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Abstract. Causally continuous general relativistic spacetimes are defined and analyzed.
In a causally continuous spacetime, the past and future of a local observer behave con-
tinuously under small perturbations of the metric or small changes in his location. Causally
simple spacetimes are causally continuous; causally continuous spacetimes are causally
stable. Possible reasons for taking causal continuity as a basic postulate in macrophysics
are briefly discussed.

0. Introduction

Throughout this paper we consider macrophysics and use a non-
quantum, general relativistic, time-oriented spacetime to model physical
spacetime. What global properties does spacetime have? There seem to
be three main possibilities.

First, there might conceivably be causality violations, even at the
macroscopic level. Some important models, such as certain Kerr metrics,
do have self-intersecting causal curves ([3,9]). But macroscopic causality
violations would imply a drastic alteration of standard physics. As yet,
we have neither empirical evidence nor compelling theoretical arguments
that causality violations occur.

Now suppose macroscopic causality violations cannot occur. We
should presumably use models which remain causal even if the spacetime
metric is perturbed slightly, since quantum and other limitations mean
our macroscopic models and measurements are imprecise. Formally,
this means using stably causal spacetimes ([7,9]). Stable causality is
perhaps the most plausible global assumption to make.

Finally, it may be that we should work exclusively with stably causal
spacetimes which obey further restrictions. For example, globally
hyberbolic spacetimes have a global Cauchy surface and are stably causal;
asymptotically simple and empty spacetimes have, in addition, a behavior
"at infinity" similar to that of Minkowski space ([11,12,9]). But observa-
tions, especially observations of the cosmological microwave background,
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show that the universe as a whole is not asymptotically simple and empty
([8,9]). Moreover, there are no convincing physical arguments for
supposing a global Cauchy surface exists: even if one does exist we
apparently have no way of knowing all the data it carries; in any case
we seem to be continually and rather directly getting new information
from the big bang. Many useful models are not globally hyperbolic ([9]).

In this paper we characterize and discuss a restriction we shall call
causal continuity. Roughly, a causally continuous spacetime is stably
causal, has no really big gaps (gaps of "dimension" more than 2), and
is not too "concave" at infinity. For such a spacetime, the ideal point
boundary of Geroch, Kronheimer, and Penrose [6] has a consistent causal
structure ([2]) and a certain algebraic system (complete lattice) determined
by the spacetime behaves continuously ([2]). Causal continuity is
intermediate between stable causality and global hyperbolicity; it
is a moderately plausible candidate for a fundamental restriction on
macroscopic spacetime.

In Section 1 following we use a simple example to illustrate various
"peculiar" features a spacetime can have. There may be observers who,
intuitively speaking, can almost peek around infinity or a singularity
but not quite. A small change in position or perturbation of the metric
may have a drastic effect on pasts or futures. Judging how "late" an event
is by the "size" of the region from which it can receive signals may lead
to a discontinuous function.

In Section 2 we show, under appropriate restrictions, that a spacetime
either has all these pecularities or none of then. We define a causally con-
tinuous spacetime essentially as one which has none of them. We prove
that a causally simple spacetime ([9]) is causally continuous and that a
causally continuous spacetime is causally stable. We list how causal con-
tinuity is related to various other global conditions that are sometimes
used.

Though even our results are of mainly technical interest, we have
tried to confine the most technical parts to the proofs and a footnote,
which the reader may omit without esential loss of context.

1. Preliminaries

Throughout this paper, M is a time-oriented spacetime whose metric
g has signature ( —, +, +, + ) 1.

1 We shall use the terminology and notation of Hawking and Ellis ([9]) and of Bishop
and Goldberg ([1]). A spacetime is time-orientable iff there is an everywhere timelike vector
field on it. A time-orientation can then be specified by designating one such vector field,
say X, as future-directed. A C 1 curve φ : E-+M is then future-directed iff g(φ*e, φ^e)^0
and g(φ*e, Xφe) < 0 for all ee E. Thus a future-directed C 1 curve is everywhere timelike
or lightlike and its tangent vanishes nowhere. M is causal iff each such curve is 1-1.
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Fig. 1.2. The spacetime A is reflecting; the spacetime B is not

Let S Q M be a subset. The chronological past I [S] of S consists of
those events which can signal to some observer in S at a speed less than the
speed of light. Formally, /"[5] = {zeM: there is a future-directed
timelike curve from z to some s e S}. Similarly, the causal past J~ [S] of
S is defined by J~ [S~\ = {z e M: z e S or there is a future-directed curve
from z to some 5 e S}. If S is open, its (chronological) common past IS is
the largest open set each event of which can signal to each observer in S
at a speed less than that of light. Formally, [S = Interior {ze M: for all
seS there is a future-directed timelike curve from z to s}. Unless S is
empty, /~[S]2 |S. / + [S],J + [S], and | S are defined dually; dual
results will often be taken for granted. If z is an event, we abbreviate
^ [{*}] by /±(z) and similarly for J 1 .

Proposition 1.1. For all z, | / + (z)2 J~(z).

Proof. For all z, /~(z) is open and I~(z)QI~(w) for all wel + (z)
([9,13]). The proposition follows. •

Call M reflecting if the following condition holds: for all events x
and y in M,I + (y)2I + (x) iff I~(x)2I~(y)l if M is causal this definition
corresponds to the definition of past and future reflecting in Kronheimer
and Penrose [10]. Fig. 1.2 shows one spacetime that is reflecting and
one that is not. Each of the two spacetimes is conformal to a submanifold
of 2-dimensional Minkowski space. The shaded regions represent closed
subsets which have been amputated, say because the conformal factor,
whose precise form is irrelevant here, blows up as one approaches the
boundary. Similarly, the dots in Fig. 1.2.A represent missing points.
More realistic models may have a similar behavior at singularities or at
infinity.
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The spacetime 1.2.B is not reflecting since I+(y)2I + (x) but
I~(x)^I~(y). It has various related properties which might be regarded
as unphysical. y can send signals to events arbitrarily close to x, but x
cannot recieve any signals from within Q. It it occurs locally, such behavoir
is pathological ([15]). In addition, j / + (x) contains the open set Q, so

•ll + {x) is much larger than /~(x). Moreover, a small change in location
or small perturbation of the metric can result in a sudden increase of / ~ (x).
And thus the "size" of /~(x) is much smaller than the size of the
chronological past of some neighboring events. All these phenomena
are interrelated. In the rest of this section we give some definitions and
propositions useful in analyzing each phenomenon when one has a
general time-oriented spacetime M. The next section discusses the
interrelations in detail.

Proposition 1.3. The following conditions are equivalent.

A) M is reflecting;

B) for all events v and w in M, ve Closure [J + (w)] iff we Closure

[•/•»];

C) for all events z in M, [I+(z) = Γ (z) and | / " (z) = I+ (z).

Proof. In any case Closure [mJ± {z)] = Closure [/*(£)]
= {weM:I±{z)2I±(w)} ([9,13]). Thus condition A and condition B
are equivalent. Now suppose w e j / + (z); then I~(w)QI~(v) for all
v e I+ (z). If M is reflecting, I + (w) 21 + (v) for all such v,ve Closure [/ + (w)]
for all such υ, thus z 6 Closure [/ + (w)j, and finally we Closure [7 ~(z)].
Thus lI+(z)Q Closure [/"(z)] if M is reflecting. Now in any case
Interior {Closure [/"(z)]} = /"(z) ([9,13]). This result, Proposition 1.1,
and the dual argument show that condition A implies condition C. For
the converse, suppose I + (w)2I+(v). Then ll + (υ)2[l + (w) by the way
in which common pasts were defined. If condition C holds, I~(v) 2I~(w).
Dually, condition C and Γ(v)2I" (w) imply / + (w) 2 / + (υ). •

1.4. Metric Perturbations. In Fig. 1.2.B, perturbing g slightly may
cause J~(x) to increase suddenly to include all Q. To analyze such
behavior, suppose "g is another Lorentzian metric on M. ~g is called larger
than g if the lightcones of g are everywhere broader than those of g.
Formally, g>g iff, for every non-zero vector V,g(V,V)^0 implies
g(V, V)<0. If z is an event in M, let J±(z;g) and l±{z\'g) denote the sets
formed using g rather than g. Define the Seifert past J$ (z) as follows:
an event is in Js~ (z) iff it is in J ~ (z g) for all metrics g larger than g.
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Proposition 1.5. (Seifert [14]). For all z, Js~(z) is closed.

Proof. Suppose wφzand we Closure [J~(z;g)] for all metrics g > g.
For each such g choose a g' with g>g'>g. Then we Closure [J~(z; #')]
so there is a t; φ w such that t; G Closure [J"(z; #')] and that weJ~(v;g')
([9,13]). We have / eClosure [J~(z;g)] and weΓ(ϋ;^)ςΓ(z;g)
£ J~(z;g). Thus

Js- (z) = Π J"(*; 0) 2 Π Closure [J~ (z; g)~\ 2 Closure [Js"(z)] . •
9>9 9>9

In particular, Js~(z)2 Closure [J~(z)] for all events z. A peculiarity
in Fig. 1.2.B is that Closure [J"(z)]φJ s "(4 corresponding to a lack of
smoothness under small perturbations of the metric.

1.6. Inner and Outer Continuity. In Fig. 1.2.B moving x slightly to
the left or up gives a sudden increase in I~(x). To analyze such behavior,
suppose F is a function which assigns to each event z in M an open set
F(z) in M. F is called inner continuous if, for any z and any compact set
C Q F{z), there is an open neighborhood U of z such that C g F(w) for
all events u in (7. Similarly, F is owίer continuous if, for any z and any
compact set KQM-Closure F(z), there is such a neighborhood U
with KQM-Closure [F(u)] for all u in (7.

Proposition 1.7. (compare [5]). /"(z) is inner continuous.

Proof. Suppose CQΓ{z) is compact, {/"(w): we/~(z)} is an open
covering of C. Choose wx,..., wn to determine a finite subcovering. Then

P) J+(wm) = (7 is an open neighborhood of z with the required property.

D
In Fig. 1.2.B, I~(z) is not outer continuous. / " ( x ) | K but in each

open neighborhood of x there is a u such that I~(u)2 K.

1.8. Global Time Functions. Let ί be a real-valued function on M.
t is a C° global time function if it is continuous and is monotonic increasing
along every future-directed curve. Now it is always possible to find an
additive measure H on M which assigns positive volume H[Ό~\ to each
open set U and assigns finite volume H[M] to M (this result is due to
Geroch [5]). Indeed one can find many such measures. Even if M is
orientable it may be that none of these are directly related to the Lorentzian
volume element ]/ — g dAx. Given H we can ask whether setting
t±(z)= +H[7±(z)] determines C° global time functions ί1 on M. It is
intuitively plausible that in Fig. 1.2.B, ί~ will be discontinuous at x
no matter how H is chosen.
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2. Causal Continuity

A time-oriented spacetime M is (past and future) distinguishing if,
for all events z and w, I~(z) = I'(w) or I + (z) = I + (w) implies z = w
(compare reference [10], Section 1). A distinguishing spacetime is causal.
A causal spacetime need not be distinguishing (for counterexamples
see [10] and [9]) but in most intuitive discussions one can regard
causality and distinction as essentially equivalent conditions.

Throughout this section M is a time-oriented, distinguishing
spacetime. We analyze how the various peculiarities discussed in Sec-
tion 1 are interrelated. Suppose t+ and ί~ are as in Subsection 1.8.

Theorem 2.1. The following four conditions are equivalent.

A) M is reflecting;

B) I+ und I~ are outer continuous;

C) t+ and t~ are C° global time functions;

D) Jf(z) = Closure [J±(z)] for all events z.

Proof. A~»B. Suppose condition A holds and KeM — Closure [/~(z)]
is compact. If v e Closure I~ (w) for all wel + (z) then v e Closure [/" (z)]
by the argument used in proving Proposition 1.3. Thus

{M-Closure [/" (w)] : w e I + {z)}

is an open covering of K. As in Proposition 1.7 we choose a finite sub-
n

covering determined by wx,..., wn and U = f] I ~ (wm) is a neighborhood
m=l

whose existence guarantees outer continuity. Dually, I + (z) is outer
continuous.

B-*C. Suppose we are given zeM, a measure H, and ε>0. Choose a
compact KQM- Closure [/" (z)] such that H [M - Closure {/" (z)} - X]
< ε and choose an open neighborhood U of z such that KQM — 1~[Ό~\.
Then for all UEU, t~(u) — t~(z)<ε. Thus ί~ is upper semi-continuous;
similarly t~ is lower semi-continuous by Proposition 1.7. Thus t~ and,
dually, t+ are continuous. Now suppose there is a future directed curve
from y to x. Then I~(x)2I~(y). Since M is distinguishing, I~(x) — I~(y)
is not empty. This implies /"(λ )-Closure [/"(y)] is non-empty by the
properties quoted in proving Proposition 1.3. Thus t~(x)>t~(y).
Dually, t+ is also monotonically increasing along every future-directed
curve.

C-+A. Let Γ be a smooth, timelike, past-directed curve with past
endpoint zeM. For all events xveΓ — z,I~(w)2lI + {z)2I~(z)- Let
Q~ II+(z) — Closure \_I~{z)~\. Since t~ is continuous, Q must be empty.
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Fig. 2.2. The spacetime N, with I (z) separated from I (w), which corresponds to future

infinity in N, by S

Thus ll + (z) = l (z). The dual argument, and Proposition 1.3, show M
is reflecting.

(A-C)-^D. Suppose A-C hold, zeM, and wel + (z). We will first
show that there is a larger metric g such that / ~ (w) 2 J ~~ (z g). N = I ~ (w)
is connected and open, so N is a spacetime. N inherits a time-orientation
from M; N is reflecting since M is reflecting and no future-directed or
past-directed curve in M can leave and reenter N; similarly, N is
distinguishing. Thus we can find a C° global time function t+ on JV, as
in part C. For all i; e Closure [/" (z)], ί+ (ι;) ̂  ί+(z) = a < 0.

Define S = {ve N :t + {v) = a/2}. S is a boundary of the past set given
by t+ <a/2 and is therefore a Lipshitz continuous hypersurface ([9,13];
see Fig. 2.2). No future-directed or past-directed curve intersects S
more than once. The idea is to replace S by a piecewise C00 spacelike
hypersurface, as indicated by dashed lines in the figure.

Choose a locally finite, countable covering of N such that each
neighbourhood is a geodesically convex normal neighborhood and is
relatively compact, while t+ varies by at most |α|/4 within each neighbor-
hood. Consider a triangulation of S such that each tetrahedron lies
within some such neighborhood. If r,seS are vertices of the same
tetrahedron, the local geodesic from r to s is spacelike. Number all the
vertices of the triangulation. For each triangle, with vertices say r,s,te S,
construct the set obtained by drawing local geodesies from that vertex,
say ί, assigned the smallest number to the local geodesic from r to s.
Construct a geodesic tetrahedron to replace each tetrahedron of the
triangulation by similarly drawing geodesies from the vertex assigned
the smallest number to the opposite geodesic triangle. For a sufficiently
fine triangulation, all the sets thus constructed will be C00 and spacelike.
Each neighborhood of the covering contains only a finite number of
the constructed lines, triangles, and tetrahedra. It follows that there is a
larger metric g on M which leaves all the constructed figures spacelike.
For this g,I~(w)2J~(z;'g).
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For each w e / + (z) we can find such a g. Consequently, Closure Q I + (z)]
2 Js~ (z). Condition 2.1.D now follows from Proposition 1.3 and the dual
argument.

- D->A. Suppose 2.1.D holds. Then x e Closure [J + (.y)] iff xeJ<t(y)
iϊϊysJ^(x) iffy e Closure [J~(x)] By Proposition 1.3, Mis reflecting. Π

Call a time-oriented, distinguishing spacetime causally continuous
if it obeys any one of the equivalent conditions in 1.3 or 2.1. The term is
suggested by conditions 2.1.B and 2.I.C. Some of the other conditions
can be used to relate causal continuity to standard restrictions. M is
called causally simple if, for all events z, J+{z) and J~(z) are closed;
it is called stably causal if there is a ~g > g such that (M, ~g) is causal ([9]).

Proposition 2.3. A) A causally simple spacetime is causally continuous;

B) A causally continuous spacetime is stably causal

Proof. Causal simplicity implies condition 1.3.B and thus causal con-
tinuity.

Now suppose condition 2.1.D holds; we will show M is stably causal.
J s" determines a reflexive partial ordering on M by the rule y^z iff
y e Js~ (z), since condition 2.1.D holds and Mis distinguishing. Seifert [14]
has pointed out that this property of Js~ is necessary and sufficient for M
to be stably causal. That Js~ determines a reflexive partial ordering when
M is stably causal is trivial. We give a modified version of Seifert's proof
of the converse.

Throughout the proof: {Um: m = 1, 2,...} is a countable, locally finite
covering of M by relatively compact open neighborhoods Um; {fm} is a
partition of unity subordinate to this covering; ω is a smooth, everywhere
timelike 1-form on M; x, y, zeM; and j,j'JxJyJzJm are all smooth
functions M-•((), oo). Thus g—jω®ω is a Lorentzian metric on M
larger than g, etc. We shall need the following two definitions. If (M, g')
is a time-oriented spacetime, z is called causal with respect to g' if no
curve through z future-directed with respect to g' has self-intersections.
z is called strongly causal with respect to g' if each neighborhood of z
contains a neighborhood which no such curve can leave and reenter.
If z is strongly causal it is causal, but the converse need not hold; the set
of points strongly causal with respect to g' is open ([4,13,9]).

We first show that for some j v , x is a strongly causal point of (M, gx\
where gx = g—jxω®ω. Since Js~~ determines a partial ordering, there
is some g > g such that x is a causal point of (M, g). Consequently there
is some j such that x is a causal point of (M,g—jω®ω). Let jx=j/2.
If x were not a strongly causal point of (M, #x) there would b e a y φ x
such that y e J " ( x ; # J and | / + (y; grj 2 Γ(x; gx) ([10,9,13]). This would
contradict the fact that x is a causal point of (M, g — jω(χ)ω).

We now show that for some j \ , each point of Uι is a (strongly) causal
point of (M, g — j x ω(χ)ω). In fact, we can choose a finite number of points
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x,y,... G Closure [ t / J , an open neighborhood Ux,Uy9... for each,
corresponding metrics gx,gΓ... and functions jxjy9... as above such
that the open neighborhoods cover Closure [L/J and each point of
Ux is strongly causal with respect to gχ9 etc. Choose j x such thatjΊ <jX9

jl<jy,~

Now let gι=g — i(/iΛ)ω(g)ω. We will show Js (•; 0i) determines a
partial ordering. There is a ; z such that z is a (strongly) causal point of
(M, 02). Take / such that / < j 2 and f <jj1 everywhere; define
g' = gx —/ω(x)ω. Then no curve through z which is future-directed with
respect to g' can have self intersections: if the curve contains a point in
Uί9 self intersections are excluded by/ + i(fJi) <jl9 otherwise they are
excluded by/ <jz. This holds for all z, so Js~( ;0i) determines a partial
ordering.

By induction there are smooth functions j m such that, with

f" 1 ί°° 1
Qn = 9 -2\LfJm\ω®ω, (M,gfπ) is causal. Let flf* =fif - Ή £ / m / r o [ ω ( 8 ) ω ;

11 J 11 J
thus g* > g. We will show (M, #*) is causal. In fact, if Γ is a closed curve
then Γ is compact. Consequently there is an n< oo such that UmnΓ is

n

empty for all m > n. Let JV be that connected component of ]Γ t/m which
1

contains Γ. Then (N, gn\ where gfπ is restricted to the open submanifold
N, is a causal spacetime and is an open sub-spacetime of (M, g*). Thus Γ
cannot be future-directed in (iV, gfπ) or in (M, gι*). Since (M, gf*) is causal
and g* > g, (M, gf) is stably causal. Π

Both converses are false. The spacetime of Fig. 1.2.A and the maximally
extended Reissner-Nordstrom spacetimes (discussed in [9]) are causally
continuous but not causally simple. The spacetime of Fig. 1.2.B is
stably causal but not causally continuous. The various other restrictions
that are sometimes placed on time-oriented spacetimes can be arranged
in the following chain ([4,10,9,13]).

Asymptotically simple and empty -> globally hyperbolic -> causally
simple -> causally continuous -• stably causal -+ nth order strongly
causal (n = 3,4,...) -> strongly causal -• (future and past) distinguishing
-• future distinguishing or past distinguishing -• weakly distinguishing
-* causal -> chronological.

The first four conditions refer primarily to limitations on the kind of
gaps spacetime can have and its behavior near infinity. The other con-
ditions refer primarily to near causality violations or actual causality
violations.

3. Conclusion

In Fig. 1.2.B an observer at x who waits a moment may find all his pre-
dictions upset by the new information which comes from the indefinitely
large region Q. One could argue that such behavior destroys the very
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possibility of doing physics and should be excluded by assuming that
I~{z) is continuous. If one wants to make the basic assumptions time-
symmetric, one would then also assume I + (z) is continuous. Adding the
reasonable requirement that spacetime be distinguishing then implies
causal continuity. On the other hand, in 1.2.B the extra information will
arrive in a rather diluted form, since it must sneak through a narrow
channel to get from Q to a point just above x. Thus there is some reason,
but no fully convincing argument, for regarding causal continuity as a
basic macrophysical property.

The authors are grateful to C. Clarke, E. Kronheimer, R. Melrose, and R. Penrose for
discussions.
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