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Abstract. We study, in the context of the Markov hyerarchical fields (d=2, 3)
the role of the Markov property, of formal renormalization and of formal
positivity. We determine upper and lower bounds for the ground state energy
and discuss their relation with the perturbation theory series.

Introduction and Motivation

The basic property which allows to prove the rigorous validity of the perturbation
expansion in euclidean field theory of ¢* type in d=2, 3 space-time dimensions, is
the “ultraviolet stability”. The ultraviolet stability is the existence of a lower bound
to the minimum of the spectrum of the renormalized Hamiltonian. In this paper
we propose a model and a method of analysis which allows, in our opinion, to
clarify the statistical mechanical aspects of the ultraviolet stability theorem. To
motivate this model, and to illustrate the reasons which make it essentially as
difficult as the euclidean field theory, we proceed as follows.

The euclidean field on R? is a gaussian field with covariance
C=(1-D)* 1)
where D is the Laplace operator on R%. The ultraviolet divergences, originate from

the divergence of the kernel C, , of the operator C, as operator on L,(R?), as
|€—n]—0, if d=2. This remark leads to the idea [1], of representing C as

C= ¥ [@¥—D) '@ v—D)1] @
N=0

and, correspondingly, the field ¢ as,

b= ) o 3)
N=0
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where @™ are independent fields (with respect to the integers index N). If d=2, 3,
@™ has a bounded covariance :

E(@ENH) =272, y<oo )

and it can be normalized by setting:
5™
M _ Pe

Z¢ (2926@-2N)I72 (5)

It is easy to check that the field Z{" is almost constant on a scale 27~ and that its
covariance decays exponentially fast on this same scale. We can imagine to
construct a good model of the above field ¢ admitting a representation of the type
Equations (3) and (5), where the random variables z{" have the following
properties:

i) they are “constant” over squares with scale 277

ii) they decay exponentially fast on a scale 2%

A precise definition of such a field, is given in the next section and will be called
a Markov hierarchical field. Using this field as a “free field”, we shall then study
the ¢p*-interacting field. This problem, as it will turn out, presents exactly the same
difficulties and divergences as the euclidean field presents.

1. The Model: Definitions and Notations

The free hierarchical Markov field over R? is described in terms of a family of
gaussian random variables indexed by the tesserac of a family (Q, ), o of
compatible pavements of R?. Each tesserae 4€Q; is a cube with side size 27!
i=0,1.... The random variable associated to A will be denoted by z, and the
variables 24, A€ Q;, 24, A’€Q; are assumed independent if i#j. Given i=0, the
distribution of the z,’s for 4eQ,; is described by a gaussian Ising model with
nearest neighbour interaction with formal density proportional to

exp—g ZN* (zg—z4)+0* Y 25 (1.1)

4,4°¢Q, 4Q;
where ) * runs over the pairs of nearest neighbour tesserae 4, 4’€Q, and f, a are

positive parameters fixed so that the expectation of z% is % ; o, f are fixed once for
all.

The free hierarchical Markov field with ultraviolet cut-off of length 27V is
defined as the gaussian field over R?:

N
PEM= 3 ¥ 2z (1.2)
k=0 AeQs
Eed
where

po=200"2k  k=0,1 (1.3)

PEEEE
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We define the normalized field with cut-off 2=V

[=N]
x(AN): P

—, ({edeQy (1.4)
|/2§i’yi

which obeys the recursion relation

i Zat VX Lyxa ™" (1.5)
/14Ty '

where

N—1
I'y= Zk )’k/?’N"

We shall denote é ~(+) the expectation with respect to the probability distribution
P, of the field (z,) seox- We shall define

= (1.6)
i=0
The “interaction” is defined for d=2,3 as

Vil = =4[ :(EM* e, 2>0 (1.7)
I
where I is a bounded set exactly paved by Q,,

H(QEM) (‘/ 2y, y) H,/(x,), fedeQy (1.8)

and H, is the n-th Hermite polynomial (H,(x)=1, H,(x)=x, H,(x)=x*—1/2,
H ,(x)=x*—3x?+3/4). The “renormalized interaction to order 3”, will be defined

V=V g Ry 7 0= 57 R (19)
where
=5 4731 (1 dednC (ol (110
1<V<N>2>(0)—A—4!IJ“ J deanCizMy® (-1

3
1 V0N1)3>(0) /1 () (21)3 “‘I déd,,]dC(C[<N])Z(C[<N])2(C£§§N])2 (1'12)

31 IXIXI
and

CEM= [ =Ml NP (dz). (1.13)
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The “ultraviolet problem” that we study in this paper, is the following: to prove
the existence of E_ (1), E_(4), such that, VI, N (]I] is the volume of I):

i) exp[—E_(AI1= fexp V" Py(dz) Sexp[E  (AII]] (1.14)

ii) lim E,(4)/A*=0. (1.15)
-0

The technique we use would allow to treat more general problems and does not
distinguish the cases d=2 and d=3 (see §6).

The results i), ii) are obtained in this paper by using a technique which is
completely different from the one used in [2] and seems to simplify the classic
approach, {1, 3] to perturbation theory, at least for the class of models considered
here. In this paper we also give a complete derivation of an estimate for E , along
the lines which were only summarily sketched in [2].

2. E_(4): Structure of the Bound

The estimate for E_(4) will be obtained by studying and bounding
[exp ¥ MPy(d2) @.1)

where ¥V is a suitably chosen characteristic function. To describe ¥ and the
other characteristic functions which will appear in the following, we shall adopt
- the convection that y (“something”) is the characteristic function of the events for
which the “something” is verified. We introduce the sequence

B,=B(1+k)*log (e + %) (2.2)

where B>0 will be chosen later, and if 4eQ,
Xa=x(xP|<B[1+2"d(4,1)]) (23)

where d(4, 1) is the distance between the sets 4 and I.
We than define

N
1®=T1 TI 4 24)

i=0 AeQ;

of course the sequence B, has been chosen so that there exists a function e(4) such
that (see Appendix A)

D) A VPy(dz) zexp{—e(AI]} (2.5)
i) lim2A *e()=0, k=0,1,.... (2.6)
A0

To describe the inductive procedure to find an expression for E_(1) we need few
more definitions.
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The first is the definition of “cumulants” (or truncated expectations) of a family
of random variables x, ... x, with respect to the probability measure P:

ak1+ . tks

T, . _
ET(xpy s Xgi kyy o k)= 205 o0 logfepoIGLxldP():O,
= 2.7)
k,=0,1,... .
which makes sense in an obvious way if | [x,'P(dx) < 00, [=0,1,...;i=1,2,.... The

second definition gives a meaning to the symbol [p(4)], for any polynomial p(4): if

p(l)= Y, eA* we denote:

k=0

t

[P()v)](z) Zk ek . (2.3)

Finally we define the symbols I~/I("’ inductively for h=N, N—1,...,1,0, —1:

T — p®
ro 2.9)

~ - ~ 1. “
VN =18y () + zc’?g—kﬂ(VI(N—kﬂ);Z)

1 - N—
g B (TP
: (3)

It is not difficult to realize that ¥{~ " =0. The bound is obtained recursively by
proving that there exists G, g, ¢, ¢” such that

[ 1™ exp (V) Py(dz)=y*~ Dexp(V*~)
-exp {tGe(k, A)|1[} (2.10)
where
olk, 1) =[ke2™ @7 D jee 2 ]~ 120 2.11)

where 7 is some function which takes values on [—1, +1].

It will turn out from the proof that in (2.11) 4—1/2 can be changed in 4—¢
provided G is accordingly changed in some G,.

The above (2.10) implies that one can take

E_(j,) — G(Aeg’/l‘?")4-— 1/2 Zk [kgz—(ét-—d)k]él-— 1/29dk . (212)
0

The proof of (2.10) will be given in §5.

3.E,(%)

In this section we remove the field cut-off making explicit use of the positivity of
H ,(x) for large values of x.

The basic idea is to represent the integral as a sum of integrals in each of which
the regions where the fields x™, x¥ 1) are small, are specified. We then treat the
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integral over these fields as in the determination of the lower bound. The integral
over the remaining fields will be studied by using that either the field x™ is large
and therefore V™ <0 or z, is large and, hence, has very small probability. The
possibility of a separate treatment of the field with support in complementary
regions relies on the Markov property of the fields {z,},.,, i=0,1,.... To
implement the above program we introduce the following characteristic functions:

= (X3 < By[1+2"d(1, 4)]) (3.1)
Xa=1—14 (32
and we shall use the decomposition of unity:

I—Z H Xa H Xa= ZXDNXva (33)

Dy AC Dy ACI\Dn
4eQn A4eQn

where the sum runs over the subsets of I which are exactly paved by Q, and the
abbreviations of the second equality are, selfexplanatory.
Starting from the identity:

j eXp VI(N)P ndz)= DE j XDnADs, €XP VNP \(dz)

we shall first prove that there is a k(1) such that if N =k(4)
§expVMPy(d2) < ). [ 150 1ps, XD Vi(D,, Pn(dz) (34)
Dy

where V{(}, is defined as in (1.9) by changing I into I\D,.
The second step, will be to prove that, for k= k(A)

DZI 2o €XD Vi, Py(d2)
k

< ( Y (1o dps exp Vi D P, 1(dz)) -exp Ge(k, A)|1| (3.5
Dy 4
where V("’ is defined recursively as in (2.9) replacing I by I\D,, G is a suitably
chosen constant and e(k, A) is defined in (2.11). The above formula clearly imply
that one can take for E_ (1)
= 1
E.0)=G Y &k )+ sup max|V} Ao Xogesy s il (3.6)

k= k(A) Di(ay-1

furthermore the function k(1) can be taken identicaly zero for A small enough
(hence the second term is absent for small ). We now prove (3.4) and (3.5). The
proof is based on the following structural properties of V¥ with J exactly paved by
Q, (see Appendix B): there is a constant b>0, such that if we write

VR =VE+ TP (3.7)
where V", is defined as in (1.7), the following relation holds:

Ve SV p— 42741+ I')*H ,(F)2*D| (3.8)
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valid if DCJ, D exactly paved by Q, and if |xP|>F =2 for ACD, A€ Q,. Further-
more if J is paved by Qy,

VIV STV +b(A% + A3N(1+ I y)*27 24NN p| (3.9)
valid without exceptions, or, if J is paved by Q,, k<N

[V — VL S B(A2 + A2)k(1 + I',)*2 ™ 24~ dk2dk| p| 8 (3.10)

if |x®| <F for all ACJ, 4€Q,.
We shall define the above mentioned function k(4) as the smallest integer k such
that:

422747141 H (B — D32 + 22)k(1 + T)*2 ™24~ 98 >0 (3.11)

where B, <B, is defined as

- B 1
B,=|)/T,B,_,— k>1

sA+0?y1rr,
1 (3.12)

B,=B,.

and to obtain I§k22, we shall choose B=12 [see Equation (2.2)]. The reason for
this choice of k(1) will become clear soon. The first statement [Equation (3.4)]
follows immediately from Equations (3.3), (3.8), (3.9), (3.11).

To prove the second statement (Equation (3.5)) we introduce

zﬁ=x(lzﬁ|< ——BL(1+2"d<A,1»)

81+ k)2
Ta=1-14 (3.13)
=11 2% ae= 11 4
ACRy AnRi =90
AeQx AeQx

if R, is paved by Q,. Then,

S [t exp Vi Pld)=Y Y ¥ [ Aot
Dy

Dy Dyc~1 Ry
A X5 Ho s, ©XP Vi), Py(dz). (3.14)
Let
A B 3
Rk={é|éeAer_1, 2kd(A’R")§<§(TJ:—k)5) } (3.15)

Than (3.8), (3.9), (3.11), (3.12), imply, for k= k(1)

[GADIS Y X X oo Lo Aot Tidag XDV b,on - oo Pild2):

Dy Dy~ 1 R
exp2%R, NI|[b(A% + A3)k(1 +T')*
QTGRS L 6A(1 4T, )2 274k, (3.16)
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It is easily seen that D,\D,_,; CR,, than we can do the sum on D, and we get

[G14]s X ZI Ko ot Tidns X0 VD, os, Pild2)

Dic—1 Ric
-exp 2%|R N II[B(A2 + A3k(1 + I})*2~ =B84 6(1 4 I,)*]5 4~ %,
3.17)
We can write:
[ ims Tidns XD VD, _ 2, Puld2)
= [P_ 1225, _, | Pildz)ik,
[ Pildz)| 2o, Iz XD Vithe_ ok (3.18)
where
2oy = 12414 C(R, V3" R} (3.19)
Ziey= {2414 ¢ (R0 "R}
0"R,={4€Q,|d(4,R)=0,4¢ R} (3.20)

and P,(dz;) denotes the distribution of the z; variables with respect to the
measure Py and Py(dz,|z) is the distribution of the variables z,, conditioned, in
P,, to given values of z,, (but it depends only on zj, because the Markov property
of the field).
We now use the inequality, valid if B>8b*, where b* is defined in §5:

ij(dZ(e)|Z(;))XDk ARs.€Xp V(\Dk LURk
Sapg_,exp V5. L r.exp Galk, AN (3.21)

This inequality will be proven, together with the similar one (2.10), used in the
theory of E_ in §5.
We use next the inequality

k—1)
Xpg_,XPp V(\Dk LR = Xpg_, €XP V(\Dk 1

-exp {|R, NI[2H[b(A2 + 132~ ¢4~ Dk p?
+ 4H4(Bk)/1(1 + [’k)2]2 —(4- d)k}

<ip,_,exp V5V exp {lRmIIz""ﬂ}@} (3.22)
where

Bk 3
HlkA)= [2 (m) ]
A2+ AL+ T,)*2~ ¢~ 9BE L 4AH (BY(1+ )" 12" "9 (3.23)
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and the first factor of u(k, /) takes into account the replacement of Rk by R, in the
last step, hence:

[G14]<] 5 Tt D20l o g i,
Dy -1 Ry

-exp Vo ’lPk(dz)] exp GIJs(k, A). (3.24)

To perform the sum over R,, we use the inequality
dk a 5
Z etk 2% Ry | j Xizk Pk(dz)

BY o2 ]

<exp[c|[|2‘”‘ D a2 (3.25)

where ¢ >0 is a suitable constant. Inequality (3.25) is a property of the free field ﬁk
and it is an immediate consequence of Lemma 1 in Appendix C.

4. The Structure of ¥

To find what has to be proven to obtain the basic inequalities (2.11) and (3.25) we
have to use explicitely the structure of V. This structure can be studied by
computing explicitely the function V¥, The calculation straightforward, but
lengthy, and the definitive result is in the Appendix B; here we describe only some
of the main features:

3
rh=% Yy Z Az (N, k, J)
1pAer11 LD Np..
4;cJi:l,. ppn,>0

Y8
1
ce AL o ADm xme  N C4(N, k, J) 4.1)
A4eQyc
acJ

where d(4,, ...,4,) is the length of the smallest path connecting 4, ...4,, » is a
positive constant and A"1 Wi (N k,J), C,(N,k,J), are suitable coefflclents which
verify the estimates

sup A% (N kD) S A27 @ OH1 412 (4.2)
J,N,p P
b
sup |C,(N, k, J)| S A2~ @ D1 4T)? (4.2a)
J,N,4

for a suitable chosen constant 4. We shall now consider only the case in which x®

can be written as x§) =(z,+ |/T,x§~V)/]/1+ I, with [x§~V|<B,_,, and we shall
regard V¥ as a function of the (z A) seg, Which will take the following form

W=y, T 5 Apptvkd)

1 A4,eQyi:l.. pnl

dicdin.p "m0
ni=8
~Zokdy. A,
e 2k Zp 4 ), e,(N,k,J) 4.3)
AEQk

Acd
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and the coefficients verify an estimate of the type (4.2) above with 4 replaced by
A=ABS_,r (4.4)

where r>0 is a constant. It is easy to realize that the estimates that we are seeking
can be deduced from the following general lemma on the theory of gaussian
processes. Let, for J exactly paved by Q,:

5 X a(41...4p)
-5 1...4p
Hy=%, ) ) Ai=lte? Zgy e 2L (4.5)
1 ‘eQU n>0
A4;cT Zn[SD
itl...pi:l.

and call A=sup|dy, 7|
We shall consider the z,’s, 4€ Q,, as random variables with the conditional

distribution ﬁo(dzl(E )ae0), (eLr. Eq. 3.18), hereafter abriged as P(dz), where C is a
region paved by Q, at distance b* from J.

Lemma. Given an integer t =20 and b>b*, let J C I and C be regions exactly paved by
Q. There exist constants S, 01, 0,4, 05, 04 depending only on t, D, d, » such that :

éaT(}IJ > k) 01,0242\t + 1 —03b3/2 gsAbes
“_[xA expH ,P(dz) <exp Zk—— +11S((Ab%e Y*i4e e )
4,
and if C=0 (46)
k
| 1‘[ jaexpH, Po(dz)>exp{ Yo L)] [1|S
. ((AbQ‘eQZAbQ3)t+ 1 tre ng3/2eQ4Ab93 )} (47)

where
Ta=x1(lz =b(1+4d(1, 4))).

Remark 1. Theﬂtruncated expectations are to be computed with respect to the
unconditional P, measure.

Remark 2. In the applications we shall identify Q, with Q, and identify J with
I\Dkuﬁk and choose b=%(1+k)_2. In this way we make use of the scale
invariance of the z-components of the free field.

Remark 3. The term in square brackets in (4.6) will be, in the application, a
ikﬁ(H,;k) [see
3

(2.9)]. As it is implied by the structure of V'® this replacement produces an error
which is of the same form of the one in (4.6).

polynomial in A of degree 9 (since ¢ = 3) which we replace by

Remark 4. The above lemma is very weak from the point of view of statistical
mechanics and becomes interesting only in the limit A—0 b— oo so that 4b2—0
for all ¢>0.
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5. Proof of the Basic Lemma

The proof of this lemma is quite simple but it is burdened by many technical
details. To help the reader, we give first a short sketch.

The goal is to evaluate (disregarding the characteristic functions which are the
origin of many technical difficulties) the integral [expH ,P(dz) by the cumulant
formula. The a priori error would be however:

cost exp(max |H |y *? (5.1)

which is, of course, too large (“wrong |I| dependence”).
If the z,’s were independent variables (rather than almost such) and if H, were
“strictly local”, i.e. H;= ) H, with H, depending only on z, (rather than almost
4

such) we could write the integral as
[1(fexpH ,P(dz)) (5.2)
4

and then apply to each factor the cumulant formula with an error:

exp Y (max|H 4|y *! (5.3)

which is much better than (5.1) and is precisely what we want.

The fact that P does not factorize will be cured by collecting many 4’s into
large boxes [, still very small compared to I. Then we shall fix the values of the z,,
variables for the A’s near the boundaries of [] and call them z. The measure P,
conditioned to the fixed values z will then factorize “over the boxes [’ because of
the Markov property of P. If the boxes are large the non locality of H, will be
negligeable and we shall perform the conditional integral by the cumulant formula
to order ¢ making an error of the type (5.3) with Z replaced by Z The result will

unfortunately depend on the conditions z. It w111 in fact have the form of a linear
combinations of terms of the form:

é”iT(zAl,...,zAP;nl,...,np) (5.4)

where &F denotes the truncated expectation with respect to the conditioned
measure. Such expectations are polynomials in the z and differ very little from the
ones we want (i.e. the unconditional ones) if 4,,...,4, are far from the region

(J(6D) because the covariance of the z,’s decays exponentially and, far from
al

(J (60), coincides with the unconditional covariance. This remark shows that the
w

above procedure has reduced the problem of proving the lemma to the special case
in which J is replaced by Jn I, wwhere I', is a region around Q (0 O) with width of

the order of the maximum between the correlation length of the z,-covariance and
the range » ™! of the “hamiltonian” H,.

The location in space of the [T's was however arbitrary. Hence we can apply
the same argument of H; . by choosing the [Ts out of a pavement with boxes of
the same size of the former ones but shifted in location.
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In this way the initial problem is reduced to the case in which J is replaced by
(JnI'y)nI", where I', are the new corridors. After (d+ 1) steps one can obviously
manage by suitably choosing the successive displaced pavements so that
(JnI')nIyn...nT,, =0 thereby reducing the proof of the lemma to the trivial
case H,=0.

The proof that we give here is different from the analogous result of [2] and
closer in spirit to the general methods of Statistical Mechanics [4, 5].

The technique discussed seems close to the one used in the theory of the critical
point of the almost gaussian Ising model [6].

Proof of the Lemma. Throughout the proof C, I, and J are fixed. Let R be a region
paved by Q, and let

s 24y ... 4p)
_ ny..n PRt 2T n
HR—ZP Z Z AA1...Appe ZZ"“ZAI;, (55)
1 4;C Qo ni>0
A;CR Lini=D
:l..pizl...p

where the definitions of the A’s is extended so that
AZp =0 if some 4,¢J, i=1,..,p.

Given two different regions R and S (paved by Q,) we define the interaction
between R and S as

Hg s=Hp s—Hr—Hg. (5.6)

We consider tesserae [ paved by Q, of side b? (for simplicity we assume b'/2/4
integer, the modifications needed in the general case are trivial and will not be
considered). Let Q° be the corresponding pavement made up by the tesserae [
For any e @® we put

O=ur,(D)ul (0) (5.7)

where I',(0J) and I'; () are corridors of width 32, I () is adjacent to the
boundary of [J and I',([J) is adjacent to the internal boundary of I';([7]) (see
Fig. 1).

I,(a)
17 (o)
s
el R
Iio) ——r ol
i ool |
B ey e S
o—1 | 1 N A )
| . 4
b3/2
b2

Fig.1
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We define
ry= 1) ry(o (5.8)
OeQ?
and we have
Hy=H; + Y Yo+H%=H,+H" (5.9)
DA?#ﬂ
TD =H|:1'ur2(m) +H1"2(D),I'1(D) (5.10)

where H? = H,— H, can be bounded as [see (4.5)]
[HOT] zaléslAbDe‘?““un. (5.11)
a4
Therefore the main point is to estimate

[ P(dz2) ] 24exp H, . (5.12)
4
Let us first prove a lower bound for (5.12); in this case C=@. We have

[(5.12)]={ P(dz;) n erpor,( I1 JHdlezrl)AIIDerxp%)

OnJ+*0

( [1 [Pzolzr,) I1 xA) (5.13)

OnJ=¢

where P(dzr ) denotes the probablhty distribution of the r.v. (z,) 4 r, =2y, 2 are
the r.v. (z,) 40, P(dquzr) is their conditional probability for fixed z; and the
Markov property of P has been used.

2
We choose 0<y<1 as in Lemma 2 of Appendix C (y=%(&7%) ), and we

define
1op =x(z4 Syb(1 +d(4,1)),VA€T ) (5.14)
=x(lz4) Sb(1+d(4,1)),V4e I (D). ‘
Then
[(5.12)12 | P(dzr )l epon( IT§ P(dzg|zr,)x,,)
OnJ=2¢
( [T [P@zglzr)xlexp ng,,)
OnJ#0
=3 F(dzr,)XfﬁeXPHr,( I1 jp(dzglzn)xbm ) I1
OnJ=20 OnJ#0
M
~{jj‘-’(dzmlzn)ewﬂ"‘E exp|—3b%%e 4 e252"“’m2d” (5.15)

where the ch.f. in the second integral have been eliminated as follows:
i) There is a constant s, such that |¥ 2| <s,4b” "™ as it follows from the
assumed structure of Hj.
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i) we write
[ P(dzgzp Jyte®=7e

—1 - :
8 jP(dZDlzr‘)eWEI g

© d _ )
= | du E(]og [ P(dzq|zp )y 2e¥as)
1

_ d .
[ Bdzgzy,) (% Xg) oFord

_ _ 1
[ P(dzglzp, )y ye¥exe (5.16)

= | du
1

Since d—x’g‘ is a combination with non negative coefficients of §-functions, and
u

therefore is positive we can extract the factors exp ¥4y and perform again the
integral :

[(5.16)] < exp 2s,4b°* 24(—log | P(dzg |z, 1) (5.17)
Hence
jﬁ(dzdzri)X?:\CXP ¥ork ;(j F(dZD|Zr1)eXP o)
(f Pdzgzy, )yl e 2e240” 2, (5.18)

Finally we use the lemma on the free field (see Appendix C)

bZ
| X”E,I_’(dzmlzrl)gexp(— 3b2e T) (5.19)
to derive the bound used in (5.15)

[ Pdzglzr )xtexp ¥ oxts 21| P(dzglzr Jexp ¥ ot
bz

-exp (- 3p2e 4 g2s24bP" ) . (5.20)

We now try to compute the second integral by a cumulant expansion [see (2.7)] to
order ¢:

- t éaT T b ,k
log [ P(dzplzp, )exp ¥oxy :Zk_za(Tu‘xQ

1 H
20+ D%t 4-1)!
S+
where &, denotes the expectation with respect to P(dzp|zy,) and 7 is a function

with values in [—1,1].
Combining (5.21), (5.20) and (5.15)

©(s,bP 24 A) " Lexp 2(s, AbP " 29 (5.21)

[(5.12)]1= P(dz; )xfexp H,

- t 1
(LIL IPazgleef) T1 {ewn S oh Pttt

OnJ=0 OnJ*0

(t+1)? | -2
exD— 2 (l’+1). s bD+2dA)‘+lezszAbD”d-l-?)bZde & p2s24b0 4241 (522)
P ernr v
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The next step consists of trying to replace the conditional expectation &, . , by the
unconditioned one &,
Consider & (?’Dxb ;k) and decompose ¥ as

¥Yo=Hg +Hpy ryo)+Hryoyryo + Hryo) +HY (5.23)
where I';([) is a corridor adjacent to [J' with width $b%2 [hence I';([J)C I',([)]
(see Fig. 1) and H'® can be bounded by

0P| <5, AP+ 24”8 (524)

We denote the three addends in (5.23) ¥,, ¥,, ¥, respectively and x5 by y then

éﬂzl;-l((gll +¥,+ V) k)

k!
- ST (W War Wars ki ko k
kl’kzz’k3 kl 'kz !k3‘ 1-1( IX 2X 3X 1> ™2 3)

(ky+ky+k3)=k

k!
=6, (Pyx; k+ 3 & (lII1Xs leX,kpkz)k Ik, !
kx>0
T k'
DN ANC 2V VA SV kl,kz,ks)W (5.25)

k3>0

and we have used the elementary summation properties of the truncated functions
following from their definitions (“Leibnitz formula”).

We bound the third term by using that &7, is a sum of at most s, products of
powers of ¥y, ¥,y ¥,y and ¥,y appears in at least one of the factors.

Then (5.24) implies :

k! —Zpar2
Z (5’27;_1(5[/1)(, Y, Y’3X§k1, kz’ k3)k Ik ‘,‘k T §53(51AbD+2d)ke 8 . (5.26)
123

k3>0
To treat the second term we define I',([J) as the corridor adjacent to the boundary
3/2

of [ contained inside [ and with width - and decompose ¥, as ¥+ ¥/

where

Y =Hp, oyt Hr, o ryo) - (5.27)

The feature of ¥ to be retained is that in its expression as a polynomial in the z,’s
each monomials contains at least one z, with 4 C [J\I',([J). Then the second term
in (5.25) can be written

k!
Z k 'k ' zr('{’lx7 ZX;kla k2)+ Z éazTn(lP&X, q"{%a T2X§h1,hza kz)
kx>0 k2>0

e (5.28)

2
hythy=k—k,

and the properties of the free field allow to bound the second term of this sum as

b2
s4((ssz+2"A)"e T+(ssz+2dA)ke—fb“) (5.29)
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where the first term comes from the replacement of the y’s by 1, the second from
the properties of the conditioned measure and from the Wick theorem (see

Appendix D) and s, and #% are positive constants.
We can summarize the above calculations in the following relation :

n j}_)(dzmlzrl)XP

[(5.12)] = exp (error) | P(dzy )yl exp Hy, ( )
OnJ=8

t 1 t
I1 {CXP[Z‘T‘?T (trHg +Ho o) D+ 20 2
T k! T kke Kylky!

Zrl
OnJ*e
ki+tkz=k
k2>0

63t Hr oyt Hr oy, ra00)> 16 Hryoy + Hryoy,rao) s Ko kz)}}-
(5.30)

The error has the same form as the one appearing in the text of the lemma
[Equation (4.6)] with different values of the constants (which can be desumed from

the above calculation).
We now write

& (aHg +Hg: rym); k)
=& ((Hr o)+ Hryoy, rao)3 0

Zry

+ X

ki +ky=k
k1> 0

: T (.,b
iy SertoHo +Hoy ryoy = Hryoy — Hr, 0. rao)>
1-72°

X6 Hr o+ Hryoy,ry@)s k1 k2)

=& (XaH r o)+ Hr oy, rym)s K

n

k! 4
+ X W&,T((HD,+HD,F3(D))—H“(D)—ng),h@,
ki +ip=k K1 Ky
k1>0
Hy oyt Hr oy, raoy s K1 k2) + (erTor) (5.31)
and the error can be studied along the same lines of the argument leading to the

bound (5.30) and has the same form of (5.29) with new constants.
Hence
[(5-12)) 2 exp erron) | Pldzr )i (1 [Pzclzr )iy
O

nJ=0

t 1 .
oofS ¥ TEL k)
T ki+k=kK1'K2' 0
k1>0
t

1
YD) W (”@Z-l(xlls(H r«(0)

1 ki+ka=k

-expHr, [] {exp

OnJ+0

+Hr o) ryo) X Hreyoy + Hry oy, ro) s Ko kz)]} . (5.32)
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Each factor in the product sign can be reexpressed using the cumulant formula
backwards as

D b
§ Pdzplzr b exp (Hryoyorym + Hr, oy, ryo — Hryo). raonrso)

.ex m bD+2dA t+1 2 AbD+2d 5.33
Pyt (t+1)' (SZ ) eXp (SZ ) ( . )

where as usual 7 is a function with values in [ —1,1].
We now bound Hy oy 1,y ryo) 88 Usual [see (5.24)] use the Markov property

of P and remark that if I', = U [(r,(Our,(Oyur,(0O)]
X3
Hp + ) (Hrz(m)un(u)"‘Hrz(l:\),rl(m)):Hfl+T|Il<51AbDe 8 ) (5.34)
OeQ?

and obtain
[(5.12)1= ( fp(dz)

1 expH n)
Oeg@?

'exp{ Y K ‘k ‘ZéaT(‘I’ 'P’l;kl,kz)}exp(error) (5.35)

k1+k2<t
k1>0

where the error can be described as after (5.31); Now we study the integral and
remark that it has the same structure as (5.12) with J replaced by I, and b by yb.
Therefore we can proceed as before choosing a new pavement Q' displaced by b2/,
with respect to Q” obtaining a result similar to (5.31) with I, replaced by a new set
I, (much smaller than I';). Again one proceeds as before by choosing a third
pavement Q" displaced by b?/, with respect to Q" and, if d=3, a fourth one
displaced by b%/;, w.r.t. 9"%. Collecting all the errors made in this process (4.7) is
proven.

We now study the second estimate (4.6) which is obtained by simple
modifications of the first one (4.7). We start from (5.13), then assuming |z,
<b(1+d(4,I),VdeC

[(5.12)1= [ P(dzy )1l expH, ( [T jﬁ(dzglzn)xb”)

OnJ=0

-( [T fPzglzy,)exp TDxE). (5.36)

OnJ+0

By beeing careful in attributing to the various t the value opposite to the one
chosen in the estimate (4.7) we obtain that (5.12) can be bounded above by the
r.h.s. of (5.35) with b replaced by y~*b.

It follows that b* can be chosen =max {10y ~3b} where b and y are defined in
Appendix A and C respectively.
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6. Concluding Remarks

1) The interest of the above approach to the ultraviolet stability is the clear
distinction of the role plaid by formal perturbation theory.

The ultraviolet stability follows by standard arguments in the statistical
mechanics of Markov processes (§5). The applicability of such arguments is
guaranteed by formal renormalization theory [Sec. 4 and (3.21), (3.22), (3.23)].

The scale invariance of the free field reduces the statistical mechanics part of
the argument to a lemma on a standard Ising model on a unit lattice.

2) The technique used can be clearly extended to prove “perturbation theory”
in the following sense.

Define

o0 (Véf"} _ %) 6.1)

and, if & denotes the expectation with respect to Py [c.fr. (1.6)]

Ly e kil ¢ T((V]Ic"‘”’) ; ")} ' 62)
= : ®
Then there exists E, (4,t) such that for t=3
i) exp—E_(LOI|< [expV™"dPy<expE, (4,0l (6.3)
i) 11_1’)1’(1) E,(4,tA7'=0. (6.4)

Notice that the renormalization theory implies that all the terms in the sum in (6.2)
with k>4 are finite.

3) If d=2 the condition t=3 can be dropped and also ¥;™ could be replaced
by V.
4) The above techniques allow to study the integrals:

[(expz, ) exp VVdP,
[expVMapPy

(6.5)

and to derive for the moments of the z,’s bounds of the type of the ones found by
Feldman [3].

Acknowledgement. We are indebted to K. Osterwalder for useful comments.

Appendix A

We define, for 4€Q,, )E’j= 2z, £b(1+d(4,1))=b,) and prove the following
lemma:
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Lemma. Let 1_30(dz) be defined as before [Eq. (1.6)]. Then there exist b, k,, k,, such
that, for b>b

Fy=[Pyd2) T] z,zexp[—Ille,] (A1)
4eQo
e, =k, exp(—k,b?). (A2)
Proof.

@@A, u(XZ b)

where &, , denotes the expectation w.r.t. the distribution of the variables z, in the
random field with formal density

logF,=— Id logF,,du=— Zb jd (A3)

} T 2. (A4)

A+ 4

const exp { - -g—[z* (zg—z4)* +02) 23
Aa,4 a

We notice that this random field is superstable with superstability parameters (see
2
[5] for the notations) A = -’g—, B=0 and free density 1 for the variable z, and ;Z‘:}?,
for the variables z,, 4'+ A.
1
Supposing that b= 1, we remark that the parameter A= | d (free measure)=1;

0
hence from Ref. [5] it follows that the variable z, in the field (A.4) has density
bounded by

exp { - ﬁ%z 22 +6(a, ﬁ)} (A5)

where d(a, f)=0. By inserting this expression in (A.3) the lemma follows immedi-
ately and we can take for instance:

e )

g
k= 'Be;uZe (A.6)

pe’
o~
Since {|x%|<B,(1+2%d(I, 4)), A€Q,, k:0,1,... N} implies [see (1.5)] that
2 S(V1+T,B— VT, B, Y1 +2d(4,1), 4eQ; k=0,1,..,N (A7)

it is clear that the above lemma implies (2.5) and one can take

k=

e(A) =k, Y, e~ kW1 + B VTiBi- 02 (A.8)
0
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The following expressions are easily proven by induction combined with simple

algebra on Wick polynomials (see for example [7]).
One finds, if 1<k<N:

N-1
VND=VN DL i1y iia {Zz Wi+ F;+H)

N—k
N—-1
YL IO, V) ST, — Véfvf"’))]}
N—k+1
é&( (N k) Z W)

=N~ ">+W}N B FN R L HN R 4 G0 4 N
where (Cy(¢,1)=CEM, ()= =",
-4 ‘2( ) (=01 §§ dednCEri(em—Ct ™' (Em)
L:00n): 61 :00):],
Fi= =2 F dyp, 1] d6ndt{Cray(E O 0OCH )

Firars

—3C32, (& n)CMCR (L) +2C32(E, m)C2(n, ) C(E, O)}
‘[:07(O)oime*(0):],

4\ /4— 4— 4—
S [0 G G R
30\ J\ra)\r3/\ S, S23 S31

d ={if r +r,4+ry=2r; 1=r<4; r,<3, i=1,23

¥1rars

0 otherwise,
S, +S,3=4-r,
S,3+S5,=4—r1,
531"‘512:4“7’1’
13 1
H—~Z 423'( )( )(2 p)! ([ deand[C P )

IXIXI

—Cz 2(EmICY 1 (1,0) 0 T2 E)eF ),

23
o2 Z,() =0 3, J] dédniCHE n)~ CEHE )]

N—k+1IXI

'['¢N—k(£)¢5v—k(n): 11 (PN W81,

F(IN_k)=_/13 Z dnrzrz. Zi jjj dédndg{Cflz(éj11)Cf23(f],C)

FiFar3 N—k+1IxIXI

PG O =3CERENCE (MDCE (6 O +2C52, Eon)
Coy (0, DC2 (O 080N e (0

(B.1)

(B.2)

(B.3)

(B4)

(B.5)

(B.6)

(B.7)

(B.8)
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wmiﬁﬂﬂxyzwz ([ deanat

N—k+1IXIXI

[LCP7PE ) — CEPEMICI (1, ) - @R )0k ) (B.9)

N-1

G 0==30° % o, 5[] deind[CiEn)

rirars N—k+1IxXIXI]I
= Ca(& HICE(n, OC (O — CRzaln, OCH(E )]
LN (&R e _(0): 105, [C* 54, ()
— G, OIL: 027200k -4(0: 1) (B.10)
3 N
cpo=? (Z) 2 Y [I] dedndl[CHEn)~CE (& )]

2 N-k+1IXIXI
LG, OCR (L, &)1 (B.11)

Since the fields appearing in the Wick products are constant on the tesserae
AeQy_,, it is clear that V¥~ can be written as in §4.

We now give an example of the method to get the bounds of §3, 4. by explicitely
estimating the contribution to A3%(N, k, I) coming from W¥ ¥, for d=3. We need
to estimate:

N
Wya =42y (A4 Ty_y) Y, [ dean[CEn)—CPy(&m)]

N—-k+14x4

N
<4V N (] déan3CHENICLE N —Ci_ (& m)]. (B.12)

N—k+14x4
By (C.2), (C.4), (1.2), (1.13), if A+ 4" we have:

N
Wy <3-2022287F %, 2% [ den[Cy&,m—Ci-y(En)]

N-k+1 ax4'

N
<3.24322Vk Y 22y [ dédn[C&m)—Cio (& m)]
N-k+1 A%AZ’AeIaAlA a4’

<3 24122N k2”C” Z 2~ 3i Z e—x’Z"d(Z,Z’)
A4

N—-k+1 AcA,A'CA’
A,4'€Q;
<3.2%,b,(J2- Ry 20 AN (B.13)
where
—id(A,A')
by=2C|| Y e * , 4eQ,
4o (B.14)
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If A=4', the best estimate of W,, would be of order k272¥~® which is bad.
However (thank to the mass renormalization) the contribution of W, , in (B.7) is
missing.

Appendix C

In this appendix we give some properties of gaussian fields related to the gaussian
field (z4) scq, With formal density

const exp{— E[Z* (zy—z4)*+ Zazzj]}. (C.1)
2 4,4' ) 4

1) The covariance C, 4 is such that, if £, is the center of 4

1 n eik(éa—ém)dk 1 o(2 —d(4,4")
0= Cas= (aay : <l+3d
TTolB+2B (1 —cosk,)
1
=||c[le >4, (C2)

If n,(4,4') is the number of walks on the lattice of the centers of the tesserae
divided by (2d)

1 & 2 Y .
C""'_ﬁ(a2+2d) %"(2d+a2) (4,4, (C3)
0=<C, 0 <1/2, (C4)
1
= = —. .5
Cll ;CM 2F (C.5)

2) Let ' be a region paved by Q, and let P,(dzlz;) denotes the above
probability measure conditioned to fixed values of the z,’s, 4el’. Then the
conditioned variables (z,) 4, are a non centered gaussian field with covariance
C!, such that

0SCh, SCyp (C6)
and center
ug=p Y. ( )y CSA”) 2y (C.7)
LI\ g tos

C% 4 is the covariance with “Ditrichelet boundary condition” on I'. Hence using
(C.6) (C.3), if |z,| <b(1 +d(4, I))

e (“2;2‘1)2 b(1+d(4, I). (C8)

The above properties are well-known [7].
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The following lemmas hold

Lemma 1. Given n gaussian variables {z;};_, with covariance C;;>0, i, j =1,..,n
and given b,,...,b,>0

b?

where ||Cl|=sup ) ; C;;
i T
Proof. If y>0:

e@",bff[ﬁ X(Zi>biH fl X(zi<—bi)]dP
i=k+1

i=1

k n
H x(z;< —b;)exp ( Yivhizi— ) )’bizi> dpP

n
i=k+1 1 k+1

=J 1='[1 x(z;>by)

k+

k n
= feXP Zi vbiz;— Zi vb,-zi)dPéeXp[%Z Vzbibj Cij} .
1 1 i, Jj

k n n
J [ xeb) T stei< =P Sexp| (1= 1)
i= 1

i=k+1
and the lemma follows by choosing y=1/||C||.

Lemma 2. Let I', I, [ be regions paved by Q,, let z.=(z,) .. be a given family of
numbers such that |z,|<yb(1+d(I,4)) and let P(dz/z;) be the measure (C.1)
conditioned to the values Zr, then:

b2
fAHD x(z4l <b(1 +d(4, ) P(dzlzp) = (1 ~2/00e T)

if

2d \?
<i = __
1=z (a2+2d> '
Proof. Since the covariance with Dirichelet boundary conditions is bounded by

(C.6) and since the center of the measure P(dz5\Z;) is bounded as in (C.8) the above
lemma is an immediate consequence of Lemma 1.

Appendix D

The replacement of the y by 1 is a trivial consequence of point 2) and Lemma 1 of
Appendix C.
In order to complete the proof we need to evaluate

TP, P, ¥, 5k, hyoky).
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Let us remark first the following points:

i) given the structure of the 'f/’s [see Equation (5.23)] gg('i/...) can be
expressed as a sum of s; terms of the form

6624, 24,524, Za;0 20 Zag s 1 1L 1)
oA+ o (A )Fd(A,)+ . +d(A,)+dA, )+ . +d(A4,)]

with obvious shortened notations, where s is a constant depending on h, h,, k,.

i) &3(z%,242,243;1,1,1) is by definition an algebraic sum of products of
expectations values. As it is well known, once these expectations are expressed via
the Wick theorem as sum of products of 2-point functions, the only terms that
survive are the so called “connected diagrams” where at least one z,, in each set z4!,
z%2, 74 is connected to another z, belonging to a different set.

If we recall now that at least one z, in each term of f”l’ belong to [I\I',([J) the
exponential factors arising from i) and ii) give rise to an overall dumping factor

that is at least exp —;bm where b*2/2 is the length of the smallest path

connecting a set of points constructed in such a way that one point belongs by sure
to [I/I,(CJ) and at least another one belongs to I',.
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