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Abstract. The relation between a “nonrelativistic” Hamiltonian of the form H® =(4 + B>+ C
and a corresponding family of “Dirac-Hamiltonians” H(c) in the limit ¢ — o0 is investigated. It is shown
that the resolvent (z— H(c))™! and the relativistic perturbation of isolated eigenvalues of H® are
analytic in 1/c for sufficiently large |c|.

1. Introduction

The Hamiltonian of a Dirac-electron of charge e=1 and mass m= {/2 may
be written as

H(o)=ca(p—A(x)+3Lc* + (), (1

where p= —id/dx and with the 4 x 4-matrices

- (O o) = (11 0)
s 0)° 0 1)
whose elements are the 2 x 2-matrices 1 and 6 =(0,, 6,, 65) = set of Pauli spin-
matrices. 4(x) and @(x) are the potentials of the static electromagnetic field. The
usual factor 1/c in front of A(x) is omitted on purpose since it must be kept fixed
in the nonrelativistic limit ¢— co. H(c) acts on the Hilbertspace C*® L?(R?) of
square-integrable 4-component wave functions.

On a formal level, it is well understood that the nonrelativistic limit ¢— oo is
described by the Pauli-Hamiltonian

H* =(o(p— A(®)) + 9(x) @)

on the smaller Hilbertspace C* ® L*(R?), and there exists a sytematic scheme for
obtaining corrections to H*® in the form of a power series in 1/c [1]. However,
these “relativistic perturbations” of H® are given by more and more singular
operators which are by no means small with respect to H®. One might therefore
suspect that perturbation expansions in powers of 1/c are at best asymptotic.

Nevertheless, Titchmarsh [2] has proved analyticity in 1/c of eigenvalues and
eigenfunctions for the spherically symmetric case without magnetic field:
o=0¢(r), A=0; and Veselic [3] has extended this result to the case without
spherical symmetry: ¢ = ¢(x), A =0.

In this note we investigate the general case 4 30 which poses essentially new
problems-already in the nonrelativistic limit. One of the points we wish to make
is that it is profitable to treat a general Hamiltonian of type H® = (4 + B)*> + C as
a nonrelativistic limit of a corresponding Dirac-Hamiltonian H(c).
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In order to keep the conditions on A and ¢ fairly general, we here restrict
ourselves to the discrete spectrum of H. The analyticity properties of the resolvent
in 1/c will of course also be needed in the discussion of the continuum. However,
additional assumptions for the electromagnetic field (like dilatation-analyticity
or sufficiently rapid fall-off at infinity) are then necessary and the arguments
become more technical [4].

2. The Hamiltonian and Its Spectrum

We summarize some (but not all!) known results on the selfadjointness and
on the spectrum of H(c). This is intended only as a background for the more
general set-up introduced in Section 3.

H is of the form Hy+ V with Hy=cap+ic?f, V(x)= ¢(x) — cad(x). V(x) is
a 4 x 4-matrixvalued function on R? - LP-norms of ¥ may be defined with respect
to any matrix-norm.

Theorem 1. Let Ve lL?+L® for some p>3. Then V is Hy-bounded with
arbitrarily small relative bound. Therefore, H = H, + V is selfadjoint with domain
D(H,).

Theorem 2. Suppose that V € L +¢L* (p> 3), i.e. that the L®-part of V can
be chosen arbitrarily small in L*-norm. Then the spectrum o(H) of H consists of
the continuum o(Hy,)={z € R:|z| =1 c*} and, in the complement of o(H,), of isolated
eigenvalues with finite multiplicities with can accumulate only at +4c?.

Remarks. Theorem 1 is proved in [5] and follows from the fact that an operator
of the form
f)A+p?)12 ©)

on L*(R?) is bounded if f'e€ L?, p > 3. The condition p > 3 excludes Coulomb-like
singularities. However, f(x)=|x|™! is still relatively bounded with respect to

Ipl [6].

Theorem 2 can be proved like its analogue for Schrodinger Hamiltonians [7].
The main point is that (3) is a compact operator if f € L? +¢L®, i.e. V is relatively
compact with respect to H,.

3. The Nonrelativistic Limit

We now pose the problem in a generalized form. Let 4, B, C be symmetric
operators on a Hilbertspace #. On C>*® # we define the “Dirac-Hamiltonian”

2
H(O=ca®(A+B)+ 5 f@1+1®C,
0 1 1t 0
=i o r=lo )
We want to show that the limit ¢— oo is described by the “Pauli-Hamiltonian”

H*=(A+B?*+C on #.

where
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Corresponding to the hypothesis of Theorem | we assume:

A= A*; Band C are A-bounded, in particular @

B has relative bound < 1 with respect to A4 .

It follows easily that H(c) is selfadjoint with domain D(A) for c real and sufficiently
large. For H® we have

Lemma 1. H® is selfadjoint with domain D((A+ B)*) and bounded below.
Proof. By (4), A + B is selfadjoint with domain D(A) and A4 is (4 + B)-bounded.
Hence C is (4 + B)-bounded and has therefore arbitrarily small relative bound

with respect to (4 + B)%.
Remark. For H®, the splitting

H®=A*>+(AB+ BA+B*+ ()

into unperturbed part plus perturbation is artificial and raises unneccessary
domain questions. These will be avoided automatically by treating H® as a limit
of H(c).

We first discuss the unperturbed resolvent (z— Hy(c))™* for

Hy(c)=cad +1c2p,

where we have dropped the tensor-product notation. From o =pf%=1 and
af + pa=0 it follows that

Hi(c)=c*A* +%c*,
which shows that ¢(H,) has at least the gap (—%c?,+%c?). For z ¢ 6(H,) we have
(z=Ho) ' =(z+Hp) (2"~ H) ™!
=(z4+caAd+312p) (2 —Lc*— 24P .
Before taking the nonrelativistic limit ¢— oo we must subtract from Hy(c) or

H(c) the rest energy ¢ or, equivalently, replace in the resolvents z by z +c?.

This will always be assumed in the following. It is also convenient to use 2-compo-
1

nent notation:u = Z , u, € H, for vectors ue C*®# and the corresponding
2

2 x 2-matrix notation for operators on C>® #. The unperturbed resolvent then
takes the form

Go(z, €)= (z = Ho(c)™"
z
2

A
1+ =
C c 2
— (Z'i“?‘_‘AZ)—I,
A z
c c?

which shows explicitly that, for z ¢ 6(42), Go(z, c) is analytic in 1/c in a z-dependent
neighbourhood of 1/c = 0. To construct the full resolvent G(z, ¢) = (z — H(c))"* we
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start from the resolvent equation
G(z, ¢) = Gy(z, )+ K(z, ¢) G(z, ¢) ,
where
K(z, 0) = Go(z, ¢) (H(c) — Ho(c))

(1+—ZZ-)C+AB (1+i2 cB+ L=
- c c

1

—(4 B AB+ —-

- (AC+zB) + 2
This expression for K must be understood in the following sense: a term like

2 -1
(z + %2-— - A2> AB is defined on D(B) as the product of the bounded operator

2 -1
A (z + % — A2) with B. As a consequence of (4), K is therefore defined on D(A)

and bounded. In the following we denote with K the unique bounded extension
of this operator to all of C>® #. For B=+0 we see that K diverges as c— 0. To
control this divergence we set
10
S(c)= (0 c)

and introduce

42 A
32 2
2 -1
Go(z,0)=SG,S™1 = (z+ % —AZ)
y4
A 7

i 0 ©)
=(z——A2)"‘<A O) for c=00.

AC
(1+i2)c+AB (1+i2)B+ ;
- ¢ c

2
K(z,0)=SKS™'= <z+ i—z —AZ)
AC+zB AB+—-

C+AB B

=(z—A2)"‘(AC+ZB AB) for c=c0. (6)

We notice that for z ¢ o(A42), Go(z, ¢) and K(z, ¢) are analytic in (1/c)? in a neigh-
bourhood of zero. The resolvent equation transforms into

G(z,0)=Gy(z, ¢) + K(z, ¢) G(z, ¢) (7

for G=SGS™'. Our next task is to connect this equation for ¢ = co with the Pauli
Hamiltonian H*.
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Theorem 3. Let A, B, C satisfy (4) and let z ¢ oc(A*). Then the two equations

(z—H®)u=v (8)
and e A7)
u\ [ (- v - u,
(uz) B (A(Z—AZ)—IU) +K(z ) <”2) )

are equivalent in the following sense: (8) implies (9) for (Z;) = ((A +uB)u> , (9) implies
u, € D((A + B)?), u, =(A+ B)u, and (8) for u=u;.

The straightforward but somewhat lengthy proof is given in Section 5. As a
corollary we note that for z ¢ g(42), z¢ 6(H®), G*(z)=(z— H®)™ ! satisfies

( G*(2) 0) _ ( (z—AH7! O) +R( oo)( G*(2) 0)

(A+B)G®(z) 0 \A(z—4%>"* 0 (A+B)G=(z) 0’ (10)

Conversely, if z ¢ o(42) and if (1 — K(z, 00))~! exists and is bounded, it follows
that z ¢ o(H*®) and that

G%(2) 0)
(A+B)G*(z) O
is the unique solution of (10) in L(C*® #). Therefore, (10) is a suitable resolvent
equation for H® which may also be used, incidentally, as a starting point for time-

independent scattering theory [4]. Corresponding to the hypothesis of theorem 2
we now assume in addition to (4) that

B and C are relatively compact with respect to 4. (11)

As in Theorem 2 it then follows that H(c) can only have isolated eigenvalues of
finite multiplicities in the complement of o(H,(c)), in particular in the gap (— ¢, 0)
(rest energy subtracted). Since K (z, o) is compact for z ¢ a(A42) we obtain a similar
result for H®:

Lemma 2. In the complement of (A4%), a(H®™) consists only of isolated eigen-
values of finite multiplicities which are bounded below.

Proof. Suppose that for some z ¢ g(4?), the homogeneous equation

K(z, 0)u=u (12

has a nontrivial solution. Then u= Z‘ satisfies (9) with v=0. By Theorem 3,

2
it follows that u,e D((4 + B)?), u, = (4 + B)u, and
(z— H®)u, =0. (13)

We conclude that u, #0 and that z € ¢(H®). By the Fredholm alternative, there-
fore, (1 — K(z, 00))™! exists for z ¢ a(H®). Since K(z, o0) is analytic in z ¢ o(4?),
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(1 — K(z, 00))~ ! and therefore G* (z) are meromorphic in z ¢ o(42). Conversely, (13)
Uy
(A+ B)u,
of a(A?) are of finite multiplicity. Boundedness below is obvious from Lemma 1.

This concludes the proof.

We are now prepared to discuss the analyticity properties in 1/c of G(z, c). Let
z¢0(A%)ua(H®). Then (1—K(z, 00)) ™! exists. Since K(z,¢) is analytic in (1/c)?
it follows that (1—K(z, ¢))~! exists and is analytic in (1/c)® for || sufficiently
large. The same is true for G,(z, c) and therefore, by (7), for G(z, ¢). From (5) and (10)
we see that the power series of Gz, ¢) in (1/c)? begins with

~ G*(2) 0 1
Gla,0)= ((A 1+ B)G*() 0) 0 <c_) ‘

Due to the particular form of the leading term, G(z, ¢) =S~ 1(¢)G(z, ¢)S(c) s still
analytic in 1/c with an expansion

G Al

CZ
In general, the diagonal elements of G(z, ¢) are even in 1/c, the off-diagonal ele-
ments are odd. These analyticity properties of the resolvent are the basis from
which the analyticity properties of eigenvalues and eigenfunctions follow in the
usual way [6]. As has been remarked by Veseli¢, the fact that G(z, o0) is a pseudo-
resolvent rather than a resolvent is thereby no obstacle. We only give the final
result:

implies (12) for u = hence the eigenvalues of H® in the complement

G(z, ¢)= (

Theorem 4. Let A, B, C satisfy (4) and (11). Let z be an eigenvalue of H® in the
complement of 6(A?) and m its ( finite) multiplicity. Then z is the limit for c— oo of
eigenvalues z,(c) of H(c) (with rest-energy subtracted) of total multiplicity m.
The functions z,(c) are analytic in (1/c)* for |c| sufficiently large. An orthonormal
set of corresponding eigenvectors of H(c) can be chosen such that each eigenvector is
of the form (218 where u,(c) and ¢ 'u,(c) are analytic in (1/c)* and where

2
u,(00) is an eigenvector of H* with eigenvalue z.

Remark. In general there will be other eigenvalues of H(c) which for ¢— oo
will not converge to an eigenvalue of H* in the complement of o(4%). However,
these eigenvalues will leave any compact not intersecting a(A4?), ie. they will
either join o(4?) or disappear to + co. In fact it is equally possible to study the
limit c— oo of — H(c) — +¢? which leads to a Pauli Hamiltonian (4 + B)*— C.

4. Proof of Theorem 3

(8)—09):
We define u; = u and u, € D(A) by

(A+Byu, —u,=0. (14)
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Then (8) takes the form
(z—Quy—(A+Bu, —v=0, (15)

and the combination 4(z — 4%)~!(14) — (z — A%)~ }(15) gives the upper component
of (9)
U, =(z—A>"'v+A(z— A*>)"'Bu, +(z— A*>) ' Cu, +(z— A*) ' Bu,. (16)

All terms in (16) are in D(A). The combination A(16)+ (14) leads to the lower
component of (9):

U, =A(z— A 'v+z(z—A*) " 'Bu, + A(z— A*) " Cu, + A(z— A*)"*Bu, . (17)

9)—(8):

(9) is equivalent to the set (16) (17) with two important modifications. First,
all operator products must be replaced by their bounded extensions to #. To
indicate this extension we write, for example, [A4(z — A%)~ ! B] for the extension of
A(z— A?)~ ' B. Secondly, we start only with the information that u;, and u, are
in #. The combination A(z — A%)~(16) + (z — A%~ 1(17) gives

[(z—A%)" " (A+B)Ju; =(z— 4% 'u,, (18)
where we have used identities like
Az— A '[(z— A>T Cl=(z— A% "' [Alz— A} (],

which hold trivially on D(A) and extend by continuity to all of s#. We now take
the scalar product of (18) with an arbitrary f € # and set g=(Z— 4%~ ! f. Using
[(z—A*)"YA+B)]*=(A+B)(z— A* "' we find

((A+B)g’u1):(g’ uZ) (19)

for all ge D(A?). Since A4 is the closure of its restriction to D(4%) and since B is
A-bounded, this extends by continuity to all g e D(A). Since 4 + B is selfadjoint
with domain D(A), it follows that

u € D(A+B) and u,=(A+ B)u,. (20)
Writing (20) in the form
U, =2(z— A" u; + A(z— A*>)" ' Bu; — A(z— A*) " tu,
and subtracting this from (16) we get
(z—A)"'z—CQu;=(z—A4») "o+ [z— A" (4 + B)lu, .
In the same way as before we conclude that
((4+ B)g, uy)=(g,(z— C)uy — )

for all ge D(A). It follows that u,e D(A+ B) and (A+Buy,=(z— C)u; —v.
Combined with (20) this is the desired result:

u eD(A+B)?), u,=(A+B)u; and (z—H®)u,=v.
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