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Volume Dependence of Schwinger Functions
in the Yukawa, Quantum Field Theory

Oliver A. McBryan*
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Abstract. We prove upper bounds on the partition function and Schwinger
functions for the Euclidean Yukawa, quantum field theory which depend on
the interaction volume A only through a term of the form (const). We also
prove a lower bound of the form (const)!!! for the partition function. We work
throughout in the Matthews-Salam representation with the fermions inte-
grated out.

1. Introduction

We study the Yukawa, quantum field theory in a finite volume 4 as a Euclidean
boson field theory with the fermions “integrated out”. The possibility of inte-
grating out the fermions in the Yukawa theory was first demonstrated, in the
external boson field case, by Matthews and Salam [1, 2], and in the finite volume
interacting theory, by Seiler [3] who showed that the resulting Fredholm deter-
minants are integrable functions of the boson field. As a step towards taking the
infinite volume limit of Yukawa, we show in this paper that these determinants
approximately factor over a decomposition of the space-time volume into sub-
volumes. While the determinants do not factor exactly, we exhibit upper and
lower bounds which factor. The existence of such an approximate factoring is
related to the exponential decoupling of distant regions in the free boson and
fermion two point functions—i.e., to the nonzero free boson and fermion masses
Ho> Mo.

Our principal results are bounds on the un-normalized finite volume Schwin-
ger functions

Z) D (f1s- s f3 915 Goms ity s i)
=[Tr=1 (DT ‘1’(1)(9])1_[ PP (e VO,
and on the partition function ZY={e™""). Here f, g;, h, are functions in the
boson and fermion test-function spaces: #%“Y) and A*=#"P®C?, where

A =L,(R?, (k*+m?)’d*k). We cover space-time with a lattice of unit squares
A,, with centers ae Z2, and we suppose that the f; are localized in unit squares.
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Denoting by n, the number of f; localized in 4, we have:
Theorem 1.1. With constants depending only on my, U, and the coupling constant,
l(ZS)(A)(fD‘"’f;l;glﬂ""gm; hy,....hy)
<M ™ [ oeze B TT= o AN TT7= 1 gl = gl s

Theorem 1.2. If the space-time cutoff g(x) is of Hamiltonian form: g(x)=
Xi0.0x0,11(X) then for a strictly positive constant:

ZD > (const) 1!,

Theorem 1.1 is proved in Section I and Theorem 1.2 in Section III. The proof
of Theorem 1.2 requires the use of the Feynman-Kac formula of Osterwalder
and Schrader [4] and hence the restriction on the form of cutoff. We consider
the case of scalar Yukawa, theory, but all results apply equally to the pseudo-
scalar theory with only trivial modifications.

Before publication of Seiler’s paper [3], which for the first time applied fully
Euclidean methods to the Yukawa, model, most of the rigorous results on the
Yukawa, model were proved in the Hamiltonian formalism. Glimm [5, 6] showed
the existence of a semibounded finite volume Hamiltonian H(g) and Glimm and
Jaffe [7, 8] showed that H(g) is selfadjoint and generates dynamics with a finite
propagation speed. Schrader [9] proved upper and lower bounds proportional
to the volume for the vacuum energy E(g)= inf spec H(g) and showed existence of
an infinite volume Yukawa, theory; Brydges [10] has given an alternate proof
of the lower bound for E(g) using semi-Euclidean techniques. The proof of the
Haag-Kastler axioms for the infinite volume theory was completed by McBryan
and Park [11] who proved Lorentz covariance. Our upper and lower bounds on
Z™ are the Euclidean equivalent of Schrader’s bounds on E(g)!. For notation
and standard results for compact operators, we refer the reader to the books of
Dunford and Schwartz [12].

We include here for convenience a short formal description of the procedure
of “integrating out” the fermions in the Yukawa, theory. The possibility of doing
so is due to the field equations being linear in the fermi fields [1, 2]. In terms of
the Euclidean fermi fields ¥, i= 1, 2, introduced by Osterwalder and Schrader [4],

PPN =0, FUNPI()=So(x, 1),

the un-renormalized interaction for the spacecutoff Yukawa, model is V;=
Af dxg(x)P® (x) PP (x)¢(x). The Schwinger functions and partition function may
be expressed as:

(ZS) (X153 X3 Vi evvs Vs Z1s v vvs Zm)
=Tz 00) [T1= s PPN [T 1 PP (zde ™
=jd.u0H?=1¢(xi)Tm(yl9""ym7 ZyseeesZy) s
T V1seeos Vs Z1a-~-»Zm)E<HT= 1 lP(l)(yj) H'l?=1 W(Z)(Zk)e_h%)f»
Z=§dﬂ0Zf, Zf=<e_VI>Qf)

! We note that Schrader’s bounds follow immediately, see Bridges[10], from Theorems 1.1, 1.2

and the Feynman-Kac formula of Osterwalder and Schrader [4].
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where dpu, is the free boson measure and Q, denotes expectation in the free
Euclidean fermi vacuum. Decomposing ¥'*(y,), in T, into creation and annihi-
lation operators and contracting the latter to the right, we obtain:

Tm(yla“'7ym; Zl»”"zm)=zyin=1(—)m_iSO(y1’ Zi)Tm—l(yZ’ e Yms Zla"':ii’ '*"Zm)

*ifdyg(Y)(ls(}’)So()’la y)Tm(ya y2>~-'7ym; Zl’ '-'7Zm) . (11)

In terms of the integral operator K with kernel K(x, y)=Sq(x, y)g(»)d(y), the
integral equations (1.1) have the solution:

Tm(yl’“wym; Z1s "'7Zm)

= 2”=1(_)m_i((1 +)~K)‘1S0)())1, Zi)Tm— 1(y2,'--aym; zla'-'s‘#is "'7Zm) .

Iterating this equation m times we arrive at:

Tm(yb s VYms er",zm)=(—)[M/2]detjksl(yj’ Zk)Zf (12)

where S'(x, y)=((1+AK)™'So)(x, y). To compute Z, we differentiate with respect
to A:

(d/dA)Z {4)

I

— Jdxg(x)p(x) PP ()PP (x)e Vg,
Jdxg(x)p(x) (1 +2K) ™ So) (x, X)Z (%)

= [dx(1+ 1K) "'K)(x, x)Z () =TrK(1+ 1K) "' Z (%),
where in the second line we have used (1.2) with m=1. Thus

Z, () ="+ AB = det(1 + AK) .

Renormalization of ¥V} requires that we subtract (i) (V;)o,=TrAK which nor-
mal orders V;, (i) a vacuum energy counter-term —%{:V,:Zf>=%<Tr/12K2> and
(iii) a boson mass counter-term —322m*:¢*(g?):, om* = —2(2n) "% {d*p(p*+m3)~*.
Thus we must replace Z, above by:

D(¢) — e—Tr1K+%12<TrK2> +4426m2: ¢2(g?): det(l + XK)

=T det, (1 + 1K),
where F(¢)= —TrK?+4om?¢?*(g*), and

det,(1+AK)=det(1+AK) xexp {d 221 (—)"n" ' Tr(AK)"},
see Dunford and Schwartz [12]. Thus the representation for the renormalized
Schwinger functions with the fermions “integrated out” is:

(ZS) (X 15 sX3 Visenes Vins Z1s e v Zm)

= fd,uo n?= 1 d’(xi)(—)[m/z] detij/(J’j’ z)D() . (1.3)

The formal expressions above are all well-defined if we replace the fields ¢, P
by momentum cutoff fields ¢,, P¥. Furthermore Seiler [3], has shown that the
quantity on the right of (1.3) converges as k—o0. Thus we may view (1.3) as a
definition of the Schwinger functions without momentum cutoffs. For technical
reasons it is convenient to separate the term F(¢), in D(¢), as a sum:

F(¢)=—G(¢)— 3 Tr(K* +K)?
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where —G(¢)=TrK*K +6m*¢*(g*). This completes the motivation for formula
(2.1), and the subsequent definitions, in Section II.

We note that our methods give an alternate proof of Seiler’s results when the
perturbation expansion presented in Section II is carried out once in the inter-
action volume instead of repeatedly in unit volumes.

II. Upper Bounds on Schwinger Functions

The Schwinger functions for the Yukawa, model are expressed in terms of solu-
tions of a Fredholm equation by [1, 2, 3]:

(ZS)(A)(fl’""fn;gli'”vgm;h1>~-->hm)
= [duo [ 1= 1 d(f) (=)™ det ;.S (g, s $)D(9) - 2.1
Here S'(g,h;¢)=(g,(1+AK)"Soh), So(x,y)=(2m)"*[d*pe'” > (p+mo)/(p*+mp),
D(¢)E e—%Azz(qS,Gd));:e—%lZ:Tr(K*ﬁ-K)Z:det3(1 +/1K) ,

G(p, 9)=p(p)"*w(q)"? [ *kG(R)G(p— k)i(k—q),  p(p)*=p* + 1 »
G(ky= —202n) 2 [ d*I{1 /o1 + k/2)ex(I — k/2) — 1 J(D)*} ,  w(p)* =p*+m],
K(p, q)=Q2n) " (p+mo) (0* +m3) ™" (¢g) (p—a)(g* +m3)~*.
The Fredholm operator K(¢)= K(¢g) is the compact operator with kernel K(p, g),
on A =#{"YRC* while G defines a positive Hilbert-Schmidt operator on #7{*.
We will take the space-time cutoff g(+) to be in CZ(R?) or else to be the charac-
teristic function of a bounded region and we define A =supptg(-). Seiler [3] has
shown that the quantities defined above are a.e. defined functions of the boson
field ¢.
Applying the Schwarz inequality to (2.1) we obtain:
(ZS) P (frsves fus GaseovsGons Ps o )|
SITT= 1012 lIdet ;S (g, i D) -

By the hypercontractivity of the free boson field, and checkerboard estimates [13]
it follows that:

[ l—[:'= 1P = na622 I HieAad)(fi) [ 842> B=(e"+1)/(e"—e "),
= naez2 (84> — )=~ 12| nieAa A2,
S Lee @B =)™ V2 [ica I fill - (& ™2 2% (n, +3) Y2,
< const(const)"[ [uezen, " [ [1= o Ifill -1 -
Thus to prove Theorem 1.1 we need only show that

||detij/(gj, hy; $)D(9) |, g(const)"’(const)l’” HT: 1 ngH— 1/2 Hh]“ —~1/2 - (2.2)

We again use the Schwarz inequality and the result, proved below:

Lemma 2.1. || 12708 < (const)!l, p=>1, uniformly in |A|.
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This reduces the problem to studying
X(P)=det; S'(g;, hy; p)e” W TUETI det (1 4 AK)
=(w’ ®m(1 + iK)_ 1¢)Am%e—(}.2/4)zTr(K*+K)2: d€t3(1 + AK) ,

where ¥ =Dyg,A...ADyg,,, P=Sy9,4...ASqg, are vectors in the m-fold anti-
symmetric tensor product space A™#, and D, is multiplication by w(p)~*. Both
D, and S, are isometries from #* to s# and thus:

1X() = HT: L lgill=12 Ilhj -1/ g P Tr(Kr Ky
™ML+ AK) ™ dety(1+ AK)| gy -
Hence (2.2), and Theorem 1.1, are proved once we have shown that:

Theorem 2.2. Let Y, (¢p)=e /4 Trik +K |l®"'(1 + AK) " 1dety(1+ AK)|| gmpe-
Then

1%,6)1, = (const" (cons! 4, p=1.
Proof of Lemma 2.1. By explicit Gaussian integration we have:
He— 1/2 22:(¢,GP)1: ]Ip;: detz(l +p/12G)_ 1/2 é e1/2 [lp22Gl|3 .
The Hilbert-Schmidt norm, ||G||3, is given by:
G113 = [d*pd*qu(p)~*u(q) ~*If d*kG(R)G(p — k)G(k—q)* .

Denote by Z%" the smallest subset of Z* such that AC | J,. 4, and let y,(x)
denote the characteristic function of 4, We will use the notation ae A to denote
aeZ% in the sequel. Introducing the decomposition g(x)=Y ,.,x(X)g(x)=

Y 4e494(X) We obtain
||G||§ = Za,ﬁ,a',ﬁ’eAI(aa ﬁa o ﬁ/) s
I(o, B, o, B
= [d*pd*qd*kd*lu(p) "> u(q) "> G(k)G()G(p— k)G sk — @) (I — P)G s (g —1) .

For y=1 we denote by #(y) the set of space-time cutoffs g(-) which are of one

of the forms: (i) D e 4 1), (1) Yo 4o Xoo(X0)g1(X1), OF (i) g(x), with g, (x,)e CF(R"),
g(x)e C¥(R?) and

sup|dg,/0x,| <7, or  sup{|dg/ox,|,|0g/0x], |0%g/0x00x, [} <7,
respectively. The function G(k) may be computed [3]:

G(ky=n"'In{ {2+ (k*/mi+4)'/*}.
By integration by parts in each of the variables p;, g;, k;, [; we find

(e, B, o', Bl

< const(L+9)*{] Ti=o,1 (1 +1ot;— B (1 + o — Bl (1 + oy, — o) (L+ 1B, — B} ~*

for ge #(y), with the constant independent of g. It follows that

IG5 S const(L+9)* Y 5 p.urpreall(e B, o', f1= const(1+7)*4],

where |A| is defined to be |Z4"|. This completes the proof of Lemma 2.1, with the
constant independent of g for ge #(y).
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Proof of Theorem 2.2. In order to study Y,(¢), we note that
Y (p)=e #TERZ(Tm (1 + AK)) ™ dety(1+ AK),

where v/(C) are the eigenvalues of the operator |C| in increasing order, counted
by multiplicity. It is convenient to work with the self-adjoint operator A=K +
AK*+)?K*K > —1, and then

m(¢) e—(A2/4) Tr(K*+K)3 — 23TrK*K2 — (14/4) Tr(K*K)2 (det (1+A /n 1V(1+A))1/2.

We introduce a sequence of momentum cutoffs x,=pq(e"—1), r=0,1,..., and
fields ¢, =y, *¢ where y,(x)=ry(kx), ye C§(R?), supptye)*[—1/8,1/8] and
jdzxx(x) 1. Since Y,(¢,)— Y, (¢) in L,(du,), [3], Theorem 2.2 will follow from a
bound of the form | Y, (¢,)ll p__(const)'”(const)'/”, with constants uniform in
n,m,|A|. We consider for convenience that the unit volumes 4,eA are ordered
in some way, say o, ...,% . To every positive integer n, every sequence
r={rloeA,r,eZ*, r,<n}
and every double sequence
s={sPaed, sP=(s&,....s? ), sP=1=sP> ... =s* =0},
we define integral operators
K(a)(ra; S(a)): Z (S(a) Sga))K(a) + S(“)Ki"‘L ,
KP(r,; s®)= Zi= (52 — sV K + Si‘t)Kila) )
Ka(r; S)= ZﬂéaK(m(rﬁ$ S(ﬂ))+ Zﬂ>aK£lﬁ) 5
Kol 9)= Ly KO (13 89+ K21, 89) + Yy K

where K =K(¢,g,) — i.e. has momentum cutoff x, and is localized in region a.
Thus the K,(r; s) have maximum cutoffs of x,, ,; in 4, f<« but maximum cutoff
still at , in regions with f>o; K, (r; s) has similar cutoffs except that in region o
the cutoff interpolates between «, and «,,.

For any operator C we denote the eigenvalues ordered in decreasing absolute
value, counting multiplicity, by 1(C). For each of the operators K defined above,
we introduce 4=(1+AK*)(14+ AK)— 1, and define functions

H(K)= ~£1%:Tr(K* + KP: — P TrK*K? — 124 Tr(K*K)?,
D, (A) =15 (1 + A(A))e~ AT 1/2 h(4)?

where [ [, is defined to mean leaving out of the product the lowest m eigen-
values below zero. With the definitions above, we have
Y($,)7 = ePHEED [T | (v(1+ A($,) P2 Do(Al$)P?

< "P ePH(K(dn) Dm A(¢n))p/2 .

The factor ¢"P gives the required (const)”, and we now show that Z,(K)=
ePHR D (4)P2 satisfies

1Z,(K($)]ly < const!!, (2.3)

uniformly in m, n, |4}, completing the proof of Theorem 2.2.
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To prove the bound (2.3) we show the existence of an increasing sequence of
upper bounds for Z,(K(¢,)) with the final bound dominated by (const)l. The
bounds are obtained essentially by applying a finite perturbation expansion
(which is exact) of order n in each unit volume and by bounding each of the terms
so obtained. To generate the perturbation expansion in region o, we lower the
cutoff ¥, in that region to x,, r,=1,2,... by replacing K, (...,r,—1,0;5s) by
K,(...,r,;5) with a remainder, given by K, (...,7,;s), involving 1nterpolat10n
between «, and k, in 4, On reaching r,=n—1, the expansion terminates in
region o. Noting that K, (...,r,_,n—1;5)=K,.4(....r,—1,n—1,0;5) and that
K (....1;8)=K, ,+1(...,7,, 0;5) are ready to perform the expansion in the next
region.

The basic expansion step in region o is given by:

Zm(Kn a(r' S)): Zm(K (V' S + §(;rz“) ds(a)+ 1 (a/asﬁ‘t)-F I)Zm(Kn,a(' ">roz+ 1 5 S)) s

W0/0SNZ, (K, o175 )] = ePHEne=C N p(5/05) H(K,, (15 ) D A,y ol 5)P

2po(An a(r S )p/Z l(a/as(a)) m(An,oz(r; S))l .

Assuming, for the moment, differentiability of 4;= 4,4, ,(r; s)):

1(0/052) Dy Ay o175 S
=IZ,#:(m)(1/3)(5/13/(3S$?)e”1‘+1’“'z [T b o (1 A2 122
1211023105212 3) Dy 1 1 (K o005 5)) -

To bound the sum of derivatives of eigenvalues, we will use the following Lemma
which we prove below (note: ||4]; =Tr|A4)):

Lemma 2.3. Let A(s) be self-adjoint compact operators, holomorphic as func-
tions of s, and define 1(s)= A,(A(s)). Then for any e>0 and almost all s:

D% 1101047 (5)/0s| < || 0A(s)* /s -

Assuming that Lemma 2.3 may also be applied in the limit e=0, we have
therefore

1(0/05E) Z( Ky, o1 N S Py o1 ) Zoy (K of159)),
P, (r;5)=e*p{I(0/0sEVH(K,, ofr; )| + 5 1045 (3 5)/ 052 1} 24

and so, noting that Z, (K,(r; s)) =Z,(K, ,+1(...,7, 0; 5)), our basic expansion step
takes the form:

Zm(Kn,a(“"rm; S))<Z (Kn a+ 1(,..,7‘0[, 0’ S))
js (a)dsf‘i)—l- 1 Pn,a(' . ’ra+ 1 ; S)Zm+ 1(Kn,az( T rot+ 1 S))

Repeating this expansion step n times in each unit volume and then moving to
the next volume, we obtain the bound:

Zm(K(d)n)) = Zm(Kn, 1 (Ov S))
é Z;"oz_‘_—ll;OtEA j‘drs na Qn,a(r’ S)' Zm+ Zru(K]/ﬂ(r; S)) H (25)

acA
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where

Qnars Ht IPna( ’a l»tS)

and we have used the notation [d"s=[],., | d=s®.
As a final step we bound the remaining factors Z, . 5, (K 4(r; 5)) with a bound

acA

independent of m. Thus

Zm(K)E epH(K)Dm(A)p/Z < ePH(K) +(p/4) Tr A2 ,
where we have applied (1+x)e *<1, x> — 1, to each eigenvalue in the product
D,,, and have increased the bound by addition of the missing eigenvalues /7,
i=(m). Now

H(K)+4TrA?= —(J*/4): Tr(K* + K)*: = 23 Tr K*K?

—(A*/HTr(K*K)* +5Tr A%,
=(A2/4){Tr(K*+K)*>.
Therefore returning to (2.5), we obtain the m-independent bound:
Z KON Y72 1iea § ' [ Qu olrs s)et 4 rEa e Kia 7,
The bound || Z,(K($,)|; <(const)*! now follows from:

Lemma 2.4. There is a constant c,, independent of |A|,r,s such that

(Tr(K |4, s)* +K|A[(r:5))2> =c ZaEAln(l + Ky, + 1/Ho) -

Lemma 2.5. There are constants c,, ¢y and >0, independent of n,|Al|,r, such

that, with R(r)= [ d"s [ [, Q,..(r, 9),

IR = l—[aeACZ (r )2 nr —1K"
Combining these two lemmas with the bound for Z,(K(¢,)), we have:

§duoZ (KD S Y0 2 1aea [ L 1o [Tz e re I P vaind
={rieprts [fie o rer i@ e aonlti< clfl,

Co= Y 1 (ca(2 o) Y pse ™ B+
_<__Z,c‘>o= L erlncz(Z/uo)s+cgrln(1 +r)—1/2er(1 +r)+cy(1 +r)< 0,

where we have used «, = uq(e" — 1).

Before giving the proofs of Lemmas 2.3, 2.4, and 2.5, we discuss the differen-
tiability of the eigenvalues 4,4, ,(r;s)). Away from zero they are piecewise dif-
ferentiable functions of s, see Kato [14], but this may no longer be true when
A;=0. To avoid such problems near the point of accumulation, we perform the
above expansion for Z{?(K), defined by restricting the product over eigenvalues
to |A(K)|>¢&>0. The expansion above, for Z&(K(¢,)), is then certainly valid, and
since the final bound is independent of ¢, and since Z(K)—Z,,(K) as ¢—0, the
bound applies also to Z,(K(¢,)).

Proof of Lemma 2.3. Since the eigenvalues are continuous functions of s and
are isolated for |14s)|>e, the number of terms in the sum is piecewise constant.
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Also the eigenvalues A(s), |1(s)|>e, and a corresponding set of orthonormal
eigenfunctions ¢(s) are piecewise differentiable (see Kato [14]). Differentiating
the eigenvalue equation:

A(sY pis)= 25 Pi(s) ,

and taking the scalar product with ¢,(s) we obtain:
0A(5)*/0s = (¢ (s), (QA(s)*/0s)p(s)) ,

for almost all s. Taking absolute values and summing over i with |1(s)| > ¢, the
result follows, noting that for B trace-class:

=1 [y, Bp)I =By

for any orthonormal system ;. Obviously Lemma 2.3 applies also to any dif-
ferentiable function f(-) of the eigenvalues.

Proof of Lemma 2.4. As in [3], formula (A.7), we have:
Ef(r, )= 3Tr(K 4 (r; s)* + K (r; )
= [ AP K(F o5 (k)+ Gieg(RDI (1, sy (R)
D41, )(X) =Y e 1 9Py s#) (x)

D s) ()= Y0z 1 (82 = s+ 52 b, 41 -
and where F.,(k) + G (k) < const. Thus

E\(r,$)< [ d*x¢ 4(r, ) () =Y e [ d2xg7 ()1, s)? (x) .
Since {¢?(x)> is an increasing function of i and since

$0, 5020, Yre (s, —s®) 4@ =1,
it follows that

{Plry SO (%)) S P71 1(x)) S const In(1 45, 41 /1) .
This proves Lemma 2.4 because | d*xg2(x)< 1.

Proof of Lemma 2.5. The proof of this lemma involves four types of basic
estimates to control number divergences, boson localization, fermion localiza-
tion and convergence in momentum cutoffs. The estimates used are combinatorial
arguments, checkerboard estimates, exponential decay of fermi two-point func-
tions and estimates on simple Feynman diagrams respectively. We begin by dis-
cussing the first two types of estimate, assuming results proved later for the last
two estimation problems.

By definition, R(r)= [ d"s [ [oea [ 172 1 Puol---sFu1» 45 8) With P, (r; s) given by
(2.4). We show below that for each n, o, 7, s and each d =0 there is an upper bound
of the form:

P, (r;8)S0P, (r;5)S, (15 s),
Sn,a(r;S):Zﬂl ,,,, Bsed H?=1S}1i,’£l)(r;S)(1+|ﬁi_al)—d' (26)
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Here 6P, ,(r;5)° and SUP(r; 5)° are polynomials of degree at most =12 in the
boson field, with 6P, ,(r;s) localized in 4, and S@P (r: 5) localized in A s The

n,o

quantities 0P, ,(r; s) are functions of ( 6/83(‘:) s s) and are thus expected to be
small for large r,, while the S§:2(r; s), contributions due (for B=w) to the non-
locality of the determinants, should be bounded uniformly in n,a,i, S, #,s. The
associated factors (1 +|B;—«|)~“ reflect the fact that the coupling between distant
regions caused by the fermi two-point function falls off rapidly with distance.
To estimate ||[R(r)||, = { duoR(r), we use a Holder inequality to separate the con-
tributions 6P, , and S, , and then checkerboard estimates [13], on each of the
two resulting terms to seperate contributions from different regions. Thus
IRy

<Hj‘dr naeA n};:—lépna * 0( I?t S)S ( az 1,ta;S)”1

<j.drSH1—[aeA nra——lépn a( a 19 a’ HZHHaeAHta 1 noc a 17 w )“2

é l—[a Sup naEA Hl_[t(x— 1 by — 10 o> S)HS[]Z

”]—[aEA nta—l na L) a 1» aus)“Za
where f=(e3"0/* 4 1)/(e3"0/* — e~ 3#0/%) By hypercontractivity we have
”H -lépn oc( < la—15 aa‘){|8ﬂ2<((4/3)ﬁ2 )6”‘“ —15Pn a(""roz—-latoc;S)HIZ'

To estimate the norm on the right, we decompose each § P , into normal ordered
components 6P, ,.;(r,s), 0=<j<12 with momentum space kernels 6P, ,.;(r;s)[-].
We show below that there is an ¢ >0 and a constant ¢ with

10P, .i(r,)[- 1l mn S sk, uniformly in  [A], n, o, 7,5, ], (2.7)
from which it follows that for a constant cg:

Hn 1 OP, (T s by )2 S €, ‘)6]—1 P (2.8)

Returning to (2.6), we see that to complete the proof of Lemma 2.5 we need
only show the existence of constants ¢, cg uniform in |A|, n, o, 7, s such that

I Teea TE2 1 SpolevosFoe 1o ts S 2 S 2= =[], (1)

Introducing the decomposition (2.5) into local parts for each S, ,:

”naeA H::—l Sna X a 1ata;S)”2
< Y0 I Lvene 255 5) (L1 BO) =D ™41 2
where M=Mr)={v=(at,i)|acA, 1Zt<r, 1<i<5}, the sum running over all
functions B(-): M—A, and where for v=(a(v), t(v), i(v)e M we define S, (r; )=
SRV (L. Py - 15 1v); 8). For each function B(-) let N(B)=|{ve M|B(v)=7}.
Then by a checkerboard estimate and hypercontractivity,
T Toens SBS (5 ) (141 B(v) —a())) ™Il
= [ Thea (@3)B2 = 1PN L gy =y S’ (5 ) (L |y =D ]2 -
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As with 8P, (r;s), we decompose each SUF(r;s)° into normal ordered com-
ponents S©2.(r; s), 0<j< 12, with momentum space kernels SU2)(; 5)[ -], and we

n,oJ h,aj

show below that for a constant ¢y:
IS¢ f}(r 1z =ce, uniformlyin |A|,n o i, b, j7,s. (2.9)
It follows that there is a constant ¢, with

”Hv pvy=y nv (V S)|112-<—C16w)N (ﬁ)16’

and thus for a constant ¢ :

HHUEA H’t.:—l Sna Ty Dta;s)”Z
<cZa mZﬁ( )n\/GA (Nv(ﬁ) ) nv:ﬂ(v)=y(1+l’y—a(v)|)_d~

The required bound (2.8), completing the proof of Lemma 2.5, is now the result
of a purely combinatorial estimate, the proof of which we relegate to the appendix
(Lemma A.1):

2pcreareo [ Lea NGB [ Toerton: L+ 1y —a) "G (X[ [, (5r,)11)°, (2.10)

By =y

with ¢ uniform in |4} and r= {r,, ae A}, provided d > 24.

Finally we must demonstrate the validity of the decomposition (2.5) of P, ,(r;s)
into local parts and prove the uniform bounds (2.7) and (2.9). These bounds for
P, (r; s) will follow if we prove similar bounds for each term P, ,(r; s) in an upper
bound for P, (r;s) of the form:

n o V S)< Zm 1 m n, a(r S) Pm;n,a(r; S)go s (211)
since 6P, (3 )= (D 0P,y (5 9)%)¢ and SOL (r;5)=(3,, SEP (r; 5)°)!Cthen cer-

m;n,o

tainly satisfy (2.5), (2.7), (2.9). We now demonstrate a bound of the form (2.11)
with M =118.

From (2.4) and |Tr B| < ||B||,, we have
P, [(r,3)
<e’p{(22/2)|:(8/0si) Tr (K, o s)* + K, ,(r; 5)):]
+ 22 [(0/0s2) K (3 ) K, o7 9)2 1y
+ 2400 (K (5 $)K, 15 ) + 1(0/0sE) A, o, )11}
=e p{A1+A2+A3+A4}. (2.12)
By calculating the indicated trace we find
Ay =220 [ dPRER) ¢, o5 s ()12

where ¢, ,(r, s) is defined in terms of ¢{*'= ¢,g, by the same interpolation formulas
used to define K, ,(r;s) in terms of K, and

= [ d?po(p+k/2)2w(p—k/2) 7
H(p+k/2)ex(p—k/2) = (p+k/2)-(p— k/2) +m3} . (2.13)
Seiler [3] has studied E(k) and shows that asymptotically: E(k) =4 In2+ 0(mq/|k|).



290 O. A. McBryan

Thus defining e(k)=FE(k)—4nIn2, and introducing the derivative 8¢y, =
(0/052) ¢, o(r; 5), we have

Ay S8mAP In2|: [ d®xSL%, (X) . olrs 5)(X):]
+2221 | d*ke(k)ddSy (= )b, o1, s ()]
+222| | d?ke(k)< O3¢5y (— k)b, olr, sT (R
=Y o1 Prdrss).

We define 5P1 a3 8)=Py,, (r;s) and S$:2 (r;5)=6,5. To treat P,,,, we intro-
duce neCZ(R?), 0<ny<1, :1—1 on 4, supptne@z[ 5/8,5/8], and we define
n.-)=n(- —«). Expanding ¢, ,(r, s) into local contributions ¢¥(r, )= (¢, .(r, )g,)
we obtain:

Py dlrs 5)22/12 Zﬂ | ydzlldzlea,ﬁ(ll’ 1,)é La)r;( 1)@5@ (r; sy (L) (2.14)
F, 4, 1)=2n) "2 [ d*ke(k)i (—k—1,)7,(k—15) . '

From the representation (2.13) for E(k), we see that e(k) and its derivatives to
arbitrary order are bounded by constw(k)™! and so, integrating by parts,

Fo gl IS cd) (1 +lo—B) ™ > oofly) ™ o(l)” olly +15)7%2, and dz0.

Using a Schwarz inequality in (2.14) it follows that a bound for P,., ,(r;s) of the
form (2.5) is given by choosing OP,., [ris)=([d*lo(l)"*6¢\. D272 SEP (r;5)=

const({d*lo(l) 1 |¢L)(r, s) F (1?12 and S¢: B (r;8)=0,4 i>1.Similarly for P;,, ,(r;5s)
we take

0Py, (r:8)=(J d*leo()) ™[O (DI* D)2

S s)= const ([ dl(l) ™ 2<| ¢ s sy (D)2
and S$0(r; 9)=0,4 i> 1.

To study the remaining terms 4,, A3, A, in (2.12) we define 6K, =(0/0s")K,, ,(r;s)
and we introduce the expansion K, (r;s)=);K, where K;=KU" (r;s)=
K(¢¥)(r;s). We have suppressed r,s, and the subscripts n, o in our notation.
Differentiating within the trace norms and using the triangle inequality we obtain

Ats ;tH-l Z}I 1 ZBI ..... pieAd I;zmﬂ(li,J.l?.,ﬂz’ m(l7jl)=]l+3 +Zi;} Mi ’
where M,=27, My=52, M,=30, and M;=6. A typical term 1.7,  , has the
form

# t #
Tiprv.n =K, K, OKKG K |y, 1=r<l,

,,,,,

where K}‘, denotes either K or K}, and is thus a function of boson fields localized
in regions f,,... f;. Unless all of the §; are close to a, we expect 17 . , to be
small. To bound T3%,....p, we note that Ky;=Q,L,Py; where Q4,Pp,L,, are the
bounded operators on # with kernels:

Qplp, 9)=2m) " (p+mo) (p> +m) " 'p—9q)
Py(p, q)=2m)~ ' i(p—aq)(q* +md)~*, (2.15)
Lyp, q)=Q2n) "' (p> +m3) " > (@L)(r; )N (p—q) (g* +m) ™.
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Denoting by RZ one of the operators Py, Pj,0,,Q5, we have

7;:;"/31 ~~~~~ ﬁlz”LﬂlR#le:"'Lﬂr—lR#ﬂr—1R§5LaR§R;§rLﬁ Rﬁl 1Rﬂ1L131”1
SUOL N5 T Ti= 1 1Lg N5 IRE, RGN IRG RGN IRERG I IRG, R,
(2.16)
where we have used the Holder inequality for the trace norm, the monotone
decrease of || ||, in p and |AB|,<|A| ||B|,- By an elementary interpolation
estimate [ 15, 16],

1Ll S L2 3R L),

where L{’ is the operator obtained by replacing (p*+m3)~ " with (p* +mg)~*?
in (2.15). We now define, for 4 <m <118,

Py o 8)=[OL P PIER SLT O3,
S(’ falrs s)= const || L 2[R | LT3

msn,a

(2.17)

The bounds (2.5) for P,,., ,(r; s) follow from (2.16), (2.17), an estimate on the norms
[RGRE| occuring in (2.16):
IRGRS | =c (d)(1+[—7)", any d=0, (2.18)

and the triangle inequality in the form

n;=1(1+|ﬁi*ﬁi—1|)—rd§52(")H?:l(1+|ﬁi‘0‘|)—da if fo=a

To prove (2.18), note that we may reduce the sixteen possible forms for RjR?
to eight using ||B|| = || B*||. Furthermore, since Q;= UP} where U is the unitary
operator on # with kernel U(p, q)=(p+ mo)(p* +m3)~* 5(p— q), forms beginning
with Q or ending with QO* need not be considered, and in fact since K=QLP and
K*=P*LQ*, we need only consider forms beginning with P or 0* and ending
with Q or P*. This leaves only PyP¥, 0%Q,, and P;Q,, and the first two are equal
since QfQ,=P,U*UP}=P;P¥. The corresponding kernels are:

PyPi(p, q)=Q2n) " * [ d*I(I> +mg) ™ i p—Din (I —q),
P;0.(p, q)=(27r)_2jdzl(l+m0)(lz+mo)_ ng(p—Di,(1—q) .

The bounds (2.18) now follow immediately by using an L, — L, norm estimate
on the kernels and the fact that (1> +m3)~'/? and (¥+m,)/(I* +m&)~* have Fourier
transforms decaying exponentially.

Finally we prove the bounds (2.7), (2.9) for the momentum space kernels
0Py a1, SG8 (r;s)[-] in the Wick expansion for 6P, (r;s)° and
SEP (r;5)°. By convexity in s where s satisfy s, —s® 20, S52 (¥, — s+
s(’”—l it suffices to prove the bounds for a given r, or rg, without interpolations.
For P;., . these bounds follow from the convergence in L,(du,) of :| d*xg,(x)p2(x):
as k—oo while for P, ,, P;.,, they follow from the convergence of

J a1~ 2|(gg, (DI
in Ly(duo) as k- 0. For P, ,,4<m=118, the bounds follow, by (2.17), from the

convergence in L,(du,) of the Feynman graphs j_____( and =~~~ where



292 O. A. McBryan

denotes a momentum cutoff boson field, denotes a propagator
(p*+md)” 1112 in the first graph or (p*+m3)~7/® in the second graph, and the
vertices are functions g,(-) localized in a unit volume 4. The bounds are uniform
in the spacecutoff g provided g belongs to one of the classes G(y) defined in
Lemma 2.1. This completes the proof of Lemma 2.5.

II1. Lower Bounds for ZV

In this section we assume that the space-time cutoff is of the Hamiltonian form
9(X)=210,1(X0)x10,1(x1)- Then the Feynman-Kac formula of Osterwalder and Schra-
der [4] implies that

Zy=ZW=(e Wy =M HTONQ eI, (.1)

where Q is the vacuum for the relativistic Fock space and H;= H(y, ;). The
constants W, the wavefunction renormalization in second order, and T appear
because the Euclidean counter-terms differ slightly from the usual Hamiltonian
counter-terms; specifically

W(l) = <H1,1H6 2HI,I>QD P
(@t )= -<H1,1H529_1H0HI,1>907

where H; ;=2 [ dx:ipypd(x): is the unrenormalized interaction Hamiltonian. To
prove (3.1), we introduce momentum cutoffs for the boson and fermi fields, in the
space direction only. By the momentum cutoff Feynman-Kac formula [4], (3.1)
is then valid. Glimm and Jaffe [ 7] have shown that the cutoff Hamiltonians con-
verge to H,, in the sense of resolvents, as the cutoffs are removed. Furthermore
by results of Seiler [3] and McBryan [15], Z“Y is also the limit of the corre-
sponding cutoff quantities. The identity (3.1) follows immediately.
On the right of (3.1) we apply the bound:

<QO7 eﬁtHlQ0> z <‘QOS e_HlQO>z >

(3.2)

and, using the Feynman-Kac formula again in reverse, obtain:

7 l>e(1—t)W(l) -+ T(t,l)—tT(Ll)Zz
1=

1,0»

>ellWhZ (3.3)

where in the second step we have used the Euclidean invariance of Z, ; and that
T(t, 1) is negative and monotone increasing in ¢ [see (3.2)]. We may apply (3.3)
again to the right side of (3.3), obtaining:

Z, Z e mOWOa-Ow ) 7
By an elementary calculation we see that W(l) < const/ and thus
Zt,l z e—consl tlztll’1 — (COI’ISt)tl
which completes the proof of Theorem 1.2.
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Appendix

We now prove the bound (2.10) which controls the number divergence and
fermion localization in Lemma 2.5. Let A be any finite subset of Z2 let r= {r,:ae 4,
r,eZ  r,=21}, let 1=1eZ*, and define M [r;[j={v=(ot,i):0e A, 1Zt<r,
1<igl}. For v=(a,t,i)e M ,[r; 1], define a(v)=co. Let AM2"N denote the set of
functions B(-):M ,[r;1]—A4, and for B(-)eAMA"N yed, we define N.(f)=
[{ve M [r:1]: pv)=7}.

Lemma A.1. There is a constant C independent of |A|, v, | such that for a=1
and d>4a:

Zﬁ'( ) ny {Ny(ﬁ) e I_Iv:ﬁ(v)=y(1 + |y - a(v)')_d} é(clzara na (lra) !2)a
where the sum is over all f(-)e AM 41y ranges over M ,[r; [] and o, y range over A.

Proof. Tt is sufficient to consider the case a=1 since for a>1:

S LI AN T gy =y (L Iy — )
é [Zﬁ( -) n«,: {Ny(ﬂ) ! Hv: ﬂ(v)=)'(1 + I'y - a(v)l)*d}]a .

We generalize an argument of Eckmann et al. [17, Appendix]. Denote the sum
on the left in the statement of the lemma, for a= 1, by S(r; /) and note that S(r; [)=
S(lr; 1) where Ir={Ir,}. Thus it suffices to prove the result for /=1. and so we
define M[r]=M ,[r; 1], S(r)=S(r; 1). For any function f(-)e AM"! define numbers
4w(P)=H{ve M[r]:a(v)=0, B(v)=y}|. The terms in the sum S(r) are uniquely deter-
mined by the ¢,,(f) and thus we may replace the sum over f(-) by a sum over
functions ¢(-,-)e Q[r1={q(-, ) e Z"***:Y" ql(a,y)=r,, e A}. For each q(-, -)e Q[r]
we define N.,(q)= ), q(o.. 7), ye A and thus ), N (q)= , r,. The sum S(r) may now
be expressed as

ST = nerene LI N g oeom: | Ly (1| —y) 7497,
N, (q)=N(y)
where N[r]1={N(-)eZ**:Y N(y)=N=),r,}. Using the inequality [ [, ,q(e.7)! =
[TATT, g n 3= TLar, !, we have
Sr)= l—[a Ya 12 ZN(') ny N()! Zq( -, )e0n: na.y qlo, )™ 2(1 +o—y|) @

N,(g)=N,

é na Fa !2 ZN(') Hy {N('})) ! Zq(~)eP[N(Y)] Ha 9. 1= 2(1 + Iaﬁyi)_dqa} 5 (Al)

where P[n]={q(-)lq(-):Z*—>Z" and ), q(i)=n}, and by g, we mean g, where
m:A—Z" is some ordering of the points of 4. Denote the expression in brackets
in (A.1) by S,(r, N(y)). For fixed y there is an arrangement of the o for which
lo—79]=1(ax!’*—3) and thus

Sy(rv n)éZq(A)eP[n] n ' na qa !_ 2((1 +a1/2)/4)~d%
=n!" 1(Z:q(-)eP[n] n! na 9! 1((1 +a1/2)/4)_dq“/2)2
Sl Qe (L+72) /47022 =n 171 C (d)",
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with C,(d) finite for d>4. Returning to (A.1) we thus obtain:

S(r)é Ha ra !2 ZN(~)eN[r] Hy N(’))) !_ 1C1;J(Y)
= C}e"= Ha rANITE ZN(~)eN[r] N! ]—[y N(y)!~1
=CP L 2N 1A, N=Y,r2|4].

But N!=N"e™", and thus S(r)<C¥= [, r,!1?, C=eC,.
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