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Abstract. We investigate the interactions between block-spins in the large magnetic
field region for the nearest neighbour, d-dimensional, Ising model.

1. Introduction

We try to analyse a number of properties of an Ising model in the
attempt to make some rigorous statements about the theories connected
with the renormalization group approach to critical phenomena [1].

We cannot make any statements about the critical point; however
we can say something away from it.

One could, with reasons, argue that this region is not interesting
since there is "nothing" to predict. Nevertheless it seems to us of interest
to try to put "known things" in a form which could suggest some precise
mathematical conjectures about the critical region.

We show that, if the system is away from the critical point, some
consequences of renormalization group arguments can be reduced to
very general theorems of probability.

Although we point out, in the final comments, some features which
might be of interest in the critical region we do not go into an analysis
of the relation between our work and the renormalization group
approach [1].

In Section 2 we describe some notations and the main result. Since,
at first sight, our theorem looks rather obscure, we clarify it with a
series of remarks.

In Section 3 we describe the main tools used to prove our theorem.
The technique is basically due to Ruelle [2] who worked it out for the
continoum case; it was extended to the lattice case in [3] (but the
combinatorics was wrong; the right combinatorial algebra can be
found, for instance, in [4]).

The main theorem is proven in Section 4 using a technique already
employed in [5] for proving some central limit theorems and extended
in [4]: we use the notations and results proven in [4].
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In Section 5 we make some final remarks, most of which non rigorous;
in particular we discuss a linear transformation which falls into the
class of the "generalized renormalization transformations" [6] and which,
in the gaussian model, reduces to the renormalization transformation
considered in [7].

2. Reduced Lattices. Results

Let Zd be a d-dimensional square lattice. On each site sits a spin
σ— ± 1. The formal hamiltonian is:

H(σ)=-βJ Σ σxσy-βhΣσx, (2.1)
<χ,y> x

or, in the lattice gas language, if nx = —^-— and μ=h-2Jd:

H(n)=-AJβ £ nxny-βμΣnx. (2.2)
<χ,y> x

The sums in the above formulae run over the nearest neighbour couples.
We shall fix 4J=1.

Let L be an integer (L= 1,2,3,...); we break up Zd into disjoint
boxes containing Ld points and in such a way that there is one box
with the lower corner at the origin of Zd. We label in the natural way the
centers of the boxes with an index xeZd: the lattice of the labels will be
called a "reduced lattice" (it is fixed and L-independent).

If A is a subset of the reduced lattice we denote LA the subset of
the original lattice whose points fall into A in the "contraction" to the
reduced lattice (in particular, L - {x} will be the set of the sites in the box
with label x).

Conversely, if R is a subset of the original lattice we call — 7 R the

set of the points of the reduced lattice representing those boxes that have
a non-empty intersection with R. Under the contraction many points

of R may go into the same point of— 7 R; if we assign to each point of—\R

a multiplicity equal to the number of points contracted in it, we obtain

what we shall denote as — R.

On each site of the reduced lattice we shall put a random variable.
We proceed as follows: let Mx L be the total magnetization of the box
L'{x} or, alternatively, let NXtL be the number of occupied sites in
L - {x} (if we deal with the lattice gas language). Then define the block-
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spin variables (see Kadanoff in [1]):

v = M J C ι L -<M x , L > _ Nx,L-<NXiI>
Vx rdδ ~~ Δ τάδ > \ L ^)

where b = \ (except in Section 5) and the averages < > are taken with
respect to the infinite volume Gibbs measure associated with (2.1).
The choice δ = \ is obvious if we are dealing with a system which is not
at the critical point because we expect Mx L to have normal dispersion.

We now fix a box A in the reduced lattice and look at the joint
probability (with respect to the infinite volume Gibbs measure associated
with (2.1)) of the v-variables in A: G^\vu ..., v^ (); we relabel the points
of A from 1 to \A\ for simplicity of notation.

The question we ask is whether this probability distribution will have
a limit asL->oo.

To describe our results let us introduce some more notation.
Let us consider a set T of points lying on the vertices of a unit cell

of Zd. We allow multiple occupancy of the vertices. So, if ξl9..., ξ2d are
the 2d vertices of the unit cell, the set T will be specified by a sequence
{nξ)\d w n e r e nξ=09 1,2, . . .<oo.

Let f the set of the occupied points of T: f= {ξ\nξ^ 1}. We define
the dimension σ(T) of T by considering the set L- f (in the notation
considered above): this set consists in a union of boxes with sides L
having at least one point in common, but in general a hypersurface;
σ(T) is the dimensionality of the hypersurface common to all the above
boxes. So if d = 3 and f contains just one point, σ(T) = 3; if f contains
two points ξ, η and \ξ-η\=ί then σ(T) = 2;iΐ\ξ-η\ = ]/3 then σ(T) = 0.

Define also \T\ = £ nξ. Let
ξ

(2.4)

be the Fourier transform of G{jK
Let χ(v l 5..., Vμj) be a smooth test function with Fourier transform

vanishing when one of the arguments exceeds a finite Mχ > 0 (i.e. χ has
compact support).

Consider the expectation:

'•" ]Λ]/ 2π 2π '

(of course the integral with respect to the v-variables is a sum since
is a superposition of delta functions).
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Finally, if T is a subset of the lattice Zd with multiple occupation of the
sites, T= {nξ}ξeZd, nξ7t0, \T\ = Yjnξ<oo, and if ωξ are real numbers,
we put: ξ

ξ

The following theorem holds:

Theorem. Given /? > 0, assume that μ (cfr. (2.2),) is negative enough
(i.e. μ<μo(β) with μo(β) defined after formula (3.6) below).

Let Λ be a finite box in the reduced lattice; then, if k is a fixed
integer:

where the sum runs over the sets Twith T lying on a unit cell; M = max \ωt\
furthermore ε(T) = σ(T) - |Γ | dβ and ε(T) ^ 0 and:

4L) = 40°)(l + 0(L-1)); J{

ξf>0, (2.8)

where J^] is translation invariant in T, is Λ-independent and J^°] is an
analytic function of μ< μo{β).

This is our main result and, to clarify it, the following comments are
justified:

1) The theorem can only be proved in the low density region or,
in the magnetic language, for large magnetic field.

Formula (2.7) is interesting because it shows how the averages of the
type (2.5) can be computed, to order O(Mk+ 1L~(k~ 1}d/2\ from an effective
hamiltonian in the "ω-spins" which couples only ω-spins of the box A
which are not separated by a distance larger than d? (and includes many
body interactions up to order k). From the proof it will appear that the
interactions between ω-spins at distances larger than d* contribute only
to order O(exp — %L), where κ>0 is an estimate of the correlation
length (κ = β(μ — μo(β)\ see the theorem of the next section).

The spin interpretation of the ω-spins, which are the Fourier
conjugates of the block spins v, is purely formal: for instance the coupling
constants JfL) with \T\ odd are imaginary.

2) The leading term in (2.7) is the "self-interaction" term, \T\ = 2,
σ(T) = d, ε(T) = 0. It tells us that in the limit L->oo the system of random
variables v1?...,Vμ| becomes a set of decoupled gaussian random
variables each of which has a distribution:

)-i exp - v2/4J^ . (2.9)
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This is to be expected as a consequence of the central limit theorems which
hold under the assumptions of our theorem (see references of [4] and [5]).

3) When d=3, the next correction is the "nearest neighbour"
interaction, |Γ | = 2, σ{T) = d-U s{T) = - 1.

To order O(M%L~*) the averages in (2.5) can be calculated from an
effective hamiltonian which has a gaussian form:

HG(col9...,a>w)= Σ AM-4- Σ « ^ V V (2.10)

The interaction in the original v-variables can be obtained by a Fourier
transform which, in the present case, can be easily performed and
yields again a quadratic form which is generated from the inverse of the
interaction matrix that appears in (2.10). The inversion leads to an
interaction which has, in leading order, again a self interaction term
followed by a nearest neighbour interaction of order L" 1 .

However one should note that this inversion generates also couplings
between v-spins that are not nearest neighbours, these couplings fall like
higher powers of L as L->oo. This is also the case for spins with distances
larger than ]/d which, in terms of the ω-spins, are only coupled by
exponentially decaying couplings (as L-»oo). In this sense the picture in
the ω-spins is simpler than that in the v-spins.

4) The "many-body" interactions appearing for larger values of k
are not easily transformed into interactions between v-spins.

5) The finite support of χ is necessary to make formula (2.7) applicable.
This has a physical interpretation: to use (2.7) for large ω's would mean
that we could test the fine details of the distribution G^ } (ω l 9 ...,ωμ ()
using (2.7) as a good approximation, which cannot be true since it
clearly corresponds to a smoothed version of the original distribution
which is a sum of delta functions.

3. Tools

The basic tool for our theorem is the so called algebraic method for
the virial expansion [2]. We must recall a few simple and boring
definitions.

We shall think of a spin configuration in a box Γ as a sequence

{nξ}ξen nξ=0,ί (the zero corresponds to σξ= — ί and the one to

σ*= + l).
We shall also consider "non-physical" or "generalized" configurations

X={nξ}ξeΓ in which ŵ  = 0, 1,2,.... A configuration is "physical" if
and only if nξ=OΛ\fξ eΓ.
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Let X= {nξ}ξeΓ be a generalized configuration and put:

MΠ = Σ nξ "number of points of X",
ξ

X={ξ\nξ>l} "basis of X\ (3.1)

X \ = γ[ nξ! "multiplicity function" .
ξ

Clearly X is a physical configuration if and only iϊX = X (or, if and only
if X ! = 1). We only consider X's such that \X\<oo.

Define, for a physical configuration:

φo(X) = expβ X nξnη ( i fZ!=l), (3.2)

and
φo(X) = 0 i f X ! > l . (3.3)

The following estimates form the basis to our analysis:

Theorem. Given β>0 there is a translation invariant function
defined on the finite generalized configurations, such that:

i) 3z(j8) > 0, such that, if zξ is an arbitrary function with the property
z = max \zξ\ < z(β) and if we put z(X) = f ] z\ξ, when X = {nξ}> the following
is true: ξ

Σ Ψo(X) z(X) = exp Σ ^~Γ zW ' < 3 ' 4 )
xcr xcr x-

for arbitrary finite ΓCza; the sum is over all the X such that XcΓ.
ii) Forallk>0:

\X\=k

iii) For all fc>0 there is δk(β) such that, if \ξ — η\ denotes the distance
between the two lattice points ξ and η, we have:

Σ ^ l ^ k W N X I ^ ^ ^ I ί - ^ r ί - i ) . (3.6)

We define μo(β) = β-ι\ogz{β\ x=-logz/z.

With some pain the wilful reader will recognize in the above state-
ments the basic ideas and estimates of the Mayer expansion [2].

Here we just remark that the familiar Ursell functions are:

V ' , (3.7)
y

where z is the activity z = expβμ.
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The Mayer expansion can be easily obtained from (3.4). One finds,
under the assumptions of the theorem:

mτ(x\ 7\x\
p(β,z)= lim \r\-> log Σ Φ O ( * ) * W = Σ ^ Ί ψ Γ (3 8)

Γ"co xcr xao x ι \χ\

The proof of the above theorem can be found in [4] (appendix).

4. Proof of the Main Theorem

Consider the Fourier transform of the distribution G{%\vL,..., v(yl|)
introduced in Section 2 (cfr. (2.4)).

The transform can be conveniently written in terms of the original
spins if one introduces the function:

λξ=Qxp2iωx{ξ)L-dί2 (4.1)

where ξeZd and x(ξ) is the label of the box in which ξ is contained

in the language of Section 2, x(ξ) = — {ξ} the co's are defined to be
L 1

zero if x(ξ)φ Λ.
Consistently with the notation of Section 2 we put:

λ(X) =Y\λγ if X = {nξ} . (4.2)
ξ

It is then easy to see, using (3.4), that, if we consider the system as
enclosed in a finite box Γ, the distribution function G^ ) ( Γ ) corresponding
to the definition (2.4) tends, in the thermodynamic limit Γ->oo to

^ ( i ? ? } ( 4 3 )
I —* oo

= lim e x p ( - 2 i Y

xcr

(4.4)

where z=expβμ.
The last sum in (4.5) is finite by virtue of the relation λ(X) = 1 if

XnL- Λ= 0, furthermore use is made of the fact that <iVs?L) i s s ' i n -
dependent [9].
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Notice that, if Xk denotes the part of X with base in the box labeled k:

\Λ\

λ(X) = exp2i X ωk\Xk\ L~d/2 . (4.6)
k= 1

Notice also that (4.4) implies, in the particular case \Λ\ = 1, that:

1 d4
idω ω = 0 i dω ω = 0

(4.7)
Y j * ι | A l '
x X •

so that:

This last observation tells us that, if we expand (λ(X)— 1) in (4.5) in
powers of the ω's, not only the zero order term is absent but also the
first order term cancels out.

Expanding λ(X) — 1 in powers of the ω's up to order k and writing the
remainder in the Schlomilch form, we find that the argument of the
exponential in (4.5) becomes:

£! ωsμς
X!

(fc+1)!

where θ\ θ" are suitable real numbers such that \θ'\, \θ"\ ^ 1.
We first estimate the remainder in (4.9). If we put M = max|ωi|,

and use the estimate (3.5), we see that it does not exceed (in absolute value):

„ m \φτ

0(X)\

X\
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The leading term can be written as:

Σ ~ Γ Σ ωSί...ωShΣ\XSι\..-\XSh\^^. (4.11)
h=2 n i slt...,sh X A -

The set sί,..., sh is a set of points on the reduced lattice box A with possible
repetitions. We denote, again, by nl9n2,...9ri\A\ the number of times
the points 1,2, ...9\Λ\ appear in (sϊ,...,sh) and define S={n ί}

li41,

It is easy to check that:

Σ 4 Y Σ " - = Σ -—••• (4 i2)

So (4.11) can be transformed into:

V ω(s) (2i)s y m (pp(X) | γ | , v , 4 Π x

Ml Ml

where ω(s)= Π ω?f and |X| (5) = f] KΓ ι.
i=ί i = 1

Suppose that S contains two points which are not in the same unit
cell of the reduced lattice, then the corresponding boxes in the original
lattice are least at a distance L. The remark that \X\ (S) vanishes unless X
has at least one point in every box whose label appears in S immediately
implies, together with (3.6), that the contribution of the configurations S
that are not based on the unit cell is at most of the order

fz\L\

So we can restrict our attention to the configurations with base in a
unit cell, as stated in the theorem.

Let T be a configuration with base in a unit cell and recall that σ(T)
is the dimensionality of the hypersurface that is common to all the boxes
with label in f. Note again that the sum over X in (4.13) has only con-
tributions from configurations X with at least one point in every box
belonging to LT but, in order to give a contribution which is not
exponentially small as L->oo, all the points in X must be close to the
common hypersurface. It follows, then, from (3.5), that the coupling
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constant belonging to the interaction term with ω{T) has the form:

Tf(T)

-j^iJ^ + OiL-i)). (4.14)

The translation invariance, also, follows from the translation in-
variance of the φτ

Q.
We give a few examples:

J? Σ ^ ^ \ X \ 2 = 2l2(β,z), (4.15)
XaO Λ l \Λ\

where χ2(β,z) is, indeed, the susceptibility, as it follows from (3.8);
this implies also that J^} > 0.

If ξ, η are nearest neighbours and S = (ξ, η):

Jtn= Σ Σ* φ°^χ*2) Z^ + ̂ ^ \X2\, (4.17)

where the sums have to be interpreted as follows: choose a privileged
axis, say the axis ξ1; consider all the possible couples Xί9X2 such that
Xγ lies in the halfspace ξί^0 and Xz lies in the halfspace ξ1 >0; assume
that Xι contains a point with abscissa — P on the axis ξx and sum over
all the possible choices of Xί9 X2 and p with the just described restrictions.

It follows from the theorem of Section 3 that Jffi is analytic in z
ifθ<z<z(β).

5. Concluding Remarks

There is no reason to believe that the asymptotic formula for
G{Λ)(ωl9...9ω\Λ\) breaks down anywhere in the region μ<μc where μc

is the Lee-Yang value of the chemical potential (corresponding to zero
magnetic field in the spin language), or, by symmetry, in the region μ > μc.

If β < βc one can conceive that the above asymptotic expansions
hold even at μ = μc (or h = 0). In this last case all the odd terms in the
expansion will vanish by symmetry (i.e. Jψ] = 0 if Tis odd), the expressions
will become slightly simpler and all the J | L ) are real.
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Of course the above asymptotic expansions must break down when
β^βc, /z-»0 (in the sense that we cannot expect the error estimates
to be uniform in this limit nor the J | 0 0 ) to be finite: in fact J^L)-^oo as
L->oo iϊβ=βc,h = O).

We can interpret the divergence as due to a bad choice of δ in (2.3).
Actually we expect (by definition of ή) that (MlLyh=0yβ=βc~Ld+{2~η)

where η is the susceptibility critical exponent defined via the pair
correlation function :

W ^ o , = \R\2~d-η. (5.1)
|iq->oo

1 2 — ΐj

So it would be more natural to use δ = —- H — — — when h = 0, β = βc.
2 2a

With this choice of δ one can see that the first term in the formal
expression for G{^\ωl9 ...,co\Λ\) will be exp — Yjω

2

sχ2(L)B~2 with χ2{L)
s

equal to the susceptibility of a subsystem of Ising spins at the critical
point but enclosed in a finite box of size L. Since χ2(L) is expected to
diverge as L2~η, we see that this term would give a meaningful result
in the limit L-» oo. However we expect that, at β = βc, h = 0, all the terms
which do not appear in (2.7) on the grounds that they give exponentially
small contributions will be as important as the ω2 terms; furthermore
the relative importance of the terms which appear in (2.7) will no longer
be measured by ε(T).

It seems, however, natural and in some sense necessary that, if δ is
properly chosen *, there exists a family of translation invariant Jτ (real
and zero for odd T) such that the formal hamiltonian:

- X Jτω(T), (5.2)
TcΛ

really defines a random field which describes the limit as L->oo of the
field which is the "Fourier transform" of the v-field, at β = βc, h = 0, in Λ.

The random ω-field defined (formally) by (5.2) should generate a
v-field on the reduced lattice which, upon further reduction of the lattice,
gives rise to a field vf identical in distribution to v.

1 The right choice of delta would be such that <MjL> L 2dδ becomes L-independent.

This might lead to a L-dependent choice of delta. It seems that two things could go wrong

once δ is chosen as above, there might appear a A dependence of the J τ ' s , which is only

formally excluded by the A independent expressions that we have found in the large field

region. It might also happen that some of the J's are infinite so that great care should be used

in interpreting (5.2). We are disregarding these possibilities mainly to avoid an excessive

complication of an argument which is, anyhow, heuristic.
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It is very easy to find, formally, that the reduced field v' will have a
Fourier transformed field ω' of the form (5.2) with a new set of "couplings"
J'τ related by a linear transformation ££ to J:

J' = <£(J). (5.3)

The new couplings are easily obtained if one realizes that the Fourier
transform of the distribution of the block spins V for blocks of length
p - L can be obtained from the Fourier transform of the original dis-
tribution by dividing the reduced lattice in cells with side p and, then,
equating the ω's with index belonging to the same cells. This yields:

Σ

where q is the scale parameter q = pdδ and where we recall from Section 2
that - R is the set contracted from R (with the multiplicities counted
in the appropriate way).

It is easy to see that |# | = |Γ| and, therefore, the above linear
transformation decouples into a denumerable number of independent
linear transformations (each of which describes the transformation of the
coupling constants for a fixed number of interacting spins).

Furthermore the range of J' does no exceed the range of J. So we can
look for fixed points J = J£(J) in which J has only fc-body coupling
constants (with a fixed k) and finite range. This leads to a finite set of
linear equations; the eigenvalues are directly related to δ and η and
determine them. It is easy to convince oneself, studying a few simple
examples, that the fixed points that are found in this way describe a
set of independent gaussian v-spins with the "normal" non critical
value of δ(δ = j) or, otherwise, lead to physically unacceptable v-fields.

It seems that the really physically relevant fixed points must have
infinite range J's (in this case the equation J = J£(J) although linear
seems very complicate).

We note also that it is very well possible to have, at the fixed point,
a short range interaction in the v-fields language in spite of the long range
character of the ω-fields. This can be explicitely seen in the theory Of the
v-fields and ω-fields that arise in the context of the Gaussian model2 [7].

2 In this model the interaction for the ω-fields is a translation invariant two body
interaction with a Fourier transform (in space) which is proportional to the susceptibility
χ(k). In Ref. [7] it is, indeed, found that the renormalisation group equations in terms of χ
are linear. Since χ(k) &k~2 (for small k) at the critical point, the interaction for the ω-fields
is of a long range type even though the original interaction can very well be short ranged.
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Coming back to the equation J = j£f(J) it appears also that the solution
will depend very much on the space in which one decides to solve the
equation: there might be several possibilities which are physically
acceptable, however the one that corresponds to the Ising model's
theory cannot be determined by the fixed point equation alone unless
one makes further assumptions.

In other words the linearity of the equation is not a very significant
feature: the main problem is to find in which space the equation has to be
solved or studied. It can happen that one has some "physical guess" at
what what is the space where one should look for the fixed point:
however this guess will probably not be in terms of the J's and ω's but
in terms of other suitable random fields not linearly related to the J's
and ω's: so that the problem will become non linear. *

We stress that the above considerations do not seem at all in contrast
with the Wilson's ideas on the critical point. The breakthrough work
of Bleher and Sinai [9] already gives an example of a situation in which
the knowledge of the fixed point of some renormalization transformation
is not enough to study the critical point behaviour (the reader familiar
with [9] will have noticed that there is a ad hoc modification of the
hamiltonian which guarantees that the chosen fixed point is really the
one that is relevant for the description of the critical behaviour of the
model).

The above remarks certainly lack the rigor of the previous sections
but it seems to us that they suggest that a better understanding of the
linear renormalization (5.4) would be very helpful. For instance it is
not known (or not well known) under which condition on Jτ (5.2) really
defines a random field, nor it is known when a random field of the type
(5.2) has a "Fourier transform" random field (the v-field). Clearly the
"spectrum" of Jδf in various spaces seems an interesting piece of infor-
mation.
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