
Communications in
Commun. Math. Phys. 67, 93-108 (1979) Mathematical

Physics
© by Springer-Verlag 1979

Preturbulence: A Regime
Observed in a Fluid Flow Model of Lorenz*

James L. Kaplan1 and James A. Yorke2

1 Department of Mathematics, Boston University, Boston, Massachusetts 02215, USA
2 Institute for Physical Science and Technology and Department of Mathematics,
University of Maryland, College Park, Maryland 20742, USA

Abstract. This paper studies a forced, dissipative system of three ordinary
differential equations. The behavior of this system, first studied by Lorenz, has
been interpreted as providing a mathematical mechanism for understanding
turbulence. It is demonstrated that prior to the onset of chaotic behavior there
exists a preturbulent state where turbulent orbits exist but represent a set of
measure zero of initial conditions. The methodology of the paper is to postulate
the short term behavior of the system, as observed numerically, to establish
rigorously the behavior of particular orbits for all future time. Chaotic behavior
first occurs when a parameter exceeds some critical value which is the first value
for which the system possesses a homoclinic orbit. The arguments are similar to
Smale's "horseshoe".

Section 1. Introduction and Definitions

Many mathematical attempts have been made to interpret the phenomenon of
turbulence in fluids. Typically, the behavior of the fluid is represented by the
trajectories of a system of differential equations and the system is assumed to depend
on a parameter r. The parameter r usually corresponds to the Rayleigh or Reynold's
number. [For a more detailed discussion of alternate interpretations of turbulence
refer to [1].]

One of the most intriguing models of this type was studied by Lorenz [2]. Lorenz
considered the forced dissipative system

x' = — σx + σy

y'= — xz + rx — y, (1.1)

z' — xy — bz.

These ordinary differential equations are an approximation to a system of partial
differential equations describing finite amplitude convection in a fluid layer heated
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from below. If the unknown functions in the partial differential equations are
expanded in a Fourier series and all the resulting Fourier coefficients are set equal to
zero except three, system (1.1) results. For σ = 10, b = 8/3, Lorenz found numerically
that the system (1.1) behaves "chaotically" whenever the Rayleigh number r exceeds a
critical value r2 « 24.74 that is, all solutions are unstable and almost all of them are
aperiodic, though there are an infinite number of periodic solutions of different
periods. The chaotic behavior and sensitive dependence upon initial conditions of
solutions of differential equations provides a mechanism for understanding
turbulence. Guckenheimer [3] gives an example of a dynamical system whose
behavior appears topologically identical to that of Lorenz's system; the
Guckenheimer system is more easily analyzed. Williams [4] analyzes the pattern of
winding and twisting exhibited by these flows. Higher dimensional analogues of this
system have been studied in [5, 6].

Our goal in this paper is to demonstrate that prior to the onset of chaotic behavior
there exists a "preturbulent state" where turbulent orbits exist but represent an
exceptional set (measure zero) of initial conditions. Lorenz demonstrates chaotic
dynamics we ask where the chaos came from. Our methodology will be to utilize the
general short term behavior of the system, determined numerically, and described in
Sect. 2 to predict the behavior of particular orbits for all future time. In particular, we
will show that chaotic behavior actually first occurs when r exceeds r0 «13.926. The
value r0 is the first value for which system (1.1) possesses a homoclinic orbit (that is a
bounded nonperiodic orbit having the same positive and negative limit set). The
justification of this claim in Sect. 3 will be based upon arguments similar to Smale's
famous horseshoe [7], [8]. In some sense, subsequent to the appearance of a
homoclinic orbit, system (1.1) contains a "broken horseshoe". For r < r0 there are no
periodic orbits, while for r = r0 + ε for small ε > 0, there are an infinite number of
periodic orbits and an infinite number of bounded orbits which do not tend
asymptotically to any rest point or periodic orbit.

Definitions 1.1. Let X be a space with a metric d( , \ let EcX, and let τ:E^>X.
We say a set C C E is invariant if τ(C) = C.
We say C is (Liapunov) stable if for each ε>0 there is a (5e(0,ε] such that

d(x, C)^δ implies that for every positive integer n, d(τn(x\ C)^ε, (that is "you stay
close if you start sufficiently close to C").

We say C is attracting (or is an attractor) if for each x sufficiently close to C, τn(x)
approaches C, that is d(τ"(x), C)-»0 as rc->oo. This careful separation of attraction
from stability is standard in the study of topological dynamics and dynamical system.
A well known example by Denjoy [9] of a differential equation on a torus T2

emphasizes the need for this distinction. In his example there is a non-empty
connected compact invariant set C Φ Γ2 which is neither a point nor a periodic orbit,
(nor in fact does it contain any rest points or periodic orbits) but it is an attractor (as
defined above). Hence it is a "strange attractor". (A strange attractor was defined by
Ruelle and Takens [10] to be in essence any compact connected attracting set which
is neither a rest point nor a periodic orbit nor a surface of any dimension). However, it
is not stable. The strange attractors of Ruelle and Takens [10] and Guckenheimer
[3] and presumably Lorenz are stable; they should be called strange stable
attractors. Since no definition of turbulence is universally accepted it is difficult to say
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whether the existence of a strange attractor implies the existence of turbulence, but it
is clear that Ruelle and Takens have identified a source of irregular and chaotic
behavior.

We remark that the definition of the term "strange attractor" is based on the
shape or geometry of an invariant set rather than the dynamics within that set. A
number of examples have appeared which suggest the need for a detailed taxonomy
based on the dynamics rather than the shape. In particular Lorenz argued that his
attractor was chaotic by examining functions τ:[α, b]->[α, b~\. In some of his
examples, the entire interval exhibits chaotic dynamics. Certainly nothing about the
"shape" of an interval suggests the nature of the dynamics.

We say that the dynamics on C depends sensitively on initial conditions if every
trajectory in C is Liapunov unstable even when the dynamics are restricted to C
more precisely, for each xe C, there is a ε > 0 and a sequence {y.} C C with y.->x such
that for each y. there is a positive n( = n(i)) for which d(τn(yj), τn(x)) > ε.

We say a compact invariant set C is chaotic if C is inherently unstable and there is a
dense orbit in C that is, the closure of the set (τn(x): n = 1,2,...} is C. If C has one dense
orbit, then "most" points of C have dense orbits, provided "most" is interpreted in the
topological sense of Baire Category (see [11], Theorem 9.20). The horseshoe example
of Smale [7 or 12, Chap. 4] contains a chaotic set which is neither stable nor
attracting. In this paper we will show that for certain "preturbulent" parameter
values the Lorenz system has a chaotic set which is clearly neither stable nor
attracting. Axiom A maps [8, 12] have attractors which display sensitive dependence
on initial conditions.

We will say a flow has a chaotic set if some Poincare "return" map has a chaotic
set.

We carefully demonstrate the existence of the strange set only for values of r
slightly above the critical value r0 «13.926, but we would also like to describe what
we seem to see over a wider range of r. The chaotic set we observe is a Cantor set of
orbits, each orbit being a saddle. As r increases from r0 to r1 ̂ 24.06, the chaotic set
grows in size, without any change in its topology. (This is in contrast to the infinitely
many topological types of the chaotic stable attractor for r>r2 [3]).

The Transition to Turbulence. We conducted the following experiments in col-
laboration with Yorke. For any initial point p (given r) we define σ(p) to be the
number of sign changes of x(ί), the coordinate of the solution that represents the
angular velocity. This in essence counts the number of times the orbit switches from
an oscillation around one critical point to an oscillation around the other. For
various values of r we chose many points at random from the region near the non-
attracting chaotic set. There was a striking dichotomy in the results when r was large
(22<r <r1). While σ(p) was found to be 0 or 1 for many of the randomly chosen
points, many other points produced large values of σ(p). In particular for points near
any of the three critical points, σ(p) is found to be 0 or 1. Excluding all those points for
which σ(p) was 0 or 1, the rest were roughly distributed according to a (discrete)
exponential distribution, the mean of which appears to go oo as r-*r±. At r = 23, the
mean of these σ(p) values appears to be well over 100, but for r near 24 the computer
time required for careful statistics becomes prohibitive, and it is this range that is
most interesting.
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For r slightly less than 24.06, we thus have "metastable chaos", that is, chaotic
behavior which is observed to persist for a long but finite time. Physically, our
preturbulent state would appear to be one in which there is an attracting state (two
stable attracting points) and a complementary region in which orbits oscillate
chaotically. The observed trajectories act as if there were a half life to their stay in the
chaotic region if a trajectory in the chaotic state is observed for time T, knowledge of
T tells us nothing about how much longer it will remain in the chaotic region. As
r-^r1 there is little change in the apparent volume of the metastable chaotic region
surrounding the strange set. For r < r1? almost every point in the chaotic region will
eventually be sucked toward one of the attracting critical points, but the mean
number of preceding oscillations is large. As r passes beyond r l 5 the mean time
becomes infinite and "suddenly" the ill-defined chaotic region becomes the region of
attraction of the strange attractor. Robbins [13] investigates the transition to
turbulence and reports she observed (numerically) orbits in the Lorenz system and
related systems which oscillate chaotically for quite a while before settling down. Her
parameter values correspond to our situation with r slightly less than rr Based on
analysis of piecewise linear mappings on the real line to approximate the dynamics of
the Lorenz system, Robbins [13, Sect. 3] argues that for all re(r0, r1) (using the
notation in our analogous situation) there is an unstable periodic orbit, in agreement
with our findings. The argues that for large r in (r0, rj there are others which do not
approximate a steady solution, and for larger r in (r0, r1), "the set of trajectories may
become uncountable". Her method disagrees with our findings of chaos near r0. This
metastable chaos regime may have been observed physically; Creveling et al. [14]
reports an experiment involving fluid flow through pipes in which over a hundred
oscillations are observed before the oscillations become regular and damp out. The
existence of metastable chaotic regimes in physical situations could appear
turbulent, for metastable chaos can persist for long durations. It is particularly
difficult to determine whether apparent chaos in experiments in fact represents actual
turbulence or just metastable chaos.

Table 1. A summary of the apparent range of behavior o/(l.l) as determined by theory and computations. We
list the critical changes as r is varied. This list is calculated for σ = 10 and b = 8/3. Except for the number of
rest points and their local stability properties, all assertions are based upon numerical data.

For r < 1, 0 is globally attracting.
r = 1 is a transition value.

For r > 1 there are 3 rest points.
For r< 13.926 all trajectories tend to one of the rest points.

r = r0 «13.926 is a transition value. There exist 2 homoclinic orbits, trajectories starting from and going to
0. (See Fig. 5).
For r> 13.926 there are infinitely many periodic orbits, and infinitely many "turbulent orbits" which

do not converge to any point or periodic orbit.
r = rl & 24.06 is a transition value. The unstable orbits from 0 tend to asymptotically unstable periodic

orbits. These two periodic orbits are saddles and the orbits are in the stable manifolds of these peri-
odic orbits. See Fig. 2).
For r > 24.06 there is a chaotic stable attractor. Between 24.06 and 24.74 there exist a chaotic stable

attractor and a pair of stable attracting rest points.
r = r2~24.74 is a transition value.

For r> 24.74 there are no stable points.
For some much larger values of r > 50 Lorenz has found stable periodic orbits, and for such values no

chaotic attractor is observed.
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Lorenz mentioned the transition at r = 24.74 since this is the critical point at
which the two regions of attraction of the non-zero rest points shrinks out of
existence. McCracken [15, pp. 141-148] shows that at r = r2 the non-zero critical
points are unstable. McLaughlin and Martin [5] espouse the view point that the
nature of this bifurcation causes "an immediate transition to turbulence", which
seems to underemphasize the fact that a chaotic was established earlier at rr

Section 2. A Description of the Lorenz System

In order to establish the asymptotic behavior of the solutions of (1.1), we must first
provide a detailed description of its trajectories, based upon numerical studies. These
studies were performed on the UNIV AC 1108. Following Lorenz, we investigate the
case <7 = 10, ft = 8/3.

There are 3 steady state solutions for r > 1.

and

c = (x, y, z) = (]/b(r—1), ]/&(r—1), r — 1)

c' = (x,3;,z) = (- j/b(r-l), - l/fo(r-l),r-l).

The origin has a two-dimensional stable manifold and a one-dimensional unstable
manifold while for r > r0, c and c' each have a one-dimensional stable manifold and a
two-dimensional unstable manifold. A projection of the trajectories onto the y — z
plane for r = 28 is shown in Fig. 1. Observe that a trajectory appears to spiral around
one critical point in Fig. 1 until its distance from that critical point exceeds some
critical distance. Thereafter, it spirals about the other critical point with increasing

Fig. 1

?C

•P

Γ

Fig. 2. The intersection of the stable manifold of 0 with the plane z = r — 1. φ is not defined on this curve and
φ changes discontinuously as this curve is crossed
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Fig. 3

Fig. 4

oscillations until the critical distance is again exceeded. Trajectories at the critical
distance lie on the stable manifold of 0.

In order to reduce the dimensionality of the problem we make use of a Poincare
map φ. Consider the plane z = r—l containing c and c'. This plane is shown in Fig. 2.

The curve represents the intersection of the stable manifold of 0 with the plane
z = r — 1. φ is not defined on this curve and φ changes discontinuously as this curve is
crossed. This discontinuity curve is almost straight.

Consider a point P in the plane and let φ(P) denote the first intersecting of the
trajectory through P with the plane z = r — 1 for which z is moving downward (z' < 0).
Successive images of a point Pbyφ tend to lie along the curves γ and /. For-r > r2, the
curve γ represents the intersection of the plane with a medium-sized piece of the
unstable manifold of the critical point. For r<r2, there is no unstable manifold.
Nevertheless, we can observe numerically the existence of a stable curve which is the
analog of the curve in the case r > r2, although we cannot prove that the curve exists.
Moreover, since c and d are unstable φ(P) lies further from c along γ than P. The
curved line L is singular for the mapping φ. Orbits passing through L go to the critical
point 0. For a detailed discussion of the trajectories of (1.1) for r = 28, refer to the
original paper by Lorenz [2]. A discussion of the Poincare map φ when r = 28 may be
found in the recent paper by Ruelle [16].

As indicated previously we are concerned with the behavior of trajectories when r
exceeds the critical value r0.

Again, we consider a projection of the trajectories of system (1.1) onto the y — z
plane. When r<r0 we observe the behavior shown in Fig. 3.
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Fig. 5

Fig. 6

//HOMOCLINIC
/ ί ORBITS

Note that since system (1.1) is invariant under the transformation

(x,y,z)-+(-x9 -y,z) (2.1)

it is sufficient simply to draw the trajectories about c. The corresponding orbits about
d may be obtained by symmetry. The fixed points c and c' are asymptotically stable
when r<r2.

For r > r0 the projection of trajectories of (1.1) onto the y — z plane is substantially
altered. The critical point c (and, of course, c') is still asymptotically stable (for r < r2).
For r < rί solutions outside an unstable trajectory from 0 can "cross-over" the z-axis
in the y — z plane and spiral into c'. See Fig. 4.

A comparison of Figs. 3 and 4, combined with the continuous dependence of
solutions upon the parameter r, reveals that there must exist a transition value of r,
which we have denoted by r0, for which (1.1) possesses a homoclinic orbit. Intuitively,
this is the value at which the transition takes place between the situation shown in
Fig. 3, where a trajectory originating near the origin ultimately spirals about c, and
that shown in Fig. 4, where a similar trajectory crossed over the z-axis. In the y — z
plane, we have Fig. 5.

Let us look at the Poincare map φ associated with the parameter value r0. The
curve L again represents the intersection of the stable manifold with the plane
z = r0 — 1«12.926 ..., and is a singular curve for the mapping. The image of a point P
situated on y will also be on y, but closer to c. This is illustrated in Fig. 5, where we
observe that c attracts all solutions originating "inside" the homoclinic orbit if we
examine a surface containing c and the spiral.

A point Q at the same distance from L as P, but not lying on y, will be mapped to
a point φ(Q) very near to φ(P). [We will discuss why this should be so shortly.]

We next consider the Poincare map associated with the situation shown in Fig. 4
for r slightly greater than r0. An initial point Pί on y near c is mapped closer to c along
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•C
f0(p1)

•C'

Fig. 7. Poincare map on the plane z = r— 1, r>r0, r<r2

y, since c is still asymptotically stable. A point P2 near L, however, is mapped across L.
This is because a trajectory originating at P2 near the stable manifold must pass very
close to the origin. But, as we see in Fig. 4, any trajectory passing very close to the
origin must cross over the stable manifold.

Suppose now that we parametrize the curve y by arc length, taking the
intersection of y and L as our reference point. For any point P on y we will denote by
α(P) the length of y between L and P, with α(P) being positive if P is on the same side of
L as c. It is easily seen (refer to Fig. 7) that

while

α(P2)>α(0(P2)).

By the Intermediate Value Theorem there must exist some point P on y between
and P2 for which

But since α is one-to-one, this is equivalent to

P = φ(P}.

Such a fixed point of the Poincare map corresponds to the existence of a periodic
solution of system (1.1).

We would like to examine an alternate approach to establishing the existence of a
periodic solution of system (1.1) when r>r0. This method has two primary
advantages over the previous discussion :

(i) We will only need to consider the local behavior of the mapping φ in the
neighborhood of L, rather than the behavior along the entire curve y. These local
properties are easily verified numerically simply by integrating the system (1.1) by
computer.

(ii) Our new approach will be sufficiently general to allow us to establish in the
next section the existence of an infinite number of periodic solutions of different
periods, as well as an uncountable number of aperiodic orbits.

Consider an approximately rectangular region A as shown in Fig. 8. One long
side of A, of length ε, lies along L and is centered at the intersection of L and y. Denote
its endpoints by P1 and P2, respectively. The other side of A is parallel to P^2 and
distance ε2 away. The two shorter sides of A, PXP4 and P2P3, are normal to L at P1

and P2, respectively. Here ε is a small positive number.
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0(p 1 )=0(p 2 )

Fig. 8

What is the image of the region A under φ ? We observe numerically that there
exists some ε0 >0, such that for ε ̂ ε0, the image of the point P4, 0(P4), lies much
closer to c and nearer to y. The point φ(P3) is situated symmetrically across γ.

The mapping φ is not defined along L and so we cannot compute φ(P1) and φ(P2).
However, we can determine Jim φ(Pί)and Jim φ(P2) where the limits are taken

over points Pt which approach P., i = 1, 2, in A. Consider first a point Pt in A near P1.
Such a point is mapped by the flow close to the origin. If it is sufficiently near to L
initially we have already seen (see Fig. 4) that its trajectory will cross over the stable
manifold, so that the point φ(Pί) will lie on the other side of L. Similar reasoning
applies to the point φ(P2). In fact, the closer the points Pί and P2 are to L initially, the
closer together their trajectories will be near the origin. It follows that their images
under φ can be made arbitrarily close, provided we choose P1 and P2 sufficiently near
L. Of course, the points P1 and P2 are in no way distinguished (except for the fact that
they lie on L). Thus, there exists a point Q (the point of intersection of an orbit
originating near 0 on the unstable manifold with the plane z — r— 1) such that

P-+L
PeA

We remark that it is because of (2.2) that we must have ε ̂  ε0 > 0 (that is, ε cannot
be too small). Otherwise, φ(P3) and φ(P4) would also lie near 0.

Notice in Fig. 8 that we have depicted φ(A) having substantially smaller area than
A. Actually, the figure substantially exaggerates the area of φ(A). Lorenz observed
the divergence is constant hence the flow defined by system (1.1) contracts volumes
in R3 at the constant rate of

dx dy dz

dx dy dz

For the parameters we are considering this is - 13.7, which is a very fast rate of
contraction. Since it takes slightly more than 1 time unit for a trajectory originating
on the plane z = r — 1 to intersect that plane again, it follows that the area of φ(A) will
be approximately £~1 3 7^10~6 times the area oίA. This accounts for our difficulty in
drawing our sketch to scale in Fig. 8.

The one-sided limit (2.2) enables us to extend the definition of φ to all of A. An
examination of Fig. 8 now shows that the degree of the mapping φ on A is nonzero
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0(A)

0(0(A)ΠA)

0(A)ΠA

Fig. 9

0(D)

Fig. 10

and thus there must exist a fixed point of φ in A. This is in agreement with our
previous reasoning.

Remark 2.1. Consider the "subrectangle" φ(A)r\A. Since two of its sides lie along
PίP2 and P3P4, respectively, we must have that φ(φ(A)r\A) is stretched transversely
across A, in a manner similar to φ(A).

Next we construct four rectangles, which we denote by A, B, C and D. We
numerically computed their images under the Poincare map φ, in a manner
analogous to that described above. The results of our computations are shown in
Fig. 10. We emphasize again that these results are obtained empirically.

In the next section we will show directly how the situation shown above implies
the existence of an infinite number of periodic solutions of (1) with different periods,
as well as an uncountable number of aperiodic orbits.

Remark 2.2. Smale's famous "horseshoe" example [7, 8] proved that if g is a
diffeomorphism of the plane which possesses a transverse homoclinic orbit then it
must contain a horseshoe. That is, there exists a rectangle R which is stretched
linearly in the horizontal direction and contracted vertically then it is bent across R,
as shown in Fig. 11. Here g(p) = p' etc. The existence of the horseshoe, in turn, implies
that g must have an infinite number of periodic points of different periods as well as an
uncountable number of aperiodic points. Actually, in the analysis of the horseshoe it
is not necessary to consider the action of g upon the entire rectangle R. It is sufficient
to consider the behavior oϊg on the subrectangles A and B which are chosen so that

This observation has been utilized successfully by Guckenheimer, Oster and
Ipaktchi [17] in which they study various higher dimensional difference schemes.
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Fig. 11

a
\ A B

Fig. 12

A B A B

Fig. 13

Fig. 14

They demonstrated numerically the existence of a "twisted" horseshoe. A rectangle R
is again stretched linearly in the horizontal direction and contracted strongly
vertically. Then, it is given a half twist before it is bent double across R. According to
the remark we made above, the twist does not significantly alter the analysis of the
mapping g on the subrectangles A and B. (cf. Figs. 12 and 13.) Once this identification
is made, the authors are able to appeal to Smale's work to establish the existence of an
infinite number of distinct periodic orbits, as well as an uncountable number of
aperiodic ones. In the terminology of Ruelle and Takens, aperiodic orbits of this type
are turbulent because their limit sets are neither points, nor periodic orbits, nor
manifolds. Let us return to the situation generated by system (1.1), shown in Fig. 10.
Let us make use of the symmetry relation (2.1) for system (1.1) to identify A with C,
and B with D. Then a redrawn Fig. 10 would look as follows. This is precisely Smale's
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horseshoe, and, in fact, we could now appeal to his work to establish our desired
behavior. Actually, however, since A and C and B and D are separated, we have a
"broken horseshoe". In the next section, we will present arguments applicable
directly to the broken horseshoe to conclude the desired asymptotic behavior of the
trajectories of system (1.1).

Section 3. Analysis of the "Broken Horseshoe"

In the previous section we displayed graphically (see Fig. 10) the action of the
mapping φ on the four rectangular regions A, B, C and D. We may summarize these
empirical results in the following fashion:

(3.1)

Thus, for example, A—>A + B indicates that φ(A)nA^0 and φ(A)nB^β (see
Fig. 9). We can now represent the action of φ on the set of symbols {A, B, C, D} as a
"transition matrix":

where

(3.2)

A
A
B
C
D

"1
0
0

_1

B
1
0
0
1

C
0
1
1
0

D
0"
1
1
0_

1 if some point in state i is mapped into state j.

0 otherwise.

The second iterate of ψ, ιp2, is easily computed to be

Here ψfj = 1 for all 1 rg ij ^ 4, which signifies that there is precisely one path of length
2, starting at any state i and ending at statej. For example, consider ιp^3 — 1. This tells
us that there is precisely one way to proceed in "two steps" from A to C, namely

A—>B—>C.

Observe that there is no other path of the form A-^X-^C, according to (3.1).
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In a similar manner

" 2 2 2 2 "
2 2 2 2
2 2 2 2
2 2 2 2

Thus, for example, since ψ3

14 = 2 there are precisely two paths of length 3 starting at A
and ending at D

A—>B—>C—>D9

and

A—>A—>B—>D.

By induction we can verify that, in general

2k~2 2k~2 2k~2

2/c-2 2k~2 2k~2

2k~2 2k~2 2k~2

2/c-2 2k~2 2k~2

; = 2,3,... (3.3)

The procedure for relating the symbolic mapping (3.1) to the dynamics is quite
similar to that used by Smale [7] except that his horseshoe involved two symbols
instead of four. For an excellent exposition of the details, see Nitecki [12, Chap. 4
"The Horseshoe"]. We omit proofs for Lemmas 3.1 and 3.2.

Definition 3.1. Let E = AuBuCuD. We have referred to A, B, C, and D as symbols
and we say for example a point peE "has symbol A" if pεA. Corresponding to the
sequence of points {</>'(*)} C £, there is a sequence S = {Xt} where eachX is A or B or C
orDandze{0, ±1,..., ±k} orze{0, 1, ...} orie{0, ±1, ±2, ...}. In the latter case we
say S = {...X_1,X0,X1, . . .} is a bίsequence. We say S is realizable if for each^ and
Xi+1, there are points inXt which are mapped by φ into Xt + 15 (that is, φ(Xi)r^Xi+1 is
nonempty). We will say q is a realization of S if φ\q)eXi for each i.

Lemma 3.1. Given any realizable sequence S, the set of realizations is nonempty and
compact. For each realizable bisequence S, there is precisely one realization q. The
bisequence is periodic with period fc, (i.e., Xi=Xί + k f o r all i) (if and) only if its
realization is a periodic point with period k.

In particular there are an infinite number of periodic orbits of (1.1) with distinct
periods for r slightly greater than r0 since there are infinitely many distinct realizable
bisequences.

Let E0 = {qeE:φl(q) is defined and is in E for all i = Q, +1, ...}. E0 is the set of
points which are realizations of bisequences.

Lemma 3.2. Let qeE0 and q^E^for i= 1,2, . . . . Then qt-+q as i-κx) if and only if for
each fc = 0, ± 1, ..., φk(q^) and φk(q) have the same symbol for all but finitely many i.

Corollary 3.1. There are an uncountable number of points pe E0 which are not periodic
and are not asymptotic to any periodic orbit.
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Proof. Clearly there are an uncountable number of distinct realizable bisequences
{Xt} for which the sequence {X0,X19...} is not eventually periodic, and the
realizations of such sequences are not asymptotic to any periodic orbits. D

Remark 3.1. In the language of symbolic dynamics, our previous discussion has
established the existence of a mixing subshift of finite type [12].

Remark 3.2. The number of periodic orbits of period n is given by

These, of necessity, include all periodic orbits whose period divides n. In order to find
the number of orbits having least period n we must subtract the number of orbits of
period k for which k divides n. For example trace φ3 = 23 = 8, so that there are 8 orbits
of period 3. The only factor of 3 is 1, and there are 21 one-cycles, namely A^A and
C -» C. Thus there are 8 — 2 = 6 orbits with least period 3, and these are easily found to
be

This scheme counts the first three of these cycles separately, when in fact they
represent the same orbit of (1). The same is true of the last three cycles. In order to find
the number of distinct cycles we must therefore divide by the length of the cycle. In

o _ 2
this case this yields the fact there are - = 2 distinct periodic orbits. The same

type of reasoning can be used to enumerate the periodic orbits of φ of any order n.

Corollary 3.2. The set E0 is chaotic.

Proof. To construct a dense orbit in £0 let S = {Xt} be a realizable bisequence such
that for each finite realizable sequence of symbols { Y_ fc, . . ., Yk} there exists a positive
integer n such that Xn + . = Y. for all i = — fc, . . ., k. Let q be the realization of S. For
each p in E0 and each k there is an n = n(p, k) > 0 such that for i = — k, . . . , fc, φn + l(q)
and φl(p) have the same symbol i.e., both are in the same set A, B, C, or D. Let
qk = φn(k'p\q) It follows from Prop. 3.1 that qk-+p as k->oo. Hence the orbit of q is
dense in E0.

To see that £0 is inherently unstable, let p be in E0. Write E1 = Ar\EQ, E2 = BnE0,
E3 = CnE0, and E4 = Dr^E0. Let εifj = mfd(x,y) for xe£ f and yεEj. Let ε be the
minimum of εfj. for i ή=j. Notice that ε > 0 since points near AnB or Cr\D are mapped
out of A\jB\jC\jD. If y is any point in £0 let (XJ be the corresponding bisequence.
For k = 1, 2, . . . let Sk = { Yik} be a realizable bisequence such that Yίk =X. for all \i\<k
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Φ ( A ) o r φ ( C )

φ ( B ) o r φ ( D )

Fig. 15. At r = rl« 24.6, the two trajectories emanating from (0,0,0) tend asymptotically to the (unstable)
periodic orbits as shown. These periodic orbits are attracting in one dimension and repelling in one. For r
smaller, the trajectory spirals into the critical point c'

and Ykkή=Xk. Let qk be the realization of Sk. Then qk^>q and qkεE0 but
d(φk(qk), Φk(q)) > ε, so £0 is inherently unstable. Π

We have now shown that for r immediately following the first appearance of a
homoclinic orbit of (1.1) at r = r0, there is an onset of chaotic behavior. For re(r0, r1)
the unstable orbits emanating from (0,0,0) reverse sides once (see Fig. 4 and then
immediately spirals into a critical point (c' in the case of Fig. 4).

We seem to observe this entire structure persisting and growing until r reaches the
next critical value, r x « 24.06. Fig. 1 shows the critical picture.

Hence for 0<r^r l 5 a homoclinic orbit occurs only for r = r0.
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