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Abstract. It is proved that the monotone σ- closure of the self-adjoint part of
any C*-algebra A is the self-adjoint part of a 0*-algebra £§. If A is of type I it is
proved that & is weakly cr-closed, i.e. & is a Z^-algebra. The physical importance
of 27*-algebras was explained in [1] and [7].

We recall that the class of bounded real Baire functions &R(X) on
a locally compact Hausdorff space X is defined as the monotone σ-closure
of Cff(X). It is immediately verified that &R(X) is closed under point-
wise limits of sequences hence &R(X) is also the weak (pointwise)
σ-closure of Cξ(X).

Regarding a 0*-algebra A as the non-commutative analogue of some
C 0 ( X ) we may for a convenient representation of A as operators on
a Hubert space H form the monotone σ-closure £%\ of AR in B(H). This
class of Baire operators was introduced in [5] by R. V. KADISON in order
to give measure-theoretic conditions on a representation between two
concrete 0*-algebras to have a normal extension. His result together
with those of [6] seem to indicate that &\ is able to take over the role
played by the Baire functions in commutative theory.

Recently E. B. DAVIES in [1], [2] and [3] has considered instead the
weak σ-closure of A and has outlined an interesting theory of Z1*-algebras
i.e. (7*-algebras which are weakly cr-closed. Since for noil-commutative
(7*-algebras one cannot use lattice arguments it is no more an easy
matter to determine whether the weak and monotone σ-closure of AR

coincide. We prove in this paper that such is indeed the case if A is of
type I. Unfortunately the proof will not be applicable for other types
but since we are able to show in general that £8\ is the self-adjoint part
of a G*-algebra we feel rather optimistic that the result is true in general
i.e. that 38\ + i(8\ is a Z^-algebra.

We shall use [4] as a standard reference on notations and terminology.
In particular for a (7*-algebra A we shall write A" for the enveloping
von Neumann algebra of A in its universal representation. When no
confusion may arise we shall drop the subscript and write g$R for the
monotone σ-closure of AR in A".

Theorem 1. $n is the self-adjoint part of a C*-algebra.
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Proof. By [5, p. 317] &R is a uniformly closed Jordan algebra.
Therefore & = £8R -f i&R is a uniformly closed subspace clearly self-
adjoint and since by polarization any product of elements from & can
be expressed as linear combination of elements of the form (x-\-iy)*(x-}-iy))

x, y ζ έ$R we see that all we have to prove is that the commutator
[x, y] = i(xy — yx) is in 3$R since then

(x + iy)* (x 4- iy) = x2 -\- y2 + [x, y]
We have

[x, y] = (1 -f ιy)* x(l -f ay) - x - yxy .

Since #, ?/ £ J[β implies [x, y] ζ AR and since the above formula shows
that the operators x ζ &R such that [x, y] £ &R for any y ζ AR is a mono-
tone σ-class we have [x} y] ζ έ%R for any x ζ &R, y ζ AR. But since

~ [χ) y~\ ~ [l/> χ] we can a^so use ^ne formula to show that the operators
y £ £%n such that \x, y] ζ &R for any x ζ g§E is a monotone σ-class. Since
this class contains AR by the first statement we have [x, y] £ έ$R for
any x,y ζ &R .

Henceforth we shall refer to 3S = έ$R + i£$R as the Baire operators
of A.

The next lemma is a somewhat technical result which allow us to
identify the Baire operators of a <7*-subalgebra B of A with the monotone
σ- closure of B in 38 A.

Lemma 2. If Φ is a * -isomorphism of the C* -algebra B into the
C* -algebra A then the extension of Φ from B" into A" is a normal iso-
morphism.

Proof. The extension (again denoted Φ) defined in [4, 12.1.5. Pro-
position] maps B" onto the weak closure of Φ(B}. However, if H is the
universal Hubert space of B then Φ"1 is a representation of Φ(B) on
H hence by [4, 2.10.2. Proposition] there is a representation ψ of A on
a Hubert space K containing H as a subspace such that if p is the pro-
jection of K onto H then pψ(x) = Φ~l(x) for all x ζ Φ(B). Since ψ has
a normal extension as well, we see that the map x -> p ψ(Φ (x)) is a normal
automorphism of B" which is the identity on B. It follows that
φ-i(ί&) = pψ(x) for all x ζ B".

Lemma 3. // a subset L of £8n consists of commuting elements then the
weak σ-closure of L is contained in 3$R.

Proof. Since &R is a uniformly closed Jordan algebra we may assume
that L is a uniformly closed algebra over the reals. Then L -f iL is
a commutative 0* -algebra hence L = CR (X) for some locally compact
space X. It is then known that the weak σ-closure of L coincides with
the monotone σ-closure.

By [1, Theorem 3.2.] the map from A" to the weak closure of A in
its reduced atomic representation is isomorphic on the weak σ-closure
of A. In particular the elements of $ are determined completely by their
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values under the irreducible representations of A, hence the following
definition makes sense: For any two operators x, y in 88 we call y the
poίntwίse normalized of x if for all n ζ A

π(y) = \\π(x)\\~l π(x) for π(x) Φ 0 , π(y) = 0 for π(x) = 0 .

Lemma 4. // A is a separable C* -algebra with continuous trace then
for any x ζ £§R the pointwise normalized of x is also in &R.

Proof. By [6, Proposition 5.3] the functions fn on A defined by

(
•I \ _ -1

||π(α;)|| + — ) are bounded Baire functions hence by [6, Pro-

position 4.6] the elements fn x belong to &E. {fn x} is a commuting
sequence converging weakly to the pointwise normalized of x hence this
element is in &R by Lemma 3.

For the sake of completeness we insert a proof of the following result
from [5, p. 323]:

Lemma 5. If y ζ A"+, x ζ J>+ and xyx ζ &+ then [x] y [x] £ ̂ +.
Proof. We define the real Baire functions fn by

/„(<) = 0 for ί^i, /n(f) = y for *>T

and have projections pn — fn (x) x ζ &+ with pnp p = [x].
For m ̂  n this gives

PnyPm + PmyPn = Pn(PmyPm) + (Pmypj Pn 6 &R

^ (Pnyp + p] Pm(p + pypm) = pnypmypn -f pnypm + pmypn

pypnyp

Lemma 6. Î eί A be a separable C* -algebra with continuous trace and
homogeneous of degree d < x0. There exist a set of pairwise orthogonal
projections {pn} C ̂ , card {pn} = dί, dim π (^) = 1 for all π ζ 4 and

^«=ι.
Proof. If {πm} is a sequence dense in A then by [4, 4.5.3. Proposition]

there exists for each m an element xm ζA+ and an open neighbourhood
(9m of πm such that π(xm) is a one -dimensional projection for π ζ@m If fm

denotes the characteristic function for the Baire set ^m\(^x \j \j Φm^
then p1 = 27/m #TO is a projection in 38 by [6, Proposition 4.6] and since
\j @m = A we have άίmπ(pl) — 1 for all π ζ A.

If ^4 denotes the (7* -algebra obtained when an identity is adjoined
to A then we can choose a sequence {um} dense in the unitary group of A.
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Suppose now that we have already constructed p1 . . . pn subject to the
conditions of the lemma and put g0 = Σp^ Then define

+ qmϊ)

~ (tfo + c-suppίft + + gj)

Since for any projection q

it follows that {gw} is a sequence of projections in & with orthogonal
central supports and dimπ (qm) ^ 1 for any n ζ A . Hence pn +3 ^ Z'g^ £ ̂
is orthogonal to g0 and dimτz;(^+1) ^ 1 for all πζΆ. If however
π(2Vn) = 0 ί°r some πζA then π(u*tp1um) ^ π(g0) for all m
hence TT (g0) = 1 . If ίZ is finite this implies n = d and g0 = 1 hence the
lemma is proved. If d is infinite it is impossible since dimπ(g0) = n. So
we may assume άimπ(pn+l) = 1 for all n ζA and continuing in this
fashion we get a sequence {pn} with card{^w} = d.

If we have chosen u L= 1 then we can show that for all n

n ^ Pι+ ---- ̂ Pn-

Suppose this has been established for all m ̂  n and put qQ =
Then in the construction for pn+ί given above we have qm = 0 for all
m 5g n hence

l ^ g0 -f- qn+1 rg P

It follows that
1 = c - s u ^ = V

and the lemma is proved.
For a topological space T and a Hubert space Hd of dimension

d ^ *0 we let 3$(T,&d) denote the set of functions x\ T->3$d)&d

denoting the bounded operators on Hd) such that for each ξ £ Hd the
function t - > ( x ( t ] ξ \ ξ ) is a bounded Baire function on T. It is easily
verified that @(T, &d] is a Z*-algebra and that xζ^R(T, $d) iff a (ί) is
self-adjoint for all ί ζ T i.e. iff ί -> (x(t) ξn ξn) is a real bounded Baire
function on T for some complete orthonormal basis {ξn} C Hd.

Proposition 7. (E. B. DAVIES). // A is a separable C* -algebra ivith con-
tinuous trace and homogeneous of degree d ^ *0 then Θ8 — έ$(A, &d).

Proof. Let {pn} be the set of projections constructed in Lemma 6.
If {xk} is a sequence dense in AR then for each n, m and Ic let ynmk denote
the pointwise normalized of pnxkpm -j- Pm

χkPn We have ynmk ζ£%R by
Lemma 4 hence
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We notice that \\π(ynm)\\ φ 0 for all π ζ A since \\π(ynmk)\\ is either 0 or 1
and since for each π there is a smallest Jc such that \\n(pnxkpm

j

rpmxkpn)\\
Φ 0. It follows that if vnm denotes the pointwise normalized of ynm we
may in each Hn choose a basis such that

)=(S l ) '

m) — I j O/ "

By Theorem 1 we have wnm = [pn,vnm] = [vnm,pm] £ ̂ Λ with

for alfπ £ ^ί.
If we make the obvious identification of all Hn and their various bases

and regard £8 as functions from A to &d then if {ξn} denote the chosen
basis in Hd we have for all x £ £%n

(π(x) ξn\ξm} + (π(x) ξm\ξn} - 2trπ(vnmx) .

It follows from [6, Proposition 5.1] that the function π -> tr n(vnmx) is
a bounded real Baire function hence x ζ ^R(A, &d).

Conversely if x ζ&R(Ά, &d) then for any n,m there exist bounded
real Baire functions ocnm and βnm on A such that

0 <*nm(π) +

m(π)-iβnm(π) 0

By [6, Proposition 4.6.] we have

pnxpm -}- pmxpn = αnw vnm + j8nm t«?n

Since ̂  is uniformly closed this implies

hence by Lemma 5, x ξ £%R and the proposition follows.
Theorem 8. If A is a C*-algebra of type I then ̂  is a Σ*-algebra.
Proof. Suppose first that A is separable. Then by [4, 4.5.5. Theoreme]

combined with [4, 3.6.3. Proposition] we can find a countable ascending

chain of ideals {/α} such that Iκ= U Iβ if α is a limit ordinal and

Ax = IJIK_1 is a separable (7*-algebra with continuous trace and homo-
geneous of degree dκ rg x0 if α is not a limit ordinal. To each /α corre-
sponds a central projection pα ζ $ such that /α = p^A" r\ A hence by
Lemma 2 « Ĵα = p^. If α is not a limit ordinal then the quotient map
Φ: Iκ -> Aκ extends to a normal homomorphism of l"Λ and since

= ^ α̂ by [6, Proposition 4.2.] we have the isomorphisms

( α̂ _ pΛ_1) £% = (1 — J9α-1) ^/α = &Aχ = ^(Aa, £%dy) .
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Since therefore £8 is the countable direct sum of 27*-algebras it is itself

a Σ*-algebra.

In the general case we proceed as follows: If {xn} C & is a sequence

converging weakly to some x then by [6, Lemma 4.5] there is a separable

(7*-subalgebra B of A such that {xn} is contained in the monotone

a-closure of B. Since by Lemma 2 this closure is isomorphic to &B and

since B as a subalgebra of A is of type / by [4, 4.3.5. Proposition] we

have x ζ 88 and the theorem is proved.
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