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Born Series for (2 Cluster) -> (2 Cluster) Scattering
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Abstract. We investigate elastic and inelastic (2 cluster) -• (2 cluster) scattering

for classes of two, three, and four body Schrodinger operators H = H0+ ]Γ Vi}.

Formulas are derived for those generalized eigenfunctions of H which cor-
respond asymptotically in the past to two freely moving clusters. With these
eigenfunctions, we establish a formula for the (2 cluster) -• (2 cluster) T-matrix
and prove the convergence of a Born series for the T-matrix at high energy.

1. Introduction

In this paper we investigate (2 cluster) -> (2 cluster) scattering of certain classes of
two, three, and four particle Schrodinger operators. We begin by finding those
generalized eigenfunctions of the Hamiltonian, φa(X, k), which correspond to two
cluster initial channels α. Using these eigenfunctions we prove the validity of a
formula for the physicists' T-matrix for (2 cluster) ->(2 cluster) elastic and inelastic
processes. We then prove the convergence of a Born series expansion for the
T-matrix at high energy.

In the two body case, we have little to say which is new. Eigenfunction
expansions for two body Hamiltonians are developed in [2, 11, 14, 17, 20]. The
two body T-matrix formula is proved in [17, 20]. Also, for each potential V in
certain classes, there exists Eo < oo, such that the Born series converges for energies
in (Eo, oo) [1, 6, 15, 17, 20, 24]. However, our methods and the closely related
methods of [15] are presently the only methods which can be used to estimate Eo.

Our principal new results deal with 3 and 4 body systems. Previous authors [5,
13, 19, and references therein] have obtained the asymptotic behavior and
distributional Fourier transforms of the generalized eigenfunctions. They have not
proved Born series convergence nor the validity of the T-matrix formula [Eq.
(1.2)].

Supported in part by the National Science Foundation under Grant PHY 78-08066

0010-3616/79/0066/0077/S03.60



78 G. A. Hagedorn

Theorems 1.1-1.3 are precise statements of our main results:

Theorem 1.1. Let raΞ>3 and N^A. Let H = HQ+YtλijVij be an N particle

ί<j

Schrδdinger operator (with the center of mass motion removed) on J^ = L2(]R.(N~1)m).
Assume each Vt. may be factored as V^ = V\ Wip so that:

i) each U^ and Wtj is dilation analytic in some strip,
ii) (l+xfjTUijiXij) and (l+xf/W^) belong to Lp(IRm) + L°°(IRm) for some

p>m and v>m/4,
iii) bound state energies of three body subsystems are non-positive when N = 4.

Then, for generic couplings {λtj), there is a closed set $ glR of measure zero,
such that the following hold for each channel α, whose cluster decomposition D(α)
contains exactly two clusters.

(a) Let Ea denote the threshold energy corresponding to α, and let Mα be the
reduced mass associated with the coordinate between the centers of mass of the
clusters of α. If keW1 satisfies k2j2M0, + EaφS, then, for sufficiently large δ, there
exists 0α(X,/c)6Ll^(R(N"1)m,^Z) = {/:(l+Z 2)~ό / 2/(Z)eL 2(]R ( i V~ 1 ) m)}, such that

implies ft(k) = (2πyml2 J φa(X,k)f(X)dX satisfiesf*a =((Oβ

+)*/T.
(b) /i->/* extends uniquely to a partial isometry (also denoted / ^ / * ) with

initial subspace Ranί2α

+gjf and final subspace ^ α = L2(IRm). If /eJfα, then
f = (Ω+ fψ

(c)ΊϊfeD(H), then 2

Remarks. 1. Balslev [3] and Simon [21] have given sufficient conditions for
hypothesis iii) to hold (see also [8, Theorem 11.10]). Yukawa potentials, genera-
lized Yukawa potentials, and potentials of the form r " 1 ( l + ε r ) ~ m + 1 ~ ε satisfy all
the hypothesis of Theorem 1.1.

2. The generic couplings are precisely those for which no cluster Hamiltonian
has a threshold resonance or threshold bound state. This set of couplings is large
in the sense that its complement is a closed set of measure zero [8, Sect. VI].

3. Note that fa=0iϊ f is orthogonal to RanΩα

+.

Definition. Assume the hypotheses of Theorem 1.1, and assume {λtj= 1} is a set of
generic couplings. Let α and β both be two cluster channels, and let φ°(X,k)
= eikζψa(xa). Here ψa is the tensor product of the bound states of the clusters of α ζ
is the coordinate between the centers of mass of the clusters of α and X = (xα, ζ).

Let V= £ Vip and let VD{a) be the sum of all Vtj with i and j in the same cluster of

D(oί). If k'2l2Mβ + Eβφ£, then we define

Ta β{k9K) = (2πyn J φ°a(X,k)lV(X)-VDia)(X)-]φβ(X,k')dX (LI)

Theorem 1.2. Assume the hypotheses of Theorem 1.1, and assume {λtj= 1} is a set of
generic couplings. Then Taβ(k,k') is continuous in k and k! for k'2/2Mβ + EβφS,
whenever both a and β are two cluster channels. Suppose feJ^a = L2(ΊRm) and geJ4?β

= L2(IRm) are chosen so that f and g are C°° with compact support, and assume
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k'esuppg implies k/2/2Mβ + Eβφ£>. If SaJ\J^β^J^a denotes the block of the

S-matrix of H = Ho 4- Σ ^ij for scattering from channel β to channel α, then

= - 2 π i J f{k)g(k')δ(k2/2Ma + Ex-k'2/2Mβ-Eβ)Taιβ(k,k')dkdk' . (1.2)
IR2IR2

The Born series for the two body T-matrix arises from the substitution in
Eq. (1.1) of a series for φβ(X, k'). This series for φβ(X, k') is obtained by expanding
(1 — M{z))~ι in Eq. (2.2) as a geometric series, and substituting the result in Eq. (3.1)
for φβ(X, k'). If M(z) = W(z — H0)'1U has norm less than 1, the Born series con-
verges. Various authors [1,6,17,20,24] prove ||M(z)||-»0 as Rez->oo. Our
slightly stronger result (also obtained in [15]) is ||M(z)|| ^C(Rez)~ ε, where C and
ε depend on U and W. Thus, given a potential, this allows the computation of an
energy above which the two body Born series converges. Estimates of the error
in the nth Born approximation can also be calculated.

For N = 3 and Λ̂  = 4 we mimic the above procedure to obtain expansions
which we call the Born series. We expand the 3 and 4 body Eq. (2.2) by expanding
(\—M(z))~1 as a geometric series, and substitute the result in Eq. (3.1) for φβ(X, kr).
This series for φβ is then substituted into Eq. (1.1), thus giving us a series for

For example, if JV = 3, DOS) = {{1,2}, {3}}, and E = k'2/2Mβ + Eβ, then φβ(X,k')
00

= Σ φ(

β\X,k% where the first few terms are:
n = 0

+ (E + ίO-H23Γ
1V23φ°β(-,k'mX),

Hl3Γ
1V13(E + i0-H23Γ

1V23φ°β(;k'WX)-

The n t h term for Taβ{k, k') is given by

(2π)-" J φ°a(X,k)lV(X)-Vm)(X)Wβ

n)(X,k'
I R ( i V - l ) m

For N = 3, this Born series is sometimes called the Faddeev-Watson series. It is
physically motivated by decomposing the three body scattering into sequences of
two body collisions. For JV = 45 the situation is much more complicated because
the barely connected perturbation diagrams contributing to M(z) are more
complicated.
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Theorem 1.3. Assume the hypotheses of Theorem ί.ί, and assume ^tj=l} is a set
of generic couplings. If M{z) is defined by Eg. (2.2), then

a) for N = 2, the corresponding M(z) satisfies \\M(z)\\ :gC(Rez)~ε,
b) the N = 3 body M{z) satisfies || (M(z))n|| ^(c Re z)" [" / 2 ] ε, where [n/2] is the

greatest integer less than or egual to n/2,

c) the N = 4 body M(z) satisfies lim \\(M(z))n\\=0 for n^
R >

So, for N^4, the Born series for the (2 cluster) -> (2 cluster) T-matrix converges at
high energies.

Remarks. 1. The fact that M(z) contains only connected perturbation diagrams is
crucial for this theorem. Disconnected diagrams cannot tend to zero in norm as
z->oo along the positive real axis.

2. The proof of b) also holds for the potentials of Ginibre and Moulin [7]. As a
consequence, there is no high energy singular continuous spectrum for these
potentials. Previously, only the absence of negative energy singular continuous
spectrum has been proved [7].

Throughout the paper we use results of [8]. Section 2 establishes notation and
recalls a few essential results of [8]. Section 3 contains the proofs of Theorems 1.1
and 1.2. These proofs are similar to their 2-body analogs, except that certain
formulas from [8] are required. The proofs of Theorem 1.3 for N = 2, 3, and 4 are
given in Sects. 4, 5, and 6, respectively. The principal methods involved in these
sections are those of [8] and [4].

It is a pleasure to thank Barry Simon for several useful discussions and a critical reading of the
manuscript.

2. Preliminaries

Throughout this paper, we use results and notation from [8]. Those technical
devices not discussed below (such as clustered Jacobi coordinates, dilation
analyticity, etc.), are discussed in [8], as well as the references to [8]. We will,
however, recall a few definitions and facts.

The Schrόdinger operator for N particles in m dimensions is

on L2(RNm). We remove the center of mass motion from H to obtain H = H0

+ Σ vij o n ^ = L2{WiiN-1)m).

A cluster decomposition D = {C }̂ = x is a partition of {1,2,..., N} into k disjoint
clusters C . HD = H0 + VD, where VD is the sum of all VV} with i a n d j in the same
cluster of D. tf may be decomposed as e ^ 1 ®«^ 2 ®...® e ^®«^(£>) so that
HD = hι ® 1 ®...<g) 1 + 1 ® h2 (g)...(χ) 1 + ... + 1 ®.. .® ftk® 1 + 1 ®...(g) 1 (g) KD.
The Hamiltonian hi corresponds to the energy of the particles in cluster Cf alone.
KD is the kinetic energy of the centers of mass of the clusters of D.



Born Series for Two, Three, and Four Particle Scattering 81

For each i, we choose eigenfunctions ηf of ht so that {ηf} is an orthonormal
basis for the subspace of ^ generated by the eigenfunctions of h}.

A channel α is a cluster decomposition D(μ) together with an eigenfunction
k

η(ί)e{ηf} for each hv We define EΛ= Σ Ei> w h e r e V/(0 = ̂ V °, and let
i = l

ψa = η{ί)(g)η{2)(g)...(g)η{k\ P α : j f -^ j f is the orthogonal projection onto all vectors
of the form \pa®φ, where φe3tf{D(<x)) is arbitrary. J4?a = Jf(D(ocj) is identified with
the range of Pa by identifying φ with ψa®φ. We let PD be the sum of all Pα with

Using this identification and letting Ta = 1 (x) 1 (x)... (x) 1 ®KD ( α ) + £α, we define the
channel wave operators Ω^ :j4fa-^J4? by

Ω* = strong-limite

i tHe~ i tTχPa .
ί-> + oo

When α is a two cluster channel, we let Mα denote the reduced mass associated
with the coordinate between the centers of mass of the clusters of D(α).

In Sect. Ill of [8] the multiparticle limiting absorption principle is used to
obtain expressions for ((Ω *)*/)" for a dense set of /'s. To obtain a partial
eigenfunction expansion we require a stronger version of this absorption principle.
The only difference between the version below and the version in [8] is that we
require μ>m/2 rather than μ>\.

Definition. Lp

δ(W) = {/: (1 + x2f2f(x)eLp(Rn)}.

Definition. Let H be an N particle Hamiltonian on L2(R ( i V~1 ) m), with mΐ>3. The
strong multiparticle limiting absorption principle holds for H if

L{D)

{z-H)-^Yj{z-HDy1PD Σ F,tDZ,Jz) ,
D £=1

where:
(a) there exists <50 such that φeL2^"-1)M) implies ZeΏ(z)φ is an L2(]R(iV~1)m)

valued meromorphic function in (C\σess(H\ with continuous extensions to σQSS(H)
from above and below in the complement of a closed set $ of measure zero

(b) for each £ and D9 F£Ώ maps L2(IR(iY~1)w) into L^(lRw)(x)L2(lR(JV-2)m) for some
μ>m/2 and pe(l,2], where the first factor denotes functions of a Jacobi
coordinate for the motion of the centers of mass of clusters of D.
Lemma 2.1. Suppose the strong multiparticle limiting absorption principle holds for
H on L2(IR(iV~I)m), where m ^ 3. Let a be a 2 cluster channel, and assume Ω^ exist. If
φeL2

o(IR ( i v-1 ) m), then, for all keW1 with k2/2Ma + EΛφ£9

L(D(a)) y
2 ) (2.1)

(Note that both sides are Fourier Transforms of functions on IRm. We have identified
tfΛ and

Proof Proposition III.6 of [8] shows that the result is valid if both sides are
viewed as L2 functions on the sphere of radius |fe| (see also [5, 7,10, 23]). Note that
the right-hand side of (2.1) is actually continuous whenever k2/2Ma-\-EaφS>. This is
because μ > m/2 in the strong multiparticle limiting absorption principle implies

L(D(α))

P. Σ F,iD(a)Z^D{ΰί)(
£=1
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has the form φa®f with /eL^(IRm) £1/(111™), and because Z€ D(a)(z) is continuous
for zφS. D

Lemma 2.2. The hypotheses of Theorem ί.l imply the existence of the channel
wave operators for H. Furthermore, for generic couplings, the strong multiparticle
limiting absorption principle holds for H.

Proof The existence of Ω* is proved in [18, 22]. If we choose γ>m/2 in the
definition of the ρ functions (defined at the beginning of Sect. V of [8]), then Sect.
V of [8] proves the strong multiparticle limiting absorption principle for H with
generic couplings. This γ may be chosen greater than m/2 because Hypothesis (ii)
of Theorem 1.1 requires v > m/2 (see the beginning of Sect. V of [8] for a discussion
of the allowed values of γ). D

Under the conditions of Lemma 2.2, the formulas of Sect. IV of [8] show that
each non-trivial operator Z^ D(z) may be represented as

M(z))-ίC(z) . (2.2)

For JV = 2, M(z)=W(z-Hoy
1U. For N = 3 and JV = 4 the operators M(z) are

given by Eqs, (IV.6) and (IV. 10) of [8], respectively.
The 3 and 4 body operators M(z) contain factors ρip ρijk, ρt kl9 etc. The choice

of these factors is rather arbitrary, and we use a different choice from that of [8].
At the beginning of Sect. V of [8], each ρ function is chosen to have the form
ρ(y) = (l+y2)~y/2, where y is some particular coordinate, and l<y<<5. The δ
depends on the potentials, and for the potentials of Theorem 1.1 of this paper, we
have δ > m/2.

For this paper, we fix γ satisfying m/2<γ<δ, and then make the following
definitions for the ρ functions.

Definition. Let ξ be the coordinate from the center of mass of particles i and j to
particle k. Let ξ be the coordinate from the center of mass of particles i, j , and k to
particle ί. Let η be the coordinate from the center of mass of particles i and j to the
center of mass of particles k and L We define

3. Two Cluster Eigenfunctions and the (2->2) Γ-Matrix

In this section we prove Theorems 1.1 and 1.2. We begin by constructing the 2
cluster generalized eigenfunctions.

Definition. Assume the strong multiparticle limiting absorption principle for the
JV body Hamiltonian H. Let α be a channel for H such that D = D(a) has exactly
two clusters. Let φ°(X,k) = eίk'ζψa(xa\ where X = (xa, ζ) denotes a set of clustered
Jacobi coordinates for D. Whenever k2/2Ma + EaφS>, we define

L(D)

Φoβ,k)= Σ ( Z Λ # 2 / 2 M α + £α-/O))*F,%0α

o(X,fc) . (3.1)
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Remark. In the above definition, ψ α eL 2 (IR ( ] V - 2 ) m ) and eikeIf°(W)QL2_δ(lRm) for
δ>m/2. Consequently, φ°a( ,fc)eL2_δ(IR ( W-1 ) m), and F*Dφ°a( , /c)eL 2 (R ( Λ ί - 2 ) m ) .
Thus (Z Λ ϋ (/c 2 /2M α + ί;α-ίO))*FlDφ°a( , k ) e L 2 _ δ o ( J R < N - ' '

So, the following definition makes sense.
Definition. Let φaQC9k) be defined as above. For /el4o(IR ( i V~ 1 ) m), we define

f*(k) = (2πym/2 j 0α(X, k)f(X)dX for all /ceRm with k2/
m*t- Dm

Lemma 3.1. Choose H and a as above, and assume Ω* exists. If feL2

δ (R ( i V ~ 1 ) m ) ,

h((Ω:rnf*

Proof lϊk2βMa + Eaφ£, then Lemma 2.1 shows

\L(D)

= (2π)-""2 f \Y((ZeD(k2

=fΛk) •Note that the integrals converge absolutely because μ>m/2 in the strong
multiparticle limiting absorption principle. D

Proof of Theorem ί.ί. By Lemma 2.2, the hypotheses of Theorem 1.1 imply that
the strong multiparticle limiting absorption principle holds for generic couplings.
Also, the channel wave operators exist. Thus, Lemma 3.1 implies (a).

By (a),/*=((Ωα

+)*/T for / in a dense subset of & (Ωα

+)* is a partial isometry
with initial subspace Ran Ω* and final subspace J>fα. Since the Fourier transform is
unitary on 3ί?a9 (b) follows

Since Tα(Ω+)* }(&+)*# (see [12, p. 532]), the following computation imples (c).
Let feD(H)

•
Lemma 3.2. Assume the hypotheses of Theorem 1.2. For k'2l2Mβ + Eβφ$, define
φβ(X,k') by Eq. (3.1). Then the integral (1.1) for Taβ(k,k') is absolutely convergent.
Moreover, Taβ(k.k') is continuous in k and k' whenever k'2l2Mβ + Eβφ$.

Proof. Choose γ as in the definitions of the ρ functions [Eq. (2.3)]. Let i and j
belong to different clusters of D(oc). Then,

ui^cJ)HuijPJm{\ + C.2)y/2)((i Hir*l2WM >

where X = {xn,ζn). Since (l + ζ2)-γ/2φ^QCJήeje, Lemma V.4 of [8] shows
Έr^dζJ for all positive δ. To prove TΛtβ is well
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defined, it is therefore sufficient to prove

Wtjφβi , k')e L2_δ(ΨSN~ 2)™, dxa)® L2(IRW

? dζa) (3.2)

for some δ.

In view of Eq. (3.1) and the remark thereafter, (3.2) follows if

is a bounded operator on H Equation (2.2) and the boundedness [8, Sect. V] of
B^il-Miz))'1 for zφi show that it suffices to prove

is bounded for z e 1R. For N — 2 this follows from Lemma 11,3 of [8]. For N = 3 it follows
from Corollary V.5 and Lemmas V.4 and V.8 of [8]. For JV = 4 the result is proved by
mimicking the proofs of Propositions V.I 5,16, 25, 26, and using Corollary V.5 and
Lemmas V.4 and V.8 of [8].

To prove the continuity we note that Taβ(k, k!) is a sum of terms of the form

<[/,..#( , k\ (W^Z^β^βMβ + Eβ- iO))*)F*D{β)φ
Oβ( , fc')>

Every such term is continuous because U^φ^i-,k)eL2

δ®L2 depends continuously
on k; FfD{β)φ°β( , k')eL2 depends continuously on k'\ and

2 + Eβ- ίOψ): L2-+L2_δ®L2

β

' 2 lis strongly continuous in k when k'2l2Mβ

Proof of Theorem ί.2. By Lemma 3.2 we need only establish Eq. (1.2). This is done
by mimicking the two body methods of [17, 20].

By the orthogonality of channels [16]

<f,Safg>-δat<J,g>

= lim (-Of <eUB(V-VD(a))e-uτ'f®φβ,Ωϊg>dt
b->co _s

= Iim(-i) f (e"H(V- Vm))e-i!T«f®ψx,Ω;g}e-Mdt. (3.3)
— oo

Here we have used the fundamental theorem of calculus and an Abelian limit
formula [16,20].

We now use Theorem 1.1 (b) to express the last integrand as

<(eitH(V- VD{a))e-itT«f®ψ)l (Ω;g)p^e-^

= ί (ϊϊ^^ . (3.4)
To obtain this second expression, we have again used Theorem 1.1 (b) and the fact
that {eitΉψfβ) = eU{k2l2M^E^φβ{k\ This is proved by using eitHΩ+

β =Ω+eitTe and
mimicking the proof of Theorem 1.1 (c).
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To evaluate the integral (3.4), we compute

(3.5)

In the last step, we have used Fubini's theorem, Lemma 3.2 and the fact that
Substituting (3.5) in (3.4) and using the result in (3.3), we obtain

f(k)g(k')Taβ(Kk')dkdk'dt.

The theorem now follows by applying Fubini's theorem, computing the t integral
explicitly, and evaluating the limit. D

4. Two Body Born Series Convergence

In this section we prove Theorem 1.3 for N = 2 and obtain estimates to be used in
Sects. 6 and 7. Our analysis is based on the following lemma, which has been
proved by Ginibre and Moulin [7] and Herbst [9 (Appendix)]. Rauch [15] has
proved a similar result.

Lemma 4.1. Suppose δ > 1/2. For each M > 0 there exists a constant c such that the
norm of (z + zl)"1 :L^(R")->L2_<5(IR'1) is dominated by φ Γ 1 / 2 , whenever \z\>M.

Proof of Theorem i.3 for JV = 2. We need ony show

WWiz-HJ-'UW^QzΓ

for large \z\ because Lemma II.3 of [8] shows

Suppose first that F and G belong to Z^(IRm) for some δ > 1. Then F:L2_δ^L2

and G:L2^L2

δ have norms ||F||L<» and ||G||L^, respectively. Thus, Lemma 4.1
implies

IIFίz-HoJ^GII^CJIFII^IIGII^IzΓ1/2 (4.1)

whenever \z\>M.
Next, let FeL%(Wtm) and GeΠδ(WLm\ with r>m^3 and δ> 1. Lemma II.3 of [8]

shows

\\F{z-H0)-'G\\^C2\\F\\L~\\G\\Lr. (4.2)
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By interpolating [16] between (4.1) and (4.2), we obtain

ύ (4 3)

for p > m, δ > 1, and 0 < α < (1 — m/p)/2.

Finally, if FeLf(IRm) and GeL£(IRm), with p > m ^ 3 , 5 > m , and <5>1, then
Lemma II.3 of [8] shows

(4.4)

By interpolating between (4.3) and (4.4), we obtain

(4.5)

for p>m, q>m, δ>ί, and 0^β<(l-m/p)(l-m/q)/2.
Since U and W belong to Lp

δ(Rm) + L ? <Rm) with p >m and δ > 1, (4.5) implies
Theorem 1.3 for N = 2. D

Remark. For JV = 2, dilation analyticity of U and VF has not been used. Thus, we can
take U = \V\112 and W= V/U, where we take W(x) = 0 when V(x)=U{x) = 0. In this
case, the above proof shows || W(z - H o ) " 1 U \\ ^ C\z\~ β, with 0 ̂  j8 < (1 - m/2r)2/2, if
F6L^(Rm) + L^(IRm) with r>m/2 and δ > l . In particular, if V is a Yukawa
potential, β may be taken arbitrarily close to 1/8.

Corollary 4.2. Assume the hypotheses of Theorem ί.ί, and let N = 2. Assume
lφσ(W(0 — Ho)~1U\ and let P denote the orthogonal projection onto the eigen-
vectors of H. Then W{\ — P){z — H)~1U is uniformly bounded and uniformly norm
continuous in the closed cut plane, cut along [0, oo). Moreover, there exists C such
that for all zeC, H ^ z - i ϊ ) " 1 ^ ! ! ^C\lmz\~\

Proof The first assertion implies the second because

If z is restricted to a compact set, then the proof of Lemma V.7 of [8] implies
the first result. So, it suffices to prove

lim | |W(l-P)(z-.H)- 1 l/ | |=0.
|z|-*oo

To prove this, we write

W{l-P){z-H)-ιΌ
1 1W(z-H0)-1U). (4.6)

Y1U\\, and the proTheorem 1.3 for N = 2 shows that lim \\W{z-H0Y
1U\\, and the proof of this

|z|-»oo

result shows lim | | ( l + ^ 2 ) - 1 ( ^ - ^ 0 ) " 1 ^ l l = ° τ h u s ' \\W{\-P){z-H0)~ιV\\
|z|->oo

x2)|| IKl+x 2 )" 1 ^-^)" 1 1 7 ! ! t e n d s t 0 z e r o a s

\z\-+ao ( | |I^P(l+x 2) | | <oo by [8, Corollary V.5]). The corollary now follows from
(4.6) by using geometric series to compute [1 — W(z — H0)~1U~]~1. D

5. Three Body Born Series Convergence

In this section we prove Theorem 1.3 for N = 3 and establish some technical results
to be used in Sect. 6.
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Lemma 5.1. Let δ>lβ. For each M > 0 there exists C such that

whenever \z\>M.

Proof. Let A(z) = {z +Δy\\ + x2)~δ/2. Then

\\A{z)\\2 = \\A{zYA{z)\\

Apply Lemma 4.1. D

Lemma 5.2 (Balslev [4]). Suppose ΩgC and A(z) is a function from Ω to the
bounded operators on L2(W). If f denotes multiplication by a real bounded function
f(x\then \\f A(z)\\^\\A{z)\\{1-2'v)\\f2P A(z)\\2~\ for all zeΩ and all integers p^O.

Proof \\fA(z)\\ = \\A{z)*f2A(z)\\1/2S\\A(z)\\1/2\\f2A(z)\\1/2. The lemma follows by
iteration. D

Definition. Let D be a cluster decomposition for an N body system. Let
ξ{,...,ξl(1)_v ζi9- .,ζn(k)-i> Cv Xk-i be clustered Jacobi coordinates for D,

where the <f s are coordinates within the clusters and the ζ's are coordinates
between the clusters. We define

Lemma 5.3 (Balslev [4]). Suppose α > l / 2 > β , and D is a cluster decomposition of
an N body system. There exists C, such that

for all ψeJή? and all zeC\IR satisfying |Imz| ̂  1.

Proof One obtains this result by keeping track of the Im z dependence in Lemma
2.2 of [4]. D

Lemma 5.4. Let H = H0+ £ Vtj be a 3 body Hamiltonian on L2(Rm) with m ^ 3 .

Assume each V^U^W^ where Ui} and Wtj belong to L|(lRm) + Lf (lRm) for some
p>m and δ>l. Let ij, and k be distinct. For each Mί > 0 and M2 >0, there exist C
and ε > 0 such that | R e z | > M 1 and \lmz\<M2 imply \\Wi}{z - H 0)~x U ik\\
^ C | I m z Γ 2 | R e z Γ ε .

Proof. Assume first that Wtj and Uik belong to L$. Then ^ . ( l + x 2 / / 2 and
(1 +x2

kf
l2Uik are bounded, and it is sufficient to consider

However, Lemma 5.3 shows that for β = 3β,
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In the last two steps, we have taken adjoints and used

Lemmas 5.1 and 5.2 now show

4

1 / 3 2 (5.1)

for |Rez| >Mί and |Imz| < M 2 . Thus the lemma holds when Wi} and Uik belong to
roo

^δ

If r>m, s>m, and <5>1, Lemma II.3 of [8] shows \\F(xiJ)(z-H0)~1G(xik)\\
^C5\\F\\Lrδ\\G\\Ls. Using this result and (5.1), the proof of the lemma is completed
by imitating the interpolation argument of the proof of Theorem 1.3 for N = 2 (see
Sect. 4). D

Corollary 5.5. Under the conditions of Lemma 5.4, there exists ε > 0 so that

Proof. The proof of Lemma II.3 of [8] shows that A{z)=Wij{z-H0)~1Uik is
uniformly bounded and uniformly Holder continuous of order α > 0 for z in the
closed cut plane, cut along [0, oo) (see [7, Proposition (5.1); 22, Lemma 3.6]).
Using this and Lemma 5.4, we obtain

\\A(x)\\^\\A(x±iy)\\+C1f

for some β>0 and all ye(0,1]. Choosing y = x~v with v = /?/(α + 2), and taking x
large, we obtain

where ε = αv. Since A(x) is uniformly bounded for small x, the corollary
follows. •

Proof of Theorem 1.3 for N = 3. M(z) consists of nine blocks of 2 x 2 matrices. The
three blocks on the diagonal are zero, and the remaining 6 blocks all have the same
form. Within these blocks, we will show that each entry, except for the z
independent entry, ρ^P.jU^, is dominated by C(Rez)~ε for some ε>0. Matrix
multiplication then shows ||(M(z))"|| ^(CRez)~ [ λ J / 2 ] ε ([n/2] is the greatest integer
less than or equal to n/2).

Thus, we must study three types of entries with the assumption that the
couplings are generic.

Typel. ^ ( l - P y K z - H y ) " 1 ! / ^
This entry equals

(*-Ho)
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Corollary 4.2 implies the uniform boundedness of the first factor of the second
term. Corollary 5.5 shows the second factor of the second term is dominated by
C ^ R e z p . Similarly, Corollary V.5 of [8] and Corollary 5.5 show that the first
term is dominated by

+ \\WlJPlJ(i+xfJ)\\ Uί+xfjr^z-Hor'U

Type 2. Wtj(l -PtJ){z-Hi})~ * VikPik(z-Hik)~ ι

Qik.

This entry equals [8, Lemma V.I2]

Wu(l -Py) [(z-H i ky ι-(z-H0Γ^Pikβik

+ (Wij(l-PiJ)(Z-HίjΓ
ίUiJ)(Wij[_(z-Hik)-i -(Z-H0)-^Pikβik). (5.2)

As above, Wij(ί — Pij)(z — Hi])~1Uij is uniformly bounded, and

Thus,

%.Py(l +xfj)\\ ||(1 +xfj)-ι(z-Hoy
1Pikρik\\

C 4 (Rez)- ε .

Next, Wij(z — Hik)~1Pikρik may be written as

Assuming for convenience that there is only one bound state of the ik subsystem,
we see that the second factor equals Qik(z — Hξ

0 — EiU)~1ρikPik. Lemma 4.1 shows the
norm of this factor is dominated by C 5 (Rez)" 1 / 2 . The first factor above is
uniformly bounded [8, Lemma V.4]. Similarly, we see that

So, using (5.2), the entries of type 2 fall off as (Rez)"ε.

Type 3. ρ ^ P ^ z - H ^ Γ ' P , ^ , ,
This equals {ρZ 'P^P^ρg ^{ρ^z-Hιk)~ ^ ρ j

The proof of Lemma V.ll of [8] shows that the first factor is bounded. The
second factor was studied in our analysis of type 2 terms, above. Its norm is less
than C 5 (RezΓ 1 / 2 .

Thus, the three types of entries fall off as (Rez)~ε, and the proof is
complete. •

Corollary 5.6. Assume the hypotheses of Theorem ί.ί, and let N = 3. For generic
couplings, M(z) is uniformly bounded and uniformly norm continuous in the closed cut
plane cut along [0, oo). There exists n such that (1—M(z))"1 also has these
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properties when \z\>n. Furthermore, for any ε>0, there exists Cε such that
|| Wtj(z — Hy1 £/fe J ^ Cε whenever |Im z\ g: ε. Here ij and fe? are any pairs in the three
body problem.

Proof. Lemma V.13 of [8] and Theorem 1.3 imply the first two results. To
prove | I m z | ^ ε implies || fl^z- if)~ * t/fc,II ^C f i , we use Eq. (IV.6) of [8] to
write Wij(z-HΓ1Uk, = I(z) + II(zX where I(z)=WiJl(z-H12Γ

1 + (z-H13Γ
1

+ (z-H23y
1-2(z-Hoy

1Wk,^άII(z)=WijA(z)(l-M(z)y1M(z)C(z)Uk,.

To bound /(z), we replace (z-H 1 2 )~ γ by ( z - Ή J " 1 + ( z - # 0 Γ 1 F 1 2 ( z - t f 0 ) - 1

+ (z-H0y
1V12(z-H12Γ

1V12(z-H0y\ and replace (z-JΪ^Γ 1 and (z-H23)~1

by the corresponding expressions. Lemma II.3 of [8] and Corollary 4.2 then
show I(z) is uniformly bounded for

The same methods uniformly bound W{.A(z) and M{z)C(z)UM for |Imz| Ξ>ε. For
large z, (1 — M(z))~1 is uniformly bounded, and (1 — M(z)) ' 1 has no singularities in
<C\IR [8, Proposition V.2]. Thus, (1 -M{z)yι is uniformly bounded for
and the corollary is proved. D

6. Four Body Born Series Convergence

In this section we study the large Re z behavior of the four particle operator M(z).
To prove lim ||(M(z))"|| =0, and enormous number of terms must be considered.

Rez~• oo

So, for the sake of brevity, we will only sketch proofs.
As preparation for the proof of Theorem 1.3 for JV = 4, some technical results

must be established. First, we study the convergence of the Born series for the
cluster Hamiltonian HijM. Second, we prove some approximation lemmas; and
third, we state a special case of a lemma of Balslev. We are then prepared to study
the full four body operator M(z).

Lemma 6.1. Assume the hypotheses of Theorem ί.l. Let M(z) denote the operator
of Eq. (V.6) of [8], corresponding to HijM. Assume the motion of the center of mass
of particles i and j relative to the center of mass of particles k and £ has been

removed \so that M(z) acts on 0 L 2 ( I R 2 m ) . Then, for generic couplings,

a) M(z) is uniformly bounded in the closed cut plane cut along σess(HijM)

b) (M(z))2 is uniformly continuous in that region; and

c) lim ||(M(z))21|=0.
Rez-> oo

Sketch of Proof. Part a) is proved by combining Corollary 4.2 with the proofs of
Lemmas V.I2, 20, and 21 of [8].

To prove b), we first remark that the proof of Lemma V.9 of [8] shows uniform
norm continuity of the operators considered in that lemma. This implies uniform
continuity in Lemma V.12 of [8]. Using this and Corollary 4.2 in the proof of
Lemma V.23 of [8], we obtain b).
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c) In view of b), we need only show lim || (M(x ± iy))2 || = 0 for each y > 0. Using
x->oo

Corollary 4.2 and Gij = G0 + GίjVijG0, we see that it suffices to prove

lim \\Wij(x±ίy-HoΓ
1UkA\=0.

x -*• o o J

Furthermore, Lemma II. 3 of [8] shows that it is enough to prove the limit is
zero when Wtj and Uke belong to L^(IRm) for δ>l. However, by mimicking the
proof of Lemma 5.4, we see that this follows from Lemmas 5.1-5.3. •

Corollary 6.2. Assume the hypotheses of Lemma 6.1. Then W^z — H^^y^U^ and
Wyiz — Hij kf)~ * UM are uniformly bounded for | Imz |^ε .

Proof. Use Eq. (V.6) of [8] for W(z - HijM) ~1U. The poles of (1 - M(z))"x are real

[8], and lim ||(M(z))2|| = 0 by Lemma 6.1.
|z|̂ oo

Thus, \\(l-M(z)y1\\ = \\(l+M(z))(l-(M(z))2)-1\\ is bounded for |Imz|^ε.
Lemma II.3 of [8] and Corollary 4.2 bound the other terms. •

Lemma 6.3. Assume the hypotheses of Theorem 1.1. Let {r1,...,rn_1} and
{r'l5... ,r'n_ λ} be two (possibly identical) choices of clustered Jacobi coordinates, and
let D be a cluster decomposition. Suppose F1 and F2 belong to L (̂IRm) + LJ(IRm) with
p>m,δ>l. If | I m z | ^ ε implies \\Wij{z — HD)~1Uu\\ :gCε whenever i and j belong to
the same cluster ofD, and k and / belong to the same cluster of D, then there exists C'ε
such that

\\Fί(rι)(z-HDΓiF2(r'ι)\\<;C'ί\\Fi\\LP6+L~\\F2\\LULτ

whenever | Imz |^ε .

Proof.

Apply Lemma II.3 of [8]. D

Lemma 6.4. Assume the hypotheses of Lemma 6.3. Suppose U[f and W f converge
to C/ . and Wtj, respectively, in the norm of Lp

δ + L% described in Lemma 6.3. Let D be
a cluster decomposition, and let ΉS$ = H0 + V{*]. Then Fx(rJ(z-H^)~1F2(r\)
converges in norm to F1(r1)(z — HD)~1F2(rf

1), uniformly in the region |Im

Proof. Let / be the number of pairs α = (ij), such that i and j belong to the same
cluster of D. For all such pairs α and β, define

and

Zf^W^z-HJ-'F^), where U^ = \V^- Vf/2
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and

WW = (VM-Va)/ϋγ (W£">(x) = 0 if ί/£l)(x) = O).

We let X{n){z\ F(M)(z), and Z(π)(z) denote the 1 x /, / x /, and / x 1 matrices with
these entries. Then,

= \\xin\z)(i-Yin\z)y1zin\z)\\

Lemma 6.3 shows that ||X(M)(z)||, || Ŷ OOII, a^d ||Z(n)(z)|| tend to 0 uniformly for
|Imz|^ε as n-^co. So, the lemma follows by using geometric series. •

Lemma 6.5 (Balslev [4]). Assume the hypotheses of Theorem 1.1, and assume all U^
and Wij belong to L (̂IRm) for some δ>l. Let Dί and D2 be cluster decompositions,
and let A(z) be a uniformly bounded analytic operator valued function for |Imz| ^ε.
If oc>l/2>β then there exist μ>0, v>0, such that |Imz|^ε implies

Proof This is a special case of Lemma 5.2 of [4]. The proof in [4] can be
simplified in our case by using self-adjointness and the boundedness of V{-. D

Sketch of the Proof of Theorem 13 for N = 4

Step 1. Uniform Continuity. The proofs of Lemmas II.3 and V.9 of [8] show that
the norm continuity concluded in those lemmas is uniform. Using this uniformity,
Lemma 6.1, and Corollaries 4.2 and 5.6, we can establish uniform norm continuity
(rather than just norm continuity) and uniform bondedness in Lemmas V.6-V.14,
V.22 and Propositions V.15-V.20, V.26, V.29, V.31, and V.32 of [8]. This is done
by going through the proofs of these lemmas and propositions and systematically
inserting the uniform estimates.

In Propositions V.25, 27, 28, and 30 of [8], this method yields less information
because these propositions depend on Lemma V.24. We can only conclude that
each operator studied is a sum of terms, each of which is either uniformly bounded
and uniformly norm continuous, or is the product of a uniformly bounded,
strongly continuous factor and a uniformly bounded, uniformly continuous
compact factor. For example, in Proposition V.25 of [8],

/ y 0 P i m ) { z - HijMΓ1 Uik

equals I(z) + II(z) + III(z) + IV(z), where [Eq. (V.6) of [8]]

I(Z) = Wtβ - Py)(Z - /ίy)- X VJί - PiJM)(Z - iίy)" 1 UΆ ,

II(z)=WiJ(l-PιJ)(z-Hlj)-1V,Jί -PijM){z-Hk{)-'Uik,

ΠI(z)=-Wtβ-PiJ){z-Hu)-1Vkίiί-Pi}M)(z-H0)-1Uik ,

IV{z) = Wtj(l -Py)(z-Hφ-1VJX -PiiM)A(z)(l -M(z)Γ ιC(z)Ui
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Our method shows that /(z), II(z), III(z\ and C(z)Uik are uniformly bounded and
uniformly continuous. However,

Wtμ - Ptj) (z - HyΓ1 VJX - PiJM)A(z) (1 - M(z)Γ1

is only strongly continuous and uniformly bounded.
Below we show that those terms and factors which are uniformly continuous,

actually tend to zero as Rez—>oo. We then show that this implies ||(M(z))"|| ->0 as
Rez—»oo for n^.2.

Step 2. Removal of Local Singularities. Let X(z) be any one of the uniformly
continuous operator valued functions, from Step 1, and let ε>0. X(z) is a product
of C/'s, Fs, FΓs, resolvents, and projections. Corollaries 4.2 and 5.6 and Lemma 6.3
show that there exist bounded l/'s, Vs, and Ws so that the operator Xγ{z)
obtained from X(z) by replacing the ί/'s, Fs, Ws with the bounded t/'s, Fs, and
Ws satifies ||X(z)—X1(z)|| <ε whenever |Imz| ^η>0. Lemma 6.4 then shows that
the potentials within the resolvent factors may be replaced by bounded potentials
to yield X2{z\ satisfying ||X1(z)—X2(z)|| <ε whenever |Imz|^f/. Here, η>0 is
arbitrary, but fixed.

Step 3. Fall off Away from the Real Axis with Bounded Potentials. Let X2(z) be
constructed as above from a compact function X(z). It has the form X2(z)
= Y(z)(z — Hf

D)~1U'β (or is a column matrix with such entries) for some Y(z). We
rewrite this as X2(z)= Y(z)(z-Hoy

1U'β+ Y(z) (z - H'D)~x V&z-H0)-ιU'β. Then
we apply Lemmas 6.5 and 5.2 several times until we obtain

whenever | I m z | ^ ^ . (Note that the projection factors help us gain configuration
space fall off and do not cause trouble.) Here D2 is some cluster decomposition
with at most two clusters. If it has two clusters, then the particles of the pair β
belong to different clusters [due to the compactness of X2(z)].

We now apply Lemmas 5.3, 5.2, and 5.1, to see that ||X2(z)|| ^C^(Rez)~α for
some α, when Rez is large and \Imz\^η>0.

Step 4. Combining Steps ί, 2, and 3. Matrix multiplication shows that Theorem 1.3
for N = 4 will be proved if the compact entries of M(z) go to zero as Re z—• oo. Step
1 shows that each such entry is a sum of various terms, which are products of
uniformly bounded factors. At least one factor in each term is uniformly norm
continuous and compact. Thus, it suffices to prove that the uniformly norm
continuous compact factors vanish as Rez->oo. Moreover, the uniform continuity
implies that we need only show these factors vanish as Rez->oo with |Imz| fixed
and positive. By Step 2, it suffices to prove this for the case of bounded potentials.
This is done in Step 3. D
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