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Abstract. It is proved that the monotone o-closure of the self-adjoint part of
any C*-algebra A is the self-adjoint part of a C*-algebra %. If A is of type I it is
proved that % is weakly o-closed, i.e. & is a X*-algebra. The physical importance
of X*-algebras was explained in [1] and [7].

We recall that the class of bounded real Baire functions #8(X) on
a locally compact Hausdorff space X is defined as the monotone g-closure
of OF(X). It is immediately verified that %% (X) is closed under point-
wise limits of sequences hence #E(X) is also the weak (pointwise)
o-closure of OF(X).

Regarding a C*-algebra A as the non-commutative analogue of some
Cy(X) we may for a convenient representation of 4 as operators on
a Hilbert space H form the monotone g-closure #E of A® in B(H). This
class of Baire operators was introduced in [5] by R. V. Kapisox in order
to give measure-theoretic conditions on a representation between two
concrete C*-algebras to have a normal extension. His result together
with those of [6] seem to indicate that %% is able to take over the réle
played by the Baire functions in commutative theory.

Recently E. B. Daviss in [1], [2] and [3] has considered instead the
weak g-closure of 4 and has outlined an interesting theory of X*-algebras
i.e. C*-algebras which are weakly o-closed. Since for non-commutative
C*.algebras one cannot use lattice arguments it is no more an easy
matter to determine whether the weak and monotone g-closure of 4%
coincide. We prove in this paper that such is indeed the case if 4 is of
type I. Unfortunately the proof will not be applicable for other types
but since we are able to show in general that #% is the self-adjoint part
of a C*-algebra we fecl rather optimistic that the result is true in general
i.e. that % + (AL is a XZ*-algebra.

We shall use [4] as a standard reference on notations and terminology.
In particular for a C*-algebra 4 we shall write 4" for the enveloping
von Neumann algebra of 4 in its universal representation. When no
confusion may arise we shall drop the subscript and write %% for the
monotone g-closure of A% in 4".

Theorem 1. BE is the self-adjoint part of a C*-algebra.
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Proof. By [5, p. 317] 4% is a uniformly closed Jordan algebra.
Therefore # = ZL + i#% is a uniformly closed subspace clearly self-
adjoint and since by polarization any product of elements from % can
be expressed as linear combination of elements of the form (z+19)* (x4 1y),
x,y € B#E we see that all we have to prove is that the commutator
[z, y] = ¢(zy — yx) is in BL since then
(@ + iy)* (@ + iy) = @* + y* + [2, y] € BE.

(@, y]l= 1+ y)* 2l +1iy) — v —yay .

Since z,y ¢ AE implies [z, y] € AR and since the above formula shows
that the operators « € #% such that [z, y] € & for any y € A% is a mono-
tone g-class we have [z, y] ¢ BE for any x € L, y ¢ A% But since
— [, ¥] = [y, ] we can also use the formula to show that the operators
y € BE such that [z, y] € B2 for any = € BB is a monotone o-class. Since
this class contains AZ by the first statement we have [z, y] € 4% for
any x, y € BE.

Henceforth we shall refer to % = %E + i%E as the Baire operators
of 4.

The next lemma is a somewhat technical result which allow us to
identify the Baire operators of a C*-subalgebra B of 4 with the monotone
g-closure of Bin % 4.

Lemma 2. If @ is a *-isomorphism of the C*-algebra B into the
C*-glgebra A then the extension of @ from B'' into A" is a normal iso-
morphism.

Proof. The extension (again denoted @) defined in [4, 12.1.5. Pro-
position] maps B’ onto the weak closure of @ (B). However, if H is the
universal Hilbert space of B then @~ is a representation of @(B) on
H hence by [4, 2.10.2. Proposition] there is a representation p of A on
a Hilbert space K containing H as a subspace such that if p is the pro-
jection of K onto H then py(x) = @ (x) for all € P(B). Since p has
anormal extension as well, we see that the map x — py(®P (z)) is a normal
automorphism of B’’ which is the identity on B. It follows that
& 1(x) = py(x) for all x € B”.

Lemma 3. If a subset L of BE consists of commuting elements then the
weak o-closure of L is contained in HE.

Proof. Since % is a uniformly closed Jordan algebra we may assume
that L is a uniformly closed algebra over the reals. Then L + ¢ L is
a commutative C*-algebra hence L = CF(X) for some locally compact
space X. It is then known that the weak o-closure of L coincides with
the monotone g-closure.

By [1, Theorem 3.2.] the map from 4" to the weak closure of 4 in
its reduced atomic representation is isomorphic on the weak g-closure
of A. In particular the elements of % are determined completely by their

We have
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values under the irreducible representations of 4, hence the following
definition makes sense: For any two operators «, y in & we call y the
pointwise normalized of x if for all 7 € 4

ay)=||lax@)|*a@) for m@)£0, =@ =0 for m(x)=0.

Lemma 4. If A is a separable C*-algebra with continuous trace then
for any x € #E the pointwise normalized of x is also in BE.
Proof. By [6, Proposition 5.3] the functions f, on A defined by

fr(m) = (H:z(x)” + %)4 are bounded Baire functions hence by [6, Pro-

position 4.6] the elements f, - « belong to ZE. {f, - 2} is a commuting
sequence converging weakly to the pointwise normalized of « hence this
element is in #E by Lemma 3.

For the sake of completeness we insert a proof of the following result
from [5, p. 323]:

Lemma 5. Ify € A"+, x € B+ and xyx € B+ then [x]y [x] € B+.

Proof. We define the real Baire functions f, by
1
2

1
=0 for t=-, f)=7 for t>-—

and have projections p, = f,(x) € Z+ with p, 7 p = [z].
For m = n this gives

Dol P+ Py P = Pn (DY Po) + (P Pra) P € BE
S APy P+ D) PP+ PYPw) = PuY Pl Pn + PrY P+ Pl P
-+ D E gR
= (Payp + D) (P + YD) CBE A Py Py € B
= PuYP -+ PYPn € BE = (Puyp + YD) € BE = pypayp € BE
= pypyp € #
= pyp €#

Lemma 6. Let A be a separable C*-algebra with continuous trace and
homogeneous of degree d < %,. There exist a set of pairwise orthogonal
projections {p,} C &, card{p,} = d, dimz(p,) =1 for all 7 ¢4 and
Zp,=1.

Proof. If {m,,} is a sequence dense in A then by [4, 4.5.3. Proposition]
there exists for each m an element x,, € A+ and an open neighbourhood
®,, of m,, such that 7 (x,) is a one-dimensional projection for = € 0,,. If f,,
denotes the characteristic function for the Baire set 0,\(¢; v+ - U 0, _;)
then p, = 2, - ,, is a projection in & by [6, Proposition 4.6] and since
U 0,, = A we have dimz (p,) = 1 for all € 4.

If 4 denotes the C*-algebra obtained when an identity is adjoined
to A then we can choose a sequence {u,,} dense in the unitary group of 4.



224 G. K. PEDERSEN:

Suppose now that we have already constructed p; . . . p, subject to the
conditions of the lemma and put ¢, = X'p;. Then define

¢ = (W py) v gy — 9o
Im+1 = (uf@-!-lplum R AY (90 + c-supp(q; + * -+ + gm))

= (9o + e-supp(gy + =+ + ¢u)) -
Since for any projection g € # we have

c-suppq = V uf, qu,, € %

it follows that {g,,} is a sequence of projections in # with orthogonal
central supports and dim 7 (q,,) = 1 for any v € 4. Hence p,, ., = X'q,, € 4
is orthogonal to ¢, and dimz(p,.,) =1 for all z € A. If however
(Pniq) =0 for some 7z €A then n(ufpu,) =< n(g) for all m
hence 7 (gy) = 1. If d is finite this implies n = d and ¢, = 1 hence the
lemma is proved. If d is infinite it is impossible since dimz(gy) = . So
we may assume dimz(p, ;) =1 for all # € 4 and continuing in this
fashion we get a sequence {p,} with card{p,} = d.
If we have chosen u; = 1 then we can show that for all »

u;:plun =P+t P
Suppose this has been established for all m = n and put go=p;+ -+ p,.

Then in the construction for p, ., given above we have ¢,, = 0 for all
m = n hence

Tns1= (U +1P1% 1) V 9o — Go

S Uy P11 = Qo b Qi = Prb o Pug
It follows that
1= c-suppp, = Vugpu, = Zp, = 1

and the lemma is proved.

For a topological space 7' and a Hilbert space H,; of dimengion
d < % we let Z(T,%,) denote the set of functions x: 71— %, %,
denoting the bounded operators on H,, such that for each & € H, the
function ¢ — (x(¢) £]&) is a bounded Baire function on 7. It is easily
verified that Z (T, B,) is a Z*-algebra and that x ¢ ZE(T', %,) iff x (1) is
self-adjoint for all ¢ € 7' i.e. iff t — (x(t) &,|&,) is a real bounded Baire
tunction on T for some complete orthonormal basis {&,} C H,.

Proposition 7. (E. B. Davies). If 4 is a separable C*-algebra with con-
tinuous trace and homogeneous of degree d < %, then B = B (4, B,).

Proof. Let {p,} be the set of projections constructed in Lemma 6.
It {x;} is a sequence dense in AL then for cach n, m and £ let y,,, , denote
the pointwise normalized of p,z; P, + PperPp We have y,,., € B by
Lemma 4 hence

Ynm = Zg_kynmk Et@R .
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We notice that |7 (¥, )| #+ 0 for all 7z € 4 since |7 (¢,,,, )] is either 0 or 1
and since for each 7 there is a smallest £ such that |7 (9,2 P+ P e P0)|
=+ 0. It follows that if v,,, denotes the pointwise normalized of ¥, ,, we
may in each H, choose a basis such that

70 (Pn) = ((1) 3),
ap)=(g 1)

)= (1 o) -

By Theorem 1 we have w,,, = [P, V] = [VpmsPm] € BE with

7T (wnm) = (—f)l 16)
for all’z € 4.
If we make the obvious identification of all H_ and their various bases
and regard # as functions from 4 to %, then if {£,} denote the chosen
basis in H; we have for all x ¢ #%

(7 (@) & | &) + (7 (@) En| &) = 287 7 (0, @) -
It follows from [6, Proposition 5.1] that the function 7 — tr 7 (v,,,2) is
a bounded real Baire function hence x € #R(4, A,).
Conversely if x ¢ #R (A4, B,) then for any n,m there exist bounded
real Baire functions a,,, and f,,, on 4 such that

0 () + & B ()
ﬂ(p’nxpm + mepn) = (Otnm(ﬂ) - 'Lﬁnm(ﬂ) 0 ) '

By [6, Proposition 4.6.] we have

PrC P+ Pm@ Py = Ly * Vpn + ﬁnm * Wy € BE .

Since % is uniformly closed this implies
(227"p,) @ (227" p,) € AR

hence by Lemma 5, x € % and the proposition follows.
Theorem 8. If 4 is a C*-algebra of type I then % is a X*-algebra.
Proof. Suppose first that 4 is separable. Then by [4, 4.5.5. Théoréme]
combined with [4, 3.6.3. Proposition] we can find a countable ascending
chain of ideals {I,} such that I, = ﬂL<J“ Ig it o is a limit ordinal and

A, =1,1,_, is a separable C*-algebra with continuous trace and homo-
geneous of degree d, < %, if « is not a limit ordinal. To each I, corre-
sponds a central projection p, € # such that I, = p, A" N A; hence by
Lemma 2 #;, = p,#. If o is not a limit ordinal then the quotient map
&:1,~ A, extends to a normal homomorphism of I, and since
D (%1,) = #4, by [6, Proposition 4.2.] we have the isomorphisms

o= D) B= (1 = poy) B1, = Bay = B4, By,) -
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Since therefore & is the countable direct sum of XZ*.algebras it is itself
a X*-algebra.

In the general case we proceed as follows: If {x,} C % is a sequence
converging weakly to some x then by [6, Lemma 4.5] there is a separable
CO*-subalgebra B of 4 such that {x,} is contained in the monotone
g-closure of B. Since by Lemma 2 this closure is isomorphic to #z and
since B as a subalgebra of 4 is of type I by [4, 4.3.5. Proposition] we
have x € Z and the theorem is proved.
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