, z) (2μC0) (z, y)dz ,
ZQ = const

which has the consequence

< <

= φ0, x)* - (e-(z°-χo)μa*) (x) . (4.10)

These identities are used to write φ = a + a* and to move α, α* forward and
backward in time. Normally α* is moved to time t = — oo, i.e. eliminated. Also a
= φ — a* can be rewritten in terms of φ.

Remaining expansion steps concern the insertion and removal of contours,
achieved by variation of the parameters β. in (4.3).

5. The One Particle Line

The main technical tool of this paper is the use of virtual contraction terms to
allow the resummation of one particle lines. We explain these ideas here, and for
clarity we give a very simple example, namely the evaluation of

(5.1)

with Rτ localized at times t ̂  T. As an application, we obtain improved bounds on
α ι*

The goal of our expansion is to write

where the right hand side is a partial resummation of the rc-particle cluster
expansion given in [8]. Having identified the resummation leading to (5.2), we can
use (5.2) as an elementary expansion step in the definition of our modified Bethe-
Salpeter equation (1.6). In terms of vectors in the physical Hubert space jtf, we
identify (5.2). Let

(5.3)

Then (2.10) say$ that for any θ = RQ\Ωy,

(5.4)

and comparison with (5.2) shows that w = e~μf, α
In order to evaluate (5.1), we use the 1-particle expansion in [8]. Writing

</> = α-hα*, we use (4.8), (4.10) to advance the annihilator in time to become a field
φ at ί = l. We use (4.9) to contract α*. New vertices from the D/Dφ terms are
removed by insertion and removal of contours, as in [8]. We divide the expansion
terms into two sets as follows : Terms in the first set have y0 < T (where y0 is
defined in [8, pp. 609-610]). These terms have the form <<2#>, where

6 = Σ Qj> Qj = «(/) + ΦMjl t3) , (5.5)
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where tj is an integer time, t.<T. The second set of terms has y0= + 00, and
contains contradictions to times ^ T. These are all remainder terms, and the sum
of the norms of remainder terms is bounded by 0(l)\\φ(f)\\ \\R\\ e~2(m°'ε}T with
norms defined in [8]. Thus we write

+ Remainder . (5.6)

Furthermore, we choose f(x) with f supported in

{p : \p\ ̂  ]/3(m - ε)} = {p : μ(p) ^ 2(m - ε')} . (5.7)

Then the terms φ(w(j), tj) in (5.5) can be returned to time ί= 1.
In summary, we have for n = 1

2^-e^. (5.8)

In (5.8), αr and φ(wr, 1) are the linear and constant terms in Q. Each term in Q is

independent of T. However writing Q as a sum of terms Q = £ Q ί5 the index set {/}
i

depends on T Thus ατ and wτ also depend on T. In order to cure this defect, we
add and subtract certain terms on the right side of (5.8). To identify the missing
terms we consider the case T= oo, when (5.8) becomes

<0(/, 0)tf> = α<#> + <0(w, 1)R> . (5.9)

For T=oo, there are no error terms, but there are terms in α resulting from
contraction of φ(f, 0) to the vacuum in the region t ̂  T. We can think of these
terms as contractions to the vacuum in the region blocked by R, and we call
these terms, virtual contractions of φ to R.

The sum of the virtual contraction terms is absolutely convergent and bounded
by 0(exp — 2(ra — ε) T), because this sum is contained in the expansion of (5.9) to
which the estimates of [8] also apply. Thus

α/λR> -ατ<jR> = £ virtual terms (5.10)

<φ(w, l)#>-<φ(wτ)£> = Σ virtual terms (5 U)

where in (5.10) we sum over all virtual terms which are independent of 0, and in
(5.11) the sums runs over all terms linear in φ. Note that the estimates of [6] apply
to operator kernels, such as wτ, wr = 00 and wr = 00 — wr, as well as to expectation
values such as <φ(wτ = 00, 1)>. In the norm of [8],

l|w r = 00-wΓ||^0(e-2(m-ε)Γ). (5.12)

We add and subtract (5.10) and (5.11) to the right side of (5.5). The addition
modifies α and w, while the subtraction is absorbed into the error term
0(<Γ2(w°-fi)T). This yields

<r(/,0)^>-α<^> + <(/>(w,l)^> + 0(^-2(m-ε)Γ), (5.13)

where now α = α r_ 0 0 and w = wr = 00 are independent of T.
Now we identify α = <</>(/, 0)>> and with the convention (2.1), α = 0. Comparison

of (5.2) and (5.4) shows that w = e~μf.
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Thus in (5.13), we have achieved an explicit resummation of the one particle
line, with the exact physical mass. The error term is an absolutely convergent series
of direct and virtual contraction terms, with two particle decay ~e~2(m~ε)T.

To conclude the description of the expansion, we correct an error in [8]. In
order to return field operator φ(f, t) to earlier times s < £, we must be dealing with
translation invariant, i.e., momentum conserving expansion operations. The
expansion is based on an integer lattice, artificially introduced in position space.
Because of the translation invariance of the original theory, the expansion is term
by term invariant under integer (lattice preserving) translations, but not under
arbitrary space translations. To recover full translation invariance, we integrate
each term over relative lattice positions, generated by the translations

Z->Z + 0,θe(0,l]. (5.14)

This integration is done at the end of each expansion step containing no contours,
i.e. before moving φ(f, t) backward in time.

The norms of [8] are not invariant under translation by non-integer θ, as in
(5.14), but they are easily replaced by equivalent norms, which are ^-invariant.
This is done explicitly in §6. The expansion remains norm decreasing in these
equivalent norms. The extra expansion step,

is norm preserving, in the new translation invariant, norms. Thus the modified
expansion is norm decreasing, and convergent, as before.

The improved estimates on α1 give exponential decrease, in addition to the
local regularity established in § 2. In terms of the space Aδ of § 6, we state our result
as

Theorem 5.1. As a function of xrel = (x — y)/2, 5c1(p, xrel)eAδ for δί<2 — ε, (52>0
sufficiently small. The norm of α1 goes to zero as λ-»0.

We give part of the proof here, and complete the argument in §9, 10. For xrel in
a bounded set, the analysis of § 2 is sufficient. Thus we let j ̂  xrel ̂  j + 1 and
consider j large. As in § 2,

by a calculation with the Lehmann spectral formula, and the same bound holds in
each space 2tf(p) of total momentum p. If χ . represents a smoothed version of the
characteristic function of [jj+ 1], then we see as in §2 that for χ. = χ/xrel),

;o{δι(Ptot>*rei)-<z~1/2*^ (5 15)
has an H 3 / 2_ ε norm bounded by e~ ( m~ ε ) 7', and thus finite norm in Ae, which is
moreover summable in / By (5.2), we can write

(5.16)
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for 1 ̂  / ̂ j. The exponent proportional to j will be explained below. The norms in
the error term are from [8], and the error term can be bounded by e~ε'j\\f\\ \\g\\,

provided ptot, i.e. the support of/, is restricted to |ptot|^ |/3m0(l— ε"). We now
iterate this identity, and sum over 0 ̂  / rgj to obtain

*f, 0), f φ(χl9J) φ(x2,j)g(x)dxy

g\\ . (5.17)

The first term has exponential decrease in xrel. In fact because of the
normalization <0> =0, the ordinary and truncated three point functions coincide.
Thus the first term, at constant momentum p, belongs to Aδ in the variable xrel.

The error terms in (5.16) result from direct and virtual contraction to the
observables φ(xίj—l) and φ(x2, /—I). However terms with contraction to only
one of these two observables can be resummed, and yield zero, again because of
the normalization <0> = 0. The terms with direct or virtual contraction to both </>'s
at time I — 1 have extra decay, determined by |xrel|, i.e., j. The relation of the norms
of [8], as in (5.17), to the norms in Aδ is analyzed in §9, 10, and will complete the
proof.

6. Function Spaces

In this section we define function spaces suitable for the analysis of our expansion.
First we introduce spaces necessary to obtain a translation invariant expansion.
Let {JJ, {/ΓJ each be disjoint covers of IR", and define

11/11 = Σ l l / l l L 2 W I6-1)ί
l l / i r = Z H / I W (6.2)

i

We assume that each Δi is contained in the union of at most K of the A"s, and
conversely.

Proposition 6.1. The norms (6.1) and (6.2) are equivalent, and

(6.3)

In addition, if /fl(x)=/(x + α), then for all αeIR", let

I l l / I l l = ί l l / α l l ^ , (6.4)

where Δ is a unit n-cube. We assume (Ai + a)nAj + 0 for at most K f s , for each
fixed choice of i and a.

Proposition 6.2. The norms (6.1) and (6.4) are equivalent.

As an application, we change norms in the expansion of [8]. In place of the
norms (2.43) of [8], we replace ||w(α,w,s,y0, )||L2 by

i
j j |w(α,M,s,y 0, +aθ)\\L2dθ, α = (l, 1, ..., 1). (6.5)
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for a localized kernel w. As described in §5, the integration over θ arises in the
expansion from integration over choices of the position of the space lattice. The
step of averaging the expansion over θ preserves the sum of the (averaged) norms
of elementary expansion terms.

A second application involves separation of center of mass coordinates. For a
function /(xl5 . . . ,X j ) of j variables, we introduce

1 7

*tot=7 Σ xk (6 6)
J fc=l

For ieZJ we define for /k = [fc,fc+l],

Δi = ̂ reuΛ V ι(rrelj- l^tot) '

With these new Δ9s in (6.7), we obtain a new set of equivalent norms. A translation
invariant kernel k(x y\ acts on spaces of definite total momentum as follows :

*rel(*rel ί 3>rel \ Plot) = W ̂  f e^^'^k^ j,)^ . (6<8)

In the special case j = 2, we deal with kernels for two particle scattering. These
are kernels of integral operators from functions of a single relative variable
iO7! ~Vι) to functions of a single relative variable ^(xί — x2). Thus we introduce
Hubert spaces of functions of one variable on which these operators act. We use
the space Aδ of symmetric functions with δ1 fractional L2 derivatives and with
Fourier transforms analytic in a strip |Imp| <δ2 :g4m, Our choice of the space Aδ is
motivated by [12]. Related spaces are considered in [10].

We let δ = (δί9δ2)9 |(52|<4m, and let

Kδ = e?*Wμδί, (6.9)

where μ = ( — d2/dx2 + (4m}2}112. Let us define the inner product

>L2; 11/11, = \\KJ\\ . (6.10)

Then Aδ is the Hubert space C£ completed in the norm || ||^. In §7 we show that
K% may be used in place of Kδ in (6.10). Likewise, since

K^=K*δ, (6.11)

we can define Aδ as the unitary image under K* δ of L2(R\

K*ό:L2(R)-+Aδ. (6.12)

By (6.11), it follows that the dual space of Aδ is

A? = A_t. (6.13)

We say that δ>δ' if δ>δ'i and δ2>δ'2. We state properties of Aδ in three
propositions.
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Proposition 6.3. Let δ^δ'. Then

AδcAδ, (6.14)

Let I(δ\ δ) denote the injection of Aδ into Aδ, , for δ ̂  δ',

I(δ',δ):Aδ,-+Aδ,. (6.15)

Proposition 6.4. Let δ > δ'.
(i) I(δ', δ) is compact.

(ii) Ifδ>δ' + & 0), then (6.15) is Hubert Schmidt
(iii) J/δ>δ / + (l,0), ί/zerc (6.15) is ίrαce class.

We let A° denote the Banach space of functions / with norm

11/11 = Σ 11/11 L2(...+D«». (6-16)
n

Proposition 6.5. Let δ± ^0, δ2>0. Then

AδcA°cA_δ. (6.17)

Furthermore the injections Aδ^A0-+A_δ are bounded.

Proofs. In the proofs of these three propositions, we refer ahead to § 7. The proof of
Propositions 6.3-6.4 involve the study of the operator Kδ,Kδ

l. In fact let {/J
denote a sequence in Aδ. Then

Kδ,fn = (Kδ,K^}(Kδfn}. (6.18)

Thus if {/„} is bounded in Aδ, i.e. \\Kδfn\\L2 ^ const., it is bounded (compact) in Aδ,
if Kδ,Kδ

l is bounded (compact). By Theorem 7.6,

Kδ>K~1=e^xlμ~(δί~δ'ί}e~δM (6.19)

is bounded for δ^δ' and compact for δ>δ'. Furthermore, (6.19) is Hubert-
Schmidt under condition (ii) and trace class under condition (iii).

We now proceed to Proposition 6.5. Using Proposition 6.3,

Thus it is sufficient to establish (6.17) for the case δ^ =0. Let δ now denote δ2 >0,
and let

Then

n '

Also

I I / \\L2(n,n+l) = e n \\e X / l l L 2 ( n , w + l ) '
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Thus by the Schwarz inequality

= e δ M ( 2 δ ) ί / 2 \ \ f \ \ δ .

This completes the proof.
We end this section with a remark generalizing the consequences of (6.12) (6.18)

for the injection Aδ->Aδ,.

Proposition 6.6. The transformation R:Aδ^>Aδ, is bounded, compact, Hίlbert
Schmidt or trace class if and only if the operator

is bounded, compact, Hilbert Schmidt or trace class on L2(R).

7. L2 Estimates

In this section let μ = ( — d2/dx2 + a2)112, and let fc(α, a x — y) denote the kernel of
μ~a. Note that fc(α,α;x) = α1~αfe(α, l,αx), a scaling relation.

Proposition 7.1. Lef 0<α<l. Then

0 < /c(α,α,x)<w(oc,α;x)ΞΞ const. |xΓ1+αe"βK (7.1)

1"αe" f l | x |. (7.2)

Proof. Let ^4 be a strictly positive operator with bounded inverse. By the Cauchy
integral formula, for 0 < α < 2,

Take A = μ2. The kernel of (A + b}~~1 is

(7.4)

where m(b) = (a2 + b)1/2. The positivity of k then follows by the positivity of (7.3),
(7.4). We now specialize to the case α = 1, α< 1 from which (7.1) follows by scaling.

1 00

Inserting (7.4) in (7.3) and dividing the b integration into J + J, we first bound the
o i

1

J integral. For O^fc^l , m(fo)^l+α/4. Thus

^ const. | xΓ 1 + α e-W. (7.5)
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00

For the J integral,

1 + αJrαe- ( ί 2 + χ2)1/2dί. (7.6)
X

For t Ξg X, it follows that for ε > 0 there exists β < oo satisfying

Thus (7.6) is bounded by

const|xΓ1 + βέΓw. (7.7)

Combining (7.5), (7.7) yields (7.1).
If α > 1, we again obtain (7.2) by scaling the m = 1 bound. In this case we use the

n-fold convolution

fc(α,l,x) = w * . . . * w , w = fc(α/n, l,x) 0<α/n<l, (7.8)

and the bound (7.1) to establish fc(α, 1, x)^ const e~ | x |. Similarly

Proposition 7.2. Lei |x|^ε>0, — l<α<oo.

Theorem 7.3. Lei -l<α<l, -a<β<a. Then

μaeβWμ-ae-βlxl and eβ^μae~β^μ-Λ (7.9)

are bounded, as operators on L2

Proof. For simplicity consider a ̂  0, /? ̂  0 in the first operator. The other cases are
similar. Let CeC^, with C(x)=l in a neighborhood of x = 0. We write

where the subscript ζ or 1 — ζ replaces an operator with another whose kernel is
multiplied by ζ(x — y) or 1 — ζ(x — y) respectively. Now (μΛ)1_ζe

β\x\μ~Λe~β\x\ is
bounded by Propositions 7.1 and 7.2 and

is also bounded, for the same reason, as is eβ\x\μ~Λe~β\x\. Thus our problem is
reduced to bounding
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Because of the ζ in T, the unboundedness oϊ eβ\x\ plays no role. In fact we choose ζ
so that Σ/(x+j)=l. In momentum space, the kernel of

is bounded by a multiple of

Since

T. is bounded. Moreover II Ti l ^constsup I I T J I and the proof is complete.j j j

Corollary 7.4. The space Aδ is the closure of C™(R) in the norm

\\f\\*=\\K*f\\L* (7 1Q)

or in the norm

l l /Hi=l |K?/Hz. 2 . (7-11)

The norms \\ \] and \\-\\' are equivalent.

Proof. We estimate

II/IU= \\κsf\\ = \\κ£κ;

However

Kδ(KfΓ1=eδ2lxlμδίe-δ2lxlμ-δί, (7.12)

and

KfK^1=μδlέδ2^μ'δίe-δ2^. (7.13)

Applying the theorem to (7.12)-(7.13) shows that they are bounded, so || || and || ||;

are equivalent.

Lemma 7.5. Let δ<\ and let v(x) be bounded, positive and square integrable. Let
T(x, y) be the kernel of an integral operator satisfying

-y\-δ. (7.14)

Then T is compact.

Proof. Let χn(x, y) be the characteristic function of \x — y\>n~1, and let Tn(x, y)
= T(x, y)χn(x, y). Then Tn is Hubert Schmidt, and hence compact. Also

x \x-y\<n~i

Hence T, as the norm limit of compact operators, is compact.
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Theorem 7.6. Let α<β, y<ε, with α;/?e( — α, α), y, εe(— 1, 1). Let

(7.15)

(i) T zs compact.
(ii) If ε-γ>%,Tis Hubert Schmidt.

(iii) If ε — γ>l, T is trace class.

Proof. We write

β"/ ϊWμ"e). (7-16)

The second factor in (7.16) is bounded by Theorem 7.3. We now show that the first
factor is compact, bounded or Hubert Schmidt. Let S denote this first factor. Then
by (7.1), for any <S>0, and assuming 0<ε — < y<l ,

^e~^~a~δMe~(a~Λ~δ^x'yl\x-y\~1+ε~y (7.17)

By Lemma 7.5, S is compact. Furthermore, if ε — y >\, then S is Hubert Schmidt. If

Each factor in parentheses in (7.18) is Hubert Schmidt, by (ii). Thus S, as the
product of two Hubert Schmidt operators, is trace class.

Proposition 7.7. Let <S2>0. The norm

V1/!^ (7.19)

is equivalent to the norm \\f\\δ.

Proof. For α^O, we have the pointwise bound

exp ( + αx) ̂  exp α|x| ̂  exp (ooc) + exp ( — αx) .

Thus

Ill/Hi^ ||/||^2|||/|||,. (7.20)

Proposition 7.8. Let \62\<a. Then as an operator from Aδ to Aδ,

ίία2-^}1/2). (7.21)

Proof. First we note that the result for δ2 <0 follows from the result for δ2 ̂ 0. In
fact if T:Aδ-^Aδ is bounded with norm \\T\\ Aδ, then T*:A$-^Af is bounded with
the same norm. By (6.13), Af=A_δ, so we take <52§;0; let Γ = exp(— tμ). We show
that |||T|||^ is bounded as in (7.21). By Proposition 7.7, this shows that T is
bounded on Aδ. For convenience, we choose / in the dense set CQ in Aδ, so f(p) is
entire. Then

\\e±axμpΊf\\L2 = \\μ(P±™)β exp (- ίμ(p ± iα))/(p± iα)||L2 . (7.22)
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We note that

Re μ(p ± ia) = Re (p2 + a2 - α2 ± 2/pα)1/2

^(p2 + α2-α2)1/2^(α2-oc2)1/2. (7.23)

Thus with α = (52, β = δ1,

\\\Tf\\\δ^xp(~t(a2-a2Y/2)max\\μ(p±ia)βf(p±

-exp(-ί(α2-α2)1/2)max||e±αV/HL2

(7.24)

Proposition 7.9. Lei T = (e~μ®e~μ). Then acting on Aδ as functions ofprel with pt

fixed,

+ pt

2

ot-<52) (7.25)

Proof. As above, we assume δ2 ^0. Then

= II μ(preι ± iα/ exp { - ί μ(ptot + prel ± /α) - ίμ(ptot - prel ± iα)}/(prel ± iα) || Lz

(7.26)

using ̂  = ̂ 0?! +p2), Preι = i(Pι -P2)
 τhen as in (7 23X

Thus

|k±α,r

Corollary 7.10. For Re£<2(α2+p2

t-(52)1/2,

|||(1 _β^-Mg)β-μ)-l |||̂ ^^ ̂ (1_β-[2(α2 + p2o t_^ ) 1 / 2_R e j E ]^_1

Remark. With T as in Proposition 7.9, the Corollary bounds

f(£)= Σ ^V£ (7.27)
j^o

We now show that f(E) has a two sheeted analytic continuation around a square
root branch point at threshold. For simplicity, we take ptot = 0 and we do not
analyze the singularity at threshold.

Proposition 7.11. For

C = (4α2-

the operator

T(E(ζ}} = - exp [(4α2 - C2)1/2 - (4α2 + 4p2

el)
1/2] '

acting from A(δι 02} to A(δί _^2), δ2 >0, ftαs α bounded analytic continuation in ζfrom
ReC>2δ2 (<i.e.1Re£<2(α2-2δ|)1/2) ίo ίfte region Reζ>-2δ2.
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Proof. We see that T(£(0) has poles in prel at

Prei=±''C/2. (7.29)

As long as the poles do not cross the strip |Im prel| ̂  <52, i.e. as long as Re ζ > — 2δ2,
the contour integral defining the inner product

</,f(E)/>L2, feAΛ, (7.30)

as written in the momentum space variable prel, can be deformed to avoid the poles
(7.29). This procedure defines the analytic continuation of (7.28) to Re£> — 2δ2.
Mapping back to the variable E gives the two sheeted analytic continuation of
(7.27) around the square root branch point E = 2α. For ζ φ 0, the contour can be
chosen so that (7.28) is bounded along the contours. As ζ->0, the poles come
together, and the contour, which must go above one pole and below the other,
cannot be bounded away from the poles. See also [3, 4, 12].

It is only in the analytic continuation argument that we use the fact that the
functions feAδ are symmetric in x-space. Because of this assumption, (7.30) can be
written in momentum space as

</, f (£)/>L2 = J /(p) (f (£)/) (p)dp. (7.31)
— 00

Thus no absolute values occur in (7.31) and the analytic continuation in E can be
accompanied by the deformation of the p integration contour (inside the strip
|Imp|<<52) to avoid the poles (7.29) of T(E(ζ)\ By the above argument, if C(ζ)
denotes the deformed contour,

|</,T(E)/>L2|^sup|t(E(ζ))| J \J(p)f(p)\dp. (7.32)
c(0 c(ζ)

since the sup is dominated by 0(1). For |Imp| bounded away from δ2,
|gconst \\f\\Aό. Thus in (7.31),

ί f(p)f(p}f(E)dp

-L

The tails, J + J are bounded directly, and can be continued analytically to

^L without deformation of contour, as in Proposition 7.9, and
Corollary 7.10. Since L is arbitrary, we get the desired analytic continuation.

8. One Particle Lines in a Two Particle Channel

We modify the two particle cluster expansion [8] applied to S0 τ in order to define
our integral equation. The first modification is inclusion of virtual contraction
terms to the : φ(T)2: observable, to allow resummation of one particle lines, as
explained in §5. The second modification, which is new to this section, is the
inclusion of virtual interaction terms between the independent one particle lines.
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The operator

e-tμ®e~tμ (8.1)

generates dynamics in two independent one particle lines, and we want to find this
operator by resumming certain terms from the expansion of :0(x1)(/)(x2)

 : It is easy
to find a candidate for this resummation, namely all terms in which there is no
contraction between xλ and x2 vertices, nor any overlap between the x1 and x2

contours. Each term of this nature factors, and thus expresses some type of
independent dynamics for xί and x2. However, the sum of these terms does not
factor, and does not define independent dynamics for x1 and x2. In fact, some
terms, expected as part of the e~ΐμ dynamics for x1 do not occur, because the
region of space required to insert this term in the expansion is already occupied by
other vertices and/or contours belonging to x2 or to x t and x2 jointly. To
compensate, we add and subtract these missing terms. With the addition, the sum
of the independent terms also factors, and can be identified with (8.1). When
subtracted, the terms are called virtual interaction terms they contribute along
with the direct interaction terms to the Bethe-Salpeter kernel.

In more detail, we restrict the momenta of each x;. test function as in (5.7).
Using a smooth momentum space cutoff function, we write the x^ test function as a
sum of two test functions. The first has high momentum and the second has purely
low momentum. The term with the high momentum has an enhanced decay rate.
This fact can be obtained from the convergence proof of [8]. Because of the high
decay rate (^ 2m0 — ε for the single particle) a simplier expansion, not requiring a
backward movement in time is possible for the high momentum term. This
expansion will be explained later.

The more difficult term involves low momentum. We now explain the
expansion for these terms. Let :φ2 :w denote normal ordering relative to the bare
vacuum. This is the normal ordering used in [8]. By adding and subtracting a
constant term and a term linear in φ9 we can pass from :φ2:to :φ2 \w or back, as
in (2.13). We use this identity to start the expansion with \φ2 :w, but to yield :φ2:
terms (l<t = i^T) as a result of the expansion. It is also used to write the time
T: φ2: observable as :φ2:w + φ + const. The linear term φ\t=0 is expanded as in § 5,
as will be explained in more detail below.

The :φ2:w\t = 0 is expanded according to the 2-particle expansion of [8].
Virtual terms are added and subtracted, for interaction with the time T observ-
ables and also for interaction between the two one particle lines. For terms
without interaction between the two φ2 lines, each φ is returned independently to
f = 1. The expansion terminates with any of these terms:

(i) a constant (i.e. φ-independent) term,
(ii) a term linear in φ, returned to ί = 1,

(iii) two independent φ9s in the form 'φ(yι)φ(y2) y each returned to ί = l,
(iv) a : φ2: at integer time ί = ί, 1 ̂  i < T with direct or virtual interaction

between the two variables yί and y2

(v) direct or virtual contraction to :φ2:(T), the time T observable.
Because of the virtual terms in (v), the terms (i) and (ii) are T independent

because of normal ordering in : φ2:, they sum to zero. The terms (iii) are exactly
the tensor product of the one particle line expansion of § 5, and thus can be



The Resummation of One Particle Lines 287

identified with the dynamics (8.1). These terms are then e~μ®e~μSi τ. The terms
(iv) are proportional to St> Γ, and give B™?St> Γ, where B™? denotes the sum of the
proportionality operators for fixed L Finally the terms (v) have three particle
decay, and are bounded by 0(exp ( — 3(m0 — ε)T)). We denote the terms (v) by Aaffi.

The expansion of φ\t=0 follows §5. All terms linear in φ are returned to ί = l.
The expansion terminates with terms of type (i), (ii), (iv) or (v), but gives no
contribution to the (iii) terms.

In the high momentum term, the two 0's in :φ2 :w are moved forward in time
independently until they interact with each other (direct or virtual interaction or
until they contract (direct or virtual contraction) to a time T observable. This
produces terms of the type (i), (ii), (iv), (v), as above, but not of type (iii). The (i) and
(ii) terms sum to zero, and the (iv) and (v) terms are estimated as below. We note
that as long as the two lines do not interact, momentum is conserved within each
line. In particular, the high momentum property is retained until interaction.

In both high and low momentum terms, we require an independent average
over the lattice displacement θe(0, 1] for each of the independent^ one particle
lines. This means that the contours for the distinct lines are inserted along distinct,
incompatible lattices.

The estimates on the (iv) and (v) terms of the expansion follow from [8],
because all terms, including virtual terms, arise from a finite number of sums,
differences or products of convergent expansions. Thus the (iv) and (v) terms are
absolutely convergent in the norms of [8]. In view of regularization (see §9, 10),
they are also bounded and absolutely convergent in the operator norms on Aδ, on
the space of equal time functions.

In summary, we have

. (8.2)
ί = l

Iterating the expansion, we obtain (1.6) with

Λ>.τ = Σ (e~μ®e-^A™» (8.3)
o^j = r

BO,T= Σ (e-μ®e-"yB™». (8.4)
0^7 = Γ-l

Thus

A(E)= £ A0ίTe
ET = (I-eEe-μ®e-μΓ1 Σ A™*eET = f(E)Aamp(E) , (8.5)

0=T ' O^T

B(E)= Σ B0 tTe
ετ = (I-eEe->ί®e-'ίΓl £ Bffie*T = f(E)Bamp(E) . (8.6)

Thus we write (1.6) as

S(E) = A(E) + B(E)S(E) . (8.7)

9. Decay Estimates in jc-Spaces

The two particle expansion of § 8 introduces seven operators which map kernels of
const, φ(x) or :φ(x1)φ(x2) int° kernels of const, φ or :φ2 : at possibly later times.
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The simplest of these operators is e~μ®e~μ. This operator is described in § 7, and it
acts on the kernel of :φ2 : in the mapping

:φ(x,}φ(x2}'.\t = ̂ :φ(yl}φ(y2):\^l. (9.1)

Another simple operation is re-Wick ordering δa0. Since integration by parts
yields

A* 34. + (9.2)
-++ε,-m + ε v '

(5α0 is a bounded linear functional on all Aδ spaces we consider. Also &ι(p,xrel) for
fixed p satisfies

«ι(P, )^|_M2 = / l*3 + ε j _ ί 2 , <52>0. (9.3)

and thus is bounded on all Aδ spaces we consider.
Let Jfy(iv) denote the operator which is the sum of all (iv) terms associated with

the map

^(x^(x2):w\t^^^(y^(y2):\t=ij. (9.4)

The operator jΓ(iv) has a kernel depending on xrel, yrel, xtot — yioi.
We similarly define an operator Jf^v) by the sum of type (v) terms. Then Jf^,v) is

determined as a bilinear form on the kernels /(xrel, prel) and g(yrel, prel) of the time
t = 0 and time t=T observables.

Namely at time ί = 0, the observable is

J7(*rel> Ptot) '• Φ2(*rel> Plot) V^rel

and at Euclidean time ί = T, it is

rel' Ptot) Φ2(yt*l> Ptot) '• ̂ rel

- ί ^(^rel, Ptot)δl(Ptot> Λel)dΛel0(Ptot)

With feAδ, as a function of xrel, geAδί, then jf^.v) is an operator from .4^ to
Al=A_δl.

Also let jSfjiv) and ^fjv) be associated with the map

and with 0(x) contractions at time T Then <£ (iv) has a kernel depending on yrel,

^-^tof

For comparison with [8], we restrict JΓ, & to functions supported in products
of unit intervals. The Jf , Jίf are bounded from L2 to L2. According to § 6, the unit
lattice squares in x l 5 x2 space and in y l 5 y2 space can be rotated by π/4 so that they
are alligned with xrel, xtot, yrel, yioi. Let zJx, etc. denote the characteristic function of
such a square. A minor improvement in the result of [8] includes some x as well as
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t exponential decay. With :φ2: as the time T observable this yields

I I A ^(v)/1 I I O-3(m-ε)7\,-ε'|x tot-ytot|
\\ΔκJίΎ Δy\\L2^L*2 = e e

The type (iv) terms have an improved decay because the interaction between
the two one particle lines give graphs which are connected, and hence decay in

||Jpf}(iv)JJL2^L2^e-3(w-^ (9.8)

The graphs in <£ are all connected.

\\A J^ίiv)Zl II <e-3(m-£)Je-
£'\χ-ytot\e-ε'\yreι\ (ty.9]

and

\\Ax&WAj\\L2^L*2 ^e-
3(m-ε)τe-^χ-y^e-ε'^r^. (9.10)

Next we consider the operators JΓ, JSf at fixed total momentum p, as mappings
on the function of relative variables :

jr™:A* = A-+A Jtr^:Aδ-^Aδ1 d d (911)

For δl =0 these four norms are bounded as follows:

Theorem 9.1. For δ2 sufficiently small and greater than zero, the four operators
(9.11) are bounded. The norms are 0(e~3(m~ε)j)for tf. and &.. Moreover tf and <£
are complex analytic in ptot,for |Imptot| small.

Proof. For Jf}(ίv) we have

\Xrel\ + δ2\yrel\ I I A ^(iv) A II
\\Δx<Λj Δy\\L2^L2

- 3(m - 3)j - |xtot - ytotl(ε' ~ |Imptot|) < Qfo - 3(m - ε) h

, ~ 3(m - ε)7Λ
J

Similarly

II ^(V)|| <V , ? -52|Xrel |+«52brel | | | / j ^(v)/j I I <
II^Γ ll^d^^d — Zj^ l l^x^Γ Z J yl lL 2 ->L2 ̂

The remaining bounds on

are similar, to complete the proof.
The proof of (9.12) applies to the error terms in (5.17) and shows their

contribution to α1 lies in A0tδ29 δ2>0.

10. Smoothing and Compactness in jc-Space

In this section we exhibit the smoothing property of the operators Jf and «£?
defined in § 8 and § 9. In particular, this gives the properties of Aamp and Bamp on
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the spaces Aδ. Our main technical result, which leads to an analysis of S0 τ is the
following:

Theorem 10.1. The connected expansion terms (§8, type iv) define bounded oper-
ators Ba

0

m? such that

B^p:A_δ^Aδ (10.1)

with

when

(5^2-ε, (S2<ε, (10.3)

for some ε > 0 sufficiently small. The terms of §8, type v define the bounded operator

^omτ' where

with

\\Aa™p\\^0(l)e-3(m-ε}τ. (10.5)

Moreover, BΛ™J is compact on the indicated spaces, and trace class z/<51 ̂ f — ε.

Remark. It follows that the Laplace transformed operators

Aamp(E)= £ A™»eET

° = T ' (10.6)
Bam»(E)= £ BffieET

o^r

are complex analytic in E for Re£^3(m0 —ε). This statement is true for Aamp and
Bamp as operators on functions of the relative position variable. In particular, they
are bounded as operators from Aδ to Aδ, where δ,δ' are given by Theorem 10.1,
and Bamp is compact, and has small norm as λ->0.

Proof. The improvement of Theorem 10.1 over the §9 involves a careful
examination of the initial (and final) expansion steps. Each term at the end of the
expansion has the structure given in §8. The sum of all expansion terms converge
in the norms of [8]. We thus inspect individual terms. The Jf^(iv) terms, for
example, have the structure

: φ 2 : ( υ ) (10.7)

where w is the kernel of :</>2:(ί = 0) and v is the kernel of :φ2:(t=j). The initial
expansion step inserts a contour around the \φ2:(t = 0) vertices this contour may
contain other vertices and partial contours. Likewise the expansion ends by
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removing the :φl:(t<j) vertices by a contour. In [8] estimates on the inside
vertices R(φ) and function space integration was obtained by Schwarz inequality
in path space

ί (10.8)

However, optimal bounds on the Schwinger functions, e.g. \e P(φ}R(Φ}dφίnsίde

improve on this estimate, see [5]. These optimal bounds are obtained by
integration by parts of each field in R(φ\ before applying the Schwarz inequality.

In expressions such as for JΓ(ίv) in (10.7), this integration by parts produces
"initial" and "final" vertices which contract with the :φ2:(w) or :φ2:(v). An
analysis of these diagrams shows that their continuity in v and w lies not only in
L2, but in the appropriate Sobolev space for Theorem 10.1. For example, the
dominant diagrams in JΓ(iv) have the form

w (10.8)

with a single φ4" vertex. Their momentum space decay is estimated for fixed ptot by
0(Ί)||μ~2w||L2||μ~2ι;||L2 in the variable prel. Here each line carries a factor μ"1, and
the integration over the time of the intermediate vertex gives an additional factor
μ~1 which can be divided between w and υ. More generally, a large JΓ(iv) diagram
can be estimated by isolating a vertex on either end, and using and L2 operator
norm on the intermediate diagram:

w

Then / as an operator from L2(Rn2) to L2(Rnι) has an operator norm | | / | | Π l > W 2

which can be estimated by the cluster expansion and Schwarz inequality as
mentioned above. The single vertex diagrams have Hubert-Schmidt norms
:gO(l)||μ~2w|| ||μ~2ι;|| as above. The reduction to these norms is systematized in
[6, §6].

Other typical terms which arise involve aί. (The analysis of such terms
completes the proof of Theorem 5.1.) These terms will have a dominant diagram

<P\
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which as above is estimated by

The dominant diagram for Aamp(E) is

w

arising from the T = 0 contribution. Here we obtain the estimate
0(l}\\μ~ίv\\L2\\μ~1w\\L2 arising from a factor μ~l on each line.

We now return to the Eqs. (1.6), (8.3)-(8.7), (10.6)-(10.7). In Laplace transform
space the solution for S(E) is

S(E) = li-B(E)Γ1A(E). (10.9)

To analyze bound states, it is sufficient to regard S(E) as a bilinear form
between a dense set of states. We use states θp= §f(xΐel,piot):φ(xί)φ(x2):dxτelΩ,
dense in ^(p) by §3. Thus we study the bilinear form <#,£(£)/>, or equivalently,
we realize (10.9) as an operator equation from A_1+ε 02 to Al_ε 02 = A*_ l+ε 02.

By Proposition 7.11 and Theorem 10.1,

^M-ι+β,a2-^ι-ε,-*2> (10 10)

for ReE ̂  3(m0 — ε), with an analytic continuation onto the second sheet, for E not
at threshold. Similarly

_2 + ε>_δ2^A2_ε)_δ2 (10.11)

is bounded, and

B(E}:A 3 -+A* (10.12)
- 2~ + ε, -<52 2 -ε, -$2

is trace class, with norm (away from threshold)

\\B(E)\\AΛ_AΛ£0(λ)<l9 for ^>0, <S2<0. (10.13)

Thus (/ — B(E})~1 is bounded on the same spaces, and

is bounded.
Near threshold, since B(E) is compact, (/ — B(E))~ 1 and S(E) are meromorphic,

and the only possible point of accumulation of poles is at threshold.
The asserted properties of bound states follow. See [3,4,12] for a more

complete analysis of a similar situation.
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