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Abstract. It is shown that there exists a selfadjoint Hamilton operator in the
limit of local coupling for the Galilean invariant Lee Model. We discuss the scatter-
ing theory of this Hamilton operator in the ¥V ® — N © O sector.

§ 1. Introduction

Recently J. M. LEvy-LEBLOND [1] has discussed properties of Gali-
lean invariant field theories. Although one has the Bargmann super-
selection rule for the mass [2], nevertheless such theories may describe
processes involving particle creation and annihilation. In particular
J. M. LEvY-LEBLOND has given a Galilean invariant formulation of the
Lee Model [3]. In its original form the Lee Model has been the object of
great interest. It is solvable in the lowest sectors [4] and there is a mass
and coupling constant renormalization. The Tamm-Dancoff method [5]
has been applied as well as the LSZ-formalism [6] and dispersion relation
methods [7] have also been used. However, it was always necessary to
use a cutoff function and to consider possible ghost states.

The Galilean invariant formulation also describes the interaction of
three particles ¥V, N and @; V < N + @ being the possible transitions.
The free particle theory is given by 3 fields V (P), @ (k), N (I) satisfying
the following (anti-)commutation relations

{V(P), V¥(P')} = 6%(P — P');{V(P), V(P)}=0

[0 (k), O% (k)] = 6*(k — F'); [O(k), O (k)] = 0 1)
{NQ@), N*U)} =301 = V); {N(@),N{@¥)}=0 ete.
The Hilbert space is the Fock space defined by these fields. The free
l-particle V-states transform according to an irreducible representation
of the central extension of the Galilei group with mass m,, spin 0 and
internal energy U, [2, 8].
The masses of the @ and N particles are m, and m, respectively,

their spin and their internal energy is zero. V and N are fermions; @
is a boson; but the choice of statistics is not important [1]. The free
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Hamiltonian therefore becomes
P2
Hy(Uy) = [ (Vs + 50) VHP) V(P) &3P
2
+[ 2’;2 O () Oh) &k + [ o N () N 1.

The interaction is defined as

= [ 2(@) [7*(P) ¥ ( :P+q)@(%P—q)+h-c]d3Pd3q

2uw=g*; pmy=mymy. (2

Bargmann’s superselection rule requires m, = my + ms. 4, is the coupling
constant and y is a real cut-off function. We will assume y to be smooth
with compact support and 0=y =1 Then H,=Hy(U,)+ Hy,
will be a selfadjoint Hamilton operator. More precisely: Let A7 (V),
N (0), & (N) be the three particle number operators. Then A7 = A7 (V)
+ A (O) and Ny = N (V) + A (N) are constants of motion. The mass
operator is M = my N} + my N y. Let S (N,, N,) (N, N, nonnegative
integers) be the sector corresponding to the eigenvalues NV, and N, of
A7 and A7y, Since all particle number operators are bounded ins# (N,, N,),
Hjp, restricted to each sector is a bounded self-adjoint operator.
Then H, is selfadjoint in #(IV,, N,) and the domains of definition of H,
and H,(U,) coincide in each sector [9]. Let (2 .#)~1 &2 be the center of
mass energy operator and put H,S= H,— (2 .#)"1 2% Considering
(1, 1) we may write this space as 5, ® H#,, where S, is the Hilbert-
space of the center of mass motion and 5, consists of all pairs (g, f)
with g € C and f € £2(IR®). H,S restricted to #° (1, 1) then only acts on
H ,. If we write the resolvent r5(y, ) of H,S as a 2 x 2-matrix, then its
kernel has the form [1]:

(%, 2) (¢, 9) 3)
Z, AZM2 ()
_ H(y,z— U) ’H(x,z—U)(z—a))
AZME y () L %g—14q) + Ay (w) y(w)
—)H(p2—-U)’ z—o —w H(pz—U)(z— o)
where
2 da
2t =140 [T 14 22,2 ()
Up=1— A W—% U+46U, @)
A=2Z2%0.

The function H (y, 2) is discussed in Appendix A. U is required to be
smaller than zero. r5(y, 2) has a pole at z= U and a cut 0 < z < co.
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Let €'(x), 4 (x), r45(2), re® 5y, 2) and t(y, 2) be defined by

, oz 0 (S —T 0
e(x)(q.9)= ( g 8 (q — q,)) ; A (g, 9) = ( (10 5)(., - o) 63(q—q’))

1 0
@@ ="~ 7 sy _q')) ;
0 = (8)
R
rof 8 (%, 2) (¢, ¢") = H(X":)“ 7 M) ;
22—
0 Ax(w)
t(x,2) (¢ 4) = zx(co)s%) '

Then the scattering operators u* (y) are given by
ut(y) = f(e +rES (T Fe0)E(g, T F10)A(r)dr. (6)

u* () are defined on a dense set in 5%, consisting of all pairs (g, f) where f
is smooth with compact support. On this set

@ () ut(y) =1 (7a)

so u¥ (y) may be extended to isometric operators on 5#,. Furthermore
unitarity holds:
u(y) @ ()t =1 (7h)

(2, 2) w* (x) = u* (x) r65(2) - (8)

Since 7¢5(2) is the resolvent of HyS(U) = Hy(U) — (2 #)1 P2, we see
that u* (x) are indeed intertwining operators for H,S and HyS(U). U is
therefore the renormalized internal energy, Z, is the renormalization
constant and A the renormalized coupling constant. We will keep U < 0
and A fixed, so that Uy = U,(x); A = 4¢(%). Then A has to satisfy the
condition — 4,(y) < A < A,(x). In particular (7) shows that there exist
no ghost states.

We want to discuss some consequence of the above formulas. First
of all, all parameters of our theory are fixed by describing the solution
of our problem in S# (1, 1), there is no further arbitrariness for higher
sectors. Since we have a renormalization of the internal energy, we will
also write H, = H,(U) 4 V(y) and treat V(y) as a perturbation. V (yx)
is still a bounded operator in each sector.

Secondly (6) shows that the operator

V(P ) =22V (P)+ 4 [ Ll N*(””jP+q)@*(%P—q)d3q

11 Commun. math. Phys., Vol. 10

and also
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applied to the vacuum £2 gives the 1-particle V-state. Since the 1-particle
states of @ and N are equal to the free 1-particle states, one has solved
the 1-particle problem which is the first step in the Haag-Ruelle scattering
theory [10]:

Theorem 1. Let f(Py, Py... P, ky ... ky,l...1,) be smooth and
fast decreasing. Define

FPyy ooy Py By diy by By 8) = f(Pyo o Py Byl by 1)

3

jz o l?x
- exp —zZ(U—I—z )t—zz T t—z 22—m3t

=1

[V @ Ns(f, t, )> = [ 17 &P, Vs, ) [ IT &k, 0% (ky)

h=1 Ja=1

-f ]]dsle*(l)f( e Puyky oyl 0, 1) 2

Js=1
then the strong limit of
(expi H, t) |V™ @™ N™(f, t, x)) 9)

for t — + oo exists.

For the proof one takes the time derivative of (9) and shows that the
norm of the expression so obtained is 0(|¢|~%/2) for large [t|. The theorem
then follows from a standard argument used in the Haag-Ruelle scattering
theory.

The third and most important consequence of the above relations is
that (3), (5), (6) still make sense for y = 1. The relations (7), (8) are then
also valid. Therefore 75(y, z) and u* () for y = 1 describe the resolvent
and the unitary scattering operators of local Hamiltonian HS in J#,.
Thus H = HS + (2 M#)~* 2 is a local selfadjoint Hamiltonoperator in
(1, 1). It may be shown that the domains of definition H and H,(U)
are different but have a nontrivial intersection:

Let % be the hyperplane in #, consisting of all (g, f) such that

@)
9+ [ Fa= o Pa=0-
Choose (g, f) € %, where f is smooth with compact support. Then
(9, 1) € 2(H§U) N 2(HS).

In the next paragraph we will construct an operator r(z) in each sector
H (Ny, N,) which will be the resolvent of a selfadjoint Hamiltonoperator
H. r(z) will be the limit ¥ — 1 of r(y, 2) (in a sense made precise below),
where r(y, z) is the resolvent of H,.

In § 3 we will discuss the scattering theory of H in 5#(2, 1) employing
techniques which have been extensively used by Fappezrv [11].
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§ 2. Existence Proof for a Local Selfadjoint Hamiltonoperator H

We consider H,, restricted to 5 (N;, N,). To begin with it will be
convenient to construct a theory with distinguishable particles for the
case with cutoff.

Def. 1. A configuration I is a (possibly empty) set of ordered pairs (3, 7)

lsi=N,1<j= N,
I'=(,0) v V(i) 0=k= Mn(,, Ny
with
Gy iy for U1
We put
') ={ih<ize I'2) ={hzizk
raQy={|1=<i< N,i¢I'(1)}
Ieyr={jll=j= N,j¢I'?2)}
[l =k; [FQ)Y| =Ny =I5 [I'@)°| =Ny — |-
Let G be the set of all conﬁguratlons. The Hilbert space 5#; (N, NV,)

is defined as follows:
An element f in 57, (N;, N,) is a set of functions

/= {fr}re@
with fp € Z2(R¥W +¥:—IT)) The linear structure and the norm
are given by
Af+ug={Alr+ pgriree

1712 = 2 Ifrf?-
re@
The system of variables for fris a system of 3-momenta
{P(ille) [ P(,LII';’?II'I) , kix e ]Ci]I‘(l)cf, ljy. e lj]I‘(2)°l} = (P, k, l)_['
ey, el@s1<1<|T1)e; 1< < |2
(Gyrsgp) €1 =1 < |17

fr is to be interpreted as a wave function for the V-particles V (s, 7)
o) EI’) the @-particles @(7) (1 € I'(1)?) and the N-particles N (j)

(G € I'(2)9).

The free Hamiltonoperator is defined as
(Ho1 (Ug) Nr((P, &, Hr)

={(2 (Uo+ )+ 3 My » }fr((P kDr) -

iper 2my ] €Ty 2me Ty 2
If we put

A () Pr=0U,fr it (,§) el
=0 otherwise

11*
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we get
Hyy (Ug) = Hyy (D) +(;;A(i’j)(?€) .
1‘”
Now a linear operator 4 in 5, (N,, N,) is given by its matrixelements
Ap, . In particular we want to construct a Hamiltonoperator H, ().
Consider the bounded operators A%< (y) and A®N> (y) = (AGN<(y))
where A%< (y) is defined as follows
AGDS (pp=0 i T+ I UGi,9)
and if I'= I" U (¢,§) we put
(A(i’j)< (x)I',I" ,fl”) ((P, k) l)I")
= 2o 2(@ 0, D) fr (P, b, D)) d 4G, )
where
2po(,g)=q@7; mq(j)=myl;—myk;
Py =ki+1;
{(P, k, l)I" ki’ la‘} = {(P’ k, ), P(i,f)} .
A< (y)is thus an operator which destroys the particles @ (i) and N ()
and creates V (¢, 5).

The Hamiltonoperator of our system of distinguishable particles is
now defined to be

H,(x) = Hy,(U) + b (A(i,i)< (n) + AN > () + 4G (x)
(@7)

= Hy,(U) + Vi(y) .
Vi(yx) is bounded and selfadjoint, so by the theorem of Karo [9] H,(y)
is selfadjoint and the domains of definition of H, (y) and H, (U) coincide.
Let y, be the symmetric group of n objects. In %, (IN,, N,) there is a
(canonically defined) unitary representation U of yy, X yy, which a
commutes with H,(y). Let H# (&Vy, Ny) be the closed linear subspace
of S, (N,, N,) consisting of all f with

U(le Qo) f = (sign@y) - f5; (@1, o) Cyn, X VN, -
Let H( %) be the restriction of H,(y) to H (N7, Ny). Then the theories
(H (%), o (Ny, N,)) and (H (x), 5 (Ny, N,)) are unitarily equivalent.
We want to inspect the resolvent r(y,z) of H;(y):
Let d(z) for complex z be the distance of z to the intervall
[Min (Ny, N,) U, o). Then the resolvent 7,(z) of H,,(U) satisfies the
estimate

(10)

Ire@)| = Cd=(2). (11)

Since V,(y) is a bounded operator, (11) therefore implies the convergence
of the Born series of r(y, 2) for sufficiently large d(z):

P (1 2) = o) ,5”0 Ta(x) ro @) - (12)
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In order to perform a partial summation in (12) we need some notations:
Def. 2. An index sequence I (n) of length n = 1 is an ordered sequence
of symbols a; (1 < 1 < n)
I(n)=(a...a,)

where each a; is of the form (¢,7) or (¢,9) <or (¢,5)> (1=<¢ =< Ny,
1 <7< N,). a; is called the l-th value of I (n). If a; is of the form (3, 7)
we call a; a selfenergy term. I(0) ts defined to be the empty set.

The number of index sequences of length # is (3.V; N,)" To each I (n)
and z(d(z) > 0) we associate a bounded linear operator:

AU (), 2,2) = rol6) lljl (A%(5) ro(2)} =1

AT(0), 1,2) = 1o(2) -
For sufficiently large d () we obtain

rp2) =re) - 3 X A(I(), 1,2).

n=1 I(n)
Def. 3. I(n) is said to contain a polarization of type (¢,7) if there exist
l, U, (0, < 1,) such that
a;, = ('L’ 7) <5 a,= (7" 7) >

and for all I' (I, <1 < 1,) ay is of the form
ap= (1) V+isf *].

Def. 4. I(n) (n = 1) is called polarized, if there exists an m such that
I(n) contains m polarizations and n — 2m selfenergy terms. Such index
sequences we denote by IT (n). By definition I(0) is polarized.

Def. 8. Let I(n) = (ay...0,)n =1

ILV(n) = (@ @4y ---ap_qap) LT

I(n) is called renormalized if for all 1,V) 1 <1<V < u, IHV(n) 4s not
polarized. In particular I(n) contains no selfenergy terms. We will denote
renormalized index sequences by IR (n). I(0) is by definition renormalized.
Let I(n) be given with A(I(n), y,2) == 0. If I""(n) and I4"% (n) are
polarized and [, < Iy <1, + 1 then also I'»max(:b)(n) is polarized.
This shows the existence of a unique maximal set of nonintersecting
intervals [1,%,1,)] 1< i< m (0 =< m < n) such that each I““%'(n) is
polarized and not properly contained in any polarized I%Y(n). Put

Ip)=a;...a,; 1=, <t =n; a,€l(n).

{ix}1<r<pis defined to be the complement of the above intervals in
m
[1, n], therefore p =n — 3 (It — I;* + 1). It is easy to show that I (p)
i=1
11a
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is renormalized. This gives for large d(2)

=] @© oo n

r(ipe)=2 3 Y X 3 X I (13)
n=0IR(n)l,=01IP() i =0IP(lu) k=1
{ATE ), 1, 2) A% (1)} ATP (Cura)s 25 2)
where
IE(n) = (ay...a,) .
Putting
7ol Zoo’ AIP@D), %, 2) (14)
and -
B(I%(n), y,2) = ro" (%, 2) AT {4%(x) ro® (%, 2)} -
(13) gives
r(x, z) = rOR(X: Z) + é‘l IRZ(') .B(IR(’IL), X z) . (15)

We call 7E(y, 2) the renormalized propagator and (15) the renormalized
Born series. Our intention is to show that (15) still makes sense for y =1
and sufficiently large d (). To this end we have to inspect 74E(y, 2) more
closely.
(11) and (14) immediately give
Lemma 1.
"“’o (1,2 —1]=0.

d(z)—>oo
Since the full I-particle V-propagator is known [cf. (3)], 7y (x, z) may
also be obtained in a different way ([12]): Let Hy(y, 2) =z; Hy(y, 2)
= H(y, 2) and define H,, ,, (y, ) inductively by

1 : 1
n+1(%’ Z9 z) f H (xs z— T H1(Z, T) d‘r : (16)

ImH,~(y,7) is integrable in [—U, co) so complete induction
immediately gives

Lemma 2.

a) H, 1(y,2) is analytic in the cut plane — U < z < oo except for
a stmple pole at z = 0. The residue of this pole is 1.

b) H,(y, 2*)*= H,(y, z), hm zH w H(y 2) = 2y,

c) H, 2 (y, 2z — p?) s in ,‘?"(IR3) y = 2, co.
For the corresponding norms we get

122 Hy (g, 2 — Dy < Caln, ) A4+ 0 <<,
1Z» Hy=2 (%, 2 = )] o = O () d(2)71 .
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rof (g, #) is then given by
Z"fr((P, k, Yr)
(r® (% 2) Dr (P, b, D) = HIFI(;’ 2 — B((P, k 7))

— wn K R (17)

B((P, k, D7) (i,i)ZeP( pur | ) t 2 Tt B T
The important point is now that Lemma 2 still holds for y=1. In
particular C,(n, &) and C,(n) may be chosen independently of 4.
(17) then defines for y = 1 a bounded operator r,®(z) which is analytlc
in z for d(z) > 0.

Remark 1. Lemma 1 still holds for ry®(z).
Let

C,(e) = MaxC,(n, €) ;

0 = n = Min(N,, N,)
C, =MaxC,(n).

0 < n < Min(N,, N,)

Then Lemma 2 gives (y = 1 included):
Lemma 3. For d(z) % 0 ryE(x, 2) is an analytic operatorvalued function
with
Ire® (2, 2)| = Coo d(2)7F .
Let p be any of the momenta in (P, k,)p. Then (rof(y, 2) )r may be
regarded as a L' function in p and as a L2 function in the remaining
variables. If we denote the so defined norm by || | r we obtain

1 (5 2) Arlr < ] Cale) d(z) "1 F°.

Remark 2. p may also be chosen to be one of the momenta one obtains
on performing a linear transformation on (P, k,I)r. Also || | evidently
depends on the chosen p. Since in future, however, we shall only have to
deal with a finite number of different momentum systems for each I,
C,(g) may be chosen independently of all such p and all I". We also put

Ifl~ = suplfr|r-
red

Before we can formulate the next theorem, we need one more definition:
Def. 6. The final state configuration I'(IE(n)) of I%(n) is defined
to be the maximal configuration

I'(I%(n)) = (%, ;1) Ure (i) 0=Sk=< Min (n, Min (&;, NV,))

such that the following statements hold.

For each m(1 < m < k) there exists an l(m) 1 < l(m) < n such that
@y (m) 18 Of the form (i, 1) > and a; is of the form (3,9) Syt % tmyj =+ I
for all 11 < 1 <l(m). Maximal means that |I'({%(n)| shall be maximal.
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Thus I'(IB(n)) is unique. Also the numeration is to be chosen in such a way
that L(m) < l(m') for m <m'.

By Def. 6 (B(I®(n), z,2) f)r is zero unless I" U I'(I®(n)) is a con-
figuration. Applying a linear transformation (out of a fixed finite set of
linear transformations) on (P, k, l)r, we may therefore obtain a system

(P)E (T*™) of momenta, which contains the variables
g(zm, 5m> = WL]._1 (m2 lfm — mg k:)-m) (Z‘m’ im) EF(IR(n)) .

Let now A®N< and A®)> be the formal operators we obtain setting
g=1in ASN<(y) and A%N> (y). Define B(IE(n),2) in the same
way. We will prove

Theorem 2. For d(z) > 0 B(I%(n), z) is a bounded linear operator in
Ay (Ny, Ny) which is analytic in z.

The norm satisfies the estimate

| B(IE(n), 2)| = 45 O C4(e) d(2) (18)

B(IE(n), 2)p, 1 15 equal to zero unless I'\u I'(IE(n)) is a configuration.
If pe@F ™ is none of the q(im Jm)s (imsjm) € (IR (n)) then
(B (IE(n), 2) f)R 1s a L function in p and a L? function in the remaining
variables. The norm | | . in these variables satisfies

n
—T—1+ne

— 2L L@+ 1)e

|B(IE(n), 2) fl~ = 23 ||l Cale)"+*d(z)  * :
The proof proceeds by complete induction: » = 0 is simply Lemma 3.
Let now n = 1 and consider B(I®(n), ). Define [, to be the smallest 7,

such that a; does not belong to any polarization. Since IE(n) is re-

normalized such a [, exists with 1 < [, < n _2|_ 1 . IE(n) then necessarily

(19)

has the form
IR(n) = (i1, f1) <V (8 o) < U+ * J (ig,—1, Jp—1) <
U (24,5 71,) (:) U It 1.n ()
where I%+1.%(5) also is renormalized. So we may assume that theorem 2
already holds for B(I"*1"(n), z). We consider the following two cases
separately :
a) a;, has the form (7;,7;) < . Then
(10720 & (L2 ()
and
(53, 1) \J (83, Ja) * * * \J (4g,— 15 J1,—1) C F(Il°+1’n(n)) .
b) a;, has the form (i, 7;) > . Then
(41,0 7;,) s the first term in  I'(ZE(n))

and
(%1 92,) UF<II°+1’n(”)) = (i, J1) V" (15 J10—1) Y I'(I%(n)) .
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For the case a) we choose the system (p)f (fh+17m) 45 contain the
momenta q(¢,5;) 1 = 1 < 1,

By assumption (B(I»+1" (n), ) f)_r is in ! with respect to q(,,7;,)
and in %2 with respect to the remaining variables. Application of
A®»fD < means we have to carry out the g(iy),j;,) integration and
multiply by 4, Further application of r,#(z) on (AGtie-1<
B+ 1" (n), 2)f)p gives a Z'-function in q(iz_1, jip—1):

(A(iz.,—1,7'z.,—1)< re (2) PICRARS B(Iw+1.7(n), 2) f)r

is therefore in .#2 with respect to each variable etc., so finally

(lj]l{A(iz,hK ToR(z)} ACes51e) < B(Ilu+1,n(n)’ 2) f)

1=1 r

is in #? in each variable. A last application of 7% (z) implies that
(B(I%(n), 2) f)reven is in £ for one arbitrary variable. We immediately
obtain the estimates

—SD g4 @—1)e
| BIE(n),2)fl = 4" O O~ (e) d(2)  *

—-%-+los

| BT+ %(n), 2)f] .

|BIE (), 2) fl . = A" (°(e) d(2) |B(I%* 1" (n), 2) f] . -

The statement for » then follows if we use the estimates for B(I% * 1:%(n),2).

We turn to the case b):

If we apply Ao > to B(I"*1"(n),z) f then (A%% > B(I%*1™(n),2)f)r
will be in £ with respect to ¢(i;,7;), in £2 for every remaining
variable and even in %' for one p € (p)f (fo+Lm) which is not a
q(z, 9), (3,7) € L(IbT1"(n)). Application of r,E(z) gives a £* function in
q(i1,—1,j1,—1). Therefore we may apply AUk-Li-D< etc., so finally

( 1271(‘,'4(@'1,7'1)< 7o (z)) A o) > B(Il°+ 1’”’(%), z) f)
1=1 r
will be in £ with respect to ¢(¢;,, 7;,), in £2 for every remaining variable
and even in %! for one p € (p)L*™ which is none of the momenta
q(¢,9), (4, 9) € I'(IB(n)). Alast application of r £ (2) gives a #2 function in
q (3, 3,), leaving the properties in the other variables unchanged. This
gives the estimates

|BAEM), 2) f] < 10b(e) d(z) ™+ o8 | BB+ 1), 2) 1]
|BIR(), 2) fl < A3Ch(e) d(z)™ o8 | B+ 12(n), 2) f].. .

Using the estimates for B(I%*1%(n), z) we again obtain the statement
for n. Theorem 2 is proved. Theorem 2 and Lemma 1 (cf. remark 1) give
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Corollary 1. The series

(o)

re)= 2 Y B(I%(n),z

n'=0 IE(n)
converges for sufficiently large d(2) and we have
d(gngw lz7(z)—1]=0. (20)
Furthermore we have
Corollary 2. For sufficiently large d(z)

r(z) = r(*)! (21)

and r(z) commutes with the representation U of y N, X VN,
Proof. Since d(z) = d(z*) we may suppose 7 (z*) to be defined when-
ever r(z) is defined. The first statement follows from

1ot (%) = ref(2)
and the following consideration: Let

%) = (& . . . a)
and put
IRn) =@, ...a,a
where
a=(,j) < if a=(i,j) >

Then the mapI®(n) — IB(n) is a one to one map on the set of all re-
normalized index sequences of length n such that B(IE(n),z)
= B(I®(n), #*). The second statement follows from a similar considera-

tion: yy X yy, acts in a canonical way as a transformation group on
the set of all renormalized index sequences of length » and therefore

U(Qy, Q) 2 B(IR(n), z) U-1(Qy, @) = Z B(I%E(n), 2)

for all n, (@, @2) €yw, X yn, and 2z(d(z) > 0), since ry%(z) commutes
with O

For the next theorem we need a further lemma. Let yy be chosen in
such a way that 0 < yy < 1 and yy(w) =1forw < N.

Lemma 4. For 0 < n < Min(N,, N,) we have

12" Ha ™ (s 2 = %) = Zy" Hy ™ (2 = B = Co (N, ) d(2)=144,

1™ Ha ™ (gzs 2 = ) = 24" Hy 7 (2 = B0 = O (M) d(2) 71

Here H,(z)=H,(y=1,2); Zy=2Z,.,, and Cy(N,e)—>0, C (N)—0
for N - oo and fized e.
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Theorem 3. Let G, = {z | d(2) = 7}.
Then for sufficiently large T
lim (g, 2) — ()] = 0
uniformly in G..
Proof. We want to give an estimate for

BUR(m), 1v,) — B, 2) = 3 H¥(I(0), 7m,7)
+ 3 6T, 1w, )
k
HE R0, 0,2) = IT (i ) A1) (o 20 2) = 768(5)

C IT (A%rR()

l=k+1
k-1
Gk(IR(n)’ XN Z) = rOR(ZN: Z) ll—]; (Aa'(XN) rOR(XN, Z))

A% () — A% [T (roR() A rR(2) .
I=k+1

First of all we remark that the estimates of theorem 2 also hold uniformly
in yy for B(I®(n), yy, 2). According to our convention Ay (yy) =Z,,~*/%1;
Ao=2~Y2 ) with A fixed. Thus A,(yx) = 4, Remembering how we
estimated each factor 7% (z) in B(I®(n), z), Lemma 4 immediately gives

n+1
”Hk(IR(n)’ AN z)" = lo'"r C"(a) [Gz(N’ 8) + Ooo (N)] d(z)—T‘+(n+1)s

C(e) = Max(Cy(e), Cy), d(z)=1. (22)
In order to estimate G*(IE(n), yy,2) we may assume that a; has the
form (iy, j,) <. Otherwise we consider (Gy(I®(n), yx, 2))". Now Atk <
corresponds to an integration over ¢ (i, j;). All integrations of this kind
have been estimated in theorem 2. The operator A@) < (yy) — A <
corresponds to multiplication by A,(xx) x(w(iz jx) — A, and then
integration over ¢(i;,j,). Repeating the estimates of theorem 2 gives

_n+1 - e
65 (IR0, 1, D] = 207 O O' Y, ) ale) % T

d(z) =1

where C' (N, &) - 0 for N — oo and ¢ fixed. C’ (&, ¢) is of course indepen-
dent of &, IE(n) and 2. If we sum the estimates (22) and (23) theorem 3
follows.

Corollary 1. r(z) 7s a pseudoresolvent in G, for sufficiently large <.

Proof. Consider the identity

r(xw 21) — r(xws %) = (22 — 21) (xw, 20) 7 (X, 22)

which is valid because 7 (yy, 2) is the resolvent of H, (yy).
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According to theorem 3 we may take the limit N — oo for sufficiently
large 7 and obtain
() — 1(2g) = (23— 21) 7(21) 7(2) (24)

We are now ready to prove the existence of a local Hamiltonian: Choose
7, such that r(z) exists for z € G, and (21), (24) hold. Let N (z) be the
kernel of 7 (z) (z € G;,). Because of (24) N (z) does not depend on z, there-
fore (20) implies that N (z) is zero.

Lemma 5 [13]. A pseudoresolvent is a resolvent of a closed linear
operator iff its kernel is zero.

Thus we may define

H=z-—1r(E)"1. (25)

Because of (24) H, is independent of z € G, . Since N (z) is zero, (21)
shows that the range of r(z) is dense: H, is densely defined.

Lemma 6 ([14], Chap. XII). Let T be a densely defined linear operator
in a Hilbert space such that T-1 exists and is densely defined. Then (TT)-1
exists and is equal to (T-1)T.

If we apply this lemma to r(z) and use (21), (25) gives

Theorem 4. H, is a selfadjoint linear operator. The spectrum of Hy is
bounded below.

The last statement follows from the fact that G, contains the intervall

(=00, =Ty + Min(Ny, N,) U] .

Because of corollary 2 of theorem 2 the same arguments give a self-
adjoint operator H in s#(N,, N,) which is the restriction of H; to

H (Ny, N,). Theorem 3 permits us to interpret H as the local Hamilton-
operator of the Galilean invariant Lee model.

§ 3. Scattering Theory in the V@-N6E @-Sector

In this sector we want to discuss H in the sector 5#(2,1). The
discussion in (1, 2) proceeds in the same way. Since 5#(2,1) also
describes 3 particle configuration, namely one N particle with momentum
I and two @ particles with momenta &, k,, it will be useful to introduce
the following variables

P=Fk +k+1,
¢y = myHmyly — ma ky) 5 gy = myH(myl — my k)
Py = (my + my)1 (mz(l + k) —my kl): (26)

Py = (my + my)~Y(my( + k) — my ky)
2p 0y = q,® 2p 0y = q5*.
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The following relations hold
My My
Q1=p2+7n_11’1§ 42=p1+7n—1p2>
2 k2 ky? P2 pl
21 + 2m, + Imy | 2(my + my) T, tor=
v(my + my) = my my .
Since @ is defined to be a boson, all expressions must be symmetric in %,
and k,, i.e. they must be invariant with respect to the substitution
(P1> ¢1) < (P2s ¢5). We will often therefore simply write (p, g). We may
also identify 2#(2,1) with ¢, ® #, where again 5, is the Hilbert
space of the center of mass motion and 7, = Z?(R3) @ £2:(IRS).
Here #22(IR®) consists of all f ¢ Z%(1R8) such that f(p,, ¢;) = f(p,, o)
Since H commutes with (2 .#)-1 %2 it will suffice to consider HS
— (2 M)~ P2 HS only acts on S#,. The resolvent +8(z) of HS then
may be written as a 2 X2 matrix with the kernel:

2

P
2(my + my) + 5y +a)2,

~ o~y

~ - ’ ’ s 1(2) (p’ p ) 7'82('2) (ﬁ; Z"» q/)
(@) B PP 7) = (r;ﬂz) OGP ) .00, q'))

In analogy to § 1 we further introduce e’ and 7% 8 (z) by

' VN ¢ 2o (Rl ) 0
‘ot ) = (7 Ty T
lelﬂds(i‘, — i’”)
#(z-v-5) 0

5@ (B, P, ¢ B 05 ¢) = 5 (py — 1) (g1 — a7)

0 »”_¢
Putting f Ty o

r8(z) = (€' + rof5(2) £(2)) roT 5 (2) (27)

then for sufficiently large d(z) the renormalized Born Series for r(z)
gives the following expression for t(z)'

t1(2) 2 2" I(z) (-, §) (28)
where ; =

1) (3, §) = 2 (z -5 - (:5 + %ﬁ')“—;ﬁ)* ~ 1) (#,7) (282)
K@) (@,5)= 1) 6, 5) B (2 - U= ) (28b)

ta(e) (. i 8) = - 8 = )+ - 5, = )
+ A 81(2) (P1 B') i 411(2) (P2 ) (29)

9 o2
Paf-v-g) Pal-v-5)

ha®) (B3 0, 0) = 1 @) (0,5 9) (30)

’ A 42(2) (P13 2'9) A ta(2) (P39 9)
too (2 ;P e — 2 31
22(2) (P, 3P, 4) = V——H(z_ 2v) V2 ( U—p)' (31)

2v
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Graphically

D R N

- ,,,.I"’l'rr” t12 IMAAAAAAA

toe =
—

— describes the renormalized propagator of a noninteracting V
and @ particle, W~ the propagator of two @ particles and one N
particle. The symmetry conditions have not been taken into account.
Each vertex corresponds to a multiplication by A, and momenta are
conserved. Integration is carried out over all closed loops. A, = Z; Y2 2
has been used. {(z) is the scattering amplitude. Scattering processes
with 3 particles in the initial or final channel contain factors describing
initial- or final-state interactions [6, 15].
Summing (28) gives the Kallén- Pauli equation [4]

tn(2) (B, §') = 1) (B, 7)) + [ K() (B, $") tu () (3", #) B B . (32)
K (z) is a Hilbert-Schmidt operator in #%(IR%), analytic in G,.
= {z | d(z) > 0} and the Hilbert-Schmidt norm satisfies

g K@ =0.

Also sup |I(2) (, B')|s < oo, thus the above series (28) converges for

sufﬁciezl)ltly large d(z) uniformly in §’. Furthermore since (1 — K (2))!
exists for sufficiently large d (2), by a theorem of RerrIcH ([14], Chap. VII,
[16]) (1 — K (z))~* is meromorphic in Gy, with values in the set of all
bounded linear operators in #2(IR3). Some trivial estimates then show
that if we define r5(z) by (27), (29), (30), (31) and (32) 5(z) becomes a
bounded linear operator which is meromorphic in G,;. By the identity
theorem of analytic functions, this must then be the resolvent of HS,
Therefore it will be sufficient to discuss the Kéllén-Pauli equation.
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Theorem 5. For Imz == 0 no nontrivial solutions of the homogeneous
Killén- Pauli equation exist and (32) has therefore always a unigue solution
in that case.

Proof. Assume the contrary and let ¢ be a solution of the homogemeous
Kallén-Pauli equation for z, (Imz, <= 0):

¢ (®) = K(z) (B, D) (@) * P’ . (33)
Define @ ¢ 5, to be (g, f) where
~ Z:" 9 (P)
9(®) = 7
P (34)
H (zo —_ —_ -2—7')
1 ?(p1) ?(ps)
(p, Q) =5 2 2 T 2
2 4 q Py P
P la-f-a) [f-v-%5) #(a-v-%55)
A lengthy calculation using (32) and (33) gives
1
rS(@)® = — = D, (35)

d(z) sufficiently large. But then @ would be an eigenstate of HS with
eigenvalue z,. This contradicts the selfadjointness of H¥.

Thus we only may have solutions of the homogeneous Kéllén-Pauli
equation for z =t 4 ¢ 0 (v real). Let @+ be the set of those 7, for which
z =1 =+ 10 gives nontrivial solutions of (33).

It is not hard to prove that (@+ U ®~) N (—oo, U) is exactly the set
of poles of r5(z) in G,

Let ¢/(1 <1 < N(j) < ) be a basis for the linear space of all solu-
tions of the homogeneous Kéllén-Pauli equation at 2/ < U. Define @
by (34) and let P?= lim (z — 2z;) 75(2). Some easy calculations show

z—>
that P7 is the projection 02;1 the linear span of @;.

In order to consider K (z) on the cut U < z < oo we apply methods,
which habe been extensively used by FAppEEV [11] in the three body
problem:

Let (1 + O, u) be the linear space of all Holder continuous functions
no 2 of index u such that

- o i+ 4) — @) o
Ifls, p,Oiszgl(l-l_lpl)l-}. {f(p)+ i }<

0<@; O<u=sl; p,AcR3.
With this norm b(1 + @, u) becomes a Banach space. With respect to the
inclusion (1 + @, u)Cb(1+6', '), @ > O', u > u’ a bounded set in

b(1+ 0O, u) is relatively compact in b(1 + @', u’). Using Faddeev’s
estimates we proved the following ([11], page 411f.):
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Theorem 6. For all z in the cut plane U < z < oo the maps

K@):b(1+ 6, u) > b@, u); ,u”<M1n< ,ﬂ) %<@<1

1
K4() +@Iul//)__)b(2 M) ‘U,< 5 O<IU/”'

are continuous. The following estimates hold
IIK(z) fl|1 w = C20+ &))" |fl5, uw
(K 2+ 4) = K@) flp = C 21+ [2)=¢7]f]
IK4 fluz = O+ [2)) 115, 0
O <O,y +u,<p', A€C.

C may be chosen independently of z and A (0 < |A| < 4, < 4,(1)).

In particular K%(z) may be considered as a compact operator in
b(1+ @, [i) since the continuous image of a bounded set is bounded.
Therefore Fredholm’s alternative holds ([17]):

I. Either the equation

f=K@f 1€60+6,@)= Y b1+6,u)
has a nontrivial solution or

II. { =g + K(z) f has a unique solution

f€b1+6,f) for gcb1+6, ).

If IT is satisfied then f depends continuously on (g, K (2) g, K2(z)g,
K3(z) g) where all elements are considered as elements of b(1 + 6, u).
But then theorem 6 gives

ez = Clglez A>a-

Let f be a solution of the homogeneous equation. f= K (z) f implies
in particular f = K'2(2) f. The estimates of theorem 6 then give

1K (2) flo,n = C® 28(1 + [2)=2¢ | K*(2) fll&, %
= 21+ )2 |flls,z
b < .
Since & > —;—, @' may also be chosen > % For sufficiently large || or

B lAl.uz

sufficiently small 41 there are thus no solutions of the homogeneous
Kallén-Pauli equation [5a].

Generally we have

Lemma 7. @+ are closed sets.

This is simply lemma (7.8) of FappEEV ([11]). We will, however,
assume that there exist no solutions on the cut?.

1 See Appendix B for a discussion of the possible solutions on the cut.
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As we have seen this is the case for sufficiently small A.

In particular Lemma 7 shows that the number of poles of 78 (z) below
the cut is finite since U is the only possible limit of these poles.

Now theorem 6 is not immediately applicable to (32) since I (z) (-, §’)
is not in 6(1 4 @, ji) for 2 on the cut. We define

I0@) (,p) = K@) I(z) () 1= 0.
Using the same estimates as for theorem 6 we have shown that I®) (z) (9, §")
is Holdercontinuous with index j < %in all variables such that
IT® @) ¢ 75,z < O+ J2)) -

Defining ;@ (2) (B, P’) = 1 (2) (D, P') — 22‘ IO @) (P, p') we get the
following equation instead of (32): 0

t1® @) (5 9) = I1®() (-, §) + K(2) 1,® (@) (-, §) - (32')
The above discussion gives

, . , , ~ 1
Theorem 7. t,,®) (z) (P, p') vs Holdercontinuous of index [ <g n

all variables for all z in the cut plane except for z €P*. The following
estimates hold

18.® (@) ¢, D)5,z = Ca(l2])

8@ @ + 43) (5 5 + Ag) = 1,0@) ¢ B)5, 5, = Calle]) [ + |44]
4,€C, A, eRE, 4 fi, < ji. (36)
C, (|2|) behaves as (1 + [2|) for large |z|.
We are now ready to discuss the scattering theory:
Let 4 (z) be given by
) 6(I—U-—g—i—)63(f1—i)') 0
il (T) (@, p:9q; ﬁ,} 29'; Q') = p? g . " s i
0 5(1—%-—?“')5(?1—?1)6(41—41)
Then A (z) A(@') = A(x) 6(z — ©').
Put
+ o0
ut= [ (¢ +rBS(rFi0)t(r F:0)A(x)dr. (87)

u* are defined on the dense set 9, in 5, consisting of all @ = (g, f)
where g, f are smooth and have compact support. Using the same
arguments as FADDEEV ([11], page 601f.), (32) resp. (32') and the estima-
tes (36) show that u* are isometric operators on 9, and therefore may be
extended to isometric operators on #,. Let 7,5 (z) be the resolvent of the

free Hamiltonian HS(U) = Hy(U) — (2 A)~1 &#2. Then u* are inter-
twining operators for H,S(U) and HS and thus the standard scattering
operators:

12 Commun, math, Phys.,Vol, 10
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Theorem 8. u* are isometric operators on 5, and the following relations
kold for all z (Imz = 0):
rS(2) ut = u* rS(z). (38)

The calculations leading to (38) are lengthy but straightforward. The
Kallén-Pauli equation and the defining relation for the renormalization
constant Z, have frequently been applied.

In order to prove unitarity, we start from the spectral resolution
E(r) of HS. Let P =} P/ be the (by the above assumption finite
i

U
dimensional) projection on the bound states. Then P = [ dE /(1)
For @,, D, € 2,

f(d51,r (T—te)—rS(z+1e)Dy)dr.

271 sw

j Ay B(x) By) =

Theorem 9. For v = U, @,, D, € D,

= _ — 8
11;1327! (D, r5(r — &) — rS(z + i &) Dy)

__hn%?(@l,r (z+ie)rS(r—ie)Dy)

._Pf% ;z—(dil, rS(t — &) r5(v + 1 &) Dy)

= (@, vt A(v) (uH)' D).
In particular
uwtwH)t=1-P. (39)

For the proof the defining relation (27) must be used. In contrast to
Fapperv ([11], page 63) however we may not take the isolated limit

lim £ 7.R,S ref St — i e).
s?%nr (t+ie)rdS(tr—1e)

The reason is that ¢(z) is not sufficiently smooth, i.e. #(2) contains
d-functions in the momenta.

(39) finally allows us to consider the time-dependent behaviour. Let
V*(P) = Z,'? V*(P)
1
+ 4 [ e N (2Pt g) 0% (22 P - g) .

Suppose g (P, p) and f(P, py, ¢1) = [ (P, Ps, ¢5) are smooth with compact
support (P, py, ¢, Pa» 95 Were defined in (26)).
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Theorem 10.
w — lim e H? e_iH‘*(U)‘fg(P,ﬁ) O (__"& — f,)

t—>4- o0 m1+m2
.V*(m+ P+p)Qd3Pd3ﬁ
=22 [(P, )| VO(P, p)y* d* Pd*
P o
s _.hmethfg (P, ) e (W+U+W)t@*(mmipm ~)
e 1 2

ety (mP+P)Qd3Pd3ﬁ
= [9(P,5)| VOP,p))* @ P,
s — lim ¢tft =D [ (P, p, q) N* (1) O* (ky) O% (ky) 2 d®ky d® &y d®1

t—+ o
=[{(P,p,q) INOOP,p,q))*d* Pdpdiq
The scattering states |-)* are defined according to (37).

Conclusions

The Galilean invariant Lee model has a ghostless Hamiltonoperator
in each sector even in the limit of local interaction. The main reason is
the energy-momentum relation in the nonrelativistic case: & = (2m)~1 p?
+ U. This has also been used by E. NELSoN [18] in the case of the scalar
field with recoil.

Apart from the not completely solved problem connected with
possible bound states in the continuum, we also obtained a satisfactory
scattering theory in the lowest sectors o#(1, 1), (2, 1) and £ (1, 2).
For the higher sectors we encounter the same problems as in the multi-
particle case of potential scattering. To study H in £ (N;, N,)
(N3, Ny = 2) it would first be necessary to set up FADDEEV-YAKUBOWSKI
([19]) equations.
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Appendix A

We give a short discussions of H(y, 2):
Put
2 (0) d*q
o) =2+ 2 [ ==t
then H(y,2) =2 G(y, 2). G(x,2) is still defined for y = 1. Denote the
corresponding functions by G(z) and H(z). G(z) may explicitly be
12*
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calculated
2A(1);2 22(— U)v2
G =1~ 2720) 2 + -

2,1) = 1 (—U)I/Z.

w2\ 2
Generally G(yx,0)=1, G(x, o) =2Z, G(yx, 2) is an analytic function
in the cut plane — U < 2z < .
If we set

ImG(y,7) = 224727712 ud(zx + U))'2 y2(z + U)
T>-U

we get the following dispersion relations [10]

(o]

1 ImG(y,

Gra =2ty [T
2 c’oImG‘(;(,'r)

=1+-; f T(r — 2) dv

1 1 - 1 dr
-U

This gives another expression for Z,:

e £(@
=R [ G e - oF ¥4

Appendix B
We want to make some remarks about possible solutions of the homo-
geneous Kéllén-Pauli equation on the cut. Let ¢(f) be a solution of the
homogeneous Kallén-Pauli equation for zy =17 )40, v € (U, 0). Then
it may be proved ([11], page 211f.): @ (p) is Holder-continuous of index
u>1/2 and

Jle@po(c—v-L)as=o. (B 1)

Defining @ by (34), @ therefore becomes an element of 5, and r5(z) @
= (2 — 7)71 @ (Imz = 0) i. e. D is an eigenstate of HS with eigenvalue 7.
(B 1) further shows that the set of solutions of the homogeneous Kallén-
Pauli equation for 74+70 and 7—¢0 coincide. Furthermore
(@+vud)Nn (U, 0) is countable and the only possible limit points are
U and 0 ([11], page 58). For 7 > 0, i. e. above the treshold for the inelastic
process V O — N @ @, the above arguments no longer work. However,
one then hopes to be able to discuss the Kéallén-Pauli equation by making
a contour deformation of the integral.
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If we assume that @+ is nowhere dense in [0, co) the isometry of u®
may still be proved. The dense domain of definition &, for w* is then
defined to consist of elements (g, f) € &, such that ([11], page 69)

1) g(®) = 0 in a neighborhood of U + % =7

TEPtUD-.
2) f(p, ¢) = 0 in a neighborhood of % + % =1

Unitarity may also be proved: We split the spectral function Z(t)
into a continuous part E,(r) and a step function E,(z). Although we
could not prove that all solutions of the homogeneous Kéillén-Pauli
equation define eigenstates of H¥, it is clear that the set of “Sprung-
punkte’ [21] belongs to @+ U @~ because of theorem 7. For @,, @, ¢ &,
we then have

L (@ By@) By) = By, u A ) () By).

+ oo
Putting P; = [ dE;(z) we now obtain

(i)t =1- P,. (B 2)
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