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The Bloch Equations
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Abstract. We consider a spinor interacting with a heat bath of harmonic oscillators in
equilibrium and we prove that the phenomenological Bloch equations for time development

are satisfied exactly if the spin is § and to first order in the inverse temperature if the spin
exceeds 3.

§ 1. Introduction
In 1946 Bloch [1] proposed the differential equation

M M M (My — M)
aM g Y, M M 0
T yM x T, e, T, e, T, e (1)

for the time dependence of the macroscopic nuclear polarization M(t)
under the influence of an external magnetic field H. y=y/jh is the
gyromagnetic ratio of the nuclei under consideration with magnetic
moment u and spin j. The constants T; and 7T, are the longitudinal and
transverse relaxation times respectively. Later Bloch and Wangness [2]
attempted to justify these phenomenological equations theoretically
with the simplifying assumption that the nucleus under consideration
reacts independently of the other nuclei. In this paper we consider a
fully quantum mechanical model by replacing the electromagnetic field
by an infinite heat bath of harmonic oscillators in equilibrium keeping
the simplifying assumption in [2]. We show that if j=1, our model,
described in § 2, satisfies an equation of the same form as (1) in the weak
coupling limit if the time is rescaled; we find also that if j exceeds 3,
to first order in the inverse temperature the model satisfies an equation
of the form of (1). In § 3 we obtain an equation for the time development
of an observable while in §4 we obtain the Bloch equations by taking the
spin as the observable.

This work is very similar to [4] which considers a harmonic oscillator
interacting with a heat bath of harmonic oscillators though in the latter,
expressions are simpler due to the fact that the particle is of the same type
as those of which the bath is composed. We have used the description
of the infinite heat bath provided in [4].
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§ 2. The Model

The description of an infinite heat bath of harmonic oscillators is
well known [3,4]. The Hamiltonian is given formally by

e o) 0
H0=%: Z pr2|+ Z am,nqmqn:

n=-o n,m=—o
where p,,, ¢,, are the canonical co-ordinates of the infinite heat bath.
We suppose that a,,, = 4,,_, Where a is a real symmetric positive definite
sequence and that

e .

o= > a,">0 for 6[0,2n].
n= —o

Then g is a real analytic periodic function on [0, 2n] with strictly positive
minimum and maximum values and consequently the corresponding
convolution operator C on 5, the space of square-summable complex
sequences, is positive, bounded and invertible. We can find real

numbers C,; ... Cy(C,>0) so that there is a unitary equivalence
N N

Vi#— Y ®I*C,-,,C,)such that C* actson ), @L*(C,_y,C,)as the
r=1 r=1

usual multiplication operator

(CHp), (x)=x1p,(x) .

Let % (#) be the Bose Fock space over #. Then we can realise H,
above, as the self-adjoint operator constructed on & () from C* on #.
For h e # let Wy(h) be the usual Weyl operators on Fock space satisfying

Wi(hy) We(hy) = exp {i/2 Inhy, hy) Welhy + hy)

and N . s
elHot WF(h)e—zHot — WF(ezC th) .

The equilibrium state of the bath at the inverse temperature f is given
by the generating functional

(k) =exp{—% | Th|*}
T= (coth ‘82C% )M

It is more convenient in our case to change to another representation of
the CCR in which u(h) is given by the vacuum expectation of the Weyl
operator W(h). This representation is given explicitly by Chaiken [5].

We shall denote this representation by {W,, Q, #.} where in fact i,
. T?—1\*
=F (#)x F (M), M being the closure of the range of ( 3 ) .Let R(h)

where
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be the self-adjoint field operator corresponding to the Weyl operator
W.(h) that is W,(h)=eR®. Then it is straightforward to verify that

<Q,R(hy) R(h,) Q> =3 {Re{T?hy, hyy +i Imhy, by} 2
and that
CQR(hy) ... Rlhyp+1)2)=0.

{2, R(hy) ... R(h,,)2)

1 g
=57 &[] <Q:RUyq-1) Rihoo;): 2

geSan j=1

where :: means that the original order is preserved.
Define H, on S, by

H,=H,®1—-1®H,.
Then as in the Fock representation for h in the domain of C,
eiHot Y7 ()~ iHot — VVC(eiC%'h) '

We shall take €*/** ® #, as the composite spinor-bath space with the
Hamiltonian

H=wJs+ Hy+ A{J_p*b)+ J, p(b)} + 12w Js = H, + AH, ,
H,=wJy+ Hy+ 1wy Js
Hy =J_y*b)+ J.p(b),
where J is the spin operator acting on €**! and J, =J, +iJ,,be#
gives the mode of the bath to which the spinor is coupled, yw*(b) and y(b)

are the creation and annihilation operators corresponding to the Weyl
operators, that is

w*(h)=2"*{R(h)+iR(ih)}
w(h)=2"*{R(h)— iR(ih)} .
The operator H is a self-adjoint operator with the same domain as H,.

Let (Vb),=b, r=1,... N. We shall require {b,}_, to be C* functions
of compact support. We shall assume also that for some r

C,_i<—w<C, and b(—w)=%0.

This condition may be interpreted physically as in [4], that is that —w
should be one of the range of frequencies of the heat bath and that the
interaction should couple the oscillator to that frequency.
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The dynamics of the spinor is given in the Heisenberg picture by «,,
3, 0,(B)x) =<{y®Q, "B 1e ' xQ Q)

where Bisa 2j+ 1 x 2j+ 1 self-adjoint complex matrix. This corresponds
to taking the expectation with respect to the canonical equilibrium state
of the bath of all expressions involving the bath. We want to follow the
time evolution in the weak coupling limit. As A approaches zero the
diffusion becomes slower so that this must be done using re-scaled time.
But in re-scaling the time that part of Hamiltonian which is independant
of A gives rise to oscillating terms so that we must work in the inter-
action picture. In this representation the dynamics of the spinor is given by

&t(B) — e—-in;tO(t(B)einat .

§ 3. Time Evolution in the Weak Coupling Limit

It is clear that we cannot obtain a closed expression for &,(B). But we
can expand &,(B) in a perturbation series. Let

B.(B)= PaiChs Azwo)Jstat(B)ei(wuzwo)Ja:
so that &,(B) = ¢'**@0/s' B (B) e ~i#* @0 s,
Since  is invariant under H,
{y, B(B) x> =y Q, e Hat giHl Bp—iHt g iHat y ()
where we writ.e yQ for y® Q2 and B for B® 1. With
Uy(e)=e "2 e, Cy, B(B)x) =<yQ, U,() BUF(t) x Q) .

For an operator C on C"® ., let D(t) C = [H, (¢), C] where

Hl(t)=e_iH"H1 et — J w*(eiz(w+zzwo+c%)b)

+ J, (et BPootChpy

© t tie—1
Theorem 1.y, B,(B)x>= Y (—iA* [ - [ dt,...dy,
k=0 =0 =0 A3)
Ky,D(ty) ... D(t, ) Bx Q)
where the series on the right is uniformly convergent on {(A,t):t\*=1t}.

Proof. 1If 6 is in the domain of H, then by [6]

U,()0=0—1il tf H,(s) U,(s)0 ds. @)
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Now H has the same domain as H;,. ¢'#+'Q is in the domain of H, and
therefore in the domain of H, which means that Be H'e!H2'Q or
BU*(t) Q is in the domain of H.

Therefore by using (4)

<y, B(B)x) = {yQ, BU} (1) x2)

—il

s

Ky, H(s) U,(s) BUF(t)x2)> ds

0

I ey =

={(yQ BxQ)+id [ <{yQ,BH(s) Uf(s)xQ> ds
s=0

—il

s

<yQ,H(s) U;(s)BUF(t)x2)> ds.
0

[

By repeating the process m times we obtain

m—1 t ty e —

Gy BByxy= 3 (=i || e [ dty...d,

k=0 11=0 t,=0 k=0

{yQ,D(ty) ... D(t,) Bx Q) + r,, where

t ty [

= (=D G Y [ T dey...dg

k+l=mkSm—1 t;=0 t,=0 1=0

dsy ...ds;{yQ,H(t;)... H(t;) BH\(s{) ... H{(s) U¥(s)xQ2)

t ty tm—1

=i [ e TR H(E) . Hy(t) Unt,) BUF©)XQ)
t1=0 t2=0 tm=0
-dt, ... dt,.

We now prove that r,, vanishes as m tends to infinity which means that
the series in (3) is equal to {y, B,(B)x).

[KyQ, Hy(ty) ... Hy(t) BH(sy) ... Hy(s) Uf(s) x|

<|lx|| [|Hy(s) - Hy(s;) BH(ty) ... Hy(t,)yQ|| -

For be s let
Gb)=J_yp*(b)+ J, w(b)
=2{J, R(b) + J, R(ib)}
=2 Z JjR(e”‘/z(f‘“b).

j=1,2
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Therefore

YR, G(by) ... Gby) BG(by+ 1) - Gb2,) X2)
=2m Z <y,in...ijBJ‘ ..-]leJ'

Jre+1” Jr+1
j1=1,2
j2m=1,2
(Q,R(e™2I=Dp ) R(ei™2Um=Dp, }. QY.
1t K = max ([l [}, |2 | B [Ix]. [
1Ky2, G(b)B ... B ... G(by,) x|
SMKEME Y (Q, R(e2U-h,) .. R(e M2 Db, QY )

Jj1=1,2
Jam=1,2

e iy XD

J

B

Now if « and f§ take the values 1 or i,
K, R(aeit(wuzmﬁc%)b) R(ﬁeiz'(m+12mo+c%)b)g>l
=7 [T2b] [b] + 3 b]* =M (say).
But H, (f) = G(&""@* #@o* ) p) 50 that from (5)
Ky, Hy(t,)... B... B... H(t;,) x|

(2m)! _n 2m)!
m!

< K2(m+ 3)22mMm .
= m!

which gives

1
BT Ll VLD UL
Irnl = 2 T

which tends to zero as m tends to infinity. We still have to prove that the
series in (3) is uniformly convergent in A and t. From (5) and (2) we obtain

Ky, Hy(ty) ... Hi(t) BH (¢4 1) ... Hi(t2,)x2D]

< K2n+32n

= Z H 0(t,2j-1)— to2j)

n! 0€San j=1
where 6(s) = 0(—s) =1 |z(s)| + [{(5)]
2(s)=<b, e T2bye ™ and {(s)=<(b,e " bye .
Therefore
IKy&, D(ty) ... D(t;,) BxQ2)|
- 2 "1 0(ts2i-1)— to2p) - ©

geS2n j=

<23n
= n!
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Now
z(s) = e'®s i OF eixs coth,B-;C—}b,(x)l2 dx
r=1 —o (7)
= [ e*cothp (= “’) Z Ib,(x — ) dx .

-

Since b, are C* functions of compact support and C, > 0, z(s) lies in the
Schwartz space <. Similarly

29

()= [ &> ; Ib,(x — w)? ®)

and lies in #. Therefore | 0(s)ds < oo.
Combining (6) with Lemma 3 in the appendix we have

t/22 tan-1

A2 [ [ Ky@,D(ty) ... D(ty,) BxQ| dt, ... dty,

t1=0 t2,=0

2n+3 © n
<23n Kn' ([ G(S)ds) "

—

so that the series (3) is uniformly convergent.

Theorem 2. Eintl)&,l-z(B)ze"wB where ¢B=§¢B+iwy[J;, B] and

N
== SL ; (—w)? {([Jl, [J1, B1]+ [, [ 2, BT)) coth./fzﬂ

i, [y B + [yt B)s — Dy [y B] [, B] J2>}

o«

o0 N
-3 [ds ( dx sinxs Zl b,(x — w)|? {([Jz, Ui, B1]-[J:, [z, B1D)

0

(x— w)

coth p S i, B+ 1 B+ 0 B+ 5, B

Proof. Clearly as a consequence of (2) the odd terms on the series (3)
do not contribute. Let us therefore look at the first even term of the
series for §.;-2(B),

A2 1y

A2 [ [ <y@ D(t)D(ty) BxQ) dt, dt, . )

t1=0 t,=0
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One can check that the integrand is equal to

% {<ya ([Jl’ [Jla B]] + [J2a [JZa B]])x> ‘%e(eiizwom—mz(tl - tZ))
+ <y’ ([JZ’ [Jl’ B]] - [Jlﬂ [JZ’ B]])x> jm(euzwom_tﬂz(tl - t2))}

+ 5 (0, U L, B+ [, B,

- L[Jys Bl—[J;, B]J,) x)

Re(eF* 0D (1, — 1)) (10)

+ <y’ (Jl [Jla B:l + [Jl’ B] JI + JZ[JZs B] + [JZ’ B] Jz)x>

I (et (t — 1))}

Now
tA~2 ty
-7 22 —_
A2 | emiFectiT g ) de, dty
t;1=0 t2=0
T 1y .
=172 [ [ T2t —t,))dt, dty
t1=0 t;=0

e}

which according to Lemma 2 approaches t [ z(s) ds as A tends to zero.

Similarly
tAT2 1y
oy

t1=0 t2=0

ety — 1)) dty dty > [ {(s)ds as A-0.
0

Since z € & and z(—s) = z(s), from (7)

? Re(z(s)) dx
0

Similarly

Re(((s)d

1 ? z(s)ds
_100 v (11)
N
Z b, (— w)| (12)

Hence the expression (10) approaches t<y,dBx) as A tends to zero.
We now turn to terms of higher order and prove by induction on n that

tA™2  tan-y

g

t1=0 tan=0

tends t

yQ,D(ty) ...

D(t,,)BxQ) dt,, ... dt, (13)

@"Bx) as A tends to zero.
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Since the integrand in (13) is of the form
Y 3 Ax) [Tty = ta@) - S (tozn-1)— tozm) (14)

ceSan

where for each o€ S, and each i, 1<i<n, f7e, we deduce from
Lemma 1 that only terms for which there is a k satisfying 6(2k— 1)=1
and ¢(2k)=2 or satisfying 6(2k— 1)=2 and ¢(2k)= 1, contribute to the
limit of (13). That is, the only contribution comes from the term which
couples t, and t,. Now

D(ty) ... D(t,,) B=H,(t;) H (t;) X — H,(t,) XH(t;)
— H,(t;) X Hy(t;) + X H,(t,) H,(t1)

where X (¢, ... t,,)=D(t3) ... D(t,,) B. Therefore this contribution to the
limit of (13) must come from the term

tA~2 tan—1
AZ" f e [ dth"'dtl

t1‘=0 tz,;=0

3 Uy, U XI1 4[5, [, XTD XD Re(e™ 00 "2 (8 — 1))

+<3, (U35 U1, X11= [, [, XIDxD Iom(e™ 40221, — 1))}

+ 5 (U K14 Un K1 - B X1 T K1) (1)
Re (@0t (1, — 1))

+ <y (L s X1+ [, X194+ 0, [, X1+ [z, X142) %)
fm(euzwom—maﬁ — 1))}

where

Xty t,)x>=<yQ, X(t;5... 1,,)x2>
tA~2 tan—1

=22 [ o [ dty,...dt Fi(ty... t;,) Re(e ¥t 51 1))
t1=0 t2n=0 (16)

+ Fy(ty ... ty,) Im(e 0= gt —t W4 Fo(ts ... 1,,)
Re(((ty — ty)e™ o0t 719)

+ Fylty ... ty,) Fm(e ¥ @0t (¢t —t,)).

Now

tA"2? t2n-1
Az f 0”’ ‘N dtzn ..dt; Fi(ts ... ty,) %(e‘“zwo(’l‘tz)z(tl _ tz))
0= t2n=0
{ T on , -
=77 f ( dtl dtz Re e_“"O(’l“z)Z _1._Tg_ /12(n—1) (17)
A7 =0 =0 2
t2A"2
[ dth"'dt3F1(t3...t2n),

t3=0
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By the induction hypothesis

T A2
BT dty . dty, Fi(ts ... ty,)
;=0 t,=0
tends to
tn—l . ne
T 30 (U, U, @7 BT+ [Ua, [V, 6" P B1D X))

as A tends to zero and from (14) and Lemma 3 one can see that (17)
is bounded in modulus by a constant independent of A so that from
Lemma 2 it follows that the expression in (16) tends to

[ Zeleo)ds | 2 4 (U [9.8" B
: o Dt
+[J2’[J2’énﬂlB]])x>}
= | Aele(9) 53 G (0 1, B)

+ [, [, 0" B XD}
Treating the other three terms similarly and using the expressions (7), (8),

(11), (12) we see that (13) tends to — i <y, 0" Bx>. Since the convergence
of the series (3) is uniform on {(4, t) Tt=1A72),
. _ _15
}ET(l)ﬁm—z(B)—e B.
Now  &,,-2(B) = €"/3*(B_, 2(B)) e /3"  which tends to

eiJarwo(e—réB)e— iJ3two G e—(o—@)(e—rﬁB).
By direct verification or by noting that

<yQ, D(ty) D(t,) [J5, B]xQ) =<yQ, [J5, D(t,) D(t;) B1xQ2) ,
one can show that [9—g,¢]=0 so that the limit of &,,-.(B) is e "¢B.

§ 4. The Bloch Equations
Let y,(B) denote }iné &, ;-2(B), that is y,(B)=e "2B. Then

dvz

(B) —e "%9B= —y,B). (18)
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We now turn to the case when B=J =(J, J,, J3). One can verify that

o ) ) pow
QJ3——7_T{J3+(J "‘J3)tanh 2 }
1 paw
Q']l = _2—,1,,‘;‘{.]1 —_ (Jl J3 + J3J1) tanh —‘2_}
1
—Jy Hye + ?Z(Jst +J3J,), (19)
pw
QJZ = 2—,1,‘1 J2 - (J2 J3 + J3 Jz) tal’lh T
1
+ Jy Hege + T (i s+ J5J)),
where
1 -1 X ) Bw
B _ ht=
T i r; |b,(— w)|? cot 3
[e) o N
Hy=wo+% [ ds | dxsinds ) |b,(x— w)]? coth} f(x— w)
[4] -0 r=1
and
. lofods T) dx sinxs % |b,(x — w)?
T o 2 0 —:oo r=1 ’ )
If j=1, that is for spin % particles, J>?—J3 =% and J, 5 +J3J,=J,J5
+ J3J, =0 so that the Egs. (19) reduce to, (20
1
0s=—{J3+J,} where Jy=3% tanhﬂ—w
T, 2
1
0J= “‘Z‘“ﬁ‘Jx—JzHeff (21)
1
o), = 2—TlJ2 + Jy Hege
so that we can write Eq. (18) vectorially as
dy 1 1 1
d—;(J)=Vr(JXHeff—Tl{-]a‘l']o}es—2—T1J1ex—ﬁjzez) (22)

which has the same form as (1). For j=1 we cannot make use of the
Egs. (20) so that the Egs. (19) do not lead directly to the Bloch equations.
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It is only for large temperatures that (19) give approximately the Bloch

equations. Because of the singularity in as f# approaches 0 we

1
Ty (w, f)
suppose that for each f the mode to which the spinor interacts, b(f),

. 1 S
is such that ————— approaches a finite limit as S tends to zero. Then

Tl(wa lB)
e_‘aBze"teoB_l_O(‘B)
where
1 , L |
@b= m([J“ [Jy, B11+ [J2, [, BI]) - 2m -g ds '(f) dx sinxs
1
m([b [J., B11=[J., [J,, B1D.

Therefore e "¢gB=e¢""29, B+ e '%(g — g,) B.
We now suppose that the state of the system is the uniform state,

and let

5,(B)=}i£ré trace (oo, ,-2(B)) = 21, li_r}g trace (f,;-2(B))

j+1 4

{ ~
= trace (e”'¢B).

2j+1
Then
dfst(B) _ _'"1 —tdx
AP Ta P trace (e '@ B)
1
=5:(~Q03)~7j+—1 trace (e™'®(¢— o) B)+0(f?).

Now g, A4 has zero trace so that trace (e "% A) =trace A
= trace (e~ "¢(trace A)I).

Thus
do,B)

= = 5~ 00 B)— trace (6 00) B) + O(F?)
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which for B=J =(J;, J,, J3) reduces to

d (J3) 0, ( ! {Jﬁ—trace(J2 J§)tanh£§—})+0(ﬁ2),
1

1
(Jl) 4, (2T {Jl —trace (J; J3 + J3 J;) tanh ﬁz })

1
+J2Heff+'7: trace ((J,Js+J31))+O(B%), (23)
dé, 1

=5

{Jz —trace (J, J; + J3 J,) tanh fo })

t
+J1He“+ T '[I‘ace (J1 J3+J3J1)+0(ﬁ2)

Since trace (J?>—J?)=(2/3)(2j+1)(j+1)j and trace (J;J5+J3J;)
= trace (J, J; + J;3 J,) =0 we can write the Egs. (23) as

1 1
= t(" X Hege — 'Tl—{Js'f'Jo}ea— 2—,111']131

1
— g hes) 00

with Jy =(2/3)(2j+ 1) (j + 1)j. This again is of the form of (1).

§ 5. Appendix

Lemma 1. Let fi,f,,... f, be in & and let ¢ be a permutation on
{1,2,... 2n} such that |~ '(1)— o~ 1(2)| > 1, then

O R PPty S S
W,j [ f1(”—(ﬁp(—2)>

=0 t=0 t2,=0

t —1
(2n—1) 2
”fn(_L_"__ﬁ__ﬂL)) dty, ... dt,

(24)

tends to zero as A tends to zero.

Proof. Let S, = {teR*":t>1t, >--->1t,,> 0} and define g : IR?"—>IR?"
by

= "(ly(1)> Lo3)s s Lo@n—1)> Lo(2) -+~ Lo2m) -
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With the substitution (s+ A%x,s)=at,s, x€R" (24) becomes

i() sn[o = ;f512_2.'.xn= _j‘snl_zfl(xl) fn(xn) Xst(O'_l(S—f-AZx, S)) (25)

dx, ...dx,ds; ...ds,
The modulus of (25) is bounded by

I 0 0

i o T AGD 1 f G s (o™ (s + A7, 5)

s,.—O X{= —®© Xp= — 00

dx, ...dx,ds, ... ds,

so that it is enough to prove that ys (o7 '(s+ A x, 5)) converges to zero
pointwise as 4 tends to zero.

Suppose that ¢~ *(1)=2k— 1, and that 6~ *(2)=2p—1 where k=+p
and let 6(2k) =[> 2. By noting that (¢! t)§2j_1)= t;and (07  0)aj = tos j»
j=1,...,n, we see that if s,=s, then o (s+2%x,s)e S, and therefore
%s.(0” (S + A2, 5) =

Suppose now that ]sk— syl #0 and choose 4 such that

min (42|x,, A2|x, — x,) <ls,— s, .
Since
(67 s+ 22x,9) =07 s+ A2x, Nok-1) =S+ A2,
(07 s+ 22X, 8) =07 (5 + 22X, ), 2p-1)= S, + 47X,
and

(@ s+ A%, 8)) = (07 (s + A2 %, 9), 20 = k>

o '(s+A*x,s)e S, implies that ©>s,4+A>x,>s,+A*x,>s, which
means that if 5, —5,>0

sy —s,l=s,—s,<A*x,<A%|x,| and thatif s,—s,>0

Is, = 8,1 =5, — 8, < A2 0, — x,) < A2|x;, — x|
both of which contradict our choice of 1. Thus for sufficiently small
A, 6" Ys+A%x,5) ¢S, as required. The other three possibilities corre-

sponding to whether ¢~ (1) and ¢~ !(2) are even or odd can be dealt
with similarly.

Lemma 2. If ge & and |f(t,, A*)| <M for all A and for t,€[0,1],
and f(t,, A?) tends to f(t,) as A tends to zero then

ty

1 t,—t
. f - ‘“‘"”g(————l Ve Z)f(tz,/lz)dtldtz (26)
=0 0

2=
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converges to

0

[ g(x)dx | f(t)dt, . 7
[4]

0

Proof. We can rewrite the integral as

t (t—t2)Aa~2 .

] [ e%7g(x) f(t,47) dx dt,

=0 x=0
or

t =]

[ | 9 F(x,t,, 2% dx de,
where =0 x=0

Fx,t5,%)=0 if xz t;fz

A2 . —t

=" f(1,, 4% if x< tlzz

Therefore

I(26) - 27)| = [ O:f) lgCl 1/ (t2) — F(x, 15, A%) dx dt .

Now |f(ty)— F(x,2, A*)|<2M and f(t;)— F(x, t,, 2°) tends to zero as 4
tends to zero which means that {(26) — (27)} approaches zero as A tends
to zero.

Lemma 3. If 0,(s)=0 and f 0(s)ds < oo for j=1,...,n then

- to2j-1)— to(2
Z W [0 ) I:[ GJ(W)dtl "'dth
ceSan ty= t2,=0 j=1 (28)
<" [] [ | Gj(s)ds].
j=1l-w
Proof. With the notation of Lemma 1, (28) is equal to
[ [ H 0(x) Y xs(o” (s +4%x,5))
51=0 sp=0 x;=—s;A"2 Xp= —spAi~2 j= GES2n

1. ds,dxy ... dx,

Now if o#& and o !(s+4%x,s)eS, then & !'(s+4%x,5) ¢S, and
o s+ A%x,s)e S, implies that s;<t for i=1...n.
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Therefore Y. xs,(0 7 (s+ A% X, 5)) < X1 0 <y < Which means that (28)

geSan

is less than or equal to
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