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Abstract. It is shown that for two-dimensional Euclidean chiral models of the
field theory with values in arbitrary Kahler manifold "duality equations"
reduce to the Cauchy-Riemann equations on this manifold. A class of models
is described possessing such type solutions, the so called instanton solutions.

1. In the last few years a considerable progress has been achieved in studying both
pseudoeuclidean and Euclidean chiral models of the field theory, i. e. the models
for which the field takes the values in nonlinear manifolds (see refs. [1-7]). Note
especially the recent results by V. E. Zakharov and A. V. Mikhailov who
developed the method of finding the explicit solutions for a certain class of two-
dimensional pseudoeuclidean chiral models [7].

In many cases the solutions of field equations can be characterized by
topological invariants, the so called topological charges, which allow to estimate
the energy (action) of a system from below [1, 2, 8-10]. The solutions of the
Euclidean theory equations with a certain topological charge corresponding to the
minimum of energy (action), the solutions of the so called "duality equations" are
usually called instanton solutions. For the case when the field takes the values in
the two-dimensional sphere S2, or, that is the same, in the one-dimensional
complex projective space CP1 such a problem has been solved in the paper by
Belavin and Polyakov [2] while for the case of CPn(n>\) in the paper [10].

In this work which is an elaboration of the investigation started in [10] we
show that just in [2] and in [10], for the two-dimensional chiral models of the field
theory with the values in arbitrary compact Kahler manifold1 the "duality
equations" reduce to the Cauchy-Riemann equations on this manifold. The class
of manifolds for which such solutions do exist is described.

These are the Kahler homogeneous simply-connected manifolds. Such man-
ifolds can be as well characterized by that they are homogeneous under the

1 For the properties of Kahler manifolds and of more general class complex manifolds as well see the
book [11]
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action of a connected compact semisimple Lie group. They are completely
classified in the paper by A. Borel [12]. Note that the models considered in paper
[10] belong to this class.

2. Let M be a connected simply connected compact complex n-dimensional
manifold with local coordinates wμ in the neighbourhood of the point wμ = 0 and
let the field φ(x)(x = (x l5x2)eIR2) take the values in M. We will consider only the
field possessing a certain limit: φ(x)-*φ0 at |x|-*oo. In this case one may assume
that such field determines the map of the two-dimensional sphere S2 which we
consider as a compactified plane IR2(S2^lR2u{oo}) into M.

φ:S2->M. (1)

If now π2(M) (the second homotopic group of the manifold M)2 that is isomorphic
due to the Hurevic theorem to the second homology group H2(M) and, cor-
respondingly, to the second cohomology group H2(M), is nontrivial, then to each
field φ(x) a "topological charge" with integral representation

Q = c - 1 f ω (2)
R2

can be prescribed, where c is some constant,

ώ = φ*ω, (3)

ωe#2(M), while φ*:H2(M)-*H2(S2) is the mapping induced by the map φ.
Let us endow M in the neighbourhood of the point wμ = 0 with Hermitian

metric

ds2 = hμ-vdwμdw\ μ,v = l , . . . ,w. (4)

Then the system under consideration is described by the Euler equations
corresponding to the condition δS = 0 for the functional of the energy (action)

vd2x, j = l,2. (5)

Substituting into (5) dj\vμ + iεjkdkw
μ instead of djWμ we come to inequality

S£c|β|,Q = c-' f ώ^c-'fε^δjW^Λc (6)

where ώ — φ*ω, ω = - hμ^dwμ Λ Jwv is the imaginary part of Hermitian form hμ~.

The sign of equality in (6) is achieved only for the fields satisfying the "duality"
equations

djwμ±iεjkdkw
μ = 0 (7)

or, going over to the complex coordinate z = x1+ix2,

we get

5wμ = 0 (or <3wμ-0). (8)

2 All the topological notations used in the text can be found in book [13]
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The local solution of these equations is wμ = fμ(z) (or wμ = /μ(z)). Thus, the equality
S = cQ (resp. S= —cQ) can be achieved for the holomorphic (resp., antiholomor-
phic) maps of the compactified plane z (which can be considered as a one-
dimensional complex projective space CP1) into the manifold M.

Unfortunately, Q is not in general topplogical invariant and changes when
wμ(x) deforms. So, one cannot state in the general case that the solution of the
duality equations is that of unitial Euler equations.

3. Let now M be the Kahler manifold, i.e. the complex manifold for which the
imaginary part ω of the Hermitian form h is closed nondegenerate 2-form. Note
that such a manifold is symplectic ωeH2(M) and that the condition as to the form
ω is closed is equivalent to conditions

Sh^JJhτ or Sh^Jh^
λ λ v ' { }

The map φ :S2-+M determines the two-dimensional cycle in M. The quantity cQ is
in this case the integral of ω over this cycle and because of the closeness of the form
ω, depends only on the homology class to which this cycle belongs. And in the
given class Q is constant and the functional of the action S is equal to its minimum
value provided the conditions (8) to be fulfilled, i.e. for the holomorphic maps φ :S2

= CP1-+M. These maps, if they do exist, give the solutions of the "duality"
equations (7) and are usually called "instanton" solutions. Note, if the manifold M
is algebraic, i.e. analytical submanifold without singularities in the complex
projective space CPN for a certain AT, then there exists such Kahler metric (the so
called Hodge metric) on it that Q will be always integer.

Note more, that when going over from variables xί and x2 to variables z = x1

+ ix2 and z = xί — ίx2 the expressions for the energy (action) and topological
charge Q take the form

S = J hμ-v(dwμdwv 4- dwμdwv)d2x, (10)

The coincidence of S with c\Q\ for holomorphic and antiholomorphic fields is
now obviously seen.

The "equations of motion" are obtained, as usual, from the condition δS = Q.
Accounting for the Kahler properties of the manifold M expressed by conditions
(9) we get

hμ-v(dd wμ) 4- -̂ -f dwμδ w λ = 0 (12)

and the equation complex-conjugated to it.
Let us now multiply the left-handed part of Eq. (12) by δwv and sum over v and

add to it the left-handed part of the equation complex-conjugated to (12)
multiplied by dwv and summed over v. Making use of relations (9) the expression
obtained can be transformed to the form

d(h ^δwμδwv) = 0. (13)



240 A. M. Perelomov

Whence we obtain

(z) (14)

and analogously

(15)

5. Let us now consider the solutions of the "duality equations" (8). The duality
equations are of the form of the Cauchy-Riemann equations but because of the
compactness of the manifold M, the global solution, or, that is the same, the
holomorphic map φ\CPl-+M is far from existing always. Thus for instance, if
M is two-dimensional compact manifold of genre g(g = 0, M = S2 = CP1;g=l,
M— is the two-dimensional torus), i.e. the Riemann surface, such a map exists
only if M=CP1. (This recalls the case considered in the paper by Belavin and
Polyakov [2]. The map with the topological charge Q = n depends here on 4n
real parameters.)

Such a map exists however if M = CPn is the complex projective space (this case
is considered in paper [10]). Unlike the preceding case the solution with the
topological charge Q = n depends on larger number of the parameters.

Note also that the image CP1 in M under the map φ is an algebraic mani-
fold TV [14].

6. Let us now turn to consideration of an important class of the Kahler
manifolds M for which the holomorphic maps CP1 -» M exist. These are the simply
connected compact homogeneous Kahler manifolds3. From [12,15] it follows
that all of them have the form G/H where G is the compact connected semisimple
Lie group with the trivial center, H is the centralizer of some torus in G. It can be
readily seen for these spaces to be considered as orbits of adjoint representation of
the compact semisimple Lie group in the Lie algebra of this group. All of these
spaces are not only algebraic but rational as well4 [16]. All of them admit
complex-analytical cellular decomposition [12,15].

It appears further that on M acts transitively not only the real group G but also
corresponding to it complex group Gc. So M may be also represented as M = G/H
= GC/P, where P is a parabolic subgroup, i.e. the subgroup of Gc containing the
maximal connected solvable subgroup. Here H = Pr^G [15].

It is known [15] that any such subgroup P is constructed in a canonic way
over the subsystem / of simple roots of Lie algebra of group Gc.

Let Rj be a subset of positive roots consisting of linear combinations of
elements /. Let G7 be a subgroup of G generated by H and by subgroups Ny

= {expt£y|fe(C} for yelRjuί— IRj}, PI = GINI. As is known, each parabolic
subgroup is conjugated in Gc to one of such subgroups.

7. Let us give the A. Borel construction of invariant Kahler metrics [12]. They
are constructed by means of left-invariant forms, the so called Maurer-Cartan

3 All the compact homogeneous Kahler manifolds (not necessarily simply connected) are also
known. Namely: any connected compact homogeneous Kahler manifold is a direct product of a
complex torus and algebraic rational manifold [17]
4 The manifold M" is called rational if the field of meromorphic functions on it is isomorphic to that
of rational functions from n complex variables
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forms. Consider the simplest case G/T (T maximal torus). Let α/ be the left-
invariant Maurer-Cartan forms on Gc which induce on the Lie algebra the basis
dual to Xa and are orthogonal to Hc. Using the Maurer-Cartan equations and
well-known properties of structure constants, one shows that

ω= Σ cχΛω~α (16)
^α>0

is closed if and only if

ca + cβ = cy if u + β^y O7)

The form ω is therefore determined by the constants ca for simple roots α, which
are arbitrary (cα = (/ι,α)). Its restriction on G is left-invariant under G, right-
invariant under T and represents a form on G/T which is of the type (1, 1) because
ω~α corresponds to ωα in the complex structure used in this construction. For real
ca this form is real-values and its real cohomology class may be shown to be the
image by transgression of the element h^H(l\T] for which (α,/ι) = cα (α is a simple
root). If h belongs to the interior of the positive Weyl chamber, all the cα>0 and

ds2= Σ cΛω"ώΛ (18)
α>0

is a Kahlerian metrics on G/T.
If, moreover, heH(1\T;Z) then corresponding orbit is integer and its image by

transgression is an integer class, the corresponding metric is a Hodge metric, and
G/T is algebraic by a result of Kodaira. Note also that in Reference [16] it is
proved that G/H is a rational algebraic manifold.

This fact is of special importance for us because in this case there do exist the
nonconstant holomorphic maps CP1-*Φ = G/H (Yu. I. Manin, private com-
munication), or, that is the same, the nontrivial instanton solutions of correspond-
ing chiral theories.
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