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Abstract. We consider a spinor interacting with a heat bath of harmonic oscillators in
equilibrium and we prove that the phenomenological Bloch equations for time development
are satisfied exactly if the spin is \ and to first order in the inverse temperature if the spin
exceeds \.

§ 1. Introduction

In 1946 Bloch [1] proposed the differential equation

aι

for the time dependence of the macroscopic nuclear polarization M(t)
under the influence of an external magnetic field H. y = μ/jh is the
gyromagnetic ratio of the nuclei under consideration with magnetic
moment μ and spin j. The constants 7i and T2 are the longitudinal and
transverse relaxation times respectively. Later Bloch and Wangness [2]
attempted to justify these phenomenological equations theoretically
with the simplifying assumption that the nucleus under consideration
reacts independently of the other nuclei. In this paper we consider a
fully quantum mechanical model by replacing the electromagnetic field
by an infinite heat bath of harmonic oscillators in equilibrium keeping
the simplifying assumption in [2]. We show that if j=^9 our model,
described in § 2, satisfies an equation of the same form as (1) in the weak
coupling limit if the time is rescaled; we find also that if j exceeds \,
to first order in the inverse temperature the model satisfies an equation
of the form of (1). In § 3 we obtain an equation for the time development
of an observable while in § 4 we obtain the Bloch equations by taking the
spin as the observable.

This work is very similar to [4] which considers a harmonic oscillator
interacting with a heat bath of harmonic oscillators though in the latter,
expressions are simpler due to the fact that the particle is of the same type
as those of which the bath is composed. We have used the description
of the infinite heat bath provided in [4].
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§ 2. The Model

The description of an infinite heat bath of harmonic oscillators is
well known [3,4]. The Hamiltonian is given formally by

00 00

γγ 1 V 2 -4- V

n= —oo n,m= —oo

where pm, qm are the canonical co-ordinates of the infinite heat bath.
We suppose that amn = α m _ w where a is a real symmetric positive definite
sequence and that

00

ρ(θ)= £ ane"">>0 for θ[0,2π].
n= — oo

Then ρ is a real analytic periodic function on [0,2π] with strictly positive
minimum and maximum values and consequently the corresponding
convolution operator C on Jf, the space of square-summable complex
sequences, is positive, bounded and invertible. We can find real
numbers Cί ... CN(Cr > 0) so that there is a unitary equivalence

N N

¥:<&-* Σ ®L2(Cr^i9 Q such that C* acts on Σ Θi2(C r_ l 5 C,) as the
r = l r = l

usual multiplication operator

Let $<(;%?} be the Bose Fock space over Jf. Then we can realise #0,
above, as the self-adjoint operator constructed on &(jtf) from C^ on jf.
For h e 2? let WF(/z) be the usual Weyl operators on Fock space satisfying

WF(h,) WF(h2) = exp {ί/2 Sm(hi9h2y WF(h, + h2)
and

^/Hoί ̂ F(/0^Hoί - H^F(eίcί¥f Λ) .

The equilibrium state of the bath at the inverse temperature β is given
by the generating functional

where
/T^ίcoth - .

It is more convenient in our case to change to another representation of
the CCR in which μ(h) is given by the vacuum expectation of the Weyl
operator W(h). This representation is given explicitly by Chaiken [5].
We shall denote this representation by {Wc,Ω,J4fc} where in fact J ĉ

/ Γ2 - 1 \*
x (̂M), M being the closure of the range of — - — . Let R(h)
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be the self-adjoint field operator corresponding to the Weyl operator
Wc(h) that is Wc(h) = e>R(h\ Then it is straightforward to verify that

<β, RihJ K(Λ2)β> = i {«*<T2 A!, /J2> + i^,<hl5 A2» (2)

and that

Σ

where : : means that the original order is preserved.
Define H0 on 3tfc by

Then as in the Fock representation for h in the domain of C,

eiHot Wc(hΓίHot =

We shall take C2j'+ 1 ® ̂  as the composite spinor-bath space with the
Hamiltonian

3

where J is the spin operator acting on C2j+1 and J+ =Jl±iJ
gives the mode of the bath to which the spinor is coupled, ψ*(b) and ψ(b)
are the creation and annihilation operators corresponding to the Weyl
operators, that is

The operator H is a self-adjoint operator with the same domain as Hλ.
Let (Vb)r = br r= 1, ... N. We shall require {br}?=1 to be C°° functions
of compact support. We shall assume also that for some r

Cr_1<-ω<Cr and ί? r(-ω)φO.

This condition may be interpreted physically as in [4], that is that — ω
should be one of the range of frequencies of the heat bath and that the
interaction should couple the oscillator to that frequency.
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The dynamics of the spinor is given in the Heisenberg picture by αί?

, eimB®ie~iHtx(S)Ωy

where B is a 2j + 1 x 2j + 1 self-adjoint complex matrix. This corresponds
to taking the expectation with respect to the canonical equilibrium state
of the bath of all expressions involving the bath. We want to follow the
time evolution in the weak coupling limit. As λ approaches zero the
diffusion becomes slower so that this must be done using re-scaled time.
But in re-scaling the time that part of Hamiltonian which is independant
of λ gives rise to oscillating terms so that we must work in the inter-
action picture. In this representation the dynamics of the spinor is given by

§ 3. Time Evolution in the Weak Coupling Limit

It is clear that we cannot obtain a closed expression for άt(B). But we
can expand at(B) in a perturbation series. Let

so that at(B) = eίλ2ωoJ3tβt(B)e-ίλ2ωoJ3t.
Since Ω is invariant under H0

<y, βt(B)xy = <yί2, e-
iHΛte*HtBe-iHte+iHΛt x ί2>

where we write yΩ for y® Ω and B for £® 1. With

Uλ(t) = e-iH*<eiHt, <y, β(B)x> = <j;Ω, Uλ(t)B Vf(t) x

For an operator C on Cn® tfc let D(t) C = [fl̂ ί), C] where

Theorem l.<y, j8ί(B)x>= Σ (-iλ)k J --^ dt, ... dtk
k=0 ίι = 0 ίk = 0

series on ί/ze π^/zί is uniformly convergent on {(λ, t):tλ2 = τ}.

Proof. If θ is in the domain of H, then by [6]

Uλ(t)θ = θ-iλ f H1(s)L7A(s)θίίs. (4)
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Now H has the same domain as Hλ. eiHλtΩ is in the domain of Hλ and
therefore in the domain of H, which means that Be~ίmeiHλtΩ or
B E7*(t) Ω is in the domain of H.

Therefore by using (4)

iλ f <yO,H1(s)l7A(s)Bl/A*(ί)χβ>ds
s = 0

ί

α J <3;β,Bfί1(s)C7λ*(s)χβ>ds

By repeating the process m times we obtain

m - 1 ί ί i tk - 1

θM8,(B)x> = Σ (-''tf ί ί - ί dίi . .dt*
fc = 0 ίι = 0 ί 2 = 0 ίk = 0

<yΩ, jDίtJ ... D(tk)BxΩy H- rm where

rm=(-iwr Σ ί ί -^f1^...^
k + l = m,k^m-l ίι = 0 ί2 = 0 ίk = 0

dSi ... ds^Ω.H^) ... H^BH^s,) ... H&ύ L/A*(s;)xΩ>

+ (-iXΓ ] '] •••""{ <yΩ,H1(t1)...H1(tm)Uλ(tm)BUf(t)xΩy

We now prove that rm vanishes as m tends to infinity which means that
the series in (3) is equal to <y, βt(B)x>.

J ... H^sί) l/jf(s,)χβ>|

S ||x|| llHiίs,) ... ̂ (s^Bίίiίί*) .- Hι(ίι)3>Ω||

For ^eJf let

= 2
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Therefore

(yΩ,G(bl)...G(bk)BG(bk+1)...G(b2m)xΩy

= 2- Σ ^Jh...JjkBJjk+1...Jh

.71 = 1,2
J 2 m = l , 2

^2m- D fe2Jβ> . (5)

.71 = 1,2

Now if α and /? take the values 1 or i,

But H1(t) = G(eίt(ω + λ2ωo+c*}b) so that from (5)

\<yΩ9Hl(tl)...B...B...Hi(t2JxΩy\

= jm

~" m m

which gives

Ir I < fm ^m 7"m/2 9m/2 V|rm|Sί /ί L 2

which tends to zero as m tends to infinity. We still have to prove that the
series in (3) is uniformly convergent in λ and t. From (5) and (2) we obtain

where θ(s) = θ(-s) = |z(s)|

>e-ίsω and

Therefore

Σ Π
eS2n 7=1
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Now

N oo

£ [ eίxscothβ — \br(x)\2dx

(7)
_ ,Vl N

2\br(x-ω)\2dx.
r = l

Since br are C°° functions of compact support and Cr>0, z(s) lies in the
Schwartz space £f. Similarly

2ζ(s)= J e'*s X \br(x-ω)\2 (8)
— oo r = 1

oo

and lies in ίf. Therefore [ θ(s) ds<co.
— oo

Combining (6) with Lemma 3 in the appendix we have

λ2" ' J - ί2 J ' |<yO,D(ίι) ... D(t2n)BxΩy\ dt,... dt2n

<23"^-— f θ(s)ds\ ί"
n ! V-oo /

so that the series (3) is uniformly convergent.

Theorem!. \imaτλ-2(B) = e~τQB where ρB = ρB + iω0[J3, £]

βω

J d x s i n x s X Mx-
0 0

. coth^S^p

Proof. Clearly as a consequence of (2) the odd terms on the series (3)
do not contribute. Let us therefore look at the first even term of the
series for βτλ-2(B)9

λ2 f I <yβ,D(ί1)D(ί2)Bxί2>dί2dί1. (9)
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One can check that the integrand is equal to

i {<y, ([Λ, W, B]] + [4, D/2, #]])*> ̂ (ea2ωo("-ί2)z(fι - ί2))
+ <y, (E/2, EΛ, #]] - EΛ, EΛ,

A2ωo("-t2)C(t1-ί2)) (10)

,, (Λ [Λ, β] + [Λ, B] Λ + J2[J2, B] + [J2, B] J2)χ>

Now

/ e-α2β>°<"-">z(t1-t2)dt2<frι

ί l = 0

which according to Lemma 2 approaches τ f 7(5) ds as λ tends to zero.

Similarly

t1-*τ ζ(s)ds as
b

Since ze^ and z( — 5) = 7(5), from (1)

Rm N
- coth -~^V*A / j \ ~Ύ\ ^>j\ .

Similarly

Hence the expression (10) approaches τ<j, ρBx} as /I tends to zero.
We now turn to terms of higher order and prove by induction on n that

λ2"'] - t2Γ <yΩ,D(ti)...D(t2n)BxΩydt2n...dti (13)

τ
tends to —- <y, ρnBxy as /I tends to zero.
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Since the integrand in (13) is of the form

£ <y,AσXyfϊ(tσ(v-tσ(2))...fZ(tσ(2n_i)-tσ(2n)) ^

σeS2n

where for each σ e Sn and each i, 1 ̂  i ̂  π, f? e<£f, we deduce from
Lemma 1 that only terms for which there is a /c satisfying σ(2k— i)= 1
and σ(2/c) = 2 or satisfying σ(2k— i) = 2 and σ(2fe) = 1, contribute to the
limit of (13). That is, the only contribution comes from the term which
couples ti and ί2. Now

where ΛΓ(ί2 ... t2n) = D(t3) ... D(t2n)B. Therefore this contribution to the
limit of (13) must come from the term

tλ- 2 t 2 n - l

A 2" f - f dt2n...dt,
ί l = 0

tiϊβ>o<"-">z(ί1 - ί2))}

+ <y, (Λ [J15 χ-\ + [Λ, Γ] Λ + J2, [J2, Γ] + [J2, x ] J2)x>
^»(eίΛ2ωo("-ί2)C(ί1-ί2))}

where

<y, Γ(ί3 ... ί2π)x> = <j;β, A (t3 ... ί2n)xΩ>
τ λ - 2 I2 n-ι

_ 5 2 n f ... f Jt At T? (t t— Λ i j αc2 π ... aι1 r1(i3 ... ι
ίι = 0 IZn = 0 x,, ,

F2(ί3 ... t2n)^(e-ίλ2^-^Z(tl - ί2)) + F3(t3 ... ί2π)

Now

12« ' f ... 'Jldt2n ... dt, F^ ... t2n)^(e-ίλ2°>°«^z(tl - ί2))
f l = 0 ί2n=0

= -̂  } jf dtίdt2<A f l = 0 ί2 = 0

t2λ-Z

J dt2n...dt3Fl(t3...t2n).
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By the induction hypothesis

Λ2 ("- J ) J "} dt3...
ίl = 0 Ϊ2 = 0

tends to

as A tends to zero and from (14) and Lemma 3 one can see that (17)
is bounded in modulus by a constant independent of λ so that from
Lemma 2 it follows that the expression in (16) tends to

Treating the other three terms similarly and using the expressions (7), (8),

Qn

of the series (3) is uniform on {(λ, t):t = τλ~2},

τ"
(11), (12) we see that (13) tends to — j- <y, QnBx). Since the convergence

Now &τλ-2(B) = eij3τω°(βτλ-2(B))e-ίj3τω° which tends to
3τω 0/ e-τρ m^-iJatωo Qr e~(e~ Q)ίe~fQ β\

By direct verification or by noting that

, D(ίi) D(t2) [J3, B] xί2> = <yί2, [J3, D^J D(ί2)B] xΩ> ,

one can show that [ρ — ρ, ρ]=0 so that the limit of aτλ-2(B) is e~τQB.

§ 4. The Bloch Equations

Let γt(B) denote limαίλ-2(B), that is yt(B) = e~tβB. Then

(18)
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We now turn to the case when B = J = (J^J2, J3). One can verify that

^(ΛΛ + Λ Λ ) , (19)
12

where

00 00

Heff = ω0 -f -j f ds f ίίxsinJs J] |foκ(x — ω)|2

Ό - oo r = 1

and

-j 4 GO OO ]V

— = - — f ds J dxsinxs ^ |fc,(x-co)|2.
^ ^ Ό - oo r = 1

If 7 = iί tnat is f°r spin ϊ particles, J2 — J| = \ and Jx J3 + J3 JA = J2 Λ
+ J3 J2 = 0 so that the Eqs. (19) reduce to, (20)

ρ J3 - — - { J3 + J0 } where J0 = ^ tanh — -

Q^2= jrπ ^2 "I" Λ -"eff

so that we can write Eq. (18) vectorially as

dt
(22)

which has the same form as (1). For 7^ 1 we cannot make use of the
Eqs. (20) so that the Eqs. (19) do not lead directly to the Bloch equations.
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It is only for large temperatures that (19) give approximately the Bloch

equations. Because of the singularity in ———— as β approaches 0 we

suppose that for each β the mode to which the spinor interacts, b(β\

is such that ———— approaches a finite limit as β tends to zero. Then

where

ρ°β = Λ T / m ([Jι. tΛ, *]] + [Λ, CΛ, B]])- 2π f ds dx sinxsz i j (ω, p ) o o

— — - —
J j_ {OJ — Λ,

, [J2, β]]) .

Therefore e~tSρB = e~t*
We now suppose that the state of the system is the uniform state,

2 / + 1

and let

<5 t(B)=lim trace (σα fΛ-2(g))= lim trace (j8fλ-2(B))A—» o *

- 2 trace (<Γ'«B).

Then

(e~tSρB)
' dί

trace

Now ρ0^ has zero trace so that trace (e~te°A) = trace ̂

= trace (έΓίρ(trace ,4)7).

Thus

- - = δt(-Q0B)- trace ((ρ- ρ0)B) + O(β2)
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which for B = J = (Jl, J2, J3) reduces to

_^L ( j ) = = δ f L_i. J3 + trace(J2-J|)tanh^ + 0(/?2),
dί \ T! I 2 j y

d(5, / -1 ί βωl
-L(j1) = 5t U—^ Jx- trace (J1J3 + J3 Λ) tanh —

rfί

-TΓ (Λ) = ί̂ I-^7F" \ J2 ~ trace (J2 J3 + J3 J2) tanh -

+ JιHeff+— trace (J, J3 + J3 Jl)

Since trace (J2- J3

2) = (2/3) (2/+ 1) (/+ 1); and trace
= trace (J2 J3 + J3 J2) = 0 we can write the Eqs. (23) as

with J0 - (2/3) (2; +1)0'+ I)/ This again is of the form of (1).

§ 5. Appendix

Lemma 1. Let /1?/2, ... /„ 6^ m 5̂  and let σ be a permutation on
{1,2,... In} such that \σ~L(l)- σ~l(2)\ > 1,

Ί τ ίl ί 2 n - l / *
1 Γ Γ Γ /• l —

~T27Γ J J "" J 7 1 1
Λ ί l = = 0 ί2 = 0 ί2n = θ

- tσ(2n-l)-tσ(2n)
- -

) , ,αr 2 n ... flίi

tends to zero as λ tends to zero.

Proof. LetSτ={telR2n:τ>t1> > t2n > 0} and define σ :R2"
by
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With the substitution (s + λ2x, s) = σt, s, xelR" (24) becomes

OO OO 00 OO

ί •- ί ί - ί /ι(*!) ../»WXs>"1(s + A 2 x,s
Si = 0 sn = 0 x j = - s ι λ - 2 xn=-snλ~2

dx1 ... dxn ds1 ... dsn .

The modulus of (25) is bounded by

ί - ί ϊ ••• ϊ l/iWI-.l/WI^-^ + A2*,*))
51=0 Sn = 0 Xt= ~ 00 *n = ~ OO

dxί ... dxnds! ... dsn

so that it is enough to prove that χSτ(σ~i(s + λ2x9s)) converges to zero
pointwise as λ tends to zero.

Suppose that σ~" 1 (l) = 2fc- ί, and that σ~1(2) = 2p-l where kή=p
and let σ(2fc) = I > 2. By noting that (σ~ 1 ί)m- 1> = *j and (σ~~ 1 ί)(2j> = ίn+ j,
7= 1, ...,n, we see that if sk = sp then σ~ (s + Λ,2 x, s) e Sτ and therefore
χ^σ-Hs + ̂ x^^O.

Suppose now that |SΛ — sp| Φ 0 and choose /I such that

min (A2 |xp|, λ
2 \xp - xk\) < \sp - sk\ .

Since

(a" l(s + λ2x, 5))i = (σ" x(5 + Λ2x, 5))σ(2k_ D - sk + /I2xk ,

and

(σ~ *(s + λ2x, s))ί - (σ~ HS + /I2x, s))σ(2k) - sk ,

σ ~ 1 (5 + λ2 x, s) e Sτ implies that τ > sk + λ2 xk > sp + λ2 xp > sk which
means that if sk — sp > 0

\sk-sp\ = sk-sp<λ2xp<λ2\xp\ and that if sk-sp>Q

\sk - sp\ = sp-sk< λ2(xk- xp) < λ2\xk-xp\

both of which contradict our choice of λ. Thus for sufficiently small
A, σ~i(s + λ2x, s ) φ S τ , as required. The other three possibilities corre-
sponding to whether σ- 1(l) and σ~1(2) are even or odd can be dealt
with similarly.

Lemma 2. If ge^ and \ f ( t 2 , λ2)\ ^ M for all λ and for t2 e [0, ί],
and f(t2, λ2) tends to f ( t 2 ) as λ tends to zero then

-J2 ( - [ e^-^g(^2^}f(t2,λ
2)dt1dt2 (26)
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converges to

] g ( x ) d χ \ f ( t 2 ) d t 2 . (27)
0 0

Proof. We can rewrite the integral as

} ^ 'f eiλ2χg(x)f(t2λ
2)dxdt2

or
r QO

J ί g(x)F(x,t2,λ
2)dxdt2

where '>=0 Jc=0

= elλ2χf(t2,λ
2} if x<

λ2

l-tj

A2

Therefore

|(26)- (27)| £ .f 1 | ff(x) | |/(f 2)-F(x,t 2,A 2)Mxdt 2.
ί2 = 0 x = 0

Now |/(ί2) - F(x, ί, /12)| ̂  2M and f(t2)-F(x, t2, λ2) tends to zero as λ
tends to zero which means that {(26) — (27)} approaches zero as λ tends
to zero.

00

Lemma 3. // θj(s) ^ 0 and f θj(s) ds < oo for j = 1 , . . . , n then

Γ ... Γ Π fi I27Γ J J 11 0 / 1 - p - l . . . 2 n

1 ί

V ΓL 127Γ J
σeS2n

 A ίι = 0 ί2n = 0 j=

7=1 L-oo

Proof. With the notation of Lemma 1, (28) is equal to

oo oo oo oo n

/oo,
(ZδJ

ί ΓK (*, ) Σ χs,(σ-1(

Now if σφσ and σ~1(s + λ2x,s)e St then σ~1(s + /l2x, s)^5f and
σ~ί(s + λ2x, s)eSr implies that sf <ί for i= 1 ... n.
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Therefore £ χSt(σ~1(s +λ2x, s))^χ{y:0<y.<t} which means that (28)

is less than or equal to

ί ί oo oo n

f - - - J f ••• J Π Θ j ( x j ) d s 1 ...dsndXi ...dxn

Sι=0 Sn — 0 X ι = ~ 00 Xn= ~~ 00 J = l

= f Π J θ}(y)dy.
j = 1 \y = — oo
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