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Abstract. The relation between a "nonrelativistic" Hamiltonian of the form /ί0 0 = (Λ + B)2 + C
and a corresponding family of "Dirac-Hamiltonians" H(c) in the limit c-+ oo is investigated. It is shown
that the resolvent (z — H(c))~ι and the relativistic perturbation of isolated eigenvalues of f/00 are
analytic in 1/c for sufficiently large |c|.

1. Introduction

The Hamiltonian of a Dirac-electron of charge e= 1 and mass m = 1/2 may
be written as

p-A(x)) + iβc2 + φ(x), (1)

where p = — id/dx and with the 4 x 4-matrices

σ\ .
Oj ' ^

whose elements are the 2 x 2-matrices 1 and σ = (σί9σ2, σ3) = set of Pauli spin-
matrices. A(x) and φ(x) are the potentials of the static electromagnetic field. The
usual factor 1/c in front of A(x) is omitted on purpose since it must be kept fixed
in the nonrelativistic limit c->oo. H(c) acts on the Hilbertspace C 4 (X)L 2 (JR 3 ) of
square-integrable 4-component wave functions.

On a formal level, it is well understood that the nonrelativistic limit c-> oo is
described by the Pauli-Hamiltonian

H™ = (σ(p-A(x))2) + φ(x) (2)

on the smaller Hilbertspace C2®L2(R% and there exists a sytematic scheme for
obtaining corrections to f/00 in the form of a power series in 1/c [1]. However,
these "relativistic perturbations" of H°° are given by more and more singular
operators which are by no means small with respect to H 0 0. One might therefore
suspect that perturbation expansions in powers of 1/c are at best asymptotic.

Nevertheless, Titchmarsh [2] has proved analyticity in 1/c of eigenvalues and
eigenfunctions for the spherically symmetric case without magnetic field:
φ = φ(r),A=0; and Veselic [3] has extended this result to the case without
spherical symmetry: φ = φ(x\ A = 0.

In this note we investigate the general case A Φ 0 which poses essentially new
problems-already in the nonrelativistic limit. One of the points we wish to make
is that it is profitable to treat a general Hamiltonian of type #°° = {A + B)2 + C as
a nonrelativistic limit of a corresponding Dirac-Hamiltonian H(c).
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In order to keep the conditions on A and φ fairly general, we here restrict
ourselves to the discrete spectrum of H. The analyticity properties of the resolvent
in ί/c will of course also be needed in the discussion of the continuum. However,
additional assumptions for the electromagnetic field (like dilatation-analyticity
or sufficiently rapid fall-off at infinity) are then necessary and the arguments
become more technical [4].

2. The Hamiltonian and Its Spectrum

We summarize some (but not all!) known results on the selfadjointness and
on the spectrum of H(c). This is intended only as a background for the more
general set-up introduced in Section 3.

H is of the form Ho + V with Ho = cap + \c2fi, V(x) = φ(x) - cxA (x). V(x) is
a 4 x 4-matrixvalued function on R3 ZΛnorms of V may be defined with respect
to any matrix-norm.

Theorem 1. Let VeLp + L™ for some p>3. Then V is H0-bounded with
arbitrarily small relative bound. Therefore, H = Ho + V is selfadjoint with domain
D(H0).

Theorem 2. Suppose that VeLp + εL°° (p>3), i.e. that the L^-part of V can
be chosen arbitrarily small in U°-norm. Then the spectrum σ(H) of H consists of
the continuum σ(H0) = {ze R:\z\^^c2} and, in the complement ofσ(H0), of isolated
eigenvalues with finite multiplicities with can accumulate only at +jc2.

Remarks. Theorem 1 is proved in [5] and follows from the fact that an operator
of the form

/(*)(1+/>2Γ1 / 2 (3)

on L2(R3) is bounded if fe Lp, p > 3. The condition p > 3 excludes Coulomb-like

singularities. However, /(jc) = |x|~1 is still relatively bounded with respect to

\P\ [6].
Theorem 2 can be proved like its analogue for Schrodinger Hamiltonians [7].

The main point is that (3) is a compact operator if / e LP + εL00, i.e. V is relatively
compact with respect to Ho.

3. The Nonrelativistic Limit

We now pose the problem in a generalized form. Let A, B, C be symmetric
operators on a Hilbertspace jf. On C 2 ® Jf we define the "Dirac-Hamiltonian"

c2

H(c) = ca®(A + B)+

where
/0 1\ (i 0

α = ( i oj ^ ( o - i
We want to show that the limit c->oo is described by the "Pauli-Hamiltonian"

H™={A + B)2 + C on π.
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Corresponding to the hypothesis of Theorem 1 we assume:

A = A*; B and C are ^-bounded, in particular
(4)

B has relative bound < 1 with respect to A .

It follows easily that H(c) is selfadjoint with domain D(A) for c real and sufficiently
large. For i/00 we have

Lemma 1. H00 is selfadjoint with domain D((A-hB)2) and bounded below.

Proof. By (4), A + B is selfadjoint with domain D(A) and Ais(A + £)-bounded.
Hence C is (A + £)-bounded and has therefore arbitrarily small relative bound
with respect to (A + B)2.

Remark. For //°°, the splitting

tf °° = A2 + (AB + BA + B2 + Q

into unperturbed part plus perturbation is artificial and raises unneccessary
domain questions. These will be avoided automatically by treating H™ as a limit
of H(c).

We first discuss the unperturbed resolvent (z-H^c))'1 for

where we have dropped the tensor-product notation. From α2 = β2 — 1 and
aβ + βoί = 0 it follows that

which shows that σ(H0) has at least the gap ( — \c2 , + \c2). For zφσ(H0) we have

Before taking the nonrelativistic limit c—>oo we must subtract from H0(c) or
H(c) the rest energy \c2 or, equivalently, replace in the resolvents z by z + ̂ c 2 .
This will always be assumed in the following. It is also convenient to use 2-compo-

, WfcGJf7, for vectors ueC2®^ and the corresponding

2 x 2-matrix notation for operators on C2 (x) Jf. The unperturbed resolvent then
takes the form

z
"72"

\

A

c

which shows explicitly that, for z φ σ(A2), G0(z, c) is analytic in ί/c in a z-dependent
neighbourhood of ί/c = 0. To construct the full resolvent G(z, c) = (z — H(c))~x we
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start from the resolvent equation

G(z,c) = G0(z,c) + K(z,c)G(z,c),
where

K(z,c) = G0(z,c)(H(c)-H0(c))

z2

zC

This expression for K must be understood in the following sense: a term like
/ z2 \~ 1

z H — 2 — ^ 2 ^ ^ ^s defined on D(B) as the product of the bounded operator

\ c I
A\zΛ—2— ^ 2 with & ^ s a consequence of (4), K is therefore defined on D(A)

and bounded. In the following we denote with K the unique bounded extension
of this operator to all of C2 <g) Jf. For BΦOwe see that K diverges as c-> oo. To
control this divergence we set

and introduce

1 + — —
_ 1 ( c2 c2

\ c

' z
A •?!

(5)
for c = oo .

z2

Λ n zC
AB+—T-

We notice that for z ^ σ(y42), Gofe c) and X(z, c) are analytic in (1/c)2 in a neigh-
bourhood of zero. The resolvent equation transforms into

G(z,c) = G0(z,c) + K(z,c)G(z,c) (7)

for G = SGS~i. Our next task is to connect this equation for c = oo with the Pauli
Hamiltonian if00.
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Theorem 3. Let A, B, C satisfy (4) and let z φ σ(A2). Then the two equations

(Z-H»)U = Ό (8)

and
ίuΛ ( (v- Λ2^1^ \ ^ ίuΛ

(9)

are equivalent in the following sense: (8) implies (9) for ( 1 1 = ί I, (9) implies
\u2) \(A + B)uj

uγ e D((A + B)2\ u2 = (A + B)ux and (8) for u = uί.

The straightforward but somewhat lengthy proof is given in Section 5. As a
corollary we note that for zφσ(A2\ zφ σ(iJ°°), Gco(z) = (z- H 0 0 ) " 1 satisfies

2 W eχ]+K(z9co)[ίA , m

v _ J . (10)
0\ _ / (z-A2)-1 G
θ)~\A{z-A2)~ι 0) ' "^^'\(A + B)G™(z) 0y

Conversely, if zφσ(A2) and if (1 — K(z, oo))"1 exists and is bounded, it follows
that z φ σ(#°°) and that

0

, (*) 0.

is the unique solution of (10) in L(C2(χ) Jf). Therefore, (10) is a suitable resolvent
equation for if00 which may also be used, incidentally, as a starting point for time-
independent scattering theory [4]. Corresponding to the hypothesis of theorem 2
we now assume in addition to (4) that

B and C are relatively compact with respect to A . (11)

As in Theorem 2 it then follows that H(c) can only have isolated eigenvalues of
finite multiplicities in the complement of σ(H0(c)\ in particular in the gap (— c2,0)
(rest energy subtracted). Since K(z, oo) is compact for z φ σ(A2) we obtain a similar
result for if00:

Lemma 2. In the complement of σ(A2), σ(H™) consists only of isolated eigen-
values of finite multiplicities which are bounded below.

Proof. Suppose that for some z φ σ{A2\ the homogeneous equation

K(z, oo)u = u (12)

has a nontrivial solution. Then u = I 1 j satisfies (9) with v = 0. By Theorem 3,

it follows that uxe D((A + B)2\ u2 = (A + B)ux and

(z-H™)Ul=0. (13)

We conclude that uι φ θ and that zeσ(i/°°). By the Fredholm alternative, there-
fore, (1 — K(z9 oo))"1 exists for z^σ(/f°°). Since K(z, oo) is analytic in zφσ(A2%



220 W. Hunziker

(1 — K(z, oo))~* and therefore G00 (z) are meromorphic in z φ σ(A2). Conversely, (13)

implies (12) for u = I (A * 1 hence the eigenvalues of i/00 in the complement
\(A + n)UίJ

of σ(A2) are of finite multiplicity. Boundedness below is obvious from Lemma 1.
This concludes the proof.

We are now prepared to discuss the analyticity properties in ί/c of G(z, c). Let
zφσ(A2)uσ(Hco). Then(l-K(z, oo))"1 exists. Since K(z,c) is analytic in (ί/c)2

it follows that (1 — K(z, c))'1 exists and is analytic in (ί/c)2 for \c\ sufficiently
large. The same is true for G0(z, c) and therefore, by (7), for G(z, c). From (5) and (10)
we see that the power series of G(z, c) in (ί/c)2 begins with

Due to the particular form of the leading term, G(z, c) = S~ί(c)G(z, c)S(c) is still
analytic in ί/c with an expansion

(G™(z) 0\ 1 / 0 {A + B)G<°(z)
G ( z ' c ) = l o O) + ΛA + B)G-(Z) o

In general, the diagonal elements of G(z, c) are even in ί/c, the off-diagonal ele-
ments are odd. These analyticity properties of the resolvent are the basis from
which the analyticity properties of eigenvalues and eigenfunctions follow in the
usual way [6]. As has been remarked by Veselic, the fact that G(z, oo) is a pseudo-
resolvent rather than a resolvent is thereby no obstacle. We only give the final
result:

Theorem 4. Let A, B, C satisfy (4) and (11). Let z be an eigenvalue of i/00 in the
complement of σ(A2) and m its (finite) multiplicity. Then z is the limit for c->oo o/
eigenvalues zk(c) of H(c) (with rest-energy subtracted) of total multiplicity m.
The functions zk(c) are analytic in (ί/c)2 for \c\ sufficiently large. An orthonormal
set of corresponding eigenvectors of H(c) can be chosen such that each eigenvector is

of the forml ι) where ux(c) and c ιu2(c) are analytic in (ί/c) and where
\U2\C)J

1^(00) is an eigenvector of H00 with eigenvalue z.

Remark. In general there will be other eigenvalues of H(c) which for c->oo
will not converge to an eigenvalue of iί 0 0 in the complement of σ(A2). However,
these eigenvalues will leave any compact not intersecting o(A2\ i.e. they will
either join σ(A2) or disappear to ± 00. In fact it is equally possible to study the
limit C-+00 of —R(c) — \c2 which leads to a Pauli Hamiltonian (A + B)2 — C.

4. Proof of Theorem 3

(8)->(9):
We define uί=u and u2 e D(A) by

(A + B)u1-u2 = 0. (14)
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Then (8) takes the form

v = 0, (15)

and the combination A(z -A2)'1 (14) - (z - A2)~ * (15) gives the upper component
of (9)

2 1 2 ι 2 1 A 2 ) - 1 B u 2 . (16)

All terms in (16) are in D(A). The combination ^4(16) + (14) leads to the lower
component of (9):

u2 = A(z-A2y1υ + z(z - A2)'1 Buγ + A(z - A2)'1 Cux + A(z - A2)'1 Bu2 . (17)

(9)-(8):
(9) is equivalent to the set (16) (17) with two important modifications. First,

all operator products must be replaced by their bounded extensions to Jf7. To
indicate this extension we write, for example, \_A(z — A2)~ ι E] for the extension of
A(z — A2)"1 B. Secondly, we start only with the information that ux and u2 are
in jf. The combination A(z - A2)~1 (16) + (z - A2γι{\l) gives

ί{z-A2T'{A + B)-\u,={z-A2)-"u2, (18)

where we have used identities like

A(z - A2)'1 [_(z - A2)'1 C]=(z - A2)"1 [_A(z - A2)'1 C] ,

which hold trivially on D(A) and extend by continuity to all of Jf. We now take
the scalar product of (18) with an arbitrary / e J-f and set g = (z — A2)~1 f. Using
[(z - A2)-1^ + B)Y = (A + B) {z-A2)-1 we find

((A + B)g,Ul) = (g,u2) (19)

for all g e D(A2). Since A is the closure of its restriction to D(A2) and since B is
^-bounded, this extends by continuity to all g e D(A). Since A + B is selfadjoint
with domain D(A\ it follows that

uί G D(A + B) and u2 = (A + B) uγ. (20)

Writing (20) in the form

uγ = z(z - A2)'γ uγ + A(z - A2)'ι Bux - A(z - A2)~ι u2

and subtracting this from (16) we get

In the same way as before we conclude that

for all geD(A). It follows that u2eD(A + B) and (A+B)u2={z-Quι-υ.
Combined with (20) this is the desired result:

and (z-Ha3)u1 = v.
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