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Abstract. A new jR-operation which satisfies Bogolubov-Parasiuk and Hepp
recurrence and which is infrared and ultra violet convergent graph by graph,
is defined in perturbative quantum field theory. This new subtraction scheme
is used to achieve the zero-mass limit of a massive field theory.

I. Introduction

In 1970 Callan [1] and Symanzik [2] introduced a differential equation to study
the high energy behaviour of renormalized vertex functions in Lagrangian field
theory. By homogeneity arguments, the asymptotic high energy behaviour of
these functions also describes their infrared limits when all masses mί in the theory
tend to zero. For strictly renormalized field theory, it is found that such infrared
limits exist at nonexceptional momenta provided that the divergent vertex func-
tions are subtracted in a convenient fashion [3]. This result was also proved by
Gell-Mann and Low using the technique of the renormalization group [4].

This paper intend to show the detailed mechanism of the infrared limit. In
a recent publication [5] we have obtained explicitely the asymptotic high energy
behaviour of a renormalized Feynman amplitude subtracted at zero momentum;
we have especially given specific "geometric" rules to construct the coefficients of
all powers of logarithm for the leading power behavior. These rules are given at
the end of this introduction for the case of graphs generated by a strictly or non
renormalizable field theory at non-exceptional momenta. In that case, the struc-
ture of these coefficients is such, that there exists for any graph a linear combina-
tion of Feynman amplitudes which has a zero-mass limit. Namely, the powers of
logarithm which arise in the zero-mass limit of each Feynman amplitude when
subtracted at zero momentum, are cancelled by the logarithms which enter the
coefficients of the linear combination. It is the purpose of Section II to show this
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result. The next question which has to be solved is the following one: how is, this
finite combination of Feynman amplitudes attached to each graph, going to
break unitarity, when we sum over all graphs in a vertex function? In fact, it does
not break unitarity because it exists a Lagrangian with real, infrared divergent
counterterms, which generates this combination of amplitudes. In Section III, we
illustrate this property in the simple case of a φ4 type theory. Then, it is shown
in Section IV that the infrared divergent counterterms can be avoided by intro-
ducing a new ^-operation. This ^-operation, which is defined here in the α-par-
ameter space and which seems similar to Lowenstein and Zimmermann [6]
R-operation defined in momentum space, satisfies Bogolubov and Parasiuk [7]
and Hepp [8] (BPH) recurrence over generalized vertices. This subtraction pro-
cedure has the property to give an infrared and ultraviolet finite amplitude for
all graphs generated in a strictly or non renormalizable field theory at non ex-
ceptional momenta. Finally, an Appendix is devoted to the structure of the vertex
and other useful functions expressed in terms of the counterterms chosen in the
Lagrangian. The entire work is performed in Euclidian space; the results can be
applied in Minkowski space in the sense of distributions (we insist upon the fact
that all masses tend to zero to avoid certain types of exceptional momenta due
to Minkowski space).

Let us now remind to the reader, the rules obtained in Ref. [5] for the
asymptotic high energy behaviour of a single Feynman amplitude.

Definition 1. Given a graph G with non zero external momentum (Pι,...,pπ)
n

n ̂  2, and satisfying the overall momentum conservation law £ PI = 0, a subgraph

£ G is said to be essential if its reduced subgraph [G/«$^] has zero external
momenta at all its vertices.

We must note that the essentiality of a subgraph depends upon the fact that
the external momenta are exceptional (partial sum equal to zero) or not. In Ref. [5],
it is shown that the asymptotic high energy behaviour of a Feynman amplitude
at non exceptional momenta has a different structure, whether the superficial
degree of divergence ω(^) of any essential connected subgraph 5^ΦG is less than
the superficial degree of divergence of the graph G, or not. In the present work,
we consider only the case

ω(^)<ω(G), (I.I)

for all essential connected subgraphs ^ Φ G. It is easy to see [5] that if, at every
vertex, we have

B + (3/2)F + d^4, (1.2)

where B, F, and d are respectively the number of boson lines, fermion lines and
derivative couplings attached to the vertex, then (I.I) is satisfied. Condition (1.2)
implies that we restrict ourselves to strictly ( = ) or non (>) renormalizable field
theory, and that we exclude superrenormalizable vertices and two lines vertices.
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A renormalized, Feynman amplitude expressed in the α-parametric form is
defined by the integrals [10]

\ r\

(1.3)
0 α = l

In (1.3), / is the number of lines of the graph G, the derivatives — take cares
uz

of derivative couplings and spinor propagators, the function ZG(α, p, z) is given by

v^\
ZG(α,p,z)=[PG(α)] 2e

where PG(α) and [dG

 1(α)]ίJ are the Symanzik functions [9] of the graph G, w is
the number of vertices of G, and εia is the incidence matrix of G. The operator R
in (1.3) is a subtraction operator expressed in terms of generalized Taylor oper-
ators [10] τ, and which acts upon the α-parameters of the subgraphs. This operator
ensure the ultraviolet convergence (oζ~0) by subtracting the subgraphs at zero
external momenta.

If we consider a graph G, its Feynman amplitude can be splitted into two parts

/G(p, m) = /?(p, m) + AIG(p, m) , (1.5)

according to the expansion of IG(p, m) around m = 0, such that

ΔIG(P> m) ~ ™ logxm , (1.6)

while /G (p, m) diverges when m->0.
In Ref. [5], the following rules are given for graphs G satisfying the inequality

(LI), at non exceptional momentum:

Definition 2. A forest ^ is a set of subdiagrams such that any subset of
mutually noninclusive elements is disjoint.

Definition 3. A generalized vertex is a one-line irreducible, connected, sub-
graph ^ such that any other subgraph with the same vertices as those of ̂  is
contained in Sf.

Then, 7G (p, m) diverges logarithmically only and takes the form

/g (p,«)=Σ^' Π {

In (1.7), 2F' is a forest of r(^') divergent generalized vertices different from the
graph G itself; the sum runs over all such forests including the empty one. The
numerical factor χ&, is

Π [v(^) + l], (1-8)
fe&'

se
where v(^) is the number of elements of &*' inside ^ The subgraph

is the reduced subgraph obtained from ^ when all the subgraphs &"\
are contracted into points. The functions φ are of no use to the present
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work and we refer the reader to Ref. [5] for their definition; let us simply men-
tionned that φ vanishes whenever 3F' contains an essential subgraph. It is the
structure of I™ (p, m) in the coefficients β which is most important to understand.
These coefficients arises originally in "Zimmermann's identity" which relates
oversubtracted mass inserted Feynman amplitudes to minimally subtracted ones.

r)(p,m)=-2/G(/?, m). (1.9)

In (1.9), m —- generates a sum of oversubtracted mass insertions in the ampli-
cm

tude for the graph G, while /G(p, m) corresponds to the same sum of amplitudes
with minimally subtracted mass insertions; the sum, in the left hand side runs
over all divergent generalized vertices T in G. Given the minimally subtracted
mass inserted amplitude 7T(/c, m) for the subgraph T with external momenta kb

and given a sequence of ω(T) external momentum kh,...kίω(T) where ω(T) is the
superficial degree of divergence of T and where each momentum kt can be present
several times in the sequence, we define

-1

ω(T)\
-ϊτ(k,m) (1.10)

[Γ~Ί
— is the reduced subgraph obtained from G by con-

•* J/ω(T)

tracting T into a point and by attaching to that point a set of derivative couplings
defined by the sequence χ. In (1.9), summation over all sequences χ of ω(T)
external momentum is understood. The coefficients β?$&lχy \Λ(<y) in (1.7) are

defined as those in (1.10) except that Sf is itself reduced by the contraction into

points of several disjoint, maximal subgraphs ^: \ίf{ e 3*', ̂  C ίf}, and
}= (J χω(#>fr In (1.7) summation between Λ's and χ's is understood.

II. Infrared Convergent Combination of Feynman Amplitudes

This combination of Feynman amplitudes is obtained by applying Zimmermann's
identity (1.9) recurrently. From (1.5), (1.9), and the power counting theorem for
renormalized amplitude [5, 12], we have

)̂ + 2V^ω ( T )/fG / τ l y^ ίp,m) = 0. (II. 1)

Let us remind that the amplitude /[&/τ]χω(T) is similar to the amplitude IG(p, m)
in the sense that they are both minimally subtracted, and they have the same
number of external legs and the same superficial degree of divergence. Also, from
(1.10), it is easy to see that /?£ω(T> is homogeneous of degree zero in the masses ma.
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Applying recurrently the operator £ ma~^~ upon the left hand side of (II. 1)
α = l VWa

and using (II. 1) itself for reduced subgraphs, we obtain

(II.2)

where ̂  is a forest or r divergent generalized vertices, and χ^r is a combinatorial
factor similar to (1.8). If r is chosen to be the largest number of divergent generalized
vertices which can be organized in a forest, then [G/MaxG]^) is a convergent
subgraph and /j£/MaXG](P>m) is homogeneous of degree zero in the masses ma,
[if G is itself divergent, /fG/MaχGu(G)(P'm) *s a polynomial in p of degree ω(G)j.

It is now possible to integrate back equation (II.2). We scale the masses mai
by a factor /Γ1 so that the differential operator £ ma B/dma acting upon Feynman

α = l

amplitudes becomes —λd/dλ. At each integration, the arbitrary constant is fixed
a tλ=l . We get

q(^)

TOSfrt w/1\ V v n(<&f\\~l \c\ctcί(^}l IT O/?Xω(T:) Tas in ΊM\ ΠΊ 1\
1G\P^m/^) — 2^ X&Q^)' 1Oβ * I I ^P[Tl/UaκTl]Λ(Ti)

 1[G/MaxG]Λ(G)(P^ m> ' V1 A"M
J5" i= 1

In (II.3), the sum runs over all forests J^ of q(3?) divergent generalized vertices
including the empty one. The above equation expresses the variation of the
asymptotic part of a renormalized Feynman amplitude when its masses are
scaled, in terms of the asymptotic parts corresponding to reduced subgraphs. The
same result could be obtained by eliminating the functions φ in (1.7). Let us
define a set of masses μα by

mα = λμα (II A)

then

/«s(n μ)= Vy^q(^)Γ i l og q ( ^ } (mJμ α ) Π 2β?τ(!*Λ τι ^Γ/M π (P>m) -Cjrvr?A~/ ^_jA^ J.\ / o \ αirα) I I r[TilMaκTl]Λ(Tt) [G/Ma\G]Λ(G)\r' '
^ i — 1

(11.5)

It turns out, that the right hand side of the above equation is independent of
the masses mφ and consequently the above combination of asymptotic parts has
a limit when the masses mfl-»0. In this limit the masses μα replace exactly the
masses mα of the original asymptotic amplitude.

For a given Feynman graph, we define the following amplitude

- ~ ^^(T^^G/MaxG]^)^^).

then

/*(p, m, μ) = Iα<l(p, μ) + ΔI%(p, m, μ), (II.7)

with

Alξ(p, m, μ)~m logxm . (II.8)
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IΠ. Zero-Mass Limit of Lagrangian Field Theory

We consider the following Lagrangian

(ΠI.l)

defined as a formal power series in g. The functions a(g), b(g\ and c(g) can be
expanded as

oo

a(g)=ί- £ ang", (ΠI.2a)
n = l

c(g)=g + Σcn9n (ΠL2c)

From the Lagrangian (III.l), we can calculate in perturbation the IV-points
vertex functions Γ(ΛΓ)(p, m, g) as infinite sums of Feynman amplitudes (1.3). We
denote by GN ni the Feynman graph with N external legs and rc4-legs vertices,
which enter in the calculation of Γ(N)(p, m, g) when a(g) = b(g) = l and c(g) = g ; i is
a running index which takes values between 1 and I(N, n) which is the number
of such graphs. In Appendix A, we express Γ(N)(p, m, g) as a formal power series
in g, taking into account the counterterm structure. It is convenient to decompose
the coefficients aw bn, and cn upon the graphs GN nί for N = 2 and 4,

an= ζθG2naG2ni, (ΠI.3.a)

bn=("LθG2nibG2nί, (IIL3.b)
i = l

CΛ= Σ 0G 4 ) n ) ί

C G 4 , n ) ί J (ΠI.3.C)
i = 1

where ΘGN n . is a numerical constant which arises in Wick's contractions. Then,
oo I(N,γ)

Γ(N)(p,m,g)= Σ 9y Σ θGNlVli

{ Σ Π cΛi π
UΛι, . . . ,Λt) f Rj f Rj

lωίR,Λ = 0 t - ω f R Λ
Rj I j=l
j) = 2

In (III.4), {J^!,...,^) is a (possibly empty) set of disjoint, divergent generalized
vertices of GN γ t ; (9R. means that (bR.k2 + aR.m21|) is introduced at the numerator3 J J \ i t

of the Feynman integrand of the reduced graph \GNty>i (J Rj , for each quadrat-
L ' ' / 7 = 1

ically divergent generalized vertex Rj with external momenta k (m \\ indicates an
oversubtraction by 2 for the mass term); IG(p,m) is the renormalized Feynman
amplitude (1.3) for the graph G. Equation (III.4) is a convenient way of writing
the vertex functions Γ(jv)(p, m, g) from which, in Appendix A we solve Bogolubov
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and Parasiuk [7], and Hepp [8] recurrence. At this point we do not impose any
subtraction conditions upon Γ(2) and Γ(4); we let Γ(N)(p, m, g) to be a functional
of the counterterm coefficients.

If we let the mass m tends to zero in (III.4), we know from Section I that if
a and b are independent of m the amplitude f| UR. !\GN y ; / u R](P>m) *s

f RJ M ' l j = ί Ί
lω(Rj) = 2

logarithmically divergent at non exceptional momentum. The behaviour of the
vertex functions Γ(N)(p, m, g) when m tends to zero depends greatly of the behaviour
in m of the counterterms. In this section, we find a choice of infrared logarithmically
divergent counterterms such that Γ(N)(p, 0, g) exists at non exceptional momentum;
with this choice, Γ(N)(p, m,g) is easily expressed in terms of IG(p, m, μ) defined in
(II.6). Let us calculate from (III.4) the quantity mdΓ(N)(p, m, g)/dm. Three kinds of
terms appear in the derivation m(d/dm\ namely mdCR/δm, md&R/dm, and mdIG/dm.
The last term can be transformed using Zimmermann's identity (1.9) (see Ap-
pendix A); we get

Σ (mdcy/dm-2sy) Π cRj Π ^/[G* v , / U J^C/F] (A
r{K: Λ _ ι _ , . . . , Λ t > ( JRj / R .-ι

ω(K) = C

+ Σ mdOy/dm [] c^. f] U R j I \ G N l V , i l ( ) RjUv] (P>m)

ω(V) = 2

Σ rv Π % Π ®RjI\GN

f(V' Rι ..... Rt] ( RJ f Rj L
I ω(F) = 2 lωίΛjΉo lω(Λj ) = 2

(III.5)

In (III.5), the quantities Γ(N)(p, m, g), rF and SF are defined in Appendk A, respec-
tively in (A.25), (A.34), and (A.35). The function Γ(N)(p5 #!> )̂ does have a zero-mass
limit equal to zero if the counterterm coefficients aG, bG, and CG are at most
logarithmically divergent when w-»0. Consequently, if we can solve the system

mdav/dm + 2av = Q , (IΠ.ό.a)

mdbv/dm + 2rv = Q9 (IΠ.ό.b)

mdcy/dm-2sv = Q 9 (IILό.c)

the curley bracket { } in (III.5) vanishes and then,

Kmm-*Q{mdΓ(N}(p,rn9g)/dm} = Q. (III.7)

If we solve the system of differential Equations (III.6), we have found a set of
functions a(g\ b(g\ and c(g) such that the vertex functions Γ(N)(p, m, g) derived
from the corresponding Lagrangien (III.l) have a zero-mass limit. For such a
system, we have

= 2Γ(N)(p, m, g ) , (III.8)
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as it can be seen directly using Zimmermann's identity for vertex functions; we
define the functions r(g) and s(g) by

r(g)= Σrng», (111.9. a)
n = 2

1(2, n)

rn= Σ θG2,n,rG2,n,(> (ΠI.9.b)
ί = l

and similarly

s(9) = Σsnd", (ΠL10.a)
n = 2

1(4, n)

Sn= Σ 0G 4 ι n ι ί %«, n > , . (IΠ.lO.b)
i = l

Then, we know that

m2

(^m,g}^ (III. 11)

where we use Lowenstein's differential vertex operator [3].
Using Schwinger action principle and Equations (III.6) which become

(III. 11. a)

mdb(g)/dm-2r(g) = Q , (IILll.b)

mdc(g)/dm-2s(g) = Q , (ΠI.ll.c)

we get Equation (III.8) since ΓN(p, m, g) is related to the soft mass insertion
operator by (A.24).

The solution of the system of differential Equations (III.6) can be performed
easily using (A.34) and (A.35) with the following boundary conditions

av(m = μ) = bv(m = μ) = cv(m = μ) = 0 , (III. 12)

where μ is a given mass parameter. Then, we get

α(#)=l, (IIL13)

and

απ.14)

where we sum over all forest ̂  of < (̂̂ ) divergent generalized vertices containing
the quadratically divergent graph V itself. A similar equation holds for cv where
v is a logarithmically divergent graph. If we report these results for av, bv, and cv
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in (III.4), we obtain

oo I(N,γ)

Γ(N)(p, m, μ, g) = Σβγ Σ ΘGN v .%„ Y ,(p, m, μ) , (111.15)
y = 0 i = l

where lζ(p, m, μ) is defined in (II.6) and has a zero mass m limit. Let us finally
mention that the 2-points vertex function defined in (III. 15) with zero-mass m,
vanishes at p2 = 0.

Γ(2)(p2 = 0,m = 0,μ,0)=0, (111.16)

but the quantities — Γ(2)(p2, w, μ, #)| 2=0 and Γ(4)(P~0, m,μ,g) are infinite
dp2

sums of terms, each of them being logarithmically divergent when w-»0.

ΓV. A New Subtraction Operator

At the end of Section III, we are in a situation analog to the treatment which was
given historically to the ultraviolet divergences. To avoid these divergences, it
was convenient to regularize the Feynman amplitudes with a cut off; then intro-
ducing counterterms which were ultraviolet divergent when the cut-off is re-
moved, it was possible to define ultraviolet convergent vertex functions Γ(N)(p,m,g).
After Zimmermann's [11] work, we know that a renormalized Feynman ampli-
tude can be defined in a compact form graph by graph, by-passing completely
the introduction of any cut-off. Such a renormalized amplitude can also be
defined in the Schwinger α-parameters [10, 13] as given in (1.3). To treat the
infrared divergences, we start from a massive theory and we find a set of counter-
terms which are logarithmically divergent when m-*0 in such a way that the
vertex functions have a zero-mass limit; this is achieved in last section. In Sec-
tion IV, we want to describe a new subtraction scheme which defines in a compact
form, graph by graph, an ultraviolet and infrared convergent amplitude at non
exceptional momentum. This new subtraction scheme which can already be
defined for a massive theory has all the properties of the usual subtraction scheme:
it satisfies Bogolubov and Parasiuk [7], and Hepp [8] recurrence and it ensures
the absolute convergence of the Feynman integrals; in addition it has the property
to define an amplitude which has a zero-mass limit at non-exceptional momenta,
for a graph satisfying (I.I). We define

I

oo I - Σ ααμi
I%(p,m,μ)= J Π daae

0 α = l

I

~ Σ «α(wg - μl) f / __ 1
α" - (IV.l)

The above amplitude has to be compared with the usual renormalized Feynman
amplitude (1.3). We call this amplitude I*(p, m, μ) because it is equal to the
amplitude defined in (II.6) as it is proved below. A direct proof of absolute con-
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vergence and the fact that it satisfies Bogolubov, Parasiuk, and Hepp recurrence
are shown somewhereelse [14] but the identity of (IV.l) and (II.6) already proves
these two properties as well as the existence of the zero masses ma limit. In
Equation (IV.l) the ratio mjμa is a constant for all lines a\ the operator R is the
same as in (1.3) and in Ref. [10 and 13], and can be written under the form

where the τ operators are generalized Taylor operators [10, 13] and the product
runs in any order over the (2l— 1) subgraphs of G. The operator R~ is defined as

To resume what R and R~ does, we consider for instance aφ4-type integrand;
then let us simply say that R~ presubtract the quadra tically divergent subgraphs
at zero external momentum (only one subtraction) while .R subtracts the di-
vergent subgraphs £f(ω(£f} + 1 subtractions) at zero external momentum and at
m2

a=μ2

a.
Another way of writing lζ(p, m, μ) is

I

IR

G(p,m,μ)=] Y\daae *'""" f] (1
0 α = l

- Σ «α(»ti-μi) / _ 1 3

°=1 ZG(α',ί>,Z)

In (IV.4),

so that

Za = 0
αά =<*α

The generalized Taylor operator τ£(α, α') acting upon j2f(α, a') means

and the operator τ^(α') is the usual generalized
ρ = l

Taylor operator defined in Ref. [10] and [13]. The operators τ£(α,α') and τ£(α')
commute. The proof of the equality between (IV.l) and (IV.4) is based upon the
fact that the product Y[ (l-A^2l(^}) can be taken in any order as it is proved

ί f c G

in Appendix B. We also prove in Appendix B the forest formula of diverging
generalized vertices

Π (i-^^M }=[ι + Σ Π ί-^21^)] { }, (iv.v)

where the curly bracket { } is the same as the one in (IV.4). The forest formula
of diverging generalized vertices is needed to prove directly Bogolubov, Parasiuk,
and Hepp recurrence (see Ref. [13]).
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Let us now show the identity between (IV.4) and (II.6). We calculate

I

I 00 I - Σ V atfi

Σ μ f l3/G(P>ro,μ)/δμα=-2j f] docae
α = l 0 α = l

Π (-^2'^)-Σ Π (-
a=l

(ΓV.8)
z α =0

The technique to compute the curly bracket { } is similar to the technique used
to prove Zimmermann's identity (1.9) and is exposed in Ref. [5] and [14] we
obtain,

Σ μadl%(p,m,μ)/dμa = -2£^>/fG/r]% (p, m, μ), (IV.9)
ί—ι *-- J*ω(τ)

where we sum over all divergent generalized vertices T. Such a differential equa-
tion has already been encountered in Section II. With, for boundary conditions
Iξ(p,m,m) equal to IG(p,m\ we get back Equation (II.6).

In this section, we have defined a family of subtraction operator depending
upon the non-zero parameters μa. The usual subtraction operator is obtained
when μa = ma. The amplitudes obtained from such subtraction operators have
a limit when the masses mfl->0 provided that the masses μa are ma independent.

V. Conclusion

In this paper we have defined a new subtraction procedure to renormalize Feyn-
man amplitudes in perturbation theory. This procedure ensures the infrared and
ultraviolet absolute convergence of all Feynman graphs at non exceptional
momenta if at each vertex the degree of the coupling is larger or equal to four
(boson line +3/2 fermion line + derivative coupling ^4). It also satisfies Bogo-
lubov, Parasiuk, and Hepp recurrence. Given, for instance, a φ- type Lagrangian

-(cfo)/4!)φ4, (V.I)

we can built the corresponding vertex functions

oo I(N,γ)

Γ(N)(p,m,μ,g)= Σ gy £ θGNγi
7 = 0 ι = l

Σ Π CΛJ π
,...,Rt] ί RI f R,

' (V.2)
where the notations are defined in Section III and the Feynman amplitude
Iζ(p, m, μ) is given in (IV. 1). If we impose to Γ(2) and Γ(4) the usual mass m-shell
conditions, the μ dependence of Γ(N) disappear and we get back the usual vertex
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functions. On the other hand, if the counterterms are m independent, the zero-
mass m limit of Γ(N) obviously exists since /£(/?, m, μ) does have a zero-mass m
limit. If the counterterms are m dependent, they must have a zero-mass m limit
if we want Γ(N)(p, 0, μ, g) to exist. It is well known for instance, that with the usual
mass m-shell conditions, Γ(N)(p, m, g) does not have a zero-mass m limit but in the
so-called μ renormalization where Γ(2)(p2 = w2,ra, g) is zero but the derivative

—2-Γ(2) and Γ(4) are subtracted in a μ-point, Γ(jY)(p, o, μ, g) exists.

A similar subtraction procedure has been recently defined in momentum
space by Lowenstein and Zimmermann [6] and we have no doubt that the am-
plitude (IV. 1) is the α-parameter version of their amplitude. The new Feynman
amplitudes (IV. 1) taken at masses ma equal to zero can be used to construct the
so-called preasymptotic theory. It will be shown somewhere else that the ampli-
tudes (IV. 1) plays an important role in the analytic continuation in dimension D.

Acknowledgments. We wish to express our gratitude to Professor B. Schroer and to the Institut
fur Theoretische Physik for their kind hospitality.

Appendix A. The Counterterms Structure in a φ4 Type Theory

a) The Vertex Functions

We consider the following Lagrangian defined as a formal power series in the
parameter g.

&(φ, g) = ϊb(g)dμφd»φ + ±m2a(g)φ2-(c(g)/4 !)φ4 . (A.I)

The functions a(g\ b(g\ and c(g) are formal power series in g
GO

a(g)=ί-^ang" (A.2.a)

b(g)=l-Σbng", (A.2.b)
n = l

c(9) = 9+Σcng". (A.2.C)
n = 2

The vertex functions Γ(N)(p, m, g) corresponding to the Lagrangian JS?(φ, g) where
N is the number of external legs, are infinite sums of Feynman amplitudes which
may be constructed with the following Feynman rules: we associate to every
vertex a function c(g) and to every lines a propagator

π(/c, m, g) = [b(g}k2 + φ)m2] - ί . (A.3)

Let us label the one-line irreducible, connected graph which enter in the com-
putation of Γ(N)(p,m,g) by GN ni where n is the number of vertices and i is a
running index which take values from 1 up to I(N, n) which is the number of such
graphs in Γ(N}. Then,

oo I(N,n)

Γm(p,m,g)= £ [φ)]« Σ θGN^KGlini(p,m,g], (A.4)
n = 0 i = l
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where KGN n t(p, m, g) is the renormalized Feynman amplitude for the graph GN „> f

computed with the propagators (A.3), with subtraction at zero momentum, and
ΘGN n. is a numerical factor related to the symmetries of the graph GN „ {. Since
we want to express Γ(N) as a formal power series in g, we first write the propagator
(A.3) as

π ( k y m ί g ) = (k2 + m2Γ1 Σ ((^-b(g}~]k2-^[_i-a(9)-]m2 \\)/(k2 + m2)}«. (A.5)
q=o

Each propagator (A.3) is then replaced by an infinite set of lines of the type

with q box vertices ([ί-b(gj]k2 + [l-α(g)]m2 ||), and (q+ΐ) propagators of the
type (k2 + m2)~1. For the purpose of renormalization, we remind the reader that
m2 || in the box vertex means an oversubtraction by two. In the above process,
each graph GN „ > f generates an infinite number of new kind of graphs called
^N,«,ί(^ι? >#/)> where g7 is the number of box vertices on the line; corresponding
to the line j of the graph GN „ j f . Equation (A.4) becomes

oo I(N,n) oo I

Γw(p,m,g)= ΣCΦXΓ Σ θo^ Σ Π CWJ 'Vn.«<«. ..... *>M>
n = 0 i = 1 f q j = 0 j = 1

V / = ι , . . , . i (A.6)

where the scalar amplitudes !HN n i(qiί...9qι)(p,m) are computed with the propa-
gator (ί^+m2)"1. In (A.6), the operator ύ?7.(gf) acting upon lHN,n,i(qi,...,qi)(P>™)
introduces in the Feynman integrand of the graph HNjΠ>ί(^ l5...,^j the numerator
([1 — b(gj]k2 + \_^ — a(g)~]m2 ||). Next, we use definitions (A.2) for the functions a(g\
b(g\ and c(g). This is equivalent to the following: for each graph HNtttti(ql9...9qι)9

we define an infinite set of graphs such that at each (4-legs or box) vertex is attached
a positive integer. Such graphs are denoted by

or Fj^M)/({r}3 {5}) for simplicity. In this notation

y=Σ> + Σ Σ«y (A 7)
i = l i = l j = l

Then
oo y I ( N , n )

Σ 9γ Σ Σ 0GN,n>i
y = 0 n = 0 ί= 1

Σ ΓKΠ Π^.VB.,.ί......«)(p.
KO Us) j=ι u = ι t>=ι

where the sums over {g}, {r}, and {s} are limited by the condition (A.7) and where
the operator 0Suv means that

bSuM+a

SuV

m2\\ (A 9)
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is introduced at the numerator of the Feynman integrand of the graph
^v,n,i(4i5•••>#/)• The formal power series (A.8) which defines the vertex functions
Γ(N) can now be transformed by choosing the coefficients aw bn9 and cn in a way
which suits the purpose of renormalization. We define

K2,n)

"n= Σ θG2niaG2Λi9 (A.lO.a)
i = l

1(2,n)

bn= Σ θo^bβ^, (A.10.b)
i = l

/(4,n)

cn = Σ θGAnιcGAnι. (A.10.C)
i = l

The coefficients an and bπ are decomposed over each n vertices, quadratically
divergent, generalized vertex and the coefficients cn are decomposed over each
n vertices, logarithmically divergent generalized vertex.

If we replace an9 bn9 and cn in Equations (A.8), (A.9) by their value from (A. 10),
then the graphs F$>π>ί({r}, {s}) can be considered as a reduced graph; indeed each
box vertex with coefficients an and bn can be replaced by a quadratically divergent
generalized vertex with n vertices, and each 4-legs vertex can be replaced by a
logarithmically divergent generalized vertex with n vertices. In this process, we
generate a graph GNtyj. The graph FJfitlii({r}9 {s}) is the reduced graph obtained
from GNίyj by contracting into points the disjoint, logarithmically and quadrat-
ically divergent generalized vertices defined by {r} and {s}. Conversely, given a
graph GNtγtj9 all possible set of disjoint, logarithmically or quadratically divergent
generalized vertices, defined a possible graph F^tnii({r}9 {s}) which by the above
process, generates back GN>yj. Using the combinatoric relation

between the numerical coefficients for a graph G, a subgraph R and the reduced

[-1\R\
subgraph |—|, we can write Γ(N) as

oo

)= Σ 9y Σ
i = 1

Σ Π
{Rι,.. ,Rt} Γ

) = 2

where {Rί9...9Rt} is a (possibly empty) set of disjoint, divergent, generalized ver-
tices of GNiVii9 and where the operator <9R means that (bR.k2 +aR.m2 ||) is intro-

duced at the numerator of the Feynman integrand of the graph \GN > y > f / (J
L ' ' / j=ί

for each quadratically divergent generalized vertex Rj with external momentum k.
Let us remind here that the counterterm structure given by (A.2), (A.10) is such
that the vertex functions Γ(N) can be written in the form (A. 12), which is nothing
but the starting point of Bogolubov and Parasiuk [7], and Hepp [8] recurrence.
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As an application of the form (A. 12), let us solve for the coefficients %, bR, and
CR when we impose the usual mass-shell conditions

Γ(2](p2= -m2,m,g) = Q , (A.13.a)

^(P2,™,#)lp2=_m2 = l , (A.13.b)

Γw(Pi'Pj= ^(l-45y),ro,0) = 0. (A.13.c)

Equations (A.13.a,b) implies for each graph G 2,y,i

Σ Π % Π β ^ l L i ^ Rj](p2=-m2

9m) = 09 (A.14.a)

Σ Π % Π

If we specify out in (A. 14), the set of disjoint subgraphs equal to the graph
{G2 y t } itself, then using

we obtain

ao2,γ,= Σ Π CRJ Π 0*Λ.V|ί/U R] , (A.16.a)
{Ri,...,Rt}*{G2>v,i} f Rj f Rj I - 7 " 1 -I

bG = y π CR π ί?Λ
{Λι, . . . ,Kt}Φ{G 2 , y , i } r Kj r Λj

Similarly, from (A.13.c), we obtain for each graph <

CG,V.,= Σ Π % Π ^
{Λι, . . . ,Λ t }Φ{G 4 ,v , ι } f Rj ( R,

In (A.16), for a given graph G = G».Jθ\,
7=1

(A.17.b)

J&= - JG p, Pj= y (1 -4δy), m . (A.17.C)

Equations (A. 16) can be solved by recurrence; we find

α G 2 > y ) ί — L^ 11 ''[Λ/MaxK] 11 ^Γ[R/MaxR]JΓ[G2,v,i/MaxG2,y,i] ' (A. 18)
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and two similar equations for bG2 y ι and CG4 ., with Ja replaced by Jb or Jc.
In (A. 18), we sum over all forests ^' (including the empty one) of divergent
generalized vertices different from G2 y f; the symbol [R/MaxR] is defined in the
introduction; the operator J®R means that (Jb

Rk2 + Jα

Rm2 ||) is introduced at the
numerator of the Feynman integrand of the graph R where Re3?' and RcR
and is maximal in jR'. The operator notation used in (A. 18) necessitates that if
RCR, J&

R is written at the left of JG

R,.
If we report the counterterms αG2 t, bG2 ., and CG4 . in Equation (A. 12),

we find

lω(JR) = 2 lω(.R) = 0
(A.19)

where now we sum over all forests 3F (including the empty one) of the graph GNtytί.

b) Vertex Insertions

We define after Lowenstein [3] the three following vertex insertions

m2

v, m, g) = dΓ(N}(p, m, g)/da(g), (A.20.a)

-τN4[dμφdμφ] Γ(N)(p, m, g)=dΓ(N}(p, m, g)/db(g), (A.20.b)

(1/4 !)N4[φ
4] Γ(N)(p9 m, g)= SΓ(N^(p, m, g)/dc(g). (A.20.c)

From (A.4), we obtain

dΓ(N}(p,m,g)/δa(g)= £ [φ)]π ^ θGNn.^ —-KGNnι(p,m,g), (A.21.a)
i= 1

oo I(N,n) I

dΓm(p, m, g)/db(g)= - Σ [cfe)]" Σ β6κ>B,, Σ ^[GN „ ,], (P, ™, θ) , (A.21.b)
« = 0 i = l 7=1 J

oo /(N,n)

aΓ(W)(p,/w s ί)/cbto)=Σn[Φ)]B~1 Σ eGN^KGNni(p,m,g). (A.21.c)
n = 0 ί = 1

In (A.21.b), [ G N t n t i ~ ] X j is the graph GN n i where a vertex fc^ is inserted on the line;.
Let us mention here the counting identity; using the topological relation
4n — 2l = N for each graph GN „ I? we have

(p, m, g)/dα(g) + 2b(g) dΓ(N}(p, m, g) / db(g) + 4c(g) dΓ(N}(p, m,

= NΓ(N}(p,m,g). (A.22)
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The same transformation from (A.4) to (A. 12) can be performed upon the Equa-
tions (A.21); we get

oo I(N,y)

dΓ(N}(p,m,g)/8a(g) = £ #y £ θGNtVti
y = 0 i=l

'L?*, 5 % ί, v5έ/fβ"--/ι' j* 1(p'm)l' (A 23 a)

oo I(N,γ)

dΓ(N)(p,m,g)/£b(g)=- Σ gf v Σ ^GN,,,,,

Σ Π CK Γf ^κ Σ / L /ύ » 1 I , (A.23.b)/ j \_ J. Jvj J_ x J\j ^j *~ΓN, γ,i/^-J K j χ > \ /

I /

GN γ i U ^j
' ' / 7 = 1 Ί

dΓ(N}(p9m,g)/dc(g)= £ 0TJ Σ 0Gw y 4
V = 0 ί = l

•ίΣ { R Σ R } Π ^ Π ^/^.^/^^(P^)!, (A.23.C)

where we sum over all vertices wα of the graph GNtytί. It is also useful to define the
soft mass insertion

-m2

/•} 2 \-Ύ J

where

ΓN{p,m,g)=-

p, m, g) = ΓN(p, m, ̂ ), (A.24)

Σ Π cRj Π 0jΛw>ϊ.,/ύ*>>mH' (A'25)

R ι , . . . , Λ t ) / Λ j / Λ, ί ^ = 1 J f
I ίω(Rj)=Q ίω(Rj)=2 }

with ΪG defined in (1.9).
More generally, if

<Mff)= Σ ^"0" (A 26)
n = 2

Φ«= Σ θo^.Φβ^.,, (A.27)
i= 1

then,
oo J(N,y)

φ(g)dΓm(p,m,g)/δa(g)=- Σ 9y Σ ^N r i i
y = 0 i=l

Σ (0XID Π cRj Π ^
«;Λι Rt} f RJ f Rj
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where V is a quadratically divergent generalized vertex of GN^yJ. Similarly

oo I(N,γ)

φ(g)dΓ(N}(p,m,g)/db(g)=- Σ 9y Σ θGNlVίi
7=0 i = l

Σ Φv Π % Π <VG w . v > i /U Rjϋv]Xv(P,m)\. (A.28.b)
{v;Rι,...,Rt} ( Rj { Rj - 7 " 1 J i

Also, if in (A.27), the sum runs over logarithmically divergent graphs, we get

oo I(N,γ)

Φ(g}dΓ(N}(p,m,g)/dc(g) = Σ 9y Σ θGN,Ύ,i

RΣ R Φv Π CRJ Π ^/[GW,V,^U^K|(P^)J. (A.28.C)

cj Zίmmermanrfs Identity

In Section I, we already mention Zimmermann's identity for a Feynman amplitude.
Here we intend to show the consequence of Equation (1.9) upon the vertex func-
tions Γ(N)(p9 m9g). From (A.23.a) and (A.25), we get

oo I(N,γ)

dΓ(N)(p,m9g)/da{g)-ΓN(p9m9g)= Σ dy Σ ΘGN y £
y = 0 i = l

Σ Π %
ί RJ
^ω(Rj) = 0

{K!,...,^} c Rj I Λ j
t-α

. ,
The curly bracket { } can be transformed by using Equation (1.9),

oo I(N,y)

dΓ(N}(p,m,g)/da(g)-ΓN(p,m,g)=- Σ 9y Σ θGN>γ!ί
γ = 0 i=l

Σ Π % Π <P., Σ, _
{Λι,. . . ,Λ t } ( Λ j Γ Kj ^[G^.y.i/U Rj]

lω(Rj) = 0 lω(Rj) = 2 'J=l

r , ,

where v is a divergent generalized vertex o f \ G N γ ί \ j R j
L ' ' / j= i

the summation over υ and the summation over the sets [Rl9...9Rt}
m, let us par-

tition the set {Rί9...,Rt} into two sets in regards to v: the first set called {R}ί is

. We now interchange

such that the contracted points Rk in \GNtyiί (J Rλ do not belong to v, and the
L ' / j = l J

second set {.RJ2 is such that each contracted point Rk belongs to v. We define in
GNfVti the generalized vertex v' such that v= \v'/ (J Rj] and we note that the

superficial degree of divergence ω(v') = ω(υ) since each contraction of a quadratic-
ally divergent generalized vertex R is associated to a derivate coupling of degree 2
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generated from the operator 0R. Equation (A.30) can be rewritten as

oo I(N,γ)

dΓ(N)(p,m9g)/da(g)-Γ(N)(p9m9g)=- Σ 9γ Σ θGN,γ>i
y = 0 ί= 1

Σ f V FT r ΓT\L 11 cRj 11
v'eGN,γ,ί ]{R}2 fRje{R}2 (Rje{R}2

" 0 Xω(K, ) = 2

Σ Π % Π (A.31)

In (A.31), we sum over all (possibly empty) sets {R}2 of disjoint, divergent,
generalized vertices of υ' (vf itself excluded); the curly bracket { } in the above
equation plays the same role as φv in Equation (A.28). We define the functions
r(g) and s(g) as

1(2, n)

»•»= Σ °G2,nirG2ni for n^2, (A.32.a)
1=1

Kί/)=Σ^"> (A 32 b)
n = 2

and
1(4, n)

sn= Σ ΘG^SG^ for n^2, (A.33.a)

where

Σ Π % Π MM*/!' (A 34)
{ Λ ι , . . . , Λ t } Φ { G } f R., f Rj L -7-1 J

for a quadratically divergent graph G, and

sc= Σ Π % Π <M[c/ύ*/ι (A 35)
{Rι, . . . ,R t }Φ{G} f Rj f Rj L J=ί J

lω(Rj ) = 0 ΐ ω(Rj ) = 2

for a logarithmically divergent graph G. Then, a direct application of (A.28) gives

ΓN(p, m, g) = dΓ(N}(p, m, g)/da(g) + r(g) dΓ(N}(p, m, g)/db(g)

+ s(g) dΓ(N}(p, m, g)/dc(g) . (A.36)

Equations (1.9) and (A.36) are due to Zimmermann [11].

Appendix B. Different Forms of the New Subtraction Scheme

The new subtraction scheme as written in Equation (IV.4), introduces the operator
Yl (l — Δy2l(S/*}) acting upon a function j2f(α, α') which has the property of having

a simultaneous Laurent series in the dilatation variables corresponding to sub-
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graphs which form a forest, independently of the fact that the variables α' alone
or the variables α and α' are dilated. This property of the function JΓ(α, α') is
extensively used in what follows. In this Appendix, we follow closely the Ap-
pendix B of Ref. [13] which proves the same kind of theorems for the usual
subtraction scheme.

1. The Nested Forest Formula

Theorem.

Π (~Δ-y

21^)} 3 (α,α'), (B.I)

where we sum over all sets of nested subgraphs. Consequently, the product in the
left hand side of (B.I) is independent of the order of application.

Proof. We just mention here the main steps of this proof and the differences
with the proof of Ref. [13]. Equation (B.I) is proved by recurrence. Each step of
the recurrence is proved if we can show that, given a subgraph ,̂ and given a
set WH-I of (n— 1) subgraphs {^1,...,^_1} such that at least one of them is either
disjoint or overlapping with 5 ,̂ we have

α') = 0. (B.2)

In (B.2), £'n-ι is the set of all forests of nested elements built with the subgraphs
of "Wn-ι and which does contain at least one element either disjoint or over-
lapping with Sfn. To any nest «yΓe<^_ l 5 we define its ^-maximal nest .̂ Then,
the nest ̂  can be decomposed into three subnests (see Ref. [13] for their definition)

^ = ̂ uJfuJf, (B.3)

where J*uJΓ contains necessarily at least one element either disjoint or over-
lapping with ίfn. The elements of ̂ ujf are elements of i^n_ 1 on the other hand,
the elements of ffl may not belong to Hfn-^ All nests Jf (which does not neces-
sarily belong to <^-ι) with the same ^-maximal nest 0 defines an equivalent
class and we have

with jTgjf . (B.4)

When we sum over all nests which belong to the same equivalent class, we form
the quantity

Π (i-^2'w)(-^2i(^>) Π (-
r^Φ^n ^e^uJf yεtf /u c\
Wφ Wn- L (& 3)

If we use the property of the generalized Taylor operator (see Ref. [13], (A.9)) that

..^(^^'), (B.6)
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then, the sum of the expressions (B.5) over all equivalent classes is the left hand
side of (B.2). The detailed proof that, for each equivalent class, the expression
(B.5) is null, is too long to be reported here and we refer the reader to Ref. [14]
for a more complete version. Let us simply say that in the function Jf (α, α'), we
dilate the variables a'a and (αΛ,oζ) for aeBse^ respectively by ξ's

2 and £2, for
aeKjeJ^f by σ'2 and σ2, for aεH^Jf by χj2 and χj, for ae&n by β'2 and β2.
After application of the operators A relative to the elements of Jf, and after using
the Taylor remainder integral representation for the elements of Jf, we obtain
a sum of terms each of them containing in factor a term βpβ'p'9 with

(B.7)

and

p^-2/(^). (B.8)

The application of A^2l(^n} over these terms gives zero.

2. The Forest Formula

Theorem.

Σ Π (-^2i<ί°) #(0,00, (B.9)

where we sum over all forests 3F of subgraphs.

Proof. As we know from Ref. [13] (Appendix B), the proof is based upon the
following equality

...(i-^(u^})(-^^ (B.io)
where the subgraphs 5^,...,^ are disjoint. We dilate the variables oζ and (αα, oζ)

«
for αe^ respectively by ρ'2 ana ρ2, and for αe \J &Ί by ρ'2 and ρ2. Then, ^Γ(α, α')

i= 1

becomes ^(ρρ'ρ^ ρρt, α, α'). We expand the function & in the variables ρρt and
ρρ'ρρ as

'Qi& QQi, x, «')= Π to

Σ Π (eβi)*' Π (ββ'eiβί)" ̂ (*.* }(α,«'). (B.11)
ί = l

In (B.ll), L(^) and rf(5^) are respectively the number of loops and of derivative
couplings of the graph y{\ we note that

\ i = l

and
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If we apply the operator A^2l(^ί} upon Jf(α, α'), two kind of terms are left in
(B.ll); the terms obtained after application of τ^ί

2/(<^l)~1(α/) are such that
/e'^ω^ ) — 1 where ω(^) is the superficial degree of divergence of 5 ;̂ the terms
obtained after application of τy?l(^ί}(oί,a')[l — τ^l(^l)~1(a')'] are such that
fej = ω(5^) and /o^O. To apply the operator (1 — A^2l{^}) is equivalent to the suc-
cessive application of the operators [1 — τ^2l(^}~ 1(α/)] and [1 — τ^2/(y>)(α, α0]. The

first operator applied with 5"= (J ̂  tells that Σ fc/;>ω U ̂  -1> which is
i = l i = l \ i = l /

satisfied only if all fej^ω^) and all fcf = 0; the second operator requires
/ n \

(J 5̂  , which cannot be fulfilled This proves Equation (B.10).
i = l

3. The Forest Formula of One-Line Irreducible Connected Subgraphs

Theorem.

Π (l-^2ί(ί^(α,α')= f l + Σ Π (-^2ίw)l ^r(αX), (B.14)
^iG L J^ ^eJ^ J

where we sum over all forests 2F of one line irreducible subgraphs.

Proof. In Ref. [13] (Appendix B), we show that the proof is based upon the
following equality:

where ̂  is a one-line reducible subgraph and ^' its one-line irreducible com-
ponent. We dilate the variables a!a and (αfl, α^) for αe5^ respectively by ρ'2 and ρ2,
and for αe^' by μ'2 and μ2. Then Jf(α, α') can be expanded as [14]

^^.^feα') - (B.16)

Then, the application of zJ^2ί(^} requires fc; +k'2^q(^f)-2l(^)-l, or
)9 with /c 1+/c 2 = 0; on the other hand, the application of

require k\ > q (#") - 21(2") > q(&) - lλψ\ That proves (B.15).

Theorem.

*re we sum over all forests of one-line irreducible, connected subgraphs.

Proof. In Ref. [13] (Appendix B), we show that the proof is based upon the
following equality:

where y^^...,yn are disjoint subgraphs. To prove (B.18), we use (B.ll) and
apply the A operators successively.
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4. The Forest Formula of One-Line Irreducible, Connected, Divergent Subgraphs

Theorem.

ί\ Λ-^I(^\(^(Γ/ rf'\— 1 J_ V TT ( Λ~ 2 ^)Ή Wίn r/'\ Π31QΊ
I I — Δ y )<*£ V^? ^ / -*- I / II V — ^-"9" / °̂  V1^? ^ / ? l-^ ^^/«^ ' ^̂  A ± «^

where we sum over all forests of one-line irreducible, connected, divergent subgraphs.

Proof. The proof is trivial since A^2l(^£¥((%, α') is nul if ̂  is a convergent
subgraph.

5. The Forest Formula of Generalized Vertices

Theorem.

r(α,α'), (B.20)

where we sum over all forests of divergent generalized vertices.

Proof. In Ref. [13] (Appendix B) we show that the proof is based upon the
following equality

where 5^ is a connected subgraph which is not a generalized vertex, and £f2 *s

the generalized vertex obtained by adding n lines to ̂  but no vertices. Conse-
quently, £f2 has n loops in addition to those of «9^. We dilate the variables o£ and
(aa, afa) for αe^ by ρ'2 and ρ2, and for αe^2 by μ'2 and μ2. Then, after dilatation
of its variables, the function ^Γ(α, α') can be expanded [14] as

Σ (QQfμμΊki(QQ^(Qμ)kίμk2^(kt^ «') - (B.22)

The application of J^21^0 upon (B.22) implies k\ + k'2^ω(^)-i, or k\+kf

2 =
ω(&Ί) with fc1==0. The application of (l-τ2-

2/(^2)-1(α/)) in (ί-A^l(^}) implies
fe/

1^ω(5^2)>ω(e^i). That proves (B.21). This theorem ensures that the new sub-
traction scheme satisfies the recurrence of Bogolubov and Parasiuk [7], and
Hepp [8] (see Ref. [13], Section V). Similar results as those of paragraphs 3°), 4°),
and 5°) can be also obtained from the complete product of (1 — zl)'s:

), (B.22)

where the product on the right hand side runs only over divergent generalized
vertices. Such a reduced form turns out to be useful for practical computation of
the renormalized integrand.
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