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Volume Dependence of Schwinger Functions
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Abstract. We prove upper bounds on the partition function and Schwinger
functions for the Euclidean Yukawa2 quantum field theory which depend on
the interaction volume A only through a term of the form (const)'71'. We also
prove a lower bound of the form (const)1"1' for the partition function. We work
throughout in the Matthews-Salam representation with the fermions inte-
grated out.

I. Introduction

We study the Yukawa2 quantum field theory in a finite volume A as a Euclidean
boson field theory with the fermions "integrated out". The possibility of inte-
grating out the fermions in the Yukawa theory was first demonstrated, in the
external boson field case, by Matthews and Salam [1,2], and in the finite volume
interacting theory, by Seiler [3] who showed that the resulting Fredholm deter-
minants are integrable functions of the boson field. As a step towards taking the
infinite volume limit of Yukawa2 we show in this paper that these determinants
approximately factor over a decomposition of the space-time volume into sub-
volumes. While the determinants do not factor exactly, we exhibit upper and
lower bounds which factor. The existence of such an approximate factoring is
related to the exponential decoupling of distant regions in the free boson and
fermion two point functions — i.e., to the nonzero free boson and fermion masses
μ0, m0.

Our principal results are bounds on the un-normalized finite volume Schwin-
ger functions

= <Π?= i Φt/i) ΠT= i
and on the partition function Z(A] = (e~v(A}y. Here f^gphk are functions in the
boson and fermion test-function spaces: jtf^ and tf * = 2tf (™ξ®C2, where
j4?(m} = L2(R2,(k2 + m2)sd2k). We cover space-time with a lattice of unit squares
AΛ, with centers αeZ2, and we suppose that the ft are localized in unit squares.
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Denoting by na the number of ft localized in AΛ we have:

Theorem 1.1. With constants depending only on m0, μ0 and the coupling constant,

Theorem 1.2. // the space-time cutoff g(x) is of Hamiltonian form: g(x) =
X[o,ί]χ[o,ί](χ) then for a strictly positive constant:

Z(A}^ (const) 1^1.

Theorem 1.1 is proved in Section II and Theorem 1.2 in Section III. The proof
of Theorem 1.2 requires the use of the Feynman-Kac formula of Osterwalder
and Schrader [4] and hence the restriction on the form of cutoff. We consider
the case of scalar Yukawa2 theory, but all results apply equally to the pseudo-
scalar theory with only trivial modifications.

Before publication of Seller's paper [3], which for the first time applied fully
Euclidean methods to the Yukawa2 model, most of the rigorous results on the
Yukawa2 model were proved in the Hamiltonian formalism. Glimm [5, 6] showed
the existence of a semibounded finite volume Hamiltonian H(g) and Glimm and
Jaffe [7, 8] showed that H(g) is selfadjoint and generates dynamics with a finite
propagation speed. Schrader [9] proved upper and lower bounds proportional
to the volume for the vacuum energy E(g)= inf specH(g) and showed existence of
an infinite volume Yukawa2 theory; Brydges [10] has given an alternate proof
of the lower bound for E(g) using semi-Euclidean techniques. The proof of the
Haag-Kastler axioms for the infinite volume theory was completed by McBryan
and Park [11] who proved Lorentz co variance. Our upper and lower bounds on
Z(A) are the Euclidean equivalent of Schrader's bounds on E(g)1. For notation
and standard results for compact operators, we refer the reader to the books of
Dunford and Schwartz [12].

We include here for convenience a short formal description of the procedure
of "integrating out" the fermions in the Yukawa2 theory. The possibility of doing
so is due to the field equations being linear in the fermi fields [1,2]. In terms of
the Euclidean fermi fields Ψ(i\ i=l,2, introduced by Osterwalder and Schrader [4],

the un-renormalized interaction for the spacecutoff Yukawa2 model is Vj =
λ$dxg(x)Ψ(2)(x)Ψ(ί}(x)φ(x). The Schwinger functions and partition function may
be expressed as :

TJ^,...,^;*!,...,^^^
Z=$dμ0Zf, Zf = (e-v*yΩf,

1 We note that Schrader's bounds follow immediately, see Bridges[10], from Theorems 1.1, 1.2
and the Feynman-Kac formula of Osterwalder and Schrader [4].
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where dμQ is the free boson measure and Ωf denotes expectation in the free
Euclidean fermi vacuum. Decomposing Ifr(1)(y1), in Tm, into creation and annihi-
lation operators and contracting the latter to the right, we obtain :

rjj>ι,...,ym;zι,...,zJ=ΣΓ=^
-λ$dyg(y)φ(y)S0(y1,y)Tm(y,y2,...,ym,zl,...,zm).(l.l)

In terms of the integral operator K with kernel K(x, y) = SQ(x, y)g(y)φ(y), the
integral equations (1.1) have the solution:

%)()>1̂ ^^
Iterating this equation m times we arrive at :

'(yj,zk)Zf (1.2)

where S'(x, y) = ((l+λK)~1S())(x, y). To compute Zf we differentiate with respect
to λ:

(d/dλ)Zf(λ)= - $dxg(x)φ

= ldxg(x)φ(x)((l + λK)-1SQ)(x, x)Zf(λ)

where in the second line we have used (1.2) with m=l. Thus

Renormalization of t^ requires that we subtract (i) <Pj)Ω =TrAX which nor-
mal orders K/? (ii) a vacuum energy counter-term — ̂ <:Fj. > = ̂ <Tr/l2K2> and
(iii) a boson mass counter- term — ̂ λ2δm2:φ2(g2) :, <5m2 = — 2(2π) " 2 J d2p(p2 + mo)~ : .
Thus we must replace Zf above by:

where F(<£)= -TrK2 + (5m202fe2), and

see Dunford and Schwartz [12]. Thus the representation for the renormalized
Schwinger functions with the fermions "integrated out" is:

f(yJ9 zk)D(Φ) (1.3)

The formal expressions above are all well-defined if we replace the fields φ, Ψ(l}

by momentum cutoff fields φκ, Ψ(j:\ Furthermore Seiler [3], has shown that the
quantity on the right of (1.3) converges as τc-»oo. Thus we may view (1.3) as a
definition of the Schwinger functions without momentum cutoffs. For technical
reasons it is convenient to separate the term F(φ\ in D(φ\ as a sum:
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where — G(φ) = ΎιcK*K + δm2φ2(g2}. This completes the motivation for formula
(2.1), and the subsequent definitions, in Section II.

We note that our methods give an alternate proof of Seller's results when the
perturbation expansion presented in Section II is carried out once in the inter-
action volume instead of repeatedly in unit volumes.

II. Upper Bounds on Schwinger Functions

The Schwinger functions for the Yukawa2 model are expressed in terms of solu-
tions of a Fredholm equation by [1, 2, 3] :

S'(gj9 hkι φ)D(φ) . (2.1)

Here S'(g,h;φ) = (g9(l+λK)-lSQhl S0(x,y)

^)ι β-*λ2:Tr<x*+«2: det3(l

) = μ(pΓ2μ(qΓ2$d2kG(k)g(p-k)g(k-q),

G(k) = - 2(2π) - 2 J d2 1{ l/ω(ί + k/2)ω(l - k/2) - l/ω(/)2 } , ω(p}2 =

The Fredholm operator K(φ) = K(φg) is the compact operator with kernel K(p, q\
onje = ̂ f(^®C2 while G defines a positive Hubert-Schmidt operator on Jtf[μQ\
We will take the space-time cutoff g( ) to be in CJCR2) or else to be the charac-
teristic function of a bounded region and we define A = suppt g( - ). Seiler [3] has
shown that the quantities defined above are a.e. defined functions of the boson
field φ.

Applying the Schwarz inequality to (2.1) we obtain:

S'(gj9 hkι φ)D(φ)\\2 .

By the hypercontractivity of the free boson field, and checkerboard estimates [13]
it follows that :

(πβ +

^ const (const)" Παez^J1/2 Ui= i I I / i l l - 1 -

Thus to prove Theorem 1.1 we need only show that

||detjkS'to;Λ^^^ (2.2)

We again use the Schwarz inequality and the result, proved below:

Lemma 2.1. ||^~1/2λ2:(φ'Gφ)ι: || <(const) |y1', p^l, uniformly in \A\.
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This reduces the problem to studying

'(gj9 hk', φ)e-^^+v2 det,(i+λK)

^^

where Ψ = DQgίΛ...ΛDQgnl, Φ = S0gίΛ...ΛS0gm, are vectors in the m-fold anti-
symmetric tensor product space Λmffl, and D0 is multiplication by ω(p)~1. Both
D0 and S0 are isometries from jjf* to ffl and thus:

Hence (2.2), and Theorem 1.1, are proved once we have shown that:

Theorem 2.2. Let ym(</>) = ίΓ(;ι2/4):Tr(ί:*+κ)2: ||®m(l + AKΓ1det3

Then

|| rm(<£)||pg(constr (const)'4! , pZl .

Proof of Lemma 2.1. By explicit Gaussian integration we have:

The Hubert-Schmidt norm, I J G U i is given by:

Denote by Z^1' the smallest subset of Z2 such that ^cUαeZw)Jα, and let χα(x)
denote the characteristic function of Δa. We will use the notation αe/t to denote
αeZ(

2

Λ) in the sequel. Introducing the decomposition g(x)=Σ*εΛX.!l(
yi}9(χ) =

*eΛ9«(x) we obtain

For y^l we denote by ./(y) the set of space-time cutoffs g( ) which are of one
of the forms: (i) Xα6ylχα(x), (ii) Σαo^o^αo^o^i^iX or (iii) g(x), with g^xje C$(Rl),

y , or
Xl X

respectively. The function G(k) may be computed [3]:

By integration by parts in each of the variables pb qb fef, lt we find

for ge^(γ), with the constant independent of 0. It follows that

^ const(l 4- y)4 Σα,^α',revi !/(«, j5, «', JSΊ ̂  const(l + y)4^| ,

where |yi| is defined to be \Z^\ This completes the proof of Lemma 2.1, with the
constant independent of 0 for
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Proof of Theorem 2.2. In order to study Ym(φ\ we note that

where vf(C) are the eigenvalues of the operator |C| in increasing order, counted
by multiplicity. It is convenient to work with the self-adjoint operator A = λK +

^-1, andthen

yj0) = e-(λ2/4> Tr<κ*+^^^

We introduce a sequence of momentum cutoffs κr = μQ(er— 1), r = 0,l,..., and
fields φr = χκ*φ where χκ(x) = κ2χ(κx\ χeC%(R2)9 supptχe(X)2 [- 1/8, 1/8] and
fΛcχ(x) = l. Since Ym(φJ-+Ym(φ) in Lp(dμQ\ [3], Theorem 2.2 will follow from a
bound of the form |j^fI(0II)||p^(const)m(const) |Λ|, with constants uniform in
n, m, \Λ\. We consider for convenience that the unit volumes ΔΛeΛ are ordered
in some way, say α l 5 . . .,αμ|. To every positive integer n, every sequence

and every double sequence

c _ /c(α) |/vί= A e(α) _ fo(α) c(α) ^ e(α) _ 1^>c(α)"> "> e(α) "s— (s |αe/ι, s — vso ? J s «-ιΛ s o — i^5! = ••• =s

n-ι

we define integral operators

where X^α) = K(φγg^ - i.e. has momentum cutoff κγ and is localized in region α.
Thus the Kα(r; 5) have maximum cutoffs oϊκrβ + ί m Aβ, β^u but maximum cutoff
still at κn in regions with βxx; Kn^(r; s) has similar cutoffs except that in region α
the cutoff interpolates between κn and κr<x.

For any operator C we denote the eigenvalues ordered in decreasing absolute
value, counting multiplicity, by λ^C). For each of the operators K defined above,
we introduce A = (l + λK*)(ί + λK)—lL, and define functions

H(K) = - ^λ2 : Tr (K* + K}2 : - A3 Tr K*K2 - ±λ4 Tr (K*K)2 ,

where Πί*(m) is defined to mean leaving out of the product the lowest m eigen-
values below zero. With the definitions above, we have

The factor e"1" gives the required (const)"1, and we now show that Zm(K) =
epfI(K}Dm(A)pl2, satisfies

IIZJK^,,))!!^ consul, (2.3)

uniformly in m, n, \Λ\, completing the proof of Theorem 2.2.
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To prove the bound (2.3) we show the existence of an increasing sequence of
upper bounds for Zm(K(φn)) with the final bound dominated by (const)'71'. The
bounds are obtained essentially by applying a finite perturbation expansion
(which is exact) of order n in each unit volume and by bounding each of the terms
so obtained. To generate the perturbation expansion in region α, we lower the
cutoff κn in that region to κr<x, rα=l,2,... by replacing XM > α(...,rα_ 1,0;5) by
Kα(...,rα; s) with a remainder, given by -Kn>α(...,rα;s), involving interpolation
between κn and κ,α in ΔΛ. On reaching ra = n— 1, the expansion terminates in
region α. Noting that X w > α (. . . ,r α _ l 5 n— 1; 5) = Xα + 1(...,rα_ 1 ? n— 1,0; 5) and that
Kα(...,rα;s) = £n j α + 1(...,rα,0;s) are ready to perform the expansion in the next
region.

The basic expansion step in region α is given by:

Zm(Kn> s)) = Zm(Ka(r

\(d/ds%)Zm(Kntafr'9 s})\ = ̂ H(X».«(I'

+ ipβ«(4,>; s)X/2 - x (d/ds%)Dm(AntΛ(r 9 s))\ .

Assuming, for the moment, differentiability of Λ^/y^ >α(r; s)):

To bound the sum of derivatives of eigenvalues, we will use the following Lemma
which we prove below (note: ||^4||1 = Tr|^4|):

Lemma 2.3. Let A(s) be self-adjoint compact operators, holomorphic as func-
tions of 5, and define λt(s) = λi(A(s)). Then for any ε > 0 and almost all s :

Assuming that Lemma 2.3 may also be applied in the limit ε = 0, we have
therefore

a^r s))\ £ Pn,a(r; s)Zm + 1(K^(r; s)) ,

r; s)^^} , (2.4)

and so, noting that Zm(Ka(r; s)) = Zm(Kn ια+1(...,rα, 0; s)), our basic expansion step
takes the form :

Repeating this expansion step n times in each unit volume and then moving to
the next volume, we obtain the bound:

ί fs Πα β.,«(r, s).Zm+Σr.(JCμι(r; s)) , (2.5)
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where

and we have used the notation §drs=γ[aeΛ§ dras(a}.
As a final step we bound the remaining factors Zm + Σra(K\Λ\(r; s)) with a bound

αeΛ
independent of m. Thus

Zm(K) = epH(K}Dm(A)p/2<epH(K) + (pl4r}ΎrA2 ,

where we have applied (1 + x)e~x^ 1, x> — 1, to each eigenvalue in the product
Dm, and have increased the bound by addition of the missing eigenvalues /If,
i = (w). Now

Therefore returning to (2.5), we obtain the m-independent bound:

Zm(K(φn))^ ΣΓJ^Λ ί f s Π. Qn^ ^^/^^^(K^Kr;.)-^,.,^^).

The bound || ZJK^))!!^ (const) |y l" now follows from:

Lemma 2.4. There is a constant c1? independent of \Λ\, r, 5 swc/ι ί/iαί

Lemma 2.5. There are constants c2, c3 and ε>0, independent of n, \Λ\, r,
ίftaί, wίίΛ Λ(r)= f dr5 Πa 6«,a(^ 4

Combining these two lemmas with the bound for Zm(K(φn)), we have:

\\<\n~l ΓT rr<xr ίC 3 ΓTKα k-~ε /?cιln(i +κ r α + ι/μ0)jJ^2^rα=l;αe/ί 1 lα C2 rα ! Hί«=l K ία β

e + C 3 f l n ( l + r ) - ί/2εr(l+r)+cί(l+r)

where we have used κr = μQ(er — 1).
Before giving the proofs of Lemmas 2.3, 2.4, and 2.5, we discuss the differen-

tiability of the eigenvalues /L f(y4M > α(r;s)). Away from zero they are piecewise dif-
ferentiable functions of s, see Kato [14], but this may no longer be true when
λi = 0. To avoid such problems near the point of accumulation, we perform the
above expansion for Z(^(K\ defined by restricting the product over eigenvalues
to \λi(K)\>8>0. The expansion above, for Z(^}(K(φn)\ is then certainly valid, and
since the final bound is independent of ε, and since Z(^(K)^Zm(K) as ε->0, the
bound applies also to Zm(K(φn)).

Proof of Lemma 2.3. Since the eigenvalues are continuous functions of s and
are isolated for \λi(s)\>ε, the number of terms in the sum is piecewise constant.
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Also the eigenvalues λfa), \λi(s)\>ε, and a corresponding set of orthonormal
eigenfunctions </φ) are piecewise differentiable (see Kato [14]). Differentiating
the eigenvalue equation :

and taking the scalar product with φ^s) we obtain:

), (dA(s)3/ds)φi(s)) ,

for almost all 5. Taking absolute values and summing over i with \λi(s)\>ε, the
result follows, noting that for B trace-class :

for any orthonormal system ψt. Obviously Lemma 2.3 applies also to any dif-
ferentiable function /(•) of the eigenvalues.

Proof of Lemma 2.4. As in [3], formula (A.7), we have:

= J d2k(Fιeg(k) + Gree(k))\φΛ(r, s)~(k)\2 ,

φΛ(r,s)(x) = Σ.eΛgάx)φ(rvlt >)(x),

φ(rΛ, s<«>)(x) Ξ Σί= i (4 - 1 - sίβ))0» + 4">,.+ 1

and where Freg(/c) + Greg(/c)^ const. Thus

EA(r, s) £ J d2xφΛ(r, s)2 (x) = £αsyl J d
2x^2(x)φ(rα, s<α))2 (x) .

Since <</>f (x)> is an increasing function of r and since

s<ί j - sjα) ̂  0 , ^ ! (s(

;

α-l ! - s!α)) + s<αj = 1 ,

it follows that

<flrβ, s
w)2(x)> ̂  <ψ?.+ i(x)> g const ln(l + κr^ Jμϋ) .

This proves Lemma 2.4 because J d2xg^(x)^ 1.

Proo/ o/ Lemma 2.5. The proof of this lemma involves four types of basic
estimates to control number divergences, boson localization, fermion localiza-
tion and convergence in momentum cutoffs. The estimates used are combinatorial
arguments, checkerboard estimates, exponential decay of fermi two-point func-
tions and estimates on simple Feynman diagrams respectively. We begin by dis-
cussing the first two types of estimate, assuming results proved later for the last
two estimation problems.

By definition, R(r) = J if s ΠαeΛ Π£=ι Pn.«( » r «-ι> **> s) with p*>' 5) Siven by
(2.4). We show below that for each n, α, r, s and each d^Q there is an upper bound
of the form:

(2 6)
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Here δPn ,α(r;s)6 and S(^J}(r; s)6 are polynomials of degree at most =12 in the
boson field, with (5Pnα(r;s) localized in AΛ and S(^(r;s) localized in Δβ. The
quantities δPn >α(r; s) are functions of (3/δs^))Xw>α(r; s) and are thus expected to be
small for large rα, while the S^ f^r s), contributions due (for βφα) to the non-
locality of the determinants, should be bounded uniformly in n, α, f, jS, r, s. The
associated factors (l + |/J f — α|)~d reflect the fact that the coupling between distant
regions caused by the fermi two-point function falls off rapidly with distance.
To estimate ||K(r)||ι = J dμ0R(r\ we use a Holder inequality to separate the con-
tributions δPn α and Sπ>α and then checkerboard estimates [13], on each of the
two resulting terms to seperate contributions from different regions. Thus

\\R(r)\\ι

^llKsΠ«^Π£=ιδ pπ,«^
^Ks|lΠ«^ΠL^^^

where β = (<?3μo/4+ l)/(β3μo/4-e~5μo/4). By hypercontractivity we have

|lΠ£=ι^,«(.",r«^

To estimate the norm on the right, we decompose each δP^ a into normal ordered
components δPn >α;j (r, s), 0^/^12 with momentum space kernels ^PΠjα; j(r;s)[ ].
We show below that there is an ε>0 and a constant c5 with

||(5PΠ;α;j(r, s)[ ] |lL2(^)^C5κ:~ε, uniformly in |yi|, w, α, r, 5,7 , (2.7)

from which it follows that for a constant c6 :

(2 8

Returning to (2.6), we see that to complete the proof of Lemma 2.5 we need
only show the existence of constants cv, c8 uniform in \Λ\, n, α, r, s such that

Introducing the decomposition (2.5) into local parts for each Sn α:

where M = M(r) = {v = (α, ί, /)|αe/l, l^ί^rα, l^ί'^5), the sum running over all
functions β( ):M-*A, and where for v = (α(v), ί(v), i(v))eM we define S^(^(r;s) =
S^(v})( ^aM-ι,t(v);s). For each function β( ) let N^(β) = \{veM\β(v) = γ}\.
Then by a checkerboard estimate and hypercontractivity,
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As with (5Pn>α(r;s), we decompose each S^ f^r s)6 into normal ordered com-
ponents S(^j(r; s), 0^7^ 12, with momentum space kernels S^;f.](r; s)[ ], and we
show below that for a constant c9 :

l|S^(r;s)[.]||L^)^c9, uniformly in \Λ\9n,x9i9β,j9r,s . (2.9)

It follows that there is a constant c10 with

and thus for a constant

The required bound (2.8), completing the proof of Lemma 2.5, is now the result
of a purely combinatorial estimate, the proof of which we relegate to the appendix
(Lemma A.I):

Σ« )eΛM, r t ΠreΛW^)! 6 Πve M (r)=(l+l?-«(v) l )" < ' }S(c 5 Σ : r-Π.(5' «) ! 2 ) 6 , (2-10)
β(v) = γ

with c uniform in \A\ and r= {rα, αe/l}, provided d>24.
Finally we must demonstrate the validity of the decomposition (2.5) of Pn>a(r; s)
into local parts and prove the uniform bounds (2.7) and (2.9). These bounds for
PM>α(r; s) will follow if we prove similar bounds for each term Pm;n>α(τ*; s) in an upper
bound for Pn^(r\ s) of the form:

PΛ,α(r;s)^Σm=ι Pw;Λ,α(r;s), Pm;ιl>;s)£0, (2.11)

since <5Pn,α(r; ,)^(^m ,5Pm;n,α(r; s)6)1/6 and S™>(r; 5)^(^m 5^α(r; sj^/^then cer-
tainly satisfy (2.5), (2.7), (2.9). We now demonstrate a bound of the form (2.11)
with M= 11 8.

From (2.4) and |Trβ|^ \\B\\ l f we have

n>a(r; s)*

. (2.12)

By calculating the indicated trace we find

A1=λ2\:^d2kE(k)\φnta(r ,Sr(k)\2 .\,

where φn,a(r, s) is defined in terms of φff* = φrgft by the same interpolation formulas
used to define KniX(r; s) in terms of K^\ and

E(k) = f d2pω(p + fc/2) - 2ω(p - k/2) ~ 2

•{ω(p + k/2)ϋ4p-k/2)-(p + k/2) (p-k/2) + m2

0} . (2.13)

Seiler [3] has studied E(k) and shows that asymptotically: E(k) = 4π In2 + 0(m0/|/ c|).
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Thus defining e(k) = E(k) — 4π In 2, and introducing the derivative δφfya =
φn^(r; s), we have

A, ̂ Sπλ2 In2| : J d2x<ty<«>.(x)0B>; s)(x): \

+ 2λ2\ J d2ke(k)δφ^( - k)φn^r, s)~(k)\

+ 2λ2\ j d2ke(k)(δφ^ ( - k)φ^(r, s)~(k)y\

We define <5P1;π>;s) = P 1 ; Π f α(r;s) and S(

1

ί;2Jα(r;s) = δβ/ϊ. To treat P2; ι l fβ we intro-
duce ηeC$(R2), 0^/7^1, y/ = l on A0, suppt??e(X)2 [-5/8, 5/8], and we define
nΛ(') = n(' -4 Expanding φtttΛ(r,s) into local contributions φ^r,s) = (φntΛ(r,s)gβ)
we obtain :

P2;n>; s)^2A2 ̂  I ί d\d2l2F^,

From the representation (2.13) for E(k), we see that e(k) and its derivatives to
arbitrary order are bounded by const ω(k)'i and so, integrating by parts,

|F..<((/1,/2)|gc(d)(l + |α-^|)-2<'ω(/ι)"1/4ω(/2)~1/Viι + i2)"3/2, and rf^O.

Using a Schwarz inequality in (2.14) it follows that a bound for P2.n α(r; s) of the
form (2.5) is given by choosing δP2.n ,(r;s) = ( \d2lω(lΓll2\δφ(^β)\2}lί\S(l^(r S}=

const( Jd2/ω(0"1/2l^i(r,sΓ(OI2)1/2 and S(

2fn\a(r;s) = δxβ, i> 1. Similarly for P3;n,>;s)
we take

To study the remaining terms A2,A3,A4 in (2.12) we define <5Kα = (
and we introduce the expansion Kn>a(r; s} = ΣβKβ. where
K(φ(^a(r; s)). We have suppressed r, s, and the subscripts n, a in our notation.
Differentiating within the trace norms and using the triangle inequality we obtain

\~14 A "̂ ^
Li = 2Ai = <

where M2 = 27, M3 = 52, M4 = 30, and M5 = 6. A typical term 1%fl,...,p, has the
form

where K^ denotes either Kβ or K|, and is thus a function of boson fields localized
in regions βl9... /?/. Unless all of the βt are close to α, we expect T£βl j < ι > j j g / to be
small. To bound T™β^ , f β l we note that Kβ = QβLβPβ' where Qβ,Pβ,Lβ, are the
bounded operators on Jf with kernels:

) - (2π) ~ 1 (/+ m0) (p2 + mg) ~ l ήβ(p - q) ,

(2.15)
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Denoting by R*β one of the operators P/?,Pf ,Q/?,β|, we have

T£βl,...,βl=\\LβίRllRl2 ' Lβr-lRlr-lR*δL^^^^

<, ||δLα||3 ΠUi IIL/Ja II/&KJJ - \\Rl-&\\ \\R**Rl\\ - H*ίι-Λ >
(2.16)

where we have used the Holder inequality for the trace norm, the monotone
decrease of || ||p in p and \\AB\\p^ \\A\\ \\B\\ p. By an elementary interpolation
estimate [15, 16],

I I r | | < | i r ( l l / 1 2 ) i | 2 / 3 | i r ( 7 / 6 ) ι ι l / 3
11^113= H^jS IU \\^β \\2 i

where L(

β

} is the operator obtained by replacing (p2 + mo)~1 / 2 with (p2 + Wo)~ f l / 2

in (2.15). We now define, for 4 ̂ m^ 118,

,

lP. (' J

The bounds (2.5) for Pm.n^(r; s) follow from (2.16), (2.17), an estimate on the norms
IIJRXll occuringin(2.16):

d, any rf^O, (2.18)

and the triangle inequality in the form

(lΉft-α|Γd, if β0 = a.

To prove (2.18), note that we may reduce the sixteen possible forms for R^R^
to eight using ||#|| = \\B*\\. Furthermore, since Qβ= t/P| where U is the unitary
operator on tf with kernel t/(p, q) = (p+m0)(p2 + niQ)~1δ(p-q\ forms beginning
with Q or ending with Q* need not be considered, and in fact since K = QLP and
K* = P*LQ*, we need only consider forms beginning with P or g* and ending
with Q or P*. This leaves only PβP*, Q*QT and PβQτ and the first two are equal
since QίjjQy = PβU*UP* = PβP*. The corresponding kernels are:

tΓ1/2ηβ(p-l)ηy(l-q),

The bounds (2.18) now follow immediately by using an L^ — L^ norm estimate
on the kernels and the fact that (/2 + mo)~1 / 2 and (/+m0)/(/2 + mo)~1 have Fourier
transforms decaying exponentially.

Finally we prove the bounds (2.7), (2.9) for the momentum space kernels
^m;ιl,.;/r;s)[ ], S££!«;/r;s)[-] in the Wick expansion for <5Pm;n,α(r; s)6 and
SΆfa 5)6 βy convexity in s{β} where s(β} satisfy sj^ -s^O, Σ?= i (^1-5^) +
s^)= 1, it suffices to prove the bounds for a given ra or r^, without interpolations.
For P 1 ; w > α these bounds follow from the convergence in L2(dμo) of :J d2xgβ(x)φ2(x):
as 7c->oo while for P2;π,α' ^3;«,α

 tneY follow from the convergence of

in L2(dμo) as κ-κx). For Pm.w>α, 4^m^ 118, the bounds follow, by (2.17), from the

convergence in L2(dμ0) of the Feynman graphs [ and -M )̂ — - , where[
X
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~~* *~~~ denotes a momentum cutoff boson field, - denotes a propagator
(p2 + mo)~ 1 1 / 1 2 in the first graph or (p2 + ml)~Ί/β in the second graph, and the
vertices are functions gβ(-) localized in a unit volume Aβ. The bounds are uniform
in the spacecutoff g provided g belongs to one of the classes G(y) defined in
Lemma 2.1. This completes the proof of Lemma 2.5.

III. Lower Bounds for Z(Λ}

In this section we assume that the space-time cutoff is of the Hamiltonian form
^W=/[o,ί](;x;o)7[o,/](χι) Then the Feynman-Kac formula of Osterwalder and Schra-
der [4] implies that

ZtJ = Z^ = (e-V(Λ}y = eW(l) + T(t>l\Ω0,e~tH>Ωoy, (3.1)

where ΩQ is the vacuum for the relativistic Fock space and Hl = H(χ[OJ]). The
constants W, the wavefunction renormalization in second order, and T appear
because the Euclidean counter-terms differ slightly from the usual Hamiltonian
counter-terms; specifically

(Hl,lH;2HIJyΩo,

f,=-< JFί/, ;//ό2e-' ί ί°H/, ί> ί 2 o,

where HItl = λ\l

0 dx\ψψφ(x): is the unrenormalized interaction Hamiltonian. To
prove (3.1), we introduce momentum cutoffs for the boson and fermi fields, in the
space direction only. By the momentum cutoff Feynman-Kac formula [4], (3.1)
is then valid. Glimm and Jaffe [7] have shown that the cutoff Hamiltonians con-
verge to Hb in the sense of resolvents, as the cutoffs are removed. Furthermore
by results of Seiler [3] and McBryan [15], Z(A} is also the limit of the corre-
sponding cutoff quantities. The identity (3.1) follows immediately.

On the right of (3.1) we apply the bound:

and, using the Feynman-Kac formula again in reverse, obtain:

T(t,l)-tT(lΛ)yt
*Ί,l9

, (3-3)

where in the second step we have used the Euclidean invariance of ZtJ and that
T(ί, /) is negative and monotone increasing in t [see (3.2)]. We may apply (3.3)
again to the right side of (3.3), obtaining:

By an elementary calculation we see that W(ΐ)^ const / and thus

Z f f /^e- c o n s t ί /Z? f l = (const)"

which completes the proof of Theorem 1.2.
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Appendix

We now prove the bound (2.10) which controls the number divergence and
fermion localization in Lemma 2.5. Let A be any finite subset of Z2, let r= {ra:aeA,
rαeZ+,rα^l}, let /^ leZ + , and define MΛ[r ,Γ\ = {v = (a,t9i):aίeA,l^t^rΛ,
l^i^/}. For v = (a , i 5 z)e/Vf y l [ r ;/ ] 5 define a(v) = a. Let AMΛ[r:l} denote the set of
functions β( ) : M Λ [ r ; Γ ] - + Λ , and for β( )eΛMA[ r'>l\ ye A, we define Ny(β) =
\{veMA[r 9ΐ]:β(v) = γ}\.

Lemma A.I. There is a constant C independent of \A\,r,l such that for α_Ί
and d>4a:

where the sum is over all β(-)eAMΛ[r'J\ v ranges over MΛ\jι ΐ] and α, y range over A.

Proof. It is sufficient to consider the case 0 = 1 since for a > 1 :

We generalize an argument of Eckmann et al [17, Appendix]. Denote the sum
on the left in the statement of the lemma, for a= 1, by S(r; /) and note that S(r; /) =
S(lr; 1) where lr={lra}. Thus it suffices to prove the result for /=!. and so we
define M[r] = MΛ\r\ 1], S(r) = S(r; 1). For any function β( )eΛM[r] define numbers
^αy(j8)=|{veM[r]:α(v) = α, jβ(v) = y}|. The terms in the sum S(r) are uniquely deter-
mined by the qaγ(β) and thus we may replace the sum over /?(•) by a sum over
functions (̂ ,.)eβ[r]Ξ{^(.,.)eZ+^x^:X^(α,y)-rα,α6/l}. For each ^( ,.)eβ[r]
we define Ny(q)= Σa q(a, y\yeA and thus ]Γy Ny(q) = ̂ α rα. The sum S(r) may now
be expressed as

where JV[r] = {N( )e Z+yl : £y ΛΓ(y) - N = Σα rα) Using the inequality f]« 7^7)! =

lα-

where P[Π]Ξ {^( )|^f( ):Z + -^Z+ and Σίq(ί) = n}, and by ^α we mean qm(Λ) where
m:A-*Z+ is some ordering of the points of A. Denote the expression in brackets
in (A.I) by Sy(r,N(y)). For fixed y there is an arrangement of the α for which
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with C^d) finite for d>4. Returning to (A.I) we thus obtain:

ΛΓ !

ButN!^NNe~N, and thus S(r)^CΣr« Y\aral
2, C =
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