Some Probabilistic Techniques in Field Theory ${ }^{\star}$

G. Benfatto, M. Cassandro, G. Gallavotti, F. Nicolò, E. Olivieri, E. Presutti, and E. Scacciatelli
Istituto di Matematica dell'Università dell'Aquila and Istituto di Matematica e di Fisica dell'Università di Roma, I-00185 Roma, Italy

Abstract

We study, in the context of the Markov hyerarchical fields $(d=2,3)$ the role of the Markov property, of formal renormalization and of formal positivity. We determine upper and lower bounds for the ground state energy and discuss their relation with the perturbation theory series.

Introduction and Motivation

The basic property which allows to prove the rigorous validity of the perturbation expansion in euclidean field theory of φ^{4} type in $d=2,3$ space-time dimensions, is the "ultraviolet stability". The ultraviolet stability is the existence of a lower bound to the minimum of the spectrum of the renormalized Hamiltonian. In this paper we propose a model and a method of analysis which allows, in our opinion, to clarify the statistical mechanical aspects of the ultraviolet stability theorem. To motivate this model, and to illustrate the reasons which make it essentially as difficult as the euclidean field theory, we proceed as follows.

The euclidean field on R^{d} is a gaussian field with covariance

$$
\begin{equation*}
C=(1-D)^{-1} \tag{1}
\end{equation*}
$$

where D is the Laplace operator on R^{d}. The ultraviolet divergences, originate from the divergence of the kernel $C_{\xi, \eta}$ of the operator C, as operator on $L_{2}\left(R^{d}\right)$, as $|\xi-\eta| \rightarrow 0$, if $d \geqq 2$. This remark leads to the idea [1], of representing C as

$$
\begin{equation*}
C=\sum_{N=0}^{\infty}\left[\left(2^{2 N}-D\right)^{-1}-\left(2^{2(N+1)}-D\right)^{-1}\right] \tag{2}
\end{equation*}
$$

and, correspondingly, the field $\tilde{\varphi}$ as,

$$
\begin{equation*}
\tilde{\varphi}_{\xi}=\sum_{N=0}^{\infty} \tilde{\varphi}_{\xi}^{[N]} \tag{3}
\end{equation*}
$$

[^0]where $\tilde{\varphi}^{[N]}$ are independent fields (with respect to the integers index N). If $d=2,3$, $\tilde{\varphi}^{[N]}$ has a bounded covariance:
\[

$$
\begin{equation*}
\mathscr{E}\left(\left(\tilde{\varphi}_{\xi}^{[N]}\right)^{2}\right)=\gamma 2^{(d-2) N}, \quad \gamma<\infty \tag{4}
\end{equation*}
$$

\]

and it can be normalized by setting:

$$
\begin{equation*}
\tilde{z}_{\xi}^{(N)}=\frac{\tilde{\varphi}_{\xi}^{(N)}}{\left(2 \gamma 2^{(d-2) N}\right)^{1 / 2}} . \tag{5}
\end{equation*}
$$

It is easy to check that the field $\tilde{z}_{\xi}^{(N)}$ is almost constant on a scale 2^{-N} and that its covariance decays exponentially fast on this same scale. We can imagine to construct a good model of the above field φ admitting a representation of the type Equations (3) and (5), where the random variables $\tilde{z}_{\xi}^{(N)}$ have the following properties:
i) they are "constant" over squares with scale 2^{-N}.
ii) they decay exponentially fast on a scale 2^{-N}.

A precise definition of such a field, is given in the next section and will be called a Markov hierarchical field. Using this field as a "free field", we shall then study the φ^{4}-interacting field. This problem, as it will turn out, presents exactly the same difficulties and divergences as the euclidean field presents.

1. The Model: Definitions and Notations

The free hierarchical Markov field over R^{d} is described in terms of a family of gaussian random variables indexed by the tesserae of a family $\left(Q_{i}\right)_{i=0}^{\infty}$ of compatible pavements of R^{d}. Each tesserae $\Delta \in Q_{i}$ is a cube with side size 2^{-i} $i=0,1 \ldots$. The random variable associated to Δ will be denoted by z_{Δ} and the variables $z_{\Delta}, \Delta \in Q_{i}, z_{\Delta^{\prime}}, \Delta^{\prime} \in Q_{j}$ are assumed independent if $i \neq j$. Given $i \geqq 0$, the distribution of the z_{Δ} 's for $\Delta \in Q_{i}$ is described by a gaussian Ising model with nearest neighbour interaction with formal density proportional to

$$
\begin{equation*}
\exp -\frac{\beta}{2}\left[\sum_{\Delta, \Delta^{\prime} \in Q_{2}}^{N}\left(z_{\Delta}-z_{\Delta^{\prime}}\right)^{2}+\alpha^{2} \sum_{\Delta \in Q_{i}} z_{\Delta}^{2}\right] \tag{1.1}
\end{equation*}
$$

where \sum^{*} runs over the pairs of nearest neighbour tesserae $\Delta, \Delta^{\prime} \in Q_{i}$ and β, α are positive parameters fixed so that the expectation of z_{Δ}^{2} is $\frac{1}{2} ; \alpha, \beta$ are fixed once for all.

The free hierarchical Markov field with ultraviolet cut-off of length 2^{-N} is defined as the gaussian field over R^{d} :

$$
\begin{equation*}
\varphi_{\xi}^{[\leqq N]}=\sum_{k=0}^{N} \sum_{\substack{\begin{subarray}{c}{Q_{\mathcal{Q}} \\
\xi \in \Delta} }}\end{subarray}} \sqrt{2 \gamma_{k}} z_{\Delta} \tag{1.2}
\end{equation*}
$$

where

$$
\begin{equation*}
\gamma_{k}=2^{(d-2) k}, \quad k=0,1, \ldots \tag{1.3}
\end{equation*}
$$

We define the normalized field with cut-off 2^{-N}

$$
\begin{equation*}
x_{\Delta}^{(N)}=\frac{\varphi_{\xi}^{[\leqq N]}}{\sqrt{2 \sum_{0}^{N} \gamma_{i}}}, \quad \xi \in \Delta \in Q_{N} \tag{1.4}
\end{equation*}
$$

which obeys the recursion relation

$$
\begin{equation*}
x_{\Delta}^{(N)}=\frac{z_{\Delta}+\sqrt{\Gamma_{N}} x_{\Delta^{\prime}}^{(N-1)}}{\sqrt{1+\Gamma_{N}}} \tag{1.5}
\end{equation*}
$$

where

$$
\Gamma_{N}=\sum_{0}^{N-1}{ }_{k} \gamma_{k} / \gamma_{N}
$$

We shall denote $\hat{\mathscr{E}}_{N}(\cdot)$ the expectation with respect to the probability distribution \hat{P}_{N} of the field $\left(z_{\Delta}\right)_{\Delta \in Q_{N}}$. We shall define

$$
\begin{equation*}
P_{N}=\prod_{i=0}^{N} \hat{P}_{i} \tag{1.6}
\end{equation*}
$$

The "interaction" is defined for $d=2,3$ as

$$
\begin{equation*}
V_{0, I}^{(N)}=-\lambda \int_{I}:\left(\varphi_{\xi}^{[\leqq N]}\right)^{4}: d \xi, \quad \lambda>0 \tag{1.7}
\end{equation*}
$$

where I is a bounded set exactly paved by Q_{0},

$$
\begin{equation*}
:\left(\varphi_{\xi}^{[\leqq N]}\right)^{n}:=\left(\sqrt{2 \sum_{0}^{N} \gamma_{i}}\right)^{n} H_{n}\left(x_{\Delta}\right), \quad \xi \in \Delta \in Q_{N} \tag{1.8}
\end{equation*}
$$

and H_{n} is the n-th Hermite polynomial $\left(H_{0}(x)=1, H_{1}(x)=x, H_{2}(x)=x^{2}-1 / 2\right.$, $\left.H_{4}(x)=x^{4}-3 x^{2}+3 / 4\right)$. The "renormalized interaction to order 3 ", will be defined
$V_{I}^{(N)}=V_{0, I}^{(N)}-\frac{1}{2!}\left\langle V_{0, I}^{(N) 2}\right\rangle_{(2)}-\frac{1}{2!}\left\langle V_{0, I}^{(N) 2}\right\rangle_{(0)}-\frac{1}{3!}\left\langle V_{0, I}^{(N) 3}\right\rangle_{(0)}$
where

$$
\begin{align*}
& \frac{1}{2}\left\langle V_{0, I}^{(N) 2}\right\rangle_{(2)}=\frac{\lambda^{2}}{2} 4^{2} 3!\int_{I \times I} d \xi d \eta\left(C_{\xi}^{[\leq N]}\right)^{3}:\left(\varphi_{\xi}^{[\subseteq N]}\right)^{2}: \tag{1.10}\\
& \frac{1}{2}\left\langle V_{0, I}^{(N) 2}\right\rangle_{(0)}=\frac{\lambda^{2}}{2} 4!\int_{I \times I} d \xi d \eta\left(C_{\tilde{\xi} \tilde{\eta}}^{[\leq N]}\right)^{4} \tag{1.11}\\
& \frac{1}{3!}\left\langle V_{0, I}^{(N) 3}\right\rangle_{(0)}=-\frac{\lambda^{3}}{3!}\binom{4}{2}^{3}(2!)^{3} \int_{I \times I \times I} \int_{I \times} d \xi d \eta d \zeta\left(C_{\xi}^{[\leq N]}\right)^{2}\left(C_{\eta}^{[\leqq N]}\right)^{2}\left(C_{\zeta}^{[〔 N]}\right)^{2} \tag{1.12}
\end{align*}
$$

and

$$
\begin{equation*}
C_{\xi \eta}^{[\leqq N]} \equiv \int \varphi_{\xi}^{[\leqq \leqq]} \varphi_{\eta}^{[\leqq N]} P_{N}(d z) . \tag{1.13}
\end{equation*}
$$

The "ultraviolet problem" that we study in this paper, is the following: to prove the existence of $E_{+}(\lambda), E_{-}(\lambda)$, such that, $\forall I, N(|I|$ is the volume of $I)$:

$$
\begin{align*}
& \text { i) } \exp \left[-E_{-}(\lambda)|I|\right] \leqq \int \exp V_{I}^{(N)} P_{N}(d z) \leqq \exp \left[E_{+}(\lambda)|I|\right] \tag{1.14}\\
& \text { ii) } \lim _{\lambda \rightarrow 0} E_{ \pm}(\lambda) / \lambda^{3}=0 \tag{1.15}
\end{align*}
$$

The technique we use would allow to treat more general problems and does not distinguish the cases $d=2$ and $d=3$ (see §6).

The results i), ii) are obtained in this paper by using a technique which is completely different from the one used in [2] and seems to simplify the classic approach, $[1,3]$ to perturbation theory, at least for the class of models considered here. In this paper we also give a complete derivation of an estimate for E_{+}, along the lines which were only summarily sketched in [2].

2. $E_{-}(\lambda):$ Structure of the Bound

The estimate for $E_{-}(\lambda)$ will be obtained by studying and bounding

$$
\begin{equation*}
\int \exp V_{I}^{(N)} \chi^{(N)} P_{N}(d z) \tag{2.1}
\end{equation*}
$$

where $\chi^{(N)}$ is a suitably chosen characteristic function. To describe $\chi^{(N)}$ and the other characteristic functions which will appear in the following, we shall adopt the convection that χ ("something") is the characteristic function of the events for which the "something" is verified. We introduce the sequence

$$
\begin{equation*}
B_{k}=B(1+k)^{4} \log \left(e+\frac{1}{\lambda}\right) \tag{2.2}
\end{equation*}
$$

where $B>0$ will be chosen later, and if $\Delta \in Q_{k}$

$$
\begin{equation*}
\chi_{\Delta}=\chi\left(\left|x_{\Delta}^{(k)}\right|<B_{k}\left[1+2^{k} d(\Delta, I)\right]\right) \tag{2.3}
\end{equation*}
$$

where $d(\Delta, I)$ is the distance between the sets Δ and I.
We than define

$$
\begin{equation*}
\chi^{(N)}=\prod_{i=0}^{N} \prod_{\Delta \in Q_{i}} \chi_{\Delta} \tag{2.4}
\end{equation*}
$$

of course the sequence B_{k} has been chosen so that there exists a function $e(\lambda)$ such that (see Appendix A)
i) $\int \chi^{(N)} P_{N}(d z) \geqq \exp \{-e(\lambda)|I|\}$
ii) $\lim _{\lambda \rightarrow 0} \lambda^{-k} e(\lambda)=0, \quad k=0,1, \ldots$.

To describe the inductive procedure to find an expression for $E_{-}(\lambda)$ we need few more definitions.

The first is the definition of "cumulants" (or truncated expectations) of a family of random variables $x_{1} \ldots x_{s}$ with respect to the probability measure P :

$$
\begin{align*}
\mathscr{E}^{T}\left(x_{1}, \ldots, x_{s} ; k_{1}, \ldots, k_{s}\right) & =\left[\frac{\partial^{k_{1}+\ldots+k_{s}}}{\partial \theta_{1}^{k_{1}} \ldots \partial \theta_{s}^{k_{s}}} \log \int \exp \sum_{i}^{s} \theta_{i} x_{i} d P\right]_{\theta_{i}=0} \tag{2.7}\\
k_{i} & =0,1, \ldots
\end{align*}
$$

which makes sense in an obvious way if $\int\left|x_{i}\right|^{l} P(d x)<\infty, l=0,1, \ldots ; i=1,2, \ldots$. The second definition gives a meaning to the symbol $[p(\lambda)]_{t}$ for any polynomial $p(\lambda)$: if $p(\lambda)=\sum_{k \geqq 0} e_{k} \lambda^{k}$ we denote $:$

$$
\begin{equation*}
[p(\lambda)]_{(t)}=\sum_{0}^{t} e_{k} \lambda^{k} . \tag{2.8}
\end{equation*}
$$

Finally we define the symbols $\tilde{V}_{I}^{(h)}$ inductively for $h=N, N-1, \ldots, 1,0,-1$:

$$
\begin{align*}
\tilde{V}_{I}^{(N)}= & V_{I}^{(N)} \\
\tilde{V}_{I}^{(N-k)}= & {\left[\hat{\mathscr{E}}_{N-k+1}\left(\tilde{V}_{I}^{(N-k+1}\right)+\frac{1}{2} \hat{\mathscr{E}}_{N-k+1}^{T}\left(\tilde{V}_{I}^{(N-k+1)} ; 2\right)\right.} \tag{2.9}\\
& \left.+\frac{1}{3!} \hat{\mathscr{E}}_{N-k+1}^{T}\left(\tilde{V}_{I}^{(N-k+1)} ; 3\right)\right]_{(3)}
\end{align*}
$$

It is not difficult to realize that $\tilde{V}_{I}^{(-1)}=0$. The bound is obtained recursively by proving that there exists $G, \varrho, \varrho^{\prime}, \varrho^{\prime \prime}$ such that

$$
\begin{align*}
\int \chi^{(k)} \exp \left(\tilde{V}_{I}^{(k)}\right) \hat{P}_{k}(d z)= & \chi^{(k-1)} \exp \left(\tilde{V}_{I}^{(k-1)}\right) \\
& \cdot \exp \{\tau G \varepsilon(k, \lambda)|I|\} \tag{2.10}
\end{align*}
$$

where

$$
\begin{equation*}
\varepsilon(k, \lambda)=\left[k^{\varrho} 2^{-(4-d) k} \lambda e^{\varrho^{\prime} \lambda e^{\prime \prime}}\right]^{4-1 / 2} 2^{d k} \tag{2.11}
\end{equation*}
$$

where τ is some function which takes values on $[-1,+1]$.
It will turn out from the proof that in (2.11) $4-1 / 2$ can be changed in $4-\varepsilon$ provided G is accordingly changed in some G_{ε}.

The above (2.10) implies that one can take

$$
\begin{equation*}
E_{-}(\lambda)=G\left(\lambda e^{\varrho^{\prime} \lambda \ell^{\prime \prime}}\right)^{4-1 / 2} \sum_{0}^{\infty}\left[k^{\varrho} 2^{-(4-d) k}\right]^{4-1 / 2} 2^{d k} \tag{2.12}
\end{equation*}
$$

The proof of (2.10) will be given in $\S 5$.

3. $E_{+}(\lambda)$

In this section we remove the field cut-off making explicit use of the positivity of $H_{4}(x)$ for large values of x.

The basic idea is to represent the integral as a sum of integrals in each of which the regions where the fields $x^{(N)}, x^{(N-1)}$ are small, are specified. We then treat the
integral over these fields as in the determination of the lower bound. The integral over the remaining fields will be studied by using that either the field $x^{(N)}$ is large and therefore $V^{(N)} \ll 0$ or z_{Δ} is large and, hence, has very small probability. The possibility of a separate treatment of the field with support in complementary regions relies on the Markov property of the fields $\left\{z_{\Delta}\right\}_{\Delta \in Q_{i}} i=0,1, \ldots$ To implement the above program we introduce the following characteristic functions :

$$
\begin{align*}
& \chi_{\Delta}=\chi\left(\left|x_{\Delta}^{(N)}\right|<B_{N}\left[1+2^{N} d(I, \Delta)\right]\right) \tag{3.1}\\
& \chi_{\Delta}^{\mathrm{c}}=1-\chi_{\Delta} \tag{3.2}
\end{align*}
$$

and we shall use the decomposition of unity:

$$
\begin{equation*}
1=\sum_{D_{N}} \prod_{\substack{\Delta \subset D_{N} \\ \Delta \in Q_{N}}} \chi_{\Delta}^{c} \prod_{\substack{\Delta \subset I \backslash D_{N} \\ \Delta \in Q_{N}}} \chi_{\Delta} \equiv \sum_{D_{N}} \chi_{D_{N}}^{c} \chi_{D_{N}} \tag{3.3}
\end{equation*}
$$

where the sum runs over the subsets of I which are exactly paved by Q_{N} and the abbreviations of the second equality are, selfexplanatory.

Starting from the identity:

$$
\int \exp V_{I}^{(N)} P_{N}(d z)=\sum_{D_{N}} \int_{D_{N}}^{c} \chi_{D_{N}} \exp V_{I}^{(N)} P_{N}(d z)
$$

we shall first prove that there is a $k(\lambda)$ such that if $N \geqq k(\lambda)$

$$
\begin{equation*}
\int \exp V_{I}^{(N)} P_{N}(d z) \leqq \sum_{D_{N}} \int \chi_{D_{N}}^{c} \chi_{D_{N}} \exp V_{I \backslash D_{N}}^{(N)} P_{N}(d z) \tag{3.4}
\end{equation*}
$$

where $V_{I \backslash D_{N}}^{(N)}$ is defined as in (1.9) by changing I into $I \backslash D_{N}$.
The second step, will be to prove that, for $k \geqq k(\lambda)$

$$
\begin{align*}
& \sum_{D_{k}} \int \chi_{D_{k}}^{c} \chi_{D_{k}} \exp \tilde{V}_{I \backslash D_{k}}^{(k)} P_{k}(d z) \\
& \quad \leqq\left(\sum_{D_{k-1}} \int \chi_{D_{k-1}}^{c} \chi_{D_{k-1}} \exp \tilde{V}_{I \backslash D_{k-1}}^{(k-1)} P_{k-1}(d z)\right) \cdot \exp \bar{G} \varepsilon(k, \lambda)|I| \tag{3.5}
\end{align*}
$$

where $\tilde{V}_{I \backslash D_{k}}^{(k)}$ is defined recursively as in (2.9) replacing I by $I \backslash D_{k}, \bar{G}$ is a suitably chosen constant and $\varepsilon(k, \lambda)$ is defined in (2.11). The above formula clearly imply that one can take for $E_{+}(\lambda)$

$$
\begin{equation*}
E_{+}(\lambda)=\bar{G} \sum_{k \geqq k(\lambda)} \varepsilon(k, \lambda)+\sup _{D_{k(\lambda)-1}} \max \left|\tilde{V}_{I \backslash D_{k}(\lambda)-1}^{k(\lambda)-1}\right| \chi_{D_{k}(\lambda)-L} \frac{1}{|I|} \tag{3.6}
\end{equation*}
$$

furthermore the function $k(\lambda)$ can be taken identicaly zero for λ small enough (hence the second term is absent for small λ). We now prove (3.4) and (3.5). The proof is based on the following structural properties of $\tilde{V}_{J}^{(k)}$ with J exactly paved by Q_{k} (see Appendix B): there is a constant $b>0$, such that if we write

$$
\begin{equation*}
\tilde{V}_{J}^{(k)}=V_{0, J}^{(k)}+\bar{V}_{J}^{(k)} \tag{3.7}
\end{equation*}
$$

where $V_{0, J}^{(k)}$ is defined as in (1.7), the following relation holds:

$$
\begin{equation*}
V_{0, J}^{(k)} \leqq V_{0, J \backslash D}^{(k)}-4 \lambda\left(2^{-(4-d) k}\right)\left(1+\Gamma_{k}\right)^{2} H_{4}(F) 2^{d k}|D| \tag{3.8}
\end{equation*}
$$

valid if $D \subset J, D$ exactly paved by Q_{k} and if $\left|x_{\Delta}^{(k)}\right|>F \geqq 2$ for $\Delta \subset D, \Delta \in Q_{k}$. Furthermore if J is paved by Q_{N},

$$
\begin{equation*}
\bar{V}_{J}^{(N)} \leqq \bar{V}_{J \backslash D}^{(N)}+b\left(\lambda^{2}+\lambda^{3}\right) N\left(1+\Gamma_{N}\right)^{4} 2^{-2(4-d) N} 2^{d N}|D| \tag{3.9}
\end{equation*}
$$

valid without exceptions, or, if J is paved by $Q_{k}, k<N$

$$
\begin{equation*}
\left|\bar{V}_{J}^{(k)}-\bar{V}_{J \backslash D}^{(k)}\right| \leqq b\left(\lambda^{2}+\lambda^{3}\right) k\left(1+\Gamma_{k}\right)^{4} 2^{-2(4-d) k} 2^{d k}|D| F^{8} \tag{3.10}
\end{equation*}
$$

if $\left|x_{\Delta}^{(k)}\right|<F$ for all $\Delta \subset J, \Delta \in Q_{k}$.
We shall define the above mentioned function $k(\lambda)$ as the smallest integer k such that:

$$
\begin{equation*}
4 \lambda 2^{-(4-d) k}\left(1+\Gamma_{k}\right)^{2} H_{4}\left(\tilde{B}_{k}\right)-b\left(\lambda^{2}+\lambda^{3}\right) k\left(1+\Gamma_{k}\right)^{4} 2^{-2(4-d) k} B_{k}^{8}>0 \tag{3.11}
\end{equation*}
$$

where $\tilde{B}_{k}<B_{k}$ is defined as

$$
\begin{align*}
& \tilde{B}_{k}=\left[\sqrt{\Gamma_{k}} B_{k-1}-\frac{B_{k}}{8(1+k)^{2}}\right] \frac{1}{\sqrt{1+\Gamma_{k}}}, \quad k \geqq 1 \tag{3.12}\\
& \tilde{B}_{0}=B_{0} .
\end{align*}
$$

and to obtain $\tilde{B}_{k} \geqq 2$, we shall choose $B \geqq 12$ [see Equation (2.2)]. The reason for this choice of $k(\lambda)$ will become clear soon. The first statement [Equation (3.4)] follows immediately from Equations (3.3), (3.8), (3.9), (3.11).

To prove the second statement (Equation (3.5)) we introduce

$$
\begin{align*}
& \hat{\chi}_{\Delta}=\chi\left(\left|z_{\Delta}\right|<\frac{B_{k}}{8(1+k)^{2}}\left(1+2^{k} d(\Delta, I)\right)\right) \\
& \hat{\chi}_{\Delta}^{c}=1-\hat{\chi}_{\Delta} \tag{3.13}\\
& \hat{\chi}_{R_{k}}^{c}=\prod_{\substack{\Delta \subset R_{k} \\
\Delta \in Q_{k}}} \hat{\chi}_{\Delta}^{c}, \quad \chi_{R_{k}^{c}}=\prod_{\substack{\Delta \cap R_{k}=R_{c} \\
\Delta \in Q_{k}}} \hat{\chi}_{\Delta}
\end{align*}
$$

if R_{k} is paved by Q_{k}. Then,

$$
\begin{align*}
& \sum_{D_{k}} \int \chi_{D_{k}}^{c} \chi_{D_{k}^{c}} \exp \tilde{V}_{I \backslash D_{k}}^{(k)} P_{k}(d z)=\sum_{D_{k}} \sum_{D_{k-1}} \sum_{R_{k}} \int \chi_{D_{k}}^{c} \chi_{D_{k}^{c}} \\
& \quad \cdot \chi_{D_{k-1}}^{c} \chi_{D_{k-1}^{c}}^{c} \hat{\chi}_{R_{k}}^{c} \hat{\chi}_{R_{k}^{c}} \exp \tilde{V}_{I \backslash D_{k}}^{(k)} P_{k}(d z) . \tag{3.14}
\end{align*}
$$

Let

$$
\begin{equation*}
\hat{R}_{k}=\left\{\xi \mid \xi \in \Delta \in Q_{k-1}, \quad 2^{k} d\left(\Delta, R_{k}\right) \leqq\left(\frac{B_{k}}{8(1+k)^{2}}\right)^{3}\right\} \tag{3.15}
\end{equation*}
$$

Than (3.8), (3.9), (3.11), (3.12), imply, for $k \geqq k(\lambda)$

$$
\begin{align*}
& {[(3.14)] \leqq \sum_{D_{k}} \sum_{D_{k-1}} \sum_{R_{k}} \int \chi_{D_{k}}^{c} \chi_{D_{k}^{c}} \chi_{D_{k-1}}^{c} \chi_{D_{k-1}^{c}} \hat{1}_{R_{k}}^{c} \hat{\chi}_{R_{k}^{c}} \exp \tilde{V}_{I \backslash D_{k} \cup D_{k-1} \cup \hat{R}_{k}}^{(k)} P_{k}(d z)} \\
& \quad \exp 2^{d k}\left|\hat{R}_{k} \cap I\right|\left[b\left(\lambda^{2}+\lambda^{3}\right) k\left(1+\Gamma_{k}\right)^{4}\right. \\
& \left.\quad \cdot 2^{-(4-d) k} B_{k}^{8}+6 \lambda\left(1+\Gamma_{k}\right)^{2}\right] 2^{-(4-d) k} . \tag{3.16}
\end{align*}
$$

It is easily seen that $D_{k} \backslash D_{k-1} \subset R_{k}$, than we can do the sum on D_{k} and we get

$$
\begin{align*}
{[(3.14)] \leqq } & \sum_{D_{k-1}} \sum_{R_{k}} \int \chi_{D_{k-1}}^{c} \chi_{D_{k-1}^{c}} \hat{\chi}_{R_{k}}^{c} \hat{\chi}_{R_{k}^{c}} \exp \tilde{V}_{I \backslash \mathbf{D}_{k-1} \cup \hat{R}_{k}}^{(k)} P_{k}(d z) \\
& \cdot \exp 2^{d k}\left|\hat{R}_{k} \cap I\right|\left[b\left(\lambda^{2}+\lambda^{3}\right) k\left(1+\Gamma_{k}\right)^{4} 2^{-(4-d) k} B_{k}^{8}+6 \lambda\left(1+\Gamma_{k}\right)^{2}\right]_{2}^{-(4-d) k} \tag{3.17}
\end{align*}
$$

We can write:

$$
\begin{align*}
& \int \chi_{D_{k-1}}^{c} \chi_{D_{k-1}^{c}}^{c} \hat{\chi}_{R_{k}}^{c} \hat{\chi}_{R_{k}^{c}} \exp \tilde{V}_{I \backslash D_{k-1} \cup \hat{R}_{k}}^{(k)} P_{k}(d z) \\
& =\int P_{k-1}(d z) \chi_{D_{k-1}}^{c} \int \hat{P}_{k}\left(d z_{(i)}\right) \hat{\chi}_{R_{k}}^{c} \\
& \quad \cdot \int \hat{P}_{k}\left(d z_{(e)} \mid z_{(i)}\right) \chi_{D_{k-1}^{c}} \hat{\chi}_{R_{k}^{c}} \exp \tilde{V}_{I \mid D_{k-1} \cup \hat{R}_{k}}^{(k)} \tag{3.18}
\end{align*}
$$

where

$$
\begin{align*}
z_{(i)} & =\left\{z_{\Delta} \mid \Delta \subset\left(R_{k} \cup \partial^{+} R_{k}\right)\right\} \tag{3.19}\\
z_{(e)} & =\left\{z_{\Delta} \mid \Delta \not \subset\left(R_{k} \cup \partial^{+} R_{k}\right)\right\} \\
\partial^{+} R_{k} & =\left\{\Delta \in Q_{k} \mid d\left(\Delta, R_{k}\right)=0, \Delta \not \subset R_{k}\right\} \tag{3.20}
\end{align*}
$$

and $P_{k}\left(d z_{(i)}\right)$ denotes the distribution of the $z_{(i)}$ variables with respect to the measure P_{k} and $P_{k}\left(d z_{(e)} \mid z_{(i)}\right)$ is the distribution of the variables $z_{(e)}$ conditioned, in \hat{P}_{k}, to given values of $z_{(i)}$ (but it depends only on $z_{\partial R_{k}}^{+}$because the Markov property of the field).

We now use the inequality, valid if $B>8 b^{*}$, where b^{*} is defined in §5:

$$
\begin{align*}
& \int \hat{P}_{k}\left(d z_{(e)} \mid z_{(i)}\right) \chi_{D_{k-1}^{c}} \hat{\chi}_{R_{k}^{c}} \exp \tilde{V}_{I \backslash D_{k-1} \cup \hat{R}_{k}}^{(k)} \\
& \leqq \chi_{D_{k-1}^{c}} \exp \tilde{V}_{I \backslash D_{k-1} \cup \hat{R}_{k}}^{(k-1)} \exp G \varepsilon(k, \lambda)|I| . \tag{3.21}
\end{align*}
$$

This inequality will be proven, together with the similar one (2.10), used in the theory of E_{-}in $\S 5$.

We use next the inequality

$$
\begin{align*}
& \chi_{D_{k-1}^{c}} \exp \tilde{V}_{I \mid D_{k-1} \cup \hat{R}_{k}}^{k-1)} \leqq \chi_{D_{k-1}^{c}} \exp \tilde{V}_{I \mid D_{k-1}}^{k-1)} \\
& \quad \cdot \exp \left\{| \hat { R } _ { k } \cap I | 2 ^ { d k } \left[b\left(\lambda^{2}+\lambda^{3}\right) 2^{-(4-d) k} B_{k}^{8}\right.\right. \\
& \left.\left.\quad+4 H_{4}\left(B_{k}\right) \lambda\left(1+\Gamma_{k}\right)^{2}\right] 2^{-(4-d) k}\right\} \\
& \leqq \chi_{D_{k-1}} \exp \tilde{V}_{I \mid D_{k-1}}^{(k-1)} \exp \left\{\left|R_{k} \cap I\right| 2^{d k} \frac{\mu(k, \lambda)}{2}\right\} \tag{3.22}
\end{align*}
$$

where

$$
\begin{align*}
\mu(k, \lambda)= & {\left[2\left(\frac{B_{k}}{8(1+k)^{2}}\right)^{3}\right] } \\
& \cdot\left[b\left(\lambda^{2}+\lambda^{3}\right) k\left(1+\Gamma_{k}\right)^{4} 2^{-(4-d) k} B_{k}^{8}+4 \lambda H_{k}\left(B_{k}\right)\left(1+\Gamma_{k}\right)^{2}\right] 2^{-(4-d) k} \tag{3.23}
\end{align*}
$$

and the first factor of $\mu(k, \lambda)$ takes into account the replacement of \hat{R}_{k} by R_{k} in the last step, hence:

$$
\begin{align*}
{[(3.14)] \leqq } & {\left[\sum_{D_{k-1}} \sum_{R_{k}} e^{\mu(k, \lambda) 2^{a k}\left|R_{k} \cap I\right|} \int \chi_{D_{k-1}}^{c} \chi_{D_{k-1}^{c}} \hat{\chi}_{R_{k}}^{c}\right.} \\
& \left.\cdot \exp \tilde{V}_{I \backslash D_{k-1}}^{(k-1)} P_{k}(d z)\right] \exp G|I| \varepsilon(k, \lambda) . \tag{3.24}
\end{align*}
$$

To perform the sum over R_{k}, we use the inequality

$$
\begin{align*}
& \sum_{R_{k}} e^{\mu(k, \lambda))^{d k}\left|R_{k} \cap I\right|} \int \hat{\chi}_{R_{k}}^{c} \hat{P}_{k}(d z) \\
& \leqq \exp \left[c|I| 2^{d k} e^{\mu(k, \lambda)-\frac{B_{k}}{64(1+k)^{4}} \frac{\alpha^{2} \beta}{2}}\right] \tag{3.25}
\end{align*}
$$

where $c>0$ is a suitable constant. Inequality (3.25) is a property of the free field \hat{P}_{k} and it is an immediate consequence of Lemma 1 in Appendix C.

4. The Structure of $\tilde{V}_{\boldsymbol{J}}{ }^{(\boldsymbol{k})}$

To find what has to be proven to obtain the basic inequalities (2.11) and (3.25) we have to use explicitely the structure of $\tilde{V}_{J}^{(k)}$. This structure can be studied by computing explicitely the function $\tilde{V}_{J}^{(k)}$. The calculation straightforward, but lengthy, and the definitive result is in the Appendix B; here we describe only some of the main features:

$$
\begin{align*}
\tilde{V}_{J}^{(k)}= & \sum_{\substack{1 p}}^{3} \sum_{\substack{\Delta_{i} \in Q_{k} i: 1, \ldots, p \\
\Delta_{i} \subset J t i: 1, \ldots, p}} \sum_{\substack{n_{1}, \ldots n_{p} \\
n_{i}>\\
\sum_{1}>\\
\sum_{i} n_{i} \leq 8}} \bar{A}_{\Delta_{1} \ldots \Delta_{p}}^{n_{1} \ldots n_{p}}(N, k, J) \\
& \cdot e^{-x 2^{k} d\left(\Lambda_{1}, \ldots, \Delta p\right)} x_{\Delta_{1}}^{(k) n_{1}} \ldots x_{\Delta_{p}}^{(k) n_{p}}+\sum_{\substack{\Delta_{\in Q} \in Q_{k} \\
\Delta \subset J}} \bar{C}_{\Delta}(N, k, J) \tag{4.1}
\end{align*}
$$

where $d\left(\Delta_{1}, \ldots, \Delta_{p}\right)$ is the length of the smallest path connecting $\Delta_{1} \ldots \Delta_{p}, x$ is a positive constant and $\bar{A}_{\Delta_{1} \ldots A_{p}}^{n_{1} \ldots n_{p}}(N, k, J), \bar{C}_{\Delta}(N, k, J)$, are suitable coefficients which verify the estimates

$$
\begin{align*}
& \sup _{\substack{J, N, p \\
n_{1}, \ldots, n_{p} \\
a_{1}, \ldots, L_{p}}}\left|\bar{A}_{4_{1} \ldots \Delta_{p}}^{n_{1} \ldots n_{p}}(N, k, J)\right| \leqq \bar{A} 2^{-(4-d) k}\left(1+\Gamma_{k}\right)^{2} \tag{4.2}\\
& \sup _{J, N, \Delta}\left|\bar{C}_{\Delta}(N, k, J)\right| \leqq \bar{A} 2^{-(4-d) k}\left(1+\Gamma_{k}\right)^{2} \tag{4.2a}
\end{align*}
$$

for a suitable chosen constant \bar{A}. We shall now consider only the case in which $x^{(k)}$ can be written as $x_{\Delta}^{(k)}=\left(z_{\Delta}+\sqrt{\Gamma_{k}} x_{\Delta}^{(k-1)}\right) / \sqrt{1+\Gamma_{k}}$ with $\left|x_{\Delta}^{(k-1)}\right| \leqq B_{k-1}$, and we shall regard $\tilde{V}_{J}^{(k)}$ as a function of the $\left(z_{\Delta}\right)_{\Delta \in Q_{k}}$ which will take the following form

$$
\begin{align*}
& \tilde{V}_{J}^{(k)}=\sum_{p}^{1} \sum_{\substack{\Delta_{i} \in Q_{k} i: 1 \ldots p \\
\Delta_{i} \subset J i=1 \ldots p}} \sum_{\substack{n_{1} \ldots n_{p} \\
n_{i}, n_{p} \\
\sum n_{i} \leqq 8}} A_{\Delta_{1} \ldots \Delta_{p}}^{n_{1} \ldots n_{p}}(N, k, J) \\
& \cdot e^{-\frac{\chi}{2} 2^{k_{d}\left(\Lambda_{1} \ldots \Delta_{p}\right)} z_{\Delta_{1}}^{n_{1}} \ldots z_{\Delta_{p}}^{n_{p}}+\sum_{\substack{\Delta_{\in} \in Q_{k} \\
\Delta \subset J}} e_{\Delta}(N, k, J)} \tag{4.3}
\end{align*}
$$

and the coefficients verify an estimate of the type (4.2) above with \bar{A} replaced by

$$
\begin{equation*}
A=\bar{A} B_{k-1}^{8} r \tag{4.4}
\end{equation*}
$$

where $r>0$ is a constant. It is easy to realize that the estimates that we are seeking can be deduced from the following general lemma on the theory of gaussian processes. Let, for J exactly paved by Q_{0} :

$$
\begin{equation*}
H_{J}=\sum_{1}^{s} \sum_{\substack{\Delta_{i} \in Q_{0} \\ \Delta_{i}(J, i: 1 \ldots p}} \sum_{\substack{n_{>}>0 \\ i=1 \\ n_{i} \leq 1 \\ i=1 \ldots p}} A_{\Delta_{1} \ldots \Delta_{p}}^{n_{1} \ldots n_{p}} e^{-\frac{x}{2} d\left(\Lambda_{1} \ldots \Delta_{p}\right)} z_{\Delta_{1}}^{n_{1}} \ldots z_{\Delta_{p}}^{n_{p}} \tag{4.5}
\end{equation*}
$$

and call $A \equiv \sup \left|A_{\Delta_{1} \ldots \Delta_{p}}^{n_{1} \ldots n_{p}}\right|$.
We shall consider the z_{Δ} 's, $\Delta \in Q_{0}$, as random variables with the conditional distribution $\hat{P}_{0}\left(d z \mid\left(\bar{z}_{\Delta}\right)_{\Delta \in C}\right)$, (c.f.r. Eq. 3.18), hereafter abriged as $\bar{P}(d z)$, where C is a region paved by Q_{0} at distance b^{3} from J.

Lemma. Given an integer $t \geqq 0$ and $b>b^{*}$, let $J \subseteq I$ and C be regions exactly paved by Q_{0}. There exist constants $S, \varrho_{1}, \varrho_{2}, \varrho_{3}, \varrho_{4}$ depending only on t, D, d, x such that:

$$
\begin{equation*}
\int \prod_{\Delta} \hat{\chi}_{\Delta} \exp H_{J} \bar{P}(d z) \leqq \exp \left\{\left[\sum_{1}^{t} \frac{\hat{\mathscr{E}}_{0}^{T}\left(H_{J} ; k\right)}{k!}\right]+|I| S\left(\left(A b^{\varrho_{1}} e^{\varrho_{2} A b_{3}}\right)^{t+1}+e^{-\varrho_{3} b^{3 / 2}} e^{\varrho_{4} A b_{3}}\right)\right\} \tag{4.6}
\end{equation*}
$$

and if $C=\emptyset$

$$
\begin{align*}
\int \prod_{\Delta} \hat{\chi}_{\Delta} \exp H_{J} \hat{P}_{0}(d z) \geqq & \exp \left\{\left[\sum_{1}^{t} \frac{\hat{\mathscr{E}}_{0}^{T}\left(H_{J} ; k\right)}{k!}\right]-|I| S\right. \\
& \left.\cdot\left(\left(A b^{Q_{1}} e^{Q_{2} A b^{Q_{3}}}\right)^{t+1}+e^{-\varrho_{3} b^{3 / 2}} e^{\varrho_{4} A b^{Q_{3}}}\right)\right\} \tag{4.7}
\end{align*}
$$

where

$$
\hat{\chi}_{\Delta}=\chi\left(\left|z_{\Delta}\right| \leqq b(1+d(I, \Delta))\right) .
$$

Remark 1. The truncated expectations are to be computed with respect to the unconditional \hat{P}_{0} measure.
Remark 2. In the applications we shall identify Q_{0} with Q_{k} and identify J with $I \backslash D_{k} \cup \hat{R}_{k}$ and choose $b=\frac{B_{k}}{8}(1+k)^{-2}$. In this way we make use of the scale invariance of the z-components of the free field.
Remark 3. The term in square brackets in (4.6) will be, in the application, a polynomial in λ of degree 9 (since $t=3$) which we replace by $\left[\sum_{1}^{3} \frac{\hat{\mathscr{E}}_{0}^{T}}{k!}\left(H_{J} ; k\right)\right]_{(3)}$ [see (2.9)]. As it is implied by the structure of $\tilde{V}^{(k)}$ this replacement produces an error which is of the same form of the one in (4.6).
Remark 4. The above lemma is very weak from the point of view of statistical mechanics and becomes interesting only in the limit $A \rightarrow 0 b \rightarrow \infty$ so that $A b^{\varrho} \rightarrow 0$ for all $\varrho>0$.

5. Proof of the Basic Lemma

The proof of this lemma is quite simple but it is burdened by many technical details. To help the reader, we give first a short sketch.

The goal is to evaluate (disregarding the characteristic functions which are the origin of many technical difficulties) the integral $\int \exp H_{J} \bar{P}(d z)$ by the cumulant formula. The a priori error would be however :

$$
\begin{equation*}
\operatorname{cost} \exp \left(\max \left|H_{J}\right|\right)^{t+1} \tag{5.1}
\end{equation*}
$$

which is, of course, too large ("wrong $|I|$ dependence").
If the z_{Δ} 's were independent variables (rather than almost such) and if H_{J} were "strictly local", i.e. $H_{J}=\sum_{\Delta} H_{\Delta}$ with H_{Δ} depending only on z_{Δ} (rather than almost such) we could write the integral as

$$
\begin{equation*}
\prod_{\Delta}\left(\int \exp H_{\Delta} \bar{P}(d z)\right) \tag{5.2}
\end{equation*}
$$

and then apply to each factor the cumulant formula with an error:

$$
\begin{equation*}
\exp \sum_{\Delta}\left(\max \left|H_{\Delta}\right|\right)^{t+1} \tag{5.3}
\end{equation*}
$$

which is much better than (5.1) and is precisely what we want.
The fact that \bar{P} does not factorize will be cured by collecting many Δ 's into large boxes \square, still very small compared to I. Then we shall fix the values of the z_{Δ} variables for the Δ 's near the boundaries of \square and call them \bar{z}. The measure \bar{P}, conditioned to the fixed values \bar{z} will then factorize "over the boxes \square " because of the Markov property of \bar{P}. If the boxes are large the non locality of H_{J} will be negligeable and we shall perform the conditional integral by the cumulant formula to order t making an error of the type (5.3) with \sum_{Δ} replaced by \sum_{\square}. The result will unfortunately depend on the conditions \bar{z}. It will in fact have the form of a linear combinations of terms of the form:

$$
\begin{equation*}
\mathscr{E}_{\bar{z}}^{T}\left(z_{\Lambda_{1}}, \ldots, z_{\Delta_{p}} ; n_{1}, \ldots, n_{p}\right) \tag{5.4}
\end{equation*}
$$

where $\mathscr{E}_{\bar{Z}}^{T}$ denotes the truncated expectation with respect to the conditioned measure. Such expectations are polynomials in the \bar{z} and differ very little from the ones we want (i.e. the unconditional ones) if $\Delta_{1}, \ldots, \Delta_{p}$ are far from the region $\bigcup_{\square}(\partial \square)$ because the covariance of the z_{Δ} 's decays exponentially and, far from $\bigcup_{\square}(\partial \square)$, coincides with the unconditional covariance. This remark shows that the above procedure has reduced the problem of proving the lemma to the special case in which J is replaced by $J \cap \Gamma_{1}$ where Γ_{1} is a region around $\bigcup_{\square}(\partial \square)$ with width of the order of the maximum between the correlation length of the z_{4}-covariance and the range x^{-1} of the "hamiltonian" H_{J}.

The location in space of the \square 's was however arbitrary. Hence we can apply the same argument of $H_{J \cap \Gamma_{1}}$ by choosing the \square 's out of a pavement with boxes of the same size of the former ones but shifted in location.

In this way the initial problem is reduced to the case in which J is replaced by $\left(J \cap \Gamma_{1}\right) \cap \Gamma_{2}$ where Γ_{2} are the new corridors. After $(d+1)$ steps one can obviously manage by suitably choosing the successive displaced pavements so that $\left(J \cap \Gamma_{1}\right) \cap \Gamma_{2} \cap \ldots \cap \Gamma_{d+1}=\emptyset$ thereby reducing the proof of the lemma to the trivial case $H_{J}=0$.

The proof that we give here is different from the analogous result of [2] and closer in spirit to the general methods of Statistical Mechanics [4, 5].

The technique discussed seems close to the one used in the theory of the critical point of the almost gaussian Ising model [6].

Proof of the Lemma. Throughout the proof C, I, and J are fixed. Let R be a region paved by Q_{0} and let
where the definitions of the A 's is extended so that

$$
A_{\Delta_{1} \ldots \Delta_{p}}^{n_{1} \ldots n_{p}}=0 \text { if some } \Delta_{i} \not \subset J, \quad i=1, \ldots, p
$$

Given two different regions R and S (paved by Q_{0}) we define the interaction between R and S as

$$
\begin{equation*}
H_{R, S}=H_{R \cup S}-H_{R}-H_{S} . \tag{5.6}
\end{equation*}
$$

We consider tesserae \square paved by Q_{0} of side b^{2} (for simplicity we assume $b^{1 / 2} / 4$ integer, the modifications needed in the general case are trivial and will not be considered). Let Q^{b} be the corresponding pavement made up by the tesserae \square. For any $\square \in Q^{b}$ we put

$$
\begin{equation*}
\square=\square^{\prime} \cup \Gamma_{2}(\square) \cup \Gamma_{1}(\square) \tag{5.7}
\end{equation*}
$$

where $\Gamma_{2}(\square)$ and $\Gamma_{1}(\square)$ are corridors of width $b^{3 / 2}, \Gamma_{1}(\square)$ is adjacent to the boundary of \square and $\Gamma_{2}(\square)$ is adjacent to the internal boundary of $\Gamma_{1}(\square)$ (see Fig. 1).

Fig. 1

We define

$$
\begin{equation*}
\Gamma_{1}=\bigcup_{\square \in Q^{b}} \Gamma_{1}(\square) \tag{5.8}
\end{equation*}
$$

and we have

$$
\begin{align*}
& H_{J}=H_{\Gamma_{1}}+\sum_{\square \square} \Psi_{\square}+H^{(l)} \equiv \hat{H}_{J}+H^{(l)} \tag{5.9}\\
& \Psi_{\square}=H_{\square \prime \cup \Gamma_{2}(\square)}+H_{\Gamma_{2}(\square), \Gamma_{1}(\square)} \tag{5.10}
\end{align*}
$$

where $H^{(l)}=H_{J}-\hat{H}_{J}$ can be bounded as [see (4.5)]

$$
\begin{equation*}
\left|H^{(l)} \prod_{\Delta} \hat{\chi}_{\Delta}\right| \leqq s_{1} A b^{D} e^{-\frac{\chi}{4} b^{3 / 2}}|I| . \tag{5.11}
\end{equation*}
$$

Therefore the main point is to estimate

$$
\begin{equation*}
\int \bar{P}(d z) \prod_{\Delta} \hat{\chi}_{\Delta} \exp \hat{H}_{J} \tag{5.12}
\end{equation*}
$$

Let us first prove a lower bound for (5.12) ; in this case $C=\emptyset$. We have

$$
\begin{align*}
{[(5.12)]=} & \int \bar{P}\left(d z_{\Gamma_{1}}\right) \prod_{\Delta \in \Gamma_{1}} \hat{\chi}_{\Delta} \exp H_{\Gamma_{1}}\left(\prod_{\square \cap J \neq \emptyset} \int \bar{P}\left(d z_{\square} \mid z_{\Gamma_{1}}\right) \prod_{\Delta \subset \square} \hat{\chi}_{\Delta} \exp \Psi_{\square}\right) \\
& \cdot\left(\prod_{\square \cap J=\sigma} \int \bar{P}\left(d z_{\square} \mid z_{\Gamma_{1}}\right) \prod_{\Delta \subset \square} \hat{\chi}_{\Delta}\right) \tag{5.13}
\end{align*}
$$

where $\bar{P}\left(d z_{\Gamma_{1}}\right)$ denotes the probability distribution of the r.v. $\left(z_{\Delta}\right)_{\Delta \subset \Gamma_{1}} \equiv z_{\Gamma_{1}}, z_{\square}$ are the r.v. $\left(z_{\Delta}\right)_{\Delta \in \square}, \bar{P}\left(d z_{\square} \mid z_{\Gamma_{1}}\right)$ is their conditional probability for fixed $z_{\Gamma_{1}}$ and the Markov property of \bar{P} has been used.

We choose $0<\gamma<1$ as in Lemma 2 of Appendix $\mathrm{C}\left(\gamma=\frac{1}{2}\left(\frac{2 d}{\alpha^{2}+2 d}\right)^{2}\right)$, and we define

$$
\begin{align*}
& \chi_{y b}^{\Gamma_{1}}=\chi\left(\left|z_{\Delta}\right| \leqq \gamma b(1+d(\Delta, I)), \forall \Delta \in \Gamma_{1}\right) \\
& \chi_{b}^{\square}=\chi\left(\left|z_{\Delta}\right| \leqq b(1+d(\Delta, I)), \forall \Delta \in \square^{\prime} \cup \Gamma_{2}(\square)\right) . \tag{5.14}
\end{align*}
$$

Then

$$
\begin{align*}
{[(5.12)] \geqq } & \int \bar{P}\left(d z_{\Gamma_{1}}\right) \chi_{y b}^{\Gamma_{1}} \exp H_{\Gamma_{1}}\left(\prod_{\square J=\emptyset} \int \bar{P}\left(d z_{\square} \mid z_{\Gamma_{1}}\right) \chi_{b}^{\square}\right) \\
& \cdot\left(\prod_{\square J \neq \emptyset} \int \bar{P}\left(d z_{\square} \mid z_{\Gamma_{1}}\right) \chi_{b}^{\square} \exp \Psi_{\square} \chi_{b}^{\square}\right) \\
\geqq & \int \bar{P}\left(d z_{\Gamma_{1}}\right) \chi_{y b}^{\Gamma_{1}} \exp H_{\Gamma_{1}}\left(\prod_{\square J=\emptyset} \int \bar{P}\left(d z_{\square} \mid z_{\Gamma_{1}}\right) \chi_{b}^{\square}\right) \prod_{\square J \neq \emptyset} \\
& \cdot\left\{\int \bar{P}\left(d z_{\square} \mid z_{\Gamma_{1}}\right) e^{\Psi_{\square} \chi_{b}^{\square}} \exp \left[-3 b^{2 d} e^{-\frac{b^{2}}{4}} e^{2 S_{2} A b^{D+2 d}}\right]\right\} \tag{5.15}
\end{align*}
$$

where the ch.f. in the second integral have been eliminated as follows:
i) There is a constant s_{2} such that $\left|\Psi_{\square} \chi_{b}^{\square}\right| \leqq s_{2} A b^{D+2 d}$ as it follows from the assumed structure of H_{J}.
ii) we write

$$
\begin{align*}
-\log \left[\frac{\int \bar{P}\left(d z_{\square} \mid z_{\Gamma_{1}}\right) \chi_{\square}^{b} e^{\Psi_{\square} x_{\square}^{b}}}{\int \bar{P}\left(d z_{\square} \mid z_{\Gamma_{1}}\right) e^{\Psi_{\square} x_{\square}^{b}}}\right] & =\int_{1}^{\infty} d u \frac{d}{d u}\left(\log \int \bar{P}\left(d z_{\square} \mid z_{\Gamma_{1}}\right) \chi_{\square}^{b u} e^{\Psi_{\square} x_{\square}^{b}}\right) \\
& =\int_{1}^{\infty} d u \frac{\int \bar{P}\left(d z_{\square} \mid z_{\Gamma_{1}}\right)\left(\frac{d}{d u} \chi_{\square}^{b u}\right) e^{\Psi_{\square} x_{\square}^{b}}}{\int \bar{P}\left(d z_{\square} \mid z_{\Gamma_{1}}\right) \chi_{\square}^{b u} e^{\Psi_{\square} x_{\square}^{b}}} \tag{5.16}
\end{align*}
$$

Since $\frac{d}{d u} \chi_{\square}^{b u}$ is a combination with non negative coefficients of δ-functions, and therefore is positive we can extract the factors $\exp \Psi_{\square} \chi_{\square}^{b}$ and perform again the integral:

$$
\begin{equation*}
[(5.16)] \leqq \exp 2 s_{2} A b^{D+2 d}\left(-\log \int \bar{P}\left(d z_{\square} \mid z_{\Gamma_{1}}\right) \chi_{\square}^{b}\right) \tag{5.17}
\end{equation*}
$$

Hence

$$
\begin{align*}
\int \bar{P}\left(d z_{\square} \mid z_{\Gamma_{1}}\right) \chi_{\square}^{b} \exp \Psi_{\square} \chi_{\square}^{b} \geqq & \left(\int \bar{P}\left(d z_{\square} \mid z_{\Gamma_{1}}\right) \exp \Psi_{\square} \chi_{\square}^{b}\right) \\
& \cdot\left(\int \bar{P}\left(d z_{\square} \mid z_{\Gamma_{1}}\right) \chi_{\square}^{b}\right)^{\exp 2 s_{2} A b^{D+2 d}} \tag{5.18}
\end{align*}
$$

Finally we use the lemma on the free field (see Appendix C)

$$
\begin{equation*}
\int \chi_{\square}^{b} \bar{P}\left(d z_{\square} \mid z_{\Gamma_{1}}\right) \geqq \exp \left(-3 b^{2 d} e^{-\frac{b^{2}}{4}}\right) \tag{5.19}
\end{equation*}
$$

to derive the bound used in (5.15)

$$
\begin{align*}
\int \bar{P}\left(d z_{\square} \mid z_{\Gamma_{1}}\right) \chi_{\square}^{b} \exp \Psi_{\square} \chi_{\square}^{b} \geqq & \mid \int \bar{P}\left(d z_{\square} \mid z_{\Gamma_{1}}\right) \exp \Psi_{\square} \chi_{\square}^{b} \\
& \cdot \exp \left(-3 b^{2 d} e^{-\frac{b^{2}}{4}} e^{2 s_{2} A b^{D+2 d}}\right) . \tag{5.20}
\end{align*}
$$

We now try to compute the second integral by a cumulant expansion [see (2.7)] to order t :

$$
\begin{align*}
& \log \int \bar{P}\left(d z_{\square} \mid z_{\Gamma_{1}}\right) \exp \Psi_{\square} \chi_{\square}^{b}=\sum_{1}^{t} k \frac{\mathscr{E}_{Z_{\Gamma_{1}}}^{T}\left(\Psi_{\square} \chi_{\square}^{b} ; k\right)}{k!} \\
& +\frac{2^{(t+1)^{2}}(t+1)!}{(t+1)!} \tau\left(s_{2} b^{D+2 d} A\right)^{t+1} \exp 2\left(s_{2} A b^{D+2 d}\right) \tag{5.21}
\end{align*}
$$

where $\overline{\mathscr{E}}_{z_{\Gamma_{1}}}$ denotes the expectation with respect to $\bar{P}\left(d z_{\square} \mid z_{\Gamma_{1}}\right)$ and τ is a function with values in $[-1,1]$.

Combining (5.21), (5.20) and (5.15)

$$
\begin{align*}
& {[(5.12)] \geqq \int \bar{P}\left(d z_{\Gamma_{1}}\right) \chi_{y b}^{\Gamma_{1}} \exp H_{\Gamma_{1}}} \\
& \cdot\left(\prod_{\square \cap J=\sigma} \int \bar{P}\left(d z_{\square} \mid z_{\Gamma_{1}}\right) \chi_{b}^{\square}\right)_{\square \cap J \neq \sigma} \prod_{1}\left\{\exp \sum_{1}^{t} \frac{1}{k!} \mathscr{E}_{\Sigma_{\Gamma_{1}}}^{T}\left(\Psi_{\square} \chi_{\square}^{b} ; k\right)\right. \\
& \left.\cdot \exp -\left[\frac{2^{(t+1)^{2}}(t+1)!}{(t+1)!}\left(s_{2} b^{D+2 d} A\right)^{t+1} e^{2 s_{2} A b^{D+2 d}}+3 b^{2 d} e^{-\frac{b^{2}}{4}} e^{2 s_{2} A b^{D+2 d}}\right]\right\} . \tag{5.22}
\end{align*}
$$

The next step consists of trying to replace the conditional expectation $\mathscr{E}_{z_{\Gamma_{1}}}$ by the unconditioned one $\hat{\mathscr{E}}_{0}$.

Consider $\mathscr{E}_{z_{\Gamma_{1}}}^{T}\left(\Psi_{\square} \chi_{b}^{\square} ; k\right)$ and decompose Ψ_{\square} as

$$
\begin{equation*}
\Psi_{\square}=\left(H_{\square}+H_{\square \square^{\prime}, \Gamma_{3}(\square)}\right)+\left(H_{\Gamma_{1}(\square), \Gamma_{2}(\square)}+H_{\Gamma_{2}(\square)}\right)+H^{\prime(l)} \tag{5.23}
\end{equation*}
$$

where $\Gamma_{3}(\square)$ is a corridor adjacent to \square^{\prime} with width $\frac{1}{2} b^{3 / 2}\left[\right.$ hence $\left.\Gamma_{3}(\square) \subset \Gamma_{2}(\square)\right]$ (see Fig. 1) and $H^{\prime(l)}$ can be bounded by

$$
\begin{equation*}
\left|H^{\prime(l)} \chi_{b}^{\square}\right| \leqq s_{1} A b^{D+2 d} e^{-\frac{\chi}{8} b^{3 / 2}} . \tag{5.24}
\end{equation*}
$$

We denote the three addends in (5.23) $\Psi_{1}, \Psi_{2}, \Psi_{3}$ respectively and χ_{b}^{\square} by χ then

$$
\begin{align*}
& \mathscr{E}_{z_{1}}^{T}\left(\left(\Psi_{1}+\Psi_{2}+\Psi_{3}\right) \chi ; k\right) \\
& =\sum_{\substack{k_{1}, k_{2}, k_{3} \\
\left(k_{1}+k_{2}+k_{3}\right)=k}} \frac{k!}{k_{1}!k_{2}!k_{3}!} \mathscr{E}_{z_{\Gamma_{1}}}^{T}\left(\Psi_{1} \chi, \Psi_{2} \chi, \Psi_{3} \chi ; k_{1}, k_{2}, k_{3}\right) \\
& =\mathscr{E}_{z_{\Gamma_{1}}}^{T}\left(\Psi_{1} \chi ; k\right)+\sum_{k_{2}>0} \mathscr{E}_{z_{\Gamma_{1}}}^{T}\left(\Psi_{1} \chi, \Psi_{2} \chi, k_{1}, k_{2}\right) \frac{k!}{k_{1}!k_{2}!} \\
& \quad+\sum_{k_{3}>0} \mathscr{E}_{z_{\Gamma_{1}}}^{T}\left(\Psi_{1} \chi, \Psi_{2} \chi, \Psi_{3} \chi ; k_{1}, k_{2}, k_{3}\right) \frac{k!}{k_{1}!k_{2}!k_{3}!} \tag{5.25}
\end{align*}
$$

and we have used the elementary summation properties of the truncated functions following from their definitions ("Leibnitz formula").

We bound the third term by using that $\mathscr{E}_{E_{\Gamma_{1}}}^{T}$ is a sum of at most s_{3} products of powers of $\Psi_{1} \chi, \Psi_{2} \chi, \Psi_{3} \chi$ and $\Psi_{3} \chi$ appears in at least one of the factors.

Then (5.24) implies:

$$
\begin{equation*}
\left|\sum_{k_{3}>0} \mathscr{E}_{z_{\Gamma_{1}}}^{T}\left(\Psi_{1} \chi, \Psi_{2} \chi, \Psi_{3} \chi ; k_{1}, k_{2}, k_{3}\right) \frac{k!}{k_{1}!k_{2}!k_{3}!}\right| \leqq s_{3}\left(s_{1} A b^{D+2 d}\right)^{k} e^{-\frac{\chi}{8} b^{3 / 2}} . \tag{5.26}
\end{equation*}
$$

To treat the second term we define $\Gamma_{4}(\square)$ as the corridor adjacent to the boundary of \square^{\prime} contained inside \square^{\prime} and with width $\frac{b^{3 / 2}}{2}$ and decompose Ψ_{1} as $\Psi_{1}^{\prime}+\Psi_{1}^{\prime \prime}$ where

$$
\begin{equation*}
\Psi_{1}^{\prime}=H_{\Gamma_{4}(\square)}+H_{\Gamma_{4}(\square), \Gamma_{3}(\square)} \tag{5.27}
\end{equation*}
$$

The feature of $\Psi_{1}^{\prime \prime}$ to be retained is that in its expression as a polynomial in the z_{4} 's each monomials contains at least one z_{Δ} with $\Delta \subset \square^{\prime} \backslash \Gamma_{4}(\square)$. Then the second term in (5.25) can be written

$$
\begin{equation*}
\sum_{k_{2}>0} \frac{k!}{k_{1}!k_{2}!} \mathscr{E}_{z_{\Gamma}}^{T}\left(\Psi_{1}^{\prime} \chi, \Psi_{2} \chi ; k_{1}, k_{2}\right)+\sum_{\substack{k_{2}>0 \\ h_{1}, h_{2} \\ h_{2}>0 \\ h_{1}+h_{2}=k-k_{2}}} \mathscr{E}_{z_{1}}^{T}\left(\Psi_{1}^{\prime} \chi, \Psi_{1}^{\prime \prime} \chi, \Psi_{2} \chi ; h_{1}, h_{2}, k_{2}\right) \tag{5.28}
\end{equation*}
$$

and the properties of the free field allow to bound the second term of this sum as

$$
\begin{equation*}
s_{4}\left(\left(s_{2} b^{D+2 d} A\right)^{k} e^{-\frac{b^{2}}{4}}+\left(s_{2} b^{D+2 d} A\right)^{k} e^{-\tilde{x} b^{3 / 2}}\right) \tag{5.29}
\end{equation*}
$$

where the first term comes from the replacement of the χ 's by 1 , the second from the properties of the conditioned measure and from the Wick theorem (see Appendix D) and s_{k} and \tilde{x} are positive constants.

We can summarize the above calculations in the following relation:

$$
\begin{align*}
{[(5.12)] \geqq } & \exp (\operatorname{error}) \int \bar{P}\left(d z_{\Gamma_{1}}\right) \chi_{\gamma_{b}}^{\Gamma_{1}} \exp H_{\Gamma_{1}}\left(\prod_{\square J=0} \int \bar{P}\left(d z_{\square} \mid z_{\Gamma_{1}}\right) \chi_{b}^{\square}\right) \\
& \prod_{\square \cap J \neq \emptyset}\left\{\operatorname { e x p } \left[\sum _ { 1 } ^ { t } \frac { 1 } { k ! } \mathscr { E } _ { z _ { \Gamma _ { 1 } } } ^ { T } \left(\chi _ { b } ^ { \square } \left(H_{\square}+H_{\square}, \Gamma_{3}(\square)\right.\right.\right.\right. \\
&) ; k)+\sum_{\substack{1 \\
k}}^{t} \sum_{\substack{k_{1}, k_{2}=k \\
k_{1}+k_{2}=k \\
k_{2}>0}} \frac{1}{k_{1}!k_{2}!} \tag{5.30}\\
& \left.\left.\cdot \mathscr{E}_{z_{\Gamma_{1}} T}^{T}\left(\chi_{b}^{\square}\left(H_{\Gamma_{4}(\square)}+H_{\Gamma_{4}(\square), \Gamma_{3}(\square)}\right), \chi_{b}^{\square}\left(H_{\Gamma_{2}(\square)}+H_{\Gamma_{1}(\square), \Gamma_{2}(\square)}\right) ; k_{1}, k_{2}\right)\right]\right\} .
\end{align*}
$$

The error has the same form as the one appearing in the text of the lemma [Equation (4.6)] with different values of the constants (which can be desumed from the above calculation).

We now write

$$
\begin{align*}
& \mathscr{E}_{z_{\Gamma_{1}}}^{T}\left(\chi_{\square}^{b}\left(H_{\square}+H_{\square \square^{\prime}, \Gamma_{3}(\square)}\right) ; k\right) \\
& =\mathscr{E}_{z_{\Gamma_{1}}}^{T}\left(\chi_{\square}^{b}\left(H_{\Gamma_{4}(\square)}+H_{\Gamma_{4}(\square), \Gamma_{3}(\square)}\right) ; k\right) \\
& \quad+\sum_{\substack{k_{1}+k_{2}=k \\
k_{1}>0}} \frac{k!}{k_{1}!k_{2}!} \mathscr{E}_{z_{\Gamma_{1}}}^{T}\left(\chi_{\square}^{b}\left(H_{\square}+H_{\square \square^{\prime}, \Gamma_{3}(\square)}-H_{\Gamma_{4}(\square)}-H_{\Gamma_{4},(\square), \Gamma_{3}(\square)}\right),\right. \\
& \left.\quad \chi_{\square}^{b}\left(H_{\Gamma_{4}(\square)}+H_{\Gamma_{4}(\square), \Gamma_{3}(\square)}\right) ; k_{1}, k_{2}\right) \\
& =\mathscr{E}_{z_{\Gamma_{1}}}^{T}\left(\chi_{\square}^{b}\left(H_{\Gamma_{4}(\square)}+H_{\Gamma_{4}(\square), \Gamma_{3}(\square)}\right) ; k\right) \\
& \quad+\sum_{\substack{k_{1}+k_{2}=k \\
k_{1}>0}} \frac{k!}{k_{1}!k_{2}!} \hat{\mathscr{E}}_{0}^{T}\left(\left(H_{\square}+H_{\square, \Gamma_{3}(\square)}\right)-H_{\Gamma_{4}(\square)}-H_{\Gamma_{4}(\square), \Gamma_{3}(\square)},\right. \\
& \tag{5.31}\\
& \left.\quad H_{\Gamma_{4}(\square)}+H_{\Gamma_{4}(\square), \Gamma_{3}(\square)} ; k_{1}, k_{2}\right)+(\text { error })
\end{align*}
$$

and the error can be studied along the same lines of the argument leading to the bound (5.30) and has the same form of (5.29) with new constants.

Hence

$$
\begin{align*}
& {[(5.12)] \geqq \exp (\operatorname{error}) \int \bar{P}\left(d z_{\Gamma_{1}}\right) \chi_{\gamma b}^{\Gamma_{1}}\left(\prod_{\square \cap J=\emptyset} \int \bar{P}\left(d z_{\square} \mid z_{\Gamma_{1}}\right) \chi_{b}^{\square}\right)} \\
& \cdot \exp \left[\sum_{\substack{k}}^{t} \sum_{\substack{k_{1}+k_{2}=k \\
k_{1}>0}} \frac{1}{k_{1}!k_{2}!} \sum_{\square} \hat{E}_{0}^{T}\left(\Psi_{1}^{\prime \prime}, \Psi_{1}^{\prime} ; k_{1}, k_{2}\right)\right] \\
& \cdot \exp H_{\Gamma_{1}} \prod_{\square \cap J \neq \emptyset}\left\{\operatorname { e x p } \left[\sum _ { 1 } ^ { t } \sum _ { k _ { 1 } + k _ { 2 } = k } \frac { 1 } { k _ { 1 } ! k _ { 2 } ! } \mathscr { E } _ { \Gamma _ { \Gamma _ { 1 } } } ^ { T } \left(\chi _ { \square } ^ { b } \left(H_{\Gamma_{4}(\square)}\right.\right.\right.\right. \\
& \left.\left.\left.\left.+H_{\Gamma_{4}(\square), \Gamma_{3}(\square)}\right), \chi_{\square}^{b}\left(H_{\Gamma_{2}(\square)}+H_{\Gamma_{1}(\square), \Gamma_{2}(\square)}\right) ; k_{1}, k_{2}\right)\right]\right\} . \tag{5.32}
\end{align*}
$$

Each factor in the product sign can be reexpressed using the cumulant formula backwards as

$$
\begin{align*}
& \int \bar{P}\left(d z_{\square} \mid z_{\Gamma_{1}}\right) \chi_{\square}^{b} \exp \left(H_{\Gamma_{2}(\square) \cup \Gamma_{4}(\square)}+H_{\Gamma_{2}(\square), \Gamma_{1}(\square)}-H_{\Gamma_{4}(\square), \Gamma_{2}(\square) \backslash \Gamma_{3}(\square)}\right) \\
& \cdot \exp \left\{\tau\left[\frac{2^{(t+1)^{2}}(t+1)!}{(t+1)!}\left(s_{2} b^{D+2 d} A\right)^{t+1} \exp 2\left(s_{2} A b^{D+2 d}\right)\right]\right\} \tag{5.33}
\end{align*}
$$

where as usual τ is a function with values in $[-1,1]$.
We now bound $H_{\Gamma_{4}(\square), \Gamma_{2}(\square) \backslash \Gamma_{3}(\square)}$ as usual [see (5.24)] use the Markov property of \bar{P} and remark that if $\bar{\Gamma}_{1}=\bigcup_{\square \in Q^{b}}\left[\Gamma_{1}(\square) \cup \Gamma_{2}(\square) \cup \Gamma_{4}(\square)\right]$

$$
\begin{equation*}
H_{\Gamma_{1}}+\sum_{\square \in Q^{b}}\left(H_{\Gamma_{2}(\square) \cup \Gamma_{4}(\square)}+H_{\Gamma_{2}(\square), \Gamma_{1}(\square)}\right)=H_{\bar{\Gamma}_{1}}+\tau|I|\left(s_{1} A b^{D} e^{-\frac{x}{8} b^{3 / 2}}\right) \tag{5.34}
\end{equation*}
$$

and obtain

$$
\begin{align*}
{[(5.12)] \geqq } & \left(\int \bar{P}(d z) \prod_{\square \in Q^{b}} \chi_{y b}^{\square} \exp H_{\bar{\Gamma}_{1}}\right) \\
& \cdot \exp \left\{\sum_{\substack{k_{1}+k_{2} \leq t \\
k_{1}>0}} \frac{1}{k_{1}!k_{2}!} \sum_{\square} \hat{\mathscr{E}}_{0}^{T}\left(\Psi_{1}^{\prime \prime}, \Psi_{1}^{\prime} ; k_{1}, k_{2}\right)\right\} \exp (\text { error }) \tag{5.35}
\end{align*}
$$

where the error can be described as after (5.31); Now we study the integral and remark that it has the same structure as (5.12) with J replaced by $\bar{\Gamma}_{1}$ and b by γb. Therefore we can proceed as before choosing a new pavement $Q^{\prime b}$ displaced by $b^{2} / 2$ with respect to Q^{b} obtaining a result similar to (5.31) with $\bar{\Gamma}_{1}$ replaced by a new set $\bar{\Gamma}_{1}^{\prime}$ (much smaller than $\bar{\Gamma}_{1}$). Again one proceeds as before by choosing a third pavement $Q^{\prime \prime b}$ displaced by $b^{2} / 4$ with respect to $Q^{\prime b}$ and, if $d=3$, a fourth one displaced by $b^{2} / 16$ w.r.t. $Q^{\prime \prime b}$. Collecting all the errors made in this process (4.7) is proven.

We now study the second estimate (4.6) which is obtained by simple modifications of the first one (4.7). We start from (5.13), then assuming $\left|z_{\Delta}\right|$ $\leqq b(1+d(\Delta, I)), \forall \Delta \in C$

$$
\begin{align*}
{[(5.12)] \leqq } & \int \bar{P}\left(d z_{\Gamma_{1}}\right) \chi_{b}^{\Gamma_{1}} \exp H_{\Gamma_{1}}\left(\prod_{\square J=\sigma} \int \bar{P}\left(d z_{\square} \mid z_{\Gamma_{1}}\right) \chi_{b}^{\square}\right) \\
& \cdot\left(\prod_{\square J \neq \emptyset} \int \bar{P}\left(d z_{\square} \mid z_{\Gamma_{1}}\right) \exp \Psi_{\square} \chi_{b}^{\square}\right) . \tag{5.36}
\end{align*}
$$

By beeing careful in attributing to the various τ the value opposite to the one chosen in the estimate (4.7) we obtain that (5.12) can be bounded above by the r.h.s. of (5.35) with b replaced by $\gamma^{-1} b$.

It follows that b^{*} can be chosen $=\max \left\{10^{4}, \gamma^{-3} \bar{b}\right\}$ where \bar{b} and γ are defined in Appendix A and C respectively.

6. Concluding Remarks

1) The interest of the above approach to the ultraviolet stability is the clear distinction of the role plaid by formal perturbation theory.

The ultraviolet stability follows by standard arguments in the statistical mechanics of Markov processes (§5). The applicability of such arguments is guaranteed by formal renormalization theory [Sec. 4 and (3.21), (3.22), (3.23)].

The scale invariance of the free field reduces the statistical mechanics part of the argument to a lemma on a standard Ising model on a unit lattice.
2) The technique used can be clearly extended to prove "perturbation theory" in the following sense.

Define

$$
\begin{equation*}
V_{I}^{\prime(N)}=\left(V_{0, I}^{(N)}-\frac{\left\langle\left(V_{0, I}^{(N)}\right)^{2}\right\rangle_{(2)}}{2!}\right) \tag{6.1}
\end{equation*}
$$

and, if \mathscr{E} denotes the expectation with respect to P_{N} [c.f.r. (1.6)]

$$
\begin{equation*}
V_{I}^{(N, t)}=\left[V_{I}^{\prime(N)}-\sum_{k=1}^{t} \frac{\mathscr{E}^{T}\left(\left(V_{I}^{(N)}\right) ; k\right)}{k!}\right]_{(t)} \tag{6.2}
\end{equation*}
$$

Then there exists $E_{ \pm}(\lambda, t)$ such that for $t \geqq 3$
i) $\exp -E_{-}(\lambda, t)|I| \leqq \int \exp V_{I}^{(N, t)} d P_{N} \leqq \exp E_{+}(\lambda, t)|I|$
ii) $\lim _{\lambda \rightarrow 0} E_{ \pm}(\lambda, t) \lambda^{-t}=0$.

Notice that the renormalization theory implies that all the terms in the sum in (6.2) with $k \geqq 4$ are finite.
3) If $d=2$ the condition $t \geqq 3$ can be dropped and also $V_{I}^{\prime(N)}$ could be replaced by $V_{0, I}^{(N)}$.
4) The above techniques allow to study the integrals:

$$
\begin{equation*}
\frac{\int\left(\exp z_{\Delta} \omega\right) \exp V_{I}^{(N)} d P_{N}}{\int \exp V_{I}^{(N)} d P_{N}} \tag{6.5}
\end{equation*}
$$

and to derive for the moments of the z_{4} 's bounds of the type of the ones found by Feldman [3].

Acknowledgement. We are indebted to K . Osterwalder for useful comments.

Appendix A

We define, for $\Delta \in Q_{0}, \hat{\chi}_{\Delta}^{b}=\chi\left(\left|z_{\Delta}\right| \leqq b(1+d(\Delta, I)) \equiv b_{\Delta}\right)$ and prove the following lemma:

Lemma. Let $\hat{P}_{0}(d z)$ be defined as before [Eq. (1.6)]. Then there exist \bar{b}, k_{1}, k_{2}, such that, for $b>\bar{b}$

$$
\begin{align*}
F_{b} & \equiv \int \hat{P}_{0}(d z) \prod_{\Delta \in Q_{0}} \hat{\chi}_{d}^{b} \geqq \exp \left[-|I| e_{b}\right] \tag{A.1}\\
e_{b} & =k_{1} \exp \left(-k_{2} b^{2}\right) . \tag{A.2}
\end{align*}
$$

Proof.

$$
\begin{equation*}
\log F_{b}=-\int_{1}^{\infty} \frac{d}{d u} \log F_{b u} d u=-\sum_{\Delta} b_{\Delta} \int_{1}^{\infty} d u \frac{\mathscr{E}_{\Delta, u}\left(\delta\left(\left|z_{\Delta}\right|-u b_{\Delta}\right)\right)}{\mathscr{E}_{\Delta, u}\left(\hat{\chi}_{\Delta}^{u, b}\right)} \tag{A.3}
\end{equation*}
$$

where $\mathscr{E}_{\Delta, u}$ denotes the expectation w.r.t. the distribution of the variables z_{Δ} in the random field with formal density

$$
\begin{equation*}
\text { const } \exp \left\{-\frac{\beta}{2}\left[\sum_{\Delta, \Delta^{\prime}}^{*}\left(z_{\Delta}-z_{\Delta^{\prime}}\right)^{2}+\alpha^{2} \sum_{\Delta^{\prime}} z_{\Delta^{\prime}}^{2}\right]\right\} \prod_{\Delta \neq \Delta^{\prime}} \hat{\chi}_{\Delta^{\prime}}^{b u} \tag{A.4}
\end{equation*}
$$

We notice that this random field is superstable with superstability parameters (see [5] for the notations) $A=\frac{\beta \alpha^{2}}{2}, B=0$ and free density 1 for the variable z_{Δ} and $\hat{\chi}_{\Delta^{\prime}}^{u b}$, for the variables $z_{4^{\prime}}, \Delta^{\prime} \neq \Delta$.

Supposing that $\bar{b} \geqq 1$, we remark that the parameter $\lambda=\int_{0}^{1} d$ (free measure) $=1$; hence from Ref. [5] it follows that the variable z_{Δ} in the field (A.4) has density bounded by

$$
\begin{equation*}
\exp \left\{-\frac{\beta \alpha^{2}}{4} z_{\Delta}^{2}+\delta(\alpha, \beta)\right\} \tag{A.5}
\end{equation*}
$$

where $\delta(\alpha, \beta)=0$. By inserting this expression in (A.3) the lemma follows immediately and we can take for instance:

$$
\begin{aligned}
\bar{b} & =\max \left\{1, \frac{8}{\beta \alpha^{2}} \log \left(\frac{e^{\delta} 4 \sqrt{2 \pi}}{\alpha \sqrt{\beta}}\right)\right\} \\
k_{1} & =\frac{4}{\alpha} \sqrt{\frac{2 \pi}{\beta}} e^{\delta} \sum_{0}^{\infty} 2^{d u} e^{-\beta \frac{\alpha^{2} u^{2}}{8}} \\
k_{2} & =\frac{\beta \alpha^{2}}{8}
\end{aligned}
$$

Since $\left\{\left|x_{\Delta}^{(k)}\right| \leqq B_{k}\left(1+2^{k} d(I, \Delta)\right), \Delta \in Q_{k}, k: 0,1, \ldots N\right\}$ implies [see (1.5)] that

$$
\begin{equation*}
\left|z_{\Delta}\right| \leqq\left(\sqrt{1+\Gamma_{k}} B_{k}-\sqrt{\Gamma_{k}} B_{k-1}\right)\left(1+2^{k} d(\Delta, I)\right), \quad \Delta \in Q_{k} ; k=0,1, \ldots, N \tag{A.7}
\end{equation*}
$$

it is clear that the above lemma implies (2.5) and one can take

$$
\begin{equation*}
e(\lambda)=k_{1} \sum_{0}^{\infty} e^{-k_{2}\left(\sqrt{1+\Gamma_{k}} B_{k}-\sqrt{\Gamma_{k}} B_{k-1}\right)^{2}} \tag{A.8}
\end{equation*}
$$

Appendix B

The following expressions are easily proven by induction combined with simple algebra on Wick polynomials (see for example [7]).

One finds, if $1 \leqq k \leqq N$:

$$
\begin{align*}
\tilde{V}_{I}^{(N-k)} & =V_{I}^{(N-k)}+\hat{\mathscr{E}}_{N-k+1} \hat{\mathscr{E}}_{N-k+2} \ldots \hat{\mathscr{E}}_{N}\left\{\sum_{N-k}^{N-1}\left(W_{i}+F_{i}+H_{i}\right)\right. \\
& \left.+\sum_{N-k+1}^{N-1}\left[W_{i}\left(V_{0, I}^{(i)}-V_{0, I}^{(N-k)}\right)-\mathscr{E}\left(W_{i}\left(V_{0, I}^{(i)}-V_{0, I}^{(N-k)}\right)\right)\right]\right\} \\
& -\mathscr{E}\left(V_{0, I}^{(N-k)} \sum_{i}^{N-k} W_{i}\right) \\
\equiv & V_{I}^{(N-k)}+W_{I}^{(N-k)}+F_{I}^{(N-k)}+H_{I}^{(N-k)}+G_{I}^{(N-k)}+C_{I}^{(N-k)} \tag{B.1}
\end{align*}
$$

where $\left(C_{N}(\xi, \eta) \equiv C_{\xi}^{[\leq N]}, \varphi_{N}(\xi) \equiv \varphi_{\xi}^{[\leqq N]}\right)$,

$$
\begin{align*}
W_{i}= & \frac{\lambda^{2}}{2} \sum_{1}^{3}\binom{4}{l}^{2}(4-l)!\iint_{I \times I} d \xi d \eta\left[C_{i+1}^{4-l}(\xi, \eta)-C_{i}^{4-l}(\xi, \eta)\right] \\
& \cdot\left[: \varphi_{i}^{l}(\xi) \varphi_{i}^{l}(\eta):-\delta_{l 1}: \varphi_{i}^{2 l}(\xi):\right], \tag{B.2}\\
F_{i}= & -\lambda^{3} \sum_{r_{1} r_{2} r_{3}} d_{r_{1} r_{2} r_{3}} \int_{I \times I \times I} \int_{I} d \xi d \eta d \zeta\left\{C_{i+1}^{s_{12}}(\xi, \eta) C_{i+1}^{s_{23}}(\eta \zeta) C_{i+1}^{s_{31}}(\zeta \xi)\right. \\
& \left.-3 C_{i+1}^{s_{1}}(\xi, \eta) C_{i}^{s_{2} 3}(\eta \zeta) C_{i}^{s_{31}}(\zeta \zeta)+2 C_{i}^{s_{12}}(\xi, \eta) C_{i}^{s_{2}}(\eta, \zeta) C_{i}^{s_{31}}(\zeta, \xi)\right\} \\
& \cdot\left[: \varphi_{i}^{r_{1}}(\xi) \varphi_{i}^{r_{2}}(\eta) \varphi_{i}^{r_{3}}(\zeta):\right], \tag{B.3}
\end{align*}
$$

$d_{r_{1} r_{2} r_{3}}=\left\{\begin{array}{l}\frac{1}{3!}\binom{4}{r_{1}}\binom{4}{r_{2}}\left(\begin{array}{c}4 \\ r_{3} \\ \text { if } \\ r_{1}+r_{2}+r_{3}=2 r ;\end{array}\binom{4-r_{1}}{s_{12}}\binom{4-r_{2}}{s_{23}}\binom{4-r_{3}}{s_{31}} s_{12}!s_{23}!s_{31}!\right. \\ 0 \text { otherwise, }\end{array}\right.$

$$
\left\{\begin{array}{l}
S_{12}+S_{23}=4-r_{2} \tag{B.5}\\
S_{23}+S_{31}=4-r_{3} \\
S_{31}+S_{12}=4-r_{1}
\end{array}\right.
$$

$$
H_{i}=\frac{\lambda^{3}}{2} \sum_{0}^{1} p 4^{2} 3!\binom{2}{p}\binom{4}{p}(2-p)!\int_{I \times I \times I} \int_{I} d \xi d \eta d \zeta\left[C_{i+1}^{2-p}(\xi, \eta)\right.
$$

$$
\begin{equation*}
\left.-C_{i}^{2-p}(\xi, \eta)\right] C_{i+1}^{3}(\eta, \zeta): \varphi_{i}^{p+2}(\xi) \varphi_{i}^{p}(\eta):, \tag{B.6}
\end{equation*}
$$

$$
W_{I}^{(N-k)}=\frac{\lambda^{2}}{2} \sum_{1}^{3}\binom{4}{l}^{2}(4-l)!\sum_{N-k+1}^{N} i \int_{I \times I} d \xi d \eta\left[C_{i}^{4-l}(\xi, \eta)-C_{i-1}^{4-l}(\xi, \eta)\right]
$$

$$
\begin{equation*}
\cdot\left[: \varphi_{N-k}^{l}(\xi) \varphi_{N-k}^{l}(\eta):-\delta_{l, 1}: \varphi_{N-k}^{2 l}(\xi):\right], \tag{B.7}
\end{equation*}
$$

$$
F_{I}^{(N-k)}=-\lambda^{3} \sum_{r_{1} r_{2} r_{3}} d_{r_{1} r_{2} r_{3}} \sum_{N-k+1}^{N} \int_{I \times I \times I} \int_{N} d \xi d \eta d \zeta\left\{C_{i}^{s_{1} 2}(\xi, \eta) C_{i}^{s_{2}(}(\eta, \zeta)\right.
$$

$$
\cdot C_{i}^{s_{31}}(\zeta, \xi)-3 C_{i}^{s_{12}}(\xi, \eta) C_{i-1}^{s_{23}}(\eta \zeta) C_{i-1}^{s_{31}}(\zeta, \xi)+2 C_{i-1}^{s_{12}}(\xi, \eta)
$$

$$
\begin{equation*}
\left.\cdot C_{i-1}^{s_{23}}(\eta, \zeta) C_{i-1}^{s_{31}}(\zeta, \xi)\right\}: \varphi_{N-k}^{r_{1}}(\xi) \varphi_{N-k}^{r_{2}}(\eta) \varphi_{N-k}^{r_{3}}(\zeta): \tag{B.8}
\end{equation*}
$$

$$
\begin{align*}
H_{I}^{(N-k)}= & \frac{\lambda^{3}}{2} \sum_{0}^{1} 4^{2} 3!\binom{2}{p}\binom{4}{p}(2-p)!\sum_{N-k+1}^{N} \int_{I \times I} \int_{I \times I} d \xi d \eta d \zeta \\
& \cdot\left[C_{i}^{2-p}(\xi, \eta)-C_{i-1}^{2-p}(\xi, \eta)\right] C_{i}^{3}(\eta, \zeta): \varphi_{N-k}^{p+2}(\xi) \varphi_{N-k}^{p}(\eta):, \tag{B.9}\\
G_{I}^{(N-k)}= & -3 \lambda^{3} \sum_{r_{1} r_{2} r_{3}} d_{r_{1} r_{2} r_{3}} \sum_{N-k+1}^{N-1} \int_{I \times I \times I} \int_{I} \dot{d} \xi d \eta d \zeta\left[C_{i+1}^{s_{12}}(\xi, \eta)\right. \\
& \left.-C_{i}^{s_{1}}(\xi, \eta)\right]\left\{\left[C_{i}^{s_{23}}(\eta, \zeta) C_{i}^{s_{31}}(\zeta, \xi)-C_{N-k}^{s_{23}}(\eta, \zeta) C_{N-k}^{s_{31}}(\zeta, \xi)\right]\right. \\
& \cdot\left[: \varphi_{N-k}^{r_{1}}(\xi) \varphi_{N-k}^{r_{2}}(\eta) \varphi_{N-k}^{r_{3}}(\zeta):\right]-\delta_{3, s_{12}}\left[C_{i}^{s_{23}+s_{31}}(\eta, \zeta)\right. \\
& \left.\left.-C_{N-k}^{s_{23}+s_{31}}(\eta, \zeta)\right]\left[: \varphi_{N-k}^{r_{1}+r_{2}}(\eta) \varphi_{N-k}^{r_{3}}(\zeta):\right]\right\}, \tag{B.10}\\
C_{I}^{(N-k)=}= & \frac{\lambda^{3}}{2}\left(\begin{array}{l}
4 \\
2
\end{array} 2^{3} \sum_{N-k+1}^{N} \int_{I \times I \times I}^{N} \int_{I \times I} d \xi d \eta d \zeta\left[C_{i}^{2}(\xi, \eta)-C_{i-1}^{2}(\xi, \eta)\right]\right. \\
& \cdot\left[C_{N-k}^{2}(\eta, \zeta) C_{N-k}^{2}(\zeta, \xi)\right] . \tag{B.11}
\end{align*}
$$

Since the fields appearing in the Wick products are constant on the tesserae $\Delta \in Q_{N-k}$, it is clear that $\tilde{V}_{I}^{(N-k)}$ can be written as in $\S 4$.

We now give an example of the method to get the bounds of $\S 3,4$. by explicitely estimating the contribution to $\bar{A}_{\Delta 4^{\prime}}^{11}(N, k, I)$ coming from $W_{I}^{(N-k)}$, for $d=3$. We need to estimate:

$$
\begin{align*}
W_{\Delta 4^{\prime}} & \equiv \lambda^{2} 2 \gamma_{N-k}\left(1+\Gamma_{N-k}\right) \sum_{N-k+1}^{N} \int_{\Delta \times \Delta^{\prime}} d \xi d \eta\left[C_{i}^{3}(\xi, \eta)-C_{i-1}^{3}(\xi, \eta)\right] \\
& \leqq 4 \lambda^{2} 2^{N-k} \sum_{N-k+1}^{N} \int_{\Delta \times \Delta^{\prime}} \iint_{\Delta} d \xi d \eta 3 C_{i}^{2}(\xi, \eta)\left[C_{i}(\xi, \eta)-C_{i-1}(\xi, \eta)\right] . \tag{B.12}
\end{align*}
$$

By (C.2), (C.4), (1.2), (1.13), if $\Delta \neq \Delta^{\prime}$ we have:

$$
\begin{aligned}
& \left|W_{\Delta A^{\prime}}\right| \leqq 3 \cdot 2^{4} \lambda^{2} 2^{N-k} \sum_{N-k+1}^{N} 2^{2 i} \int_{\Delta \times \Delta^{\prime}} d \xi d \eta\left[C_{i}(\xi, \eta)-C_{i-1}(\xi, \eta)\right] \\
& \leqq 3 \cdot 2^{4} \lambda^{2} 2^{N-k} \sum_{N-k+1}^{N} 2^{2 i} \sum_{\substack{\bar{\Delta} \subset \Lambda_{\bar{J}}, \bar{J}^{\prime} \subset \bar{U}^{\prime} \in Q_{i}}} \int_{\bar{U} \times \bar{U}^{\prime}} d \xi d \eta\left[C_{i}(\xi, \eta)-C_{i-1}(\xi, \eta)\right]
\end{aligned}
$$

$$
\begin{align*}
& \leqq 3 \cdot 2^{4} b_{1} b_{2}\left(\lambda 2^{-(N-k)}\right)^{2} e^{-\frac{x}{2} 2^{N-k d\left(\Delta, \Delta^{\prime}\right)}}, \tag{B.13}
\end{align*}
$$

where

$$
\begin{align*}
& b_{1}=2\|C\| \sum_{\Delta^{\prime} \in Q_{0}} e^{-\frac{\chi^{\prime}}{4} d\left(\Delta, \Delta^{\prime}\right)}, \quad \Delta \in Q_{0} \tag{B.14}\\
& b_{2}=\sum_{0}^{\infty} e^{-n \frac{k^{\prime}}{4}}
\end{align*}
$$

If $\Delta=\Delta^{\prime}$, the best estimate of $W_{\Delta 4^{\prime}}$ would be of order $k 2^{-2(N-k)}$ which is bad. However (thank to the mass renormalization) the contribution of $W_{\Delta \Delta}$ in (B.7) is missing.

Appendix C

In this appendix we give some properties of gaussian fields related to the gaussian field $\left(z_{\Delta}\right)_{\Delta \in Q_{0}}$ with formal density

$$
\begin{equation*}
\text { const } \exp \left\{-\frac{\beta}{2}\left[\sum_{\Delta, \Delta^{\prime}}^{*}\left(z_{\Delta}-z_{\Delta^{\prime}}\right)^{2}+\sum_{\Delta} \alpha^{2} z_{\Delta}^{2}\right]\right\} \tag{C.1}
\end{equation*}
$$

1) The covariance $C_{\Delta, \Delta^{\prime}}$ is such that, if ξ_{Δ} is the center of Δ

$$
\begin{align*}
0 & \leqq C_{\Delta \Delta^{\prime}}=\frac{1}{(2 \pi)^{d}} \int_{-\pi}^{\pi} \frac{e^{i k\left(\xi_{\Delta}-\xi_{\Delta^{\prime}}\right)} d k}{\alpha^{2} \beta+2 \beta \sum_{i}^{d}\left(1-\cos k_{i}\right)} \leqq \frac{1}{\beta \alpha^{2}}\left(1+\frac{\alpha^{2}}{2 d}\right)^{-d\left(\Delta, \Delta^{\prime}\right)} \\
& \equiv\|c\| e^{-x^{\prime} d\left(\Delta, \Delta^{\prime}\right)} \tag{C.2}
\end{align*}
$$

If $\pi_{n}\left(\Delta, \Delta^{\prime}\right)$ is the number of walks on the lattice of the centers of the tesserae divided by (2d)

$$
\begin{align*}
C_{\Delta \Delta^{\prime}} & =\frac{1}{\beta\left(\alpha^{2}+2 d\right)} \sum_{0}^{\infty}\left(\frac{2 d}{2 d+\alpha^{2}}\right)^{n} \pi_{n}\left(\Delta, \Delta^{\prime}\right) \tag{C.3}\\
0 & \leqq C_{\Delta \Delta^{\prime}}<1 / 2 \tag{C.4}\\
\|C\| & \equiv \sum_{\Delta^{\prime}} C_{\Delta \Delta^{\prime}}=\frac{1}{\alpha^{2} \beta} \tag{C.5}
\end{align*}
$$

2) Let Γ be a region paved by Q_{0} and let $\hat{P}_{0}\left(d z \mid z_{\Gamma}\right)$ denotes the above probability measure conditioned to fixed values of the z_{4} 's, $\Delta \in \Gamma$. Then the conditioned variables $\left(z_{\Delta}\right)_{\Delta q \Gamma}$ are a non centered gaussian field with covariance $C_{\Delta 4^{\prime}}^{\Gamma}$ such that

$$
\begin{equation*}
0 \leqq C_{\Delta \Delta^{\prime}}^{\Gamma} \leqq C_{\Delta \Delta^{\prime}} \tag{C.6}
\end{equation*}
$$

and center

$$
\begin{equation*}
u_{\Delta}=\beta \sum_{\Delta^{\prime} \subset \Gamma}\left(\sum_{\substack{\Delta^{\prime \prime} \neq \Gamma \Gamma \\ \Delta^{\prime \prime} \text { n. .to4 }}} C_{\Delta \Delta^{\prime}}^{\Gamma}\right) z_{\Delta^{\prime}} \tag{C.7}
\end{equation*}
$$

$C_{\Delta, 4^{\prime}}^{\Gamma}$ is the covariance with "Ditrichelet boundary condition" on Γ. Hence using (C.6) (C.3), if $\left|z_{\Delta}\right|<b(1+d(\Delta, I))$

$$
\begin{equation*}
\left|u_{\Delta}\right| \leqq\left(\frac{\alpha^{2}+2 d}{\alpha^{2}}\right)^{2} b(1+d(\Delta, I)) \tag{C.8}
\end{equation*}
$$

The above properties are well-known [7].

The following lemmas hold
Lemma 1. Given n gaussian variables $\left\{z_{i}\right\}_{i=1}^{n}$ with covariance $C_{i j}>0, i, j=1, \ldots, n$ and given $b_{1}, \ldots, b_{n}>0$

$$
\begin{equation*}
\int \prod_{i=1}^{n} \chi\left(\left|z_{i}\right|>b_{i}\right) d P \leqq \exp \left[-\sum_{i}^{n}\left(\frac{b_{i}^{2}}{2\|c\|}-\log 2\right)\right] \tag{C.9}
\end{equation*}
$$

where $\|C\|=\sup _{i} \sum_{1}^{n}{ }_{j} C_{i j}$
Proof. If $\gamma>0$:

$$
\begin{aligned}
& e^{\gamma \sum_{1}} b_{i}^{2} \int\left[\prod_{i=1}^{k} \chi\left(z_{i}>b_{i}\right)\right]\left[\prod_{i=k+1}^{n} \chi\left(z_{i}<-b_{i}\right)\right] d P \\
& \leqq \int \prod_{i=1}^{k} \chi\left(z_{i}>b_{i}\right) \prod_{i=k+1}^{n} \chi\left(z_{i}<-b_{i}\right) \exp \left(\sum_{i}^{k} \gamma b_{i} z_{i}-\sum_{k+1}^{n} \gamma b_{i} z_{i}\right) d P \\
& \leqq \int \exp \left(\sum_{i}^{k} \gamma b_{i} z_{i}-\sum_{k+1}^{n} \gamma b_{i} z_{i}\right) d P \leqq \exp \left[\frac{1}{2} \sum_{i, j} \gamma^{2} b_{i} b_{j} C_{i j}\right] .
\end{aligned}
$$

Hence

$$
\int \prod_{i=1}^{k} \chi\left(z_{i}>b_{i}\right) \prod_{i=k+1}^{n} \chi\left(z_{i}<-b_{i}\right) d P \leqq \exp \left[-\gamma\left(1-\frac{\gamma}{2}\|c\|\right) \sum_{i}^{n} b_{i}^{2}\right]
$$

and the lemma follows by choosing $\gamma=1 /\|C\|$.
Lemma 2. Let Γ, I, \square be regions paved by Q_{0}, let $\bar{z}_{\Gamma} \equiv\left(\bar{z}_{\Delta}\right)_{\Delta \in \Gamma}$ be a given family of numbers such that $\left|\bar{z}_{\Delta}\right| \leqq \gamma b(1+d(I, \Delta))$ and let $P\left(d z / \bar{z}_{\Gamma}\right)$ be the measure (C.1) conditioned to the values \bar{z}_{Γ}, then:

$$
\int \prod_{\Delta \subset \square} \chi\left(\left|z_{\Delta}\right|<b(1+d(\Delta, I))\right) P\left(d z \mid \bar{z}_{\Gamma}\right) \geqq\left(1-2|\square| e^{-\frac{b^{2}}{4}}\right)
$$

if

$$
\gamma \leqq \frac{1}{2}\left(\frac{2 d}{\alpha^{2}+2 d}\right)^{2} .
$$

Proof. Since the covariance with Dirichelet boundary conditions is bounded by (C.6) and since the center of the measure $P\left(d z_{\square} \backslash \bar{z}_{\Gamma}\right)$ is bounded as in (C.8) the above lemma is an immediate consequence of Lemma 1.

Appendix D

The replacement of the χ_{s}^{\prime} by 1 is a trivial consequence of point 2) and Lemma 1 of Appendix C.

In order to complete the proof we need to evaluate
$\mathscr{E}_{0}^{T}\left(\tilde{\Psi}_{1}^{\prime}, \tilde{\Psi}_{1}^{\prime \prime}, \tilde{\Psi}_{2} ; h_{1}, h_{2}, k_{2}\right)$.

Let us remark first the following points:
i) given the structure of the $\tilde{\Psi}_{s}^{\prime}$ [see Equation (5.23)] $\mathscr{E}_{0}^{T}(\tilde{\Psi} \ldots)$ can be expressed as a sum of s_{5} terms of the form

$$
\begin{aligned}
& \mathscr{E}_{0}^{T}\left(z_{\boldsymbol{A}_{i_{1}}} \ldots z_{\boldsymbol{A}_{i_{n}}}, z_{\boldsymbol{A}_{j_{1}}} \ldots z_{\boldsymbol{A}_{j_{s}}}, z_{\boldsymbol{A}_{e_{1}}} \ldots z_{\boldsymbol{\Lambda}_{e_{r}}}, 1,1,1,\right) \\
& \cdot e^{\left.-\frac{x}{2}\left[d\left(\boldsymbol{\Delta}_{i_{1}}\right)+\ldots+d\left(\boldsymbol{\Delta}_{i_{r}}\right)\right)+d\left(\boldsymbol{\Delta}_{j_{1}}\right)+\ldots+d\left(\boldsymbol{\Delta}_{j_{s}}\right)+d\left(\boldsymbol{\Delta}_{e_{1}}\right)+\ldots+d\left(\boldsymbol{\Delta}_{e_{t}}\right)\right]}
\end{aligned}
$$

with obvious shortened notations, where s_{5} is a constant depending on h_{1}, h_{2}, k_{2}.
ii) $\mathscr{E}_{0}^{T}\left(z^{\boldsymbol{\Lambda}_{1}}, z^{\boldsymbol{A}_{2}}, z^{\boldsymbol{A}_{3}} ; 1,1,1\right)$ is by definition an algebraic sum of products of expectations values. As it is well known, once these expectations are expressed via the Wick theorem as sum of products of 2-point functions, the only terms that survive are the so called "connected diagrams" where at least one z_{Δ} in each set $z^{\Lambda_{1}}$, $z^{\boldsymbol{A}_{2}}, z^{\boldsymbol{A}_{3}}$ is connected to another z_{Δ} belonging to a different set.

If we recall now that at least one z_{Δ} in each term of $\tilde{\Psi}_{1}^{\prime \prime}$ belong to $\square^{\prime} \backslash \Gamma_{4}(\square)$ the exponential factors arising from i) and ii) give rise to an overall dumping factor that is at least $\exp -\frac{\chi}{4} b^{3 / 2}$ where $b^{3 / 2} / 2$ is the length of the smallest path connecting a set of points constructed in such a way that one point belongs by sure to $\square^{\prime} / \Gamma_{4}(\square)$ and at least another one belongs to Γ_{2}.

References

1. Nelson, E.: A quartic interaction in two dimensions. In: Mathematical theory of elementary particles (eds. R. Goodman, I. Segal). Cambridge: MIT Press 1966
Glimm, J.: Commun. math. Phys. 8, 12 (1968)
2. Gallavotti,G.: Some aspects of the renormalization problems in statistical mechanics and field theory. In: Memoria Accademia dei Lincei. Preprint, IHES 1977
Gallavotti, G.: On the ultraviolet stability in statistical mechanics and field theory. In: Annali di Matematica pura e applicata. Preprint, IHES 1977
3. Guerra, F.: Phys. Rev. Letters 28, 1213 (1972)

Glimm,J., Jaffe, A. : Fortschr. Physik 21, 327 (1973)
Glimm, J., Jaffe, A., Spencer, T.: The particle structure of the weakly coupled $P(\phi)_{2}$ model and other applications. In: Lecture notes in physics, Vol. 25 (eds. G.Velo, A.Wightman), Berlin-HeidelbergNew York: Springer 1973
Feldman,J.: Commun. math. Phys. 37, 93 (1974)
Magnen, J., Seneor, R.: Ann. Inst. Henri Poincaré 24, 95 (1976)
Magnen, J.: Thesis
Feldman, J., Osterwalder, K. : Ann. Phys. 97, 80 (1976)
4. Dobrushin, R.L., Tirozzi,B.: Commun. math. Phys. 54, 173-192 (1977)
5. Ruelle,D.: Commun. math. Phys. 18, 127 (1970)

Ruelle,D.: Commun. math. Phys. 50, 189 (1976)
6. Dinaburg, R., Sinai, Ya.G. : to appear
7. Simon, B. : The $P(\varphi)_{2}$ euclidean quantum field theory. Princeton: Princeton University Press 1974

Communicated by A. Jaffe

[^0]: * This work has been partially supported by I.N.F.N., G.N.F.M., and G.N.S.M.

