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Abstract. A canonical formalism based on the geometrical approach to the calculus
of variations is given. The notion of multi-phase space is introduced which enables to
define whole the canonical structure (physical quantities, Poisson bracket, canonical fields)
without use of functional derivatives. All definitions are of pure geometrical (finite dimen-
sional) character.

The observable algebra (9 (physical quantities algebra) obtained here is much smaller
then the algebra of all (sufficiently smooth) functional on the space of states, derived from
the standard infinite-dimensional formulation. As it is known, the latter is much too large
for purposes of quantization. As the examples prove, our algebra (9 could be an adequate
start-point for quantization.

For simplifying the language the notion of observable-valued distribution is introduced.
Many concrete physical examples are given. E.g. it is shown that some problems connected
with gauge in electrodynamics are automatically solved in this approach. The introduced
language allows to obtain the Noether theorem in a most natural way.

1. Introduction

The present state of quantization of non-linear fields theories (cf. [1])
may lead to the conclusion that there may be more deep differences
between linear and non-linear theories that one may infer from the usual
canonical formalism, based on the following analogy with classical
mechanics:

Mechanics Field theory

Time Time

Finite dimensional space Infinite dimensional space
of all possible positions at given time of states of a field at given time

This formalism, initially using notions not too precise from the
mathematical viewpoint (e.g. multiplication of functional derivatives)
has now acquired a fine mathematical formulation (theory of infinite
dimensional symplectic spaces - cf. [11] and [12]). It leads to very rich
observable algebra (algebra of physical quantities), Poisson bracket,
canonical fields etc. Linear theories are not distinguished in this formalism.
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Yet another formulation of canonical formalism is possible. It arises
from the geometrical approach to the calculus of variations (as presented
in the excellent paper by Dedecker [6]). Here another analogy with
mechanics is used:

Mechanics Field theory

Time as 1-dimensional parameter 4-dimensional space-time as the space of
parameters

Finite dimensional space of positions Finite dimensional space of field strengths and
and momenta at given time its derivatives in given point of space-time

That this approach could be physically relevant it was already noticed
several years ago ([15]) but there were serious difficulties in further
development of the theory which leads to highly-dimensional spaces.
It seems more difficult to work in 77 dimensions (as Dedecker's theory
for vector-field theory requires) than in infinite-dimensional space.

Recently very adequate for field theories simplifications of the
Dedecker's formulation have been done (these results will be published
elsewhere). Using them a beautiful geometrical structure of field theories
has been discovered.

In the present paper we leave aside the connection between
Lagrangean and Hamiltonian formalism (i.e. the Dedecker's theory) and
we present the theory in its "canonical" form.

Our construction leads at last to a triplet (Jf7, C/,3f) where:
1° ffl is (already infinite dimensional) space of states (whose elements

are global solutions of field equations).
2° CO is a Lie algebra of observables (physical quantities), i.e. an

algebra of very special functionals on Jf. It is composed of such func-
tionals which are integrals of some differential forms. This restriction of
"admissible functionals" is not arbitrary - it results from the language
we use (the accepted here definition of observable is very natural one).
Curious as might seem a very natural functional characteristic of our
observable algebra has been found ([10]): it is the algebra of local
functionals on &f (of some degree of smoothness).

3C ^ is a special vector field subalgebra on Jf. Its elements are,
in some way, generated by observables.

The advantages of such approach seem to be as follows:
i. Our observable algebra is very small in comparison with the

usual algebra of all smooth functionals on ffl. In quantization, as it is
known, only few observables can be quantized directly. So the question
arises: "which Lie subalgebra of observables can be directly represented
in Hubert space?" (cf. [4]). Our formulation answers this question in a
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surprisingly simple way. E.g. for the Klein-Gordon theory the only
observables are: generators of Poincare group, field-strength and its
time-derivative (smeared with an arbitrary test-function). There are no
other observables.

2. The only algebraic structure of our observable algebra is a Lie
structure given by Poisson bracket. There is no commutative algebra
structure (there is no sense multiplying observables). So there is no
question of "good order of operators" during quantization.

3. There are no difficulties with the gauge in electrodynamics. Only
electric and magnetic fields (smeared with test functions) are observables
(cf. [3]). Potentials are not observables (see Chapter 8).

4. The most interesting result of this theory is at the same time its
greatest drawback now: in non-linear theories there are no local ob-
servables. The only observables are the global ones (i.e. energy,
momentum, electric charge etc. - see Appendix).

Thus there seem to be two ways out:
1. Either the solution suggested by [10] (introduction of higher-

order currents) will enable construction of satisfactory algebra of local
observables for non-linear theories (which may prove to be of considerable
importance for comprehension of non-linear quantization)

2. or such satisfactory construction is not to be obtained at all. This
may be connected with impossibility of quantization in non-linear cases.

As yet the solution of this problem has not been known to the author.
The question of equal-time Poisson bracket has already been satis-

factorily solved by Gawe.dzki in an ingenious paper [8].

The author is much indebted to Dr. W. Tulczyjew (who first used the
notion "multiphase-space") and Prof. Dr. I. Birula-Biaίynicki for very
fruitful discussions.

Many problems touched here were studied in the collaboration with Dr. K. Gawςdzki,
for which I thank him very much.

Special thanks are due to Prof. Dr. K. Maurin for his encouragements and active
interest in this work.

2. Homogeneous Formalism in the Classical Mechanics

Homogeneous formalism, based on geometrical concepts of Cartan,
was used already in twenties. We shall present it in a most useful version,
showing these elements which look similar in the field theory (cf. [15,16]).

Let W be a full (i.e. containing time-coordinate) configuration space
of mechanical system. Take any coordinate chart (ί,xl), / = ! , . . . ,k,
where t denotes time and xl are any coordinates numbering all possible
positions of our system (e.g. for the theory of single point-like particle
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k = 3 and W is simply space-time). Denote by

T*(W)= U T*W
\veW

the co-tangent bundle over W (composed of all co-tangent spaces
T*(W\ at all points w e W). Every element of T*(W] can be written in the
form

Eat- Σptdx1

thus we can take in T*(W) the coordinate chart (ί, x\ E, pt). There are
canonical differential forms in the space T*(W):

-Σ pt dxl

dω(t, x\ E, PJ) = dE A dt— Σ dpt Λ dxl

Take in T*(W) the submanifold ̂  given by the equality E — H(t, xl, p^),
where H is a smooth function of its arguments. If // is Hamiltonian of
our system then ̂  will be called the full phase space of it. & is (2k + 1)-
dimensional and can be parametrized by (ί, x1, pt ).

Take the cut-off of the 2-form dω to the space ̂  :

y := dω \& = dίί(ί, x f, pf) Λdt-Σ dpt Λ rfxί

= Σ ( - - dx1' Λ dt H -- dft Λ dί - dp£ Λ dxl

Of course dy = d2ω\^ = ΰ. The form y is degenerated. It can be shown
that singular curves of y (i.e. such curves whose tangent vector is every-
where singular vector for y) are exactly solutions of the dynamical
problem with the Hamiltonian H :

Let Ω be such a curve (for shortening the language such curves will be
called states). Take any parametrization of Ω\

Let the parametrization be non-singular, i.e.

dτ ot ( dτ 8xl dτ dpt

Then one can easily compute :

dt ί dH , . dH \ dxl ί 8H

dτ

dPi ί dH J J \ I dH dxl dH dpl

dτ \ dpi J \ ox dτ opt dτ

H dt dpλ J . ^/8H dt d
'

dxl dτ dτ } \dpt dτ dτ
1
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In order to satisfy this equality all coefficients in brackets must vanish.

But in this case the vanishing of the derivative — — implies the vanishing
ατ

of X. So - Φθ. Thus in order to simplify the equation of motion we
ατ

can take τ — t. Now — — = I and the Eq. (1) reads:
ατ

+ - » • - - » •
dH dxl dH dPi

^"^Γ4" dPi at

If e.g. H = -̂  (Σ p.p..) 4- K(x) then

1 /. 1 , ι
= — p. it means that velocity is equal — p. .l

.
dt m l \ m

The Eqs. (2) are the canonical equations of Hamilton. The third one is the
consequence of them. It is the energy-equation: adding to both sides of (3)

dH λ .
the term — r — we obtain

dt
dE^ _ dH_ _ dH_

dt dt dt

In relativistic mechanics, when we use the Minkowski's metric tensor

with the sygnature ( + , — , — , — ) we want to have vl — — pl and pl — — pt .

It is therefore much better to use the following notation:

3 3 3

ω= Σpμdxμ = Edt+ ΣPidχl = Edt- ΣPidχί

μ = 0 ι = l ί = 1

where p0 = p° = £, x° = x0 = t. In this notation canonical equations of
motion are

αV 8H dp, dH

dt dpi ' dt dxl '

Taking e.g. as &> the submanifold satisfying equation pμ

(i.e. PO = H = |/m2 + Σp^p^) we obtain

dxl dH Pί pt dPi
— u.

dt dp, E E dt
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Such an approach is called "homogeneous" because there is no difference
between time and another coordinates. There is no "motion" in this
picture, but only singular curves. The whole "dynamics" is given by the
phase space 0> and 2-form 7.

Now we pass to physical quantities (observables). They are such
functions (i.e. differential O-forms) on the space ,̂ which are constant on
states (singular curves of 7). In this approach "position of a particle" is not
an observable, but "position at time ί0" is. Take e.g. the theory of single
relativistic particle, as presented above. States are here straight lines:

The observable "position at ί0" now reads:

The function PJ is also an observable because in this case the momentum
is a constant of motion.

It can be shown that the function / on & is an observable if and only if

where X is a vector field. But we have immediately:

i.e. the field X preserves y (the one-parameter group of diffeomorphisms
generated by X preserves 7). Such fields are called canonical ones.

If we have two observables / and g :

then the Poisson bracket

is also an observable. This definition is completely equivalent to the
usual one. E.g. in the last example

Thus
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Let us do at last the following construction.
Denote by D° the distribution (in the geometrical meaning of this

word) of all singular for y subspaces tangent to ̂ . As we have seen D° is
here 1-dimensional and solutions of our mechanical problem are also
integral curves for D°. Thus we can pass to the quotient gP'^^/D0.
Elements of £P' are curves in .̂ Because every such a curve pierce the
subspace ί = const at precise one point, there is one-to-one correspond-
ence between points of &' and points of the subspace t — const. It means,
that if we fix the time the system (x1', pt) is a good coordinate chart in &'.
Because D° is singular for 7, we can project y to the form y' on SP'. This
last form is already non-degenerated (whole degeneration lies in D°).
In coordinate chart (x\ pt ), connected with the fixed time ί, the form y'
can be written as

y' — — Σ dpi A dxl.

3. General Scheme of Multi-phase Formalism. Gauge

Leaving aside the problem of concrete method of constructing the
phase space for concrete field equation (cf. examples in Chapter 4 and 8)
we shall formulate the "axiomatic" canonical theory, analogous to the
homogeneous formulation of mechanics. We take the following

Definition. By the π-phase space we mean the couple (̂ , y) where &
is m-dimensional (m>n) countable at infinity, smooth manifold (by
smoothness we shall always mean that of C°°-class); y is an (n-f 1)-
differential closed form (i.e. dy = 0) in ̂ .

The form 7 defines the mapping

by /\ Tp* (^) we mean the n-th exterior power of the cotangent space

), i.e. the space of π-covectors at pj .
Every vector field X in & defines therefore the rc-form X*. For

every peg? we distinguish the subspace of rc-covectors obtained in
this way:

Now we seek the maximal tangent subspaces anihilating s$p. The family
of all such subspaces at p e & will be denoted jtf'p. So

= 0 for every <x,es/p).
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Now submanifolds whose tangent spaces belong to <$/'p are of interest.
For the field theory or mechanics such submanifolds will be actually
solutions of the motion equations. So they are states of the field or
mechanical system. The notion "state" is used here in the sense Einstein
applied it — state means the whole history of the system. In quantum
physics such a point of view corresponds to the Heisenberg picture.

The following definition seems to be natural :
Definition. By the state in the ίi-phase space (̂ , y] we mean any

maximal submanifold having property that every its tangent space
belongs to s$' . The set of all states of a given theory will be denoted
3tf(&, y) or simply tf.

One can easily check that states are maximal submanifolds in &
having the following property:

for every n-vector field v tangent to this submanifold.
In order to omit pathological cases we take the
Definition. The n-phase space (̂ , y) is called regular one if all dimen-

sions of all spaces belonging to stf'p are equal for all p e £P. This common
dimension will be denoted dim^/.

From now on we shall always assume the regularity of (̂ , y). Thus
dimΩ = dim si for every state Ω e $?.

The canonical structure of (̂ , y) distinguishes the following distribu-
tion:

It will be called the primitive gauge of the theory. The primitive gauge
fields (i.e. fields belonging to this distribution) are precisely such fields
for which X* - 0.

Observe that DpcE for any E e £0'p. Thus Dp is tangent to every state
passing by p.

Lemma 1. The primitive gauge distribution is involutive, i.e. ifX, Y e D°
then IX, 7] e D° (by [X, 7] we denote the Lie bracket of fields X and Y).

Proof. [X,y]-Jy = (JS?xy)-Jy = JS^(y

- 0 - Y-J (X-J dy - d(X-i y)) - (- l)n + l = 0 l .

Thus (locally) there exists an integral congruence of D°. If it exists globally
then we can pass to the quotient space 0>r =

1 We use the following interior product: <M, X-^ay = <u Λ X, α>. In this convention
the Lie derivative is: ^xa. = (— l)m {X-^da. — d(X-*a)} if α is an m-form (cf. definition of
Lie derivative in [5] and [13]).



Finite-dimensional Canonical Formalism 107

In virtue of y \ D° = 0 the form y can be projected to the n-form y' on &' '.
We can thus construct a new n-phase space ( '̂, y') without any primitive
gauge (cf. [15] and [16]).

By full gauge of (0>, y) we mean the distribution D given by the
formula

DP= Π TP(Ω).
peΩ
Ωetf

Of course D° C D.
From the definition one can easily conclude that D is also involutive.

But we cannot pass to the quotient because y cannot, in general, be
uniquely projected on the quotient space. In this case we can rather take
any concrete gauge, i.e. any submanifold transversal to the gauge,
covering the whole quotient space (in the calculus of variations e.g.
classical theories of Caratheodory or Lepage can be obtained by taking
the concrete gauge in the full Dedecker's space. This result will be
published elsewhere).

4. Examples of Multi-Phase Spaces

1. Phase Space (l-phase Space) in Mechanics - as in Chapter 2.
2. Mechanics with Additional Gauge. Take Wg = W x R, where W

is taken as in Chapter 2.
Using the coordinates (f, x1, φ) we take

y — dE Λ dt — Σ dpt Λ dxl -f dq Λ dφ

in the submanifold 2P C T*(Wg) given by the conditions:

\ — Q — const .

In local coordinates (ί, x1, φ, pt) in & the space D® is now spanned by
d J d dH d dH d 0vectors — — and — — h — -- r— = --- r— — - — . States are now 2-dιmen-

oφ dt dpi ox ox opt

sional. The reduced phase space &' is equal to that of Example 1.
3. Scalar Field Theory. W = M xR with coordinates (x°, x1, x2, x3, φ),

n = 4 (the coordinate φ will describe the strength of the field).
From now on we shall often use the Einstein's summation-convention.

4

In the space /\ T*(W) there are following canonical forms:

ω = η dx° Λ Λ dx3 + ημ dx° Λ Λ dφ Λ Λ dx3

Λ
M

dω = dη Λ dx° Λ Λ dx3 + dημ Λ dx° Λ Λ dφ Λ Λ dx3

Λ
(by Λ we denote the μ'th place). p
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4

As & C /\ T*(W) take the submanifold given by the formula

η = H(xμ, φ, ημ)

and

y = dω I & = dH Λ dx° A Λ dx3 + dημ Λ dx° Λ - Λ dφ Λ - Λ dx3

Λ

(4)

= I— — dφ + — — dημ\ Adx° Λ ••• Λdx3 + dημ Λdx° Λ ••• Λ d φ Λ Λ d x 3 .
\<9φ 5^ / Λ

In similar way as in mechanics one can show that every state Ω can be
parametrized by space-time coordinates xμ:

The 4-vector tangent to Ω is equal v = X0 Λ Xί Λ X2

 Λ ^3? where

, _ ,
ι~ ^ ιι ^ iμ <3xμ dxμ dφ dxμ dηv

The equation of motion can be easily computed:

δH , dH J dH dφ j a dφ J u dH dηv

IT _Uj — Afr> -I Λrjμ -L— Λ v^ -I — AnV —

dφ dηv dφ

(to the last terme the Einstein's convention is not applied). Hence

dφ dH dημ dH

dxμ dημ ' <3xμ dφ

xv dxμ dxμ dxv

It can be shown that here also "energy equations" (6) are consequence of
"canonical equations" (5).

If we put e.g. H(xμ, φ, ημ)= -\ (ημη
μ + m2φ2\ where ημ = gμvη\ gμv

is Minkowski's metric tensor in space-time, then Eqs. (5) read:

dφ dη 2

δxμ /μ' dxμ

It is the theory of Klein-Gordon field:

where O =
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4. Electrodynamics. We take W— T*(M) where M is space-time.
Taking any coordinate chart (xμ) in M we have automatically the
coordinate chart (xμ, Av) in W\

A = AμdxμεT*(M).

The covector Λ plays role of the electromagnetic potential. The space W
plays role of the configuration space. As the phase space & we take the

4

submanifold in /\ T*(W) composed of all the 4-covectors of the form:

where the following "constraints" are imposed:

A,hμv hμv = -hμv.

4

where ω is canonical form in f\ Ί
The space & is 14-dimensional with coordinates (xμ, Aμ, h

μv) (only 6
coefficients of antisimetric tensor hμv are independent).

The canonical equations can be easily obtained (we leave out the
computation): apj

ft Λ ft Λ —
ύfιAv-ύvAμ-j^,

dH

^ . dH , dH
Denoting -̂ 77 — ί^ ~^ — =./ we see that our equations are nothing

On (j A μ

but equations of general non-linear electrodynamics (cf. [2, 3]). Specifying
the theory to the case of Maxwell electrodynamics with vanishing currents
we obtain : , ~ „

5. Canonical Fields. Cauchy Surfaces

If the complete vector field X leaves the form y invariant :

&xγ = Q (7)

then the group of diffeomorphisms {Gf}ίeR generated by X carries
singular subspaces of y (elements of j/') without losing this property.
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It means that {Gf } transform states onto states. So X induces a group of
transformations {^f } in ffl. If ffl has a differentiable structure (which
can be often defined by similar methods as in [7] or [9]) this group of
transformations defines in ffi the vector field 3C.

Fields satisfying (7) will be called canonical fields. So we have shown

Proposition 1. Every complete canonical field in & generates a group
of transformations and possibly a vector field in ffl.

Let X be any canonical gauge-field. The group {^f } generated by X
is trivial (gauge fields are tangent to every state) so the correspondent
field #" in 2tf vanishes.

The following fact is true

Lemma 2. 1. // Xί9X2 are canonical then [_X1,X2] is canonical, too.
2. IfX is canonical and Y- canonical gauge field then [X, 7] is canonical

gauge field.

Proof. 1. ^[Xl,X2]y = (^Xl^X2-^χ2^xJy = 0.

2. IX, 7] - lim — {(Gf )* Y-Y}9 where (Gf )* is the tangent mapping

generated by (Gf ). Because X is canonical field, then (Gf )^ Y is also
tangent to every state i.e. is a gauge field. Thus [X, 7] is also a gauge
field. It follows from 1. that it is canonical.

This result means that the space of canonical fields is a Lie algebra
and that canonical gauge fields form its ideal. So the quotient space

£Γ = canonical fields/canonical gauge fields

is a Lie algebra. If we have in Jf a differentiable structure then elements
of 2£' generate vector fields in ffl. Denote by JΓ the set of all thus obtained
vector fields in 3C.

Theorem 1. The correspondence 2£' ' -*2K is an isomorphism of Lie
algebras

Proof. It is a homomorphism as a consequence of the fact that the
correspondence of canonical transformations Gf->^f is a homo-
morphism of groups. Now let X e 2£' be in the kernel of this homo-
morphism. It means that for every representant X E X and every state Ω
we have

It means that X is a gauge field.
The elements of 2£ will be called canonical fields in J f .
Very often we are interested in the minimal set of information which

enables to distinguish the concrete state Ω e Jf . In mechanics it suffices
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to know one single point p e Ω (the initial position and momentum). In the
field theories the field equations are, in general, of hyperbolic character
so Cauchy data determine the whole state. In our axiomatic formulation
we take the following

Definition. The submanifold C C & is called the Cauchy surface for
(̂ , y) if CnΏ is (n — l)-dimensional for every ΩeJf 7 and determines
uniquely the state - i.e.

(Ω tnC = Ω2nC)=>(Ωl = Ω2).

Example. In the field theory & is often a bundle over space-time M.
If Σ C M is a 3-dimensional space-like surface, then the reduction 0>Σ

of & to Σ is (for hyperbolic cases) a Cauchy surface.
Definition. The (n — l)-dimensional submanifold cC& is called the

initial surface if there exists a unique state Ω e Jf7 containing c(c C Ω).
If C is Cauchy surface for (3P,y) then obviously Ωr\C is an initial

surface for any Ω e Jf.
We do not solve in this paper global problems, thus the needed global

properties of our space must be assumed. The most natural way of doing
it is to assume that there exists in 3P a suitably rich family ^ of initial
surfaces, which satisfies some axioms. Because these axioms will be used
only in several proofs, we shall formulate them in Chapter 11. Now we
take the following

Definition. Elements of # will be called "admissible initial surfaces"

(a.i.s.).
Examples. 1. For good hyperbolic field theory the family

# = {Ωn^j: Ω e ̂ , Σ is space-like surface}

satisfies axioms of Chapter 11.
2. In mechanics the set of all points of ̂  (0-dimensional submanifolds)

also satisfies those axioms.

6. Local Observables. Poisson Bracket

If X is a canonical field then

It means that (locally) there exists a (n — 1) form α for which

We take the following
Definition. We say that the field X is generated by a local observable

if there exists (globally) the (n— l)-form α which satisfies conditions:
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a) the cut-off of α to every a.i.s. c e ̂  (i.e. α| c) has compact support.
b) dκ = X-ίy.
Let α be as in the above definition. For every a.i.s. c e ̂  put

The following is true

Theorem 2. 77ze i α/we 0/ <c, α> does woί depend on the particular
choice of c C Ω.

Thus we can denote for c c Ω :

<Ω,Oα> = <c,α>.

Definition. The functional

will be called a local observable (represented by the form or). The set
of all local observables will be denoted $0(^ ?) or simply @Q.

We shall also use the following notation: Oα — ά (the class of all forms
giving the same functional).

Theorem 2 results, practically, from the field equations:

It means that every local observable is given by the conservated vector
current α |Ω (for detailed proof see Chapter 11).

Remarks. If α represents a local observable then
1. for any (n — 2) form λ for which supp(λ\c) is compact for any a.i.s.

the form α + dλ represents the same observable because <c, dλy = 0.
2. If δ is any (n — l)-form vanishing on every a.i.s. (i.e. δ \ c = 0 for c e Ή)

then α + δ represents the same observable.
For illustrate the Remark 2 take δ = (Y Λ X)— l y where Y is a gauge

field and X - any vector field in 0>. If u is any (n — 1) vector tangent to
some a.i.s. at the point p e £P, then u Λ Yp is an π-vector tangent to a state
passing by p. Then

The following fundamental fact is true:

Theorem 3. // X± and X2 are generated by the same observable Oα e $0

ί/zey belong to the same class modulo gauge fields. It means that an
observable generates a unique element of ^Γ, i.e. a unique canonical field
on 2tΐ (for the proof see Chapter 1 1).
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If 01,02e@0 are local observables generating canonical fields Xt

and if o^ are their representants, we put

(o)

The form {oί1? α2} has obviously compact support on every a.i.s.
Moreover we have following

Lemma 3. d{a1 ? a2} = [^i, ̂ My-

Proo/. ^{a^a^

The field [X1?X2] *s a^so canonical. Thus {α1 ?α2} represents an
observable {α1? α2}' e 00. This observable does not depend on particular
choice of o^ and α2 : if we take another representants so only the second
terme of (8) will change. It follows from Remark 1 that {α1? α2}' do not
change. The observable {α1? α2}' is also independent on particular choice
of fields generated by observables O^ It can be concluded from Theorem 3
and Remark 2: if we add to Xί gauge fields Y{ the only result will be
adding to {α l 9 α2} terms vanishing on every a.i.s.

Thus {α1 ? α2}' depends only of Oλ and 02. We shall denote

Definition. The observable {O1;O2} will be called the Poisson
bracket of Ox and 02 .

From Lemma 3 we have an immediate

Corollary. // Oλ generates X± and O2 generates X2 then {O1?O2}
generates [Xί,X2].

To collect the above facts we write :

{01,02} = (JSfX lα 2) = (-ir1{(^ιΛ^2)-Jy} . (9)

We could say that {0t , 02) gives the change of an observable 02 when we
move on trajectories (in Jf ) generated by Oλ .

The set 00 has obviously linear structure. The Poisson bracket is
bilinear mapping. Moreover the following is true:

Proposition 2. The space (@Q, { }) is a Lie algebra, i.e.:
1. {01,02}=-{02,01}
2. {0^(02,03}} +{O2,{O3,Oi}} + {Os,{Ol902}}=0 (zero observable).

Proof. 1. is obvious from the expression (— l)"^1 {(X1 Λ X2)-^y}'.
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The mapping $09 Oα-+^0αe^, where ^Oα is canonical field in ̂
generated by the observable Oα, is a homomorphism of Lie algebras.
It follows immediately from Lemma 3 :

It is worth noticing that the kernel of this mapping is composed of
constant observables:

Theorem 4. // ΘC0oί 6 2£ is equal zero then there exists a number: a e R
such that

for every Ω e ffl (proof in Chapter 11).

7. Current Algebra. Noether Theorem

In theories of Lagrangean origine y is always an exterior derivative
of the Lagrangean density ω (cf. [6]): y = dω. Vector field X which leaves
Lagrangean invariant («5fΛ ω = 0) is called the symmetry field. In this
language the Noether theorem reads :

Theorem (Noether). Every symmetry field generates on every state the
conservated current.

Proof. Take α = X — ' ω. Then for any state Ω we have:

If α had compact support on every a.i.s. then the formula dot — X — l y
could be read : X is generated by local observable. But generally it is not
true. Such forms represent "global observables" like energy, momentum,
electric charge etc.

Definition. By "current" or "global observable" we mean the func-
tional <c, X-^ωy, where X is a symmetry field. Such a functional is, in
general, well defined only on a subspace of Jf7 and not on the whole space
(cf. Chapter 8). The space of all currents will be denoted /.

The same construction can be made for symmetry fields and global
observables as in the precedent chapter for canonical fields and local
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observables. Note, for instance, that symmetry fields are canonical. They
form a Lie algebra:

&[xltx2}<o = (&xl&x2-&xί&x2)<» = 0

For two currents represented by forms α, β and generated by symmetry
fields Xa, Xβ we put

It means that / is a Lie algebra homomorphic with the algebra of
symmetry fields.

Our definition of a current bases on the fact that we have chosen
a concrete primitive form ω for y. It is an additional structure in our
phase space (̂ , y) and enables us to take a concrete representant X — ' ω
instead of a whole class of forms.

When X is a symmetry field and Oα 6 (90 a local observable, then ̂ xα
has compact support on every a.i.s., for any representant α of Oα. It
enables us to define full algebra of observables

putting {β, OJ = {JSfyα}' e 00» where /? e / is generated by X. / and (90

are subalgebras of (9 and 00 is even its ideal.

8. Examples of Observables. Observable- valued Distributions

1. In mechanics (n= 1) observables are 0-forms, i.e. functions. The
condition da \ Ω = 0 means that they are constant on whole states. They
are therefore constant of motion.

d
Let us study the condition for -— - being the symmetry field :

ot

^ω = - d ~ -J Pμ dx» + -- -J (dpμ Λ
dt \0l

= -dp0-

δ
It means that — — is a symmetry field if and only if the Hamiltonian does

ot
not depend on time.

2. Take the Klein-Gordon theory :

ω = - i (ημη
μ + m2 φ2) dx° Λ Λ dx3 + ημ dx° A Λ dφ Λ Λ dx3 ,

μ
y = —(ημ dημ + m2 φ dφ) Λ dx° Λ Λ dx3 + dημ A dx° Λ Λ dφ Λ Λ dx3 .
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It is easy to compute (cf. Appendix) that the Lie algebra of Poincare
group is an algebra of symmetry fields of our theory. So the current
algebra is 10-dimensional. For instance the energy E generated by the

d
field —-7Γ- is represented by the 3-form:

ox

-^ω=^-(ημη
μ + m2φ2) dx1 Λ dx2

4- Σ ηl dx1 Λ Λ dφ Λ

Take as a Cauchy surface the reduction of & to the space-like surface Σ

given by equation x° = const. Using the canonical equations ημ = ———

we obtain for any state Ω e ffl:

We see that it is well defined (finite) only for states sufficiently rapidly
vanishing at infinity.

d
In the case of wave-equation (m = 0) also —— is a symmetry field. The

c cp
correspondent current is:

d
β= \ω= Σ ( - i y η μ d x ° Λ Λ dx3 ,

dφ Λ

<Ω, βy = J η° dx1 Λ dx2 Λ dx3 = j 4^ ̂ ^ -
Σ Σ Uχ-

Now we pass to local observables. Let /: M-^R be any solution of
Klein-Gordon equation: (Π + w2)/ = 0. Take the field

J cημ dφ

It is a canonical field:

Xf—[y = ( — ημ d μ f ) dx° Λ Λ dx3 -f dμf dx° Λ Λ dφ Λ Λ dx3

μ

-m2f φ dx0Λ -Λdx3-(-\Yf dημΛdx°Λ ...... Λ dx 3
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and one can easily obtain d(Xf -1 y) = 0. Take the 3-form

α,= Σ(-l)μ(φ dμf-f ημ)dx°Λ Λ dx3 .
J Λ

The reader can check that dttf ~ Xf —j y.
If / has spatially-bounded support, then so does α^. In this case oιf

represents a local observable which we shall denote Of. Integrating over
the surface ί = const we obtain

(the last expression being valid for any space-like surface Σ). Taking in
particular / satisfying the following Cauchy conditions:

Λ d̂x°
we define the observable:

Taking/ Σ= -χ, —Q-

, φ, φ)> = j φ - φ J 3 jc. (10)

Z = 0 we define

The above observables can be called "the value of φ at the time x°,
smeared with test function t/Γ and "the value of η0 at the time x°, smeared
with χ". If the functions ψ, χ are very close to Dirac delta: δ(x — jt0) then
the value of (10) and (11) is very close to φ(x°,:c0) and ^0(x°,x0). Thus
similarly as in quantum field theory only "smeared" fields are observables.
To simplify the notation we can introduce the observable-valued
distributions:

— CQ(Σ) with the usual topology) setting:

J φ(x) ιp(x)d3x:= φ(ψ) = 0(Σ, φ, ip) ,

ί ήo(x) X(x) d3x:= ή0(χ) = O(Σ9 η0,χ).

The Poisson bracket of our observables can be easily computed :

Λ
μ
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In particular:

, φ, ιp2)} = 0 = {0(Σ, >/0, χι), 0(Σ, ηQ, χ2)} ,

{0(Σ, φ,v>), 0(Σ, /70, χ)} = f Ψ I d3x .
I

If we strip these formulae of test functions ψ, χ we obtain at last :

{φ(x°, x), φ(x°, y)} = 0 = OJ0(x°, *), *

3. The electrodynamics with potentials is not a hyperbolic theory.
But if we replace Cauchy-surfaces by space-like surfaces we can define
observables in the same manner as in Chapter 6 and 7. Take e.g. Maxwell
electrodynamics with vanishing electric current:

7 = τfμv dfμV Λ JX° Λ ••• Λ dx3 + dfμv Λ dx° Λ ... Λ dAμ Λ ••• Λ dχ3 .

v

Let gμ be any solution of canonical equations: dμ(dμgv — dvgμ) = Q.
Denote hμv= dμgv — dvgμ. Take the vector field

One can easily check that Xg is canonical field. The corresponding
observable can be represented by

For Σ given by equality t = const take gt\Σ= — δ\ - φ; h0i Σ = 0. We
obtain the observable:

<Ω, 0(Σ, £k, φ)> - J /k° ψ d3x = J £k - ψ d3x ,
I Σ

i.e. the kth component of electric field (Ek) smeared with the function φ.
Taking gi\Σ = Q, g0 \ Σ-arbitrary we obtain the integral

\Aμh^ d3x. (12)
Σ

One might suppose that it is value of potential, smeared with hμ°. But
functions /ιμ° are not arbitrary. They satisfy Maxwell equations which
read:
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It means that the vector field (hl°) on I" is a rotation:

If the functions χk have compact supports then integrating by parts we
transform the integral (12) onto the following expression:

2 j
I

where Bk is k th component of magnetic vector. Taking %k = δ% χ we
obtain the observables :

Σ

The Poisson bracket can be easily obtained :

{α,,α^}=Σ(h' t v.§μ-Λ^ v)(--l) vd

where

Using this formula and taking hiQ\Σ = 2δl f ? j k d j χ = 2είjpdjχ,gi\Σ = Q9

hi°\Σ = Q,g\Σ= -(5* φ we have

, B*, x), 0(Σ, E\ φ)}> = - j εpkj(djχ) - φ d3x . (13)
Σ

Using observable valued distributions Ek(x\ Bp(x) we can write (13) as:

{Bp(x°, x), £fc(x°, y)} = -εpkjdjδ(x - y) .

In the same manner we obtain

{El(x°, x), Ej(x°, y)} = β= {F(x°, x), Bj(x°, y)} .

It is complete set of equal-time Poisson brackets for field strengths
(cf. [2]).

9. Dual Cauchy's Problem. Difficulties in non-linear Theories

Let C be a Cauchy surface in .̂ The Cauchy's problem consists in
finding the state Ω when we know C n Ω.

Now let be given an (n — l)-differential form α on C. For any state
Ω e Jjf we can define the quantity
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We obtain in this manner a functional on the space 3f. The problem
arises: "for which forms α this functional coincides with an observable?".
The problem of finding such an observable when we know α can be
called the dual Cauchy's problem.

In non linear theories the dual Cauchy's problem is very often,
unfortunately, unsolvable because local observables do not exist. As it
will be shown in the Appendix (for the theory of self-interacting scalar
field (Π +m2)φ = λφn) only symmetry fields are canonical ones. So the
observable algebra consists only of global observables. Similar situation
we meet in another non-linear theories. It may lead to the following
conclusions:

1. Either the solution suggested by [10] (the introduction of higher-
order currents) will be satisfactory - in this case very useful suggestions
about quantization of non-linear theories can be obtained

2. or there is no satisfactory solution. It can be closely connected
with difficulties of non-linear quantization.

In any case it seems that the further investigations of canonical
structure of classical theories can give a deep insight into problems of
quantization.

10. Concluding Remarks

If we leave aside the geometrical beauty, an explicit relativistic
invariance (there is no necessity of distinguishing the space-like surface
for the definition of Poisson brackets) and other such advantages, our
theory can be treated as a method of obtaining, for a given classical
theory, the startpoint for quantizing it, namely the triplet pf, Φ, 3£\
Similar triplet is obtained in usual, infinite-dimensional formulations
(cf. the beautiful theory of Segal [14]). The difference between those
formulations and the present one is that our algebras G and 2% are much
less. Here observables are not arbitrary functionals on 3f but very
special ones, which are integrals of very special differential forms.

Such reduction of the space of observables enables us to formulate
the theory without functional derivatives (which lead to well known
difficulties). Furthermore such reduction is very convenient in quantiza-
tion when, as it is known, only some subalgebra of usually obtained
observable algebra is represented directly in Hubert space. The question
"which subalgebra is such a base of quantization" does not exist in our
formulation: In Klein-Gordon theory G contains the Poincare-group
generators and smeared fields only. In electrodynamics — Poincare-
group generators and smeared electric and magnetic fields only (no
potentials!). It seems that our algebra is itself an adequate observable
algebra for quantization.
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Algebra & has moreover a very nice property that it has no commu-
tative structure (in standard formulations observables, as functional,
can be multiplied. In our theory such multiplication has, in general, no
sense). So there are no difficulties with a "good order of operators"
during quantization.

It is worth noticing that observables are represented by classes of
differential forms and are not forms themselves. Thus the whole informa-
tion included in the observable is its value on states: <Ω, 0>. This point
of view is implied by the mathematical structure of the theory: the Poisson
bracket for forms (α, β} has not the demanded properties (cf. Proposi-
tion 2). So there is no difference between "canonical" and "symmetric"
energy-momentum tensor (as long as it does not enter into dynamics,
as in General Relativity). Only energy, momentum, electric charge etc.
are observables and not their densities.

11. ^-axiomatics. Proofs

We take the following system of axioms which must be satisfied by
our family # of a.i.s.:

1. For every pe^ and Ω passing by p there exists ceΉ such that
peccΩ.

2. If (n — l)-dimensional submanifold c c & has the property that for
any p e c there exists a cpe^ such that cr\cp is a neighbourhood of p
(in c) then c € <£.

3. If c1 ,c2e<^ and K f C q are compact sets, then there exists c€%>
such that K1 C [_c1 — (cncj)], K2C(cr\c2) and that [cί—(cnc1)'] is
relatively compact in ci.

4. If cl9c2 lie in the same state Ω then there exists such a ceΉ
satisfying (3) which lie also in Ω.

5. Each two c0, c1 e # can be joined by a 1-parameter smooth curve ct,
te [0,1] in the sense of [10], i.e. there exists such a complete vector
field X that Gf(c 0) = cί9ct = Gf(c0)e V.

6. If c0, c1 lie in the same state Ω, than the curve ct can be taken in a
manner that every ct lies also in Ω.

7. Take any c e # and Ω e 2tf containing c. For any vector field X
tangent to Ω and having compact support there exists ε > 0 such that
Gf(c)e^for \t\<ε.

8. For every c e <£, p e c, Yp e Tp(3P) and a neighbourhood A C 3? of p
there exist the vector field Y equal Yp at p, whose compact support is
contained in A and ε > 0, such that GΎ

t(c) e ̂  for |ί| < ε.
It is worth noticing that e.g. the set of all initial surfaces in the field

theory does not satisfy the axiom (2).
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Before proofs of Theorems 2 and 4 let us note the following fact:

Lemma 4. Let the (n—ΐ)-form α have the property that α |c has
compact support for any CE%>. Then for any cί9 c2 6 # there exists such

that [_c1 — (cncj] is relatively compact and:

supp (α I c) = supp (α | c2) C (c n c2) ,

Proof. Take K! = supp(a \ c±\ K2 = supp(a \ c2). Using the third
axiom we can take the a.i.s. dl e <&, such that

supp(a\c2)C(dίnc2)9

i — (d1nc1)]-relatively compact .

If supp(a I c2) φ supp(oc \ d1) we can take any compact (in cj neighbourhood
°f [cι — (^1^cι)] as ^i and anY compact neighbourhood (in c2) of
c2πdl as X2. There exist d2 eΉ such that

Xίc^nCi); X2C[c2-(rf2nc2)]-relatively compact.

Now we take any compact neighbourhood (in c^ of d2 n c1 as X2 and any
compact neighbourhood (in c2) of [c2 — (rf2 n c2)] as K2. There exists
ί/3 e ̂  such that

Kl C C^! — (ί/3nc1)] -relatively compact.

Using this method we can construct the sequence d1, d2, ... of a.i.s. and
as 5 -» oo :

supp

Observe that there exists a number JV such that for odd s > N

supp (α I ds) = supp (α | c2).

It is so because if the contrary is true then we can build the submanifold

00

b= \JΪ
k = l

where 6k={[d f c-(dknc1)]-(dknc2)}u(dknd f c-1)u(dkndk + 1) for k > l
and b1 - [d1 - (dl ncj]u^1 nd2).
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It can be easily shown that b satisfies axiom 2. Thus beΉ and α |b
has non-compact support which contradicts our assertion. So taking
any odd s > N we have c = ds.

Observe that if cl9 c2 lie in the same state Ω than dk can be taken in Ω
(axiom 4). Thus c lies also in Ω.

Proof of Theorem 2: If c l 9 c 2 C Ω then take ceΩ as in Lemma 4.
Because <c2,α> = <c, α> we have <e1 ?α> — <c2,α> = <c 1 ?α> — <c, α>.
Using the axiom 6 we can take the field X joining cl with c. The family
ct = Gf (c) (c0 = c) "sweeps" the n-dimensional (possibly degenerated)
compact volume V CΩ whose border is:

dV=Cι-c.
Thus

because da \ Ω = 0 for any state Ω.

Proof of Theorem 4: The observable 0 generates the gauge field:
da = X — ' y, X C D. Take any c^ , c2 6 # and c e ̂  as in Lemma 4. Using
the same arguments as in precedent proof we find

<c l 5 α> - <c 2, α> - <c l s α> - <c, α> - <δF, α> - <K, dα>

for some n-dimensional (possibly degenerated) compact volume V
"swept" by the family (cf) of a.i.s. But every π-vector tangent to V can be
written as u = un_1 Λ Y, where w λ j _ 1 is tangent to some a.i.s. ct. Thus

because un_i Λ X is tangent to some state Ω.

Proof of Theorem 3: It suffices to prove that the zero-observable
generates only gauge-fields. Let da = X — ' y and (c, α> = 0 for any c e #.
Suppose that there exists a point p e ̂  such that Xpφ Dp. It means that
there exists a state Ω passing by p, such that JVp is not tangent to Ω.
Using the axiom 7 we see that the family of all (n — l)-vectors tangent to
all a.i.s. passing by p and lying in the same state Ω form a total set in
n-l

f\ Tp(Ω). Thus if we suppose v-*(Xp-
1γp) = Q for all (n— l)-vectors υ

tangent to all a.i.s. lying in Ω and passing by p, then the same is true for all
n-l

v e /\ Tp(Ω). It would mean that Tp(Ω)φ {τ Xp} is a singular space for y
(i.e. belongs to ĵ ). From the regularity condition for (^,y) we derive:
Zp e Tp(Ω) which contradicts our assumption. Hence there exist an a.i.s.
c e Ή passing by p and its tangent (n — l)-vector v (at p) for which
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v -J (Xp -J yp) φ 0. Take such Yp that

P' P P -( \\n~1/ (γP γ\-i \ ^

Take a vector field Y which satisfies axiom 8 and ct = Gγ

t(c). Thus (cf. [6]):

d

at
(15)

t = 0

For sufficiently small support of the field Y it follows from (14) and the
mean-value theorem that (15) is not equal zero. It means that 0α is not
constant which contradicts our assumption.

Appendix: Calculation of Canonical Fields in Scalar Field Theory

For simplicity of computation take the Scalar Field Theory in
2-dimensional space-time (the identical result can be obtained for
4 dimensions):

[Σ\=dμd
μ = (d0)

2 — (δj)2, μ = 0,1. In coordinates (xμ, φ, f/μ) the canonical
forms ω and y are:

1

2

+ η° dφ A dx1 + η1 dx° Λ <

= dω= —ημ dημ Λ dx° Λ dxl + Q(φ) dφ Λ dx° Λ

° Λ dφ Λ ί/x1 -f d/y1 Λ rfx° Λ Jφ ,

where Q(φ) = Aφw — m2 φ. Take any vector field

We shall solve the equation for canonical fields: d(X-Jy) = 0. We obtain:

d(X -J y) = fa dx° Λ dx1 Λdφ + f2 dx° Λ dx1 Λ rf^0 + /3 dx° Λ ί/x1 Λ

+ /4 rfx° Λ rfφ Λ V -h/5 rfx° Λ d<p Λ rf^1 + /6 rfx1 Λ rfφ Λ

+ /7 dx1 Λ rfφ Λ rf?/1 4- /8 <i^° Λ rf^/° Λ dη1 + f9 dx1 Λ dη°



Finite-dimensional Canonical Formalism 125

where :

dA1 dA1

fs=-1ι

<Λ V£ Λ 0 VQSΊ. ~Γ - Πdφ 3f/ of/

g^l1 _ gyl1

 0 gC1 δβ

δcp 5?/1 ° dη1 dφ

dAQ _ ^ dA° ^ . 3C° dB

dA° δC°

dA1 dB

dA1 dA°

Let us introduce the following notation :

dP ,, t a^i1

 0 dA°
π) - - - --rτ- - - ^rr -J-Ίdη1 dη1 dη1

Using equations /10 = 0 and /8 = 0 we have

0 _a_^___ oj^li__ g-41

η dη° ~~η dη1 ~~Άl dη° +
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Putting it in (i) we have :

0 _ dP 0 dA° l dA1 _ 8P 8B d
Λ ~ dη° ~η dη° +η ~W~WW~W( }'

In similar way we obtain from (ii) : A1 = — — (B — P). Denoting F : = B — P
oη

we have:

Now we try to express all variables by terms of F :

P — jη AV — n _ FP-ημA --ημ μ ϊ ,

(iv)

dC° dCl

If we take 0 from equality /6 = 0 and 0 from /4 = 0 and put them
oη oη

into equality /2 = 0 we obtain

dA1 dA1 λ dF

In similar way we can compute Cl. Finally

—
dφ

If we substract equations /5 = 0 and /6 = 0 then using equality flo

we obtain

U D 0 1*
— A

dφ dφ
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Hence F = 0 and further
cφ

dAμ dB dCμ _
— \j.

dφ dφ dφ
Moreover

C = d F^μ υμλ '

dAμ

From equations /4 = 0, /5 = 0, /6 = 0, and /7 = 0 we thus obtain v = 0

dAμ

because Q - v are there unique terms containing the variable φ. It

means that — — - — F = 0, so F is linear in variables ημ:
cημ oηv

F(x\ φ, ημ) = - ημA
μ(xv) + D(xv] = D(xv) - P(x\ ημ) .

If we compare it with the definition of F we see that D = B. Thus

(v) F=-ημA
μ + B

where A and B depend only on xv. Now equation fl — 0 reads

do
But Q and — — are polynomials of the variable φ of different degrees.

dφ
Hence

(vi) 3^ = 0,

(vii)
dφ

Putting (v) into equality /5 = 0 or /6 = 0 we obtain SQAQ — d±Al

Combining it with (vi) we have dQAQ = 0, δ^1 =0. Thus

Putting (v) into equality /4 = 0 or /7 = 0 we get δ0^
1-δ1^°-0.

It means that / and g must be linear functions of their arguments and :

F = - f/oίαx 1 -f b) - ^(αx0 -f c) + B ,
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Putting B — 0 we obtain 3-dimensional algebra of Poincare group (b and c
give translations and α-Lorentz rotation).

Now let us turn to Eq. (vii). Because of equality Π A = 0 it reads :

B + B(m2-λnφn~l) = Q.

For the linear case (λ = 0) we obtain (Π + m2)B = 0 and for a = b — c = 0
we have

.
oφ oημ

For non-linear case (AΦO) B = Q and the only canonical fields are
Poincare fields.
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