
Commun. math. Phys. 10, 155—178 (1968)

On the Existence of a Local Hamiltonian

in the Galilean Invariant Lee Model

R.SCHRADER

Seminar fur theoretische Physik der E. T. H., Zurich

Received May 10, 1968

Abstract. It is shown that there exists a self adjoint Hamilton operator in the
limit of local coupling for the Galilean invariant Lee Model. We discuss the scatter-
ing theory of this Hamilton operator in the F Θ — NΘΘ sector.

§ 1. Introduction

Recently J. M. LEVY-LEBLOND [1] has discussed properties of Gali-
lean invariant field theories. Although one has the Bargmann super-
selection rule for the mass [2], nevertheless such theories may describe
processes involving particle creation and annihilation. In particular
J. M. LEVY-LEBLOND has given a Galilean invariant formulation of the
Lee Model [3]. In its original form the Lee Model has been the object of
great interest. It is solvable in the lowest sectors [4] and there is a mass
and coupling constant renormalization. The Tamm-Dancoff method [5]
has been applied as well as the LSZ-formalism [6] and dispersion relation
methods [7] have also been used. However, it was always necessary to
use a cutoff function and to consider possible ghost states.

The Galilean invariant formulation also describes the interaction of
three particles F, N and Θ\ F<-> N + Θ being the possible transitions.
The free particle theory is given by 3 fields V(P), Θ(k), N(l) satisfying
the following (anti-)commutation relations

), F*(P')} = <53(P - P'); {F(P), F(P')} = 0

(k')] = 0 (1)

), N(Γ)} = 0 etc.

The Hubert space is the Fock space defined by these fields. The free
1-particle F-states transform according to an irreducible representation
of the central extension of the Galilei group with mass m1? spin 0 and
internal energy UQ [2, 8].

The masses of the Θ and N particles are ma and ra3 respectively,
their spin and their internal energy is zero. F and N are fermions; Θ
is a boson; but the choice of statistics is not important [1], The free
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Hamiltonian therefore becomes

F* (P) F(P)

The interaction is defined as

2μ ω = q2 μ ml = ma m3 . (2')

Bargmann's superselection rule requires m1 = m2 -+- m3. A0 is the coupling
constant and χ is a real cut-off function. We will assume χ to be smooth
with compact support and 0 ̂  χ ^ 1. Then Hχ = H0(U0) -j- /7/%

will be a self adjoint Hamilton operator. More precisely: Let
Λ^(Θ), «W(N) be the three particle number operators. Then Λ^ =
-f ^(Θ) and ./f 2 — ^(V) + ̂ (^) are constants of motion. The mass
operator is ̂  = m^JΓ^ + m3./f"2. Let 3J?(N19 N2) (N19 N2 nonnegative
integers) be the sector corresponding to the eigenvalues N^ and N2 of
c^Ί and «y^2. Since all particle number operators are bounded iri^f(Nv N2),
HIχ restricted to each sector is a bounded self -adjoint operator.
Then Hχ is self adjoint in ^(N1} N%) and the domains of definition of Hχ

and HQ(UQ) coincide in each sector [9]. Let (2 *Jt)~~L &* be the center of
mass energy operator and put Hχ

s = Hχ — (2 ̂ )~^ £P*. Considering
3? (1, 1) we may write this space as 3?^ ® « 2̂, where 3?^ is the Hubert-
space of the center of mass motion and ffl^ consists of all pairs (g, /)
with g ζ € and / (j Jδ?2(R3). #/ restricted to ̂ (1, 1) then only acts on
Jf^. If we write the resolvent rs(χ, z) of Hχ

s as a 2 x 2-matrix, then its
kernel has the form [1] :

(z - ω) H(χ, z - ϋ) ' z - ω ^ (z - ω) H(χ, z - ϋ) (z - ω'

where

^Γ1 = l + V J (ϋ - ω)2 = ! + V V2^)

Z70 = 1 - V f frΛ mf = ^7+όί/^ (4)

The function H(χ,z) is discussed in Appendix A. £7 is required to be
smaller than zero. rs(χ, z) has a pole at z = U and a cut 0 ̂  2 < oo.
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Let e'(χ), Δ (τ), r0

s(z), r0

R>s(χ, z) and t(χ, z) be defined by

A(τ)(q>q')=(δ(τ~U)

δ(τ_

0

Then the scattering operators u±(χ) are given by

«* (X) = TV + »ΌB S(%. 7 T i 0) ί(χ, τ T i 0)) J (r) dτ . (6)
— oo

u±(χ) are defined on a dense set in ̂ 2 consisting of all pairs (g, /) where /
is smooth with compact support. On this set

(β±(χ))t«±(χ) = l (7a)

so u±(χ) may be extended to isometric operators on ̂ ^. Furthermore
unitarity holds :

u±(χ)(uί(χ))^l (7b)
and also

r s ( χ , z ) u ± ( χ ) = u±(χ)ros(z). (8)

Since r0

s(z) is the resolvent of H0

S(U) = HQ(U) - (2^)-1^>2, we see
that u± (χ) are indeed intertwining operators for Hχ

s and HQ

S(U). U is
therefore the renormalized internal energy, Zx is the renormaUzation
constant and λ the renormalized coupling constant. We will keep U < 0
and λ fixed, so that U0 = U0(χ)', λQ = λ0(χ). Then λ has to satisfy the
condition — λc(χ) < λ< λc(χ). In particular (7) shows that there exist
no ghost states.

We want to discuss some consequence of the above formulas. First
of all, all parameters of our theory are fixed by describing the solution
of our problem in (̂1, 1), there is no further arbitrariness for higher
sectors. Since we have a renormalization of the internal energy, we will
also write Hχ = HQ(U) + V(χ) and treat V(χ) as a perturbation. V(χ)
is still a bounded operator in each sector.

Secondly (6) shows that the operator
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applied to the vacuum Ω gives the 1 -particle F-state. Since the 1 -particle
states of Θ and N are equal to the free 1 -particle states, one has solved
the 1 -particle problem which is the first step in the Haag-Ruelle scattering
theory [10] :

Theorem 1. Let f ( P l 9 P2 . . . PΛι, fc, . . . Jcn&9 11. . . ln^ be smooth and
fast decreasing. Define

/(P1; . . ., Pnι, k,... k^, ^ ... ln, t) = i(Pί ...P^k,... kv I,... lnt)

{ Wi
-•̂

I γn> Θn> Nna(f} ^ χ)y = y jj ds p^ γ* (p χ) f $ d* kjz 6>* (*J

H = 1 h = 1

ίΛe 5ίrowgr Kmίί o/

(exp i £Γχ 0 I FWl ΘW2 ̂ w« (/, t, χ)} (9)

/or t -> ± °° exists.
For the proof one takes the time derivative of (9) and shows that the

norm of the expression so obtained is 0(|ί|~3/2) for large \t\. The theorem
then follows from a standard argument used in the Haag-Ruelle scattering
theory.

The third and most important consequence of the above relations is
that (3), (5), (6) still make sense for χ = 1. The relations (7), (8) are then
also valid. Therefore rs(χ, z) and u±(χ) for χ = 1 describe the resolvent
and the unitary scattering operators of local Hamiltonian Hs in «̂ f 2.
Thus H = Hs + (2 Jtγι &* is a local selfadjoint Hamiltonoperator in
Jf (1, 1). It may be shown that the domains of definition H and H0(U)
are different but have a nontrivial intersection :

Let A± be the hyperplane in 3? 2 consisting of all (g, /) such that

Choose ( g , f ) ζ h ± , where / is smooth with compact support. Then

In the next paragraph we will construct an operator r (z) in each sector
^(N^ N2) which will be the resolvent of a selfadjoint Hamiltonoperator
H. r(z) will be the limit χ -> 1 of r (χ, z) (in a sense made precise below),
where r ( χ , z) is the resolvent of HΓ

In § 3 we will discuss the scattering theory of H in ̂ (2, 1) employing
techniques which have been extensively used by FADDEEV [11].
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§ 2. Existence Proof for a Local Selfadjoint Hamiltonoperator H

We consider Hχ restricted to ^(N^ N2). To begin with it will be
convenient to construct a theory with distinguishable particles for the
case with cutoff.

Def. 1. A configuration Γ is a (possibly empty) set of ordered pairs (ί, j)

1 ̂  < ̂  N19 1 ̂  j ^ N2

Γ = (h h) v w (ίfc,/fc) 0 ̂  k

h Φ V, ?Ί =+= h' /or Z Φ Z' •

Let (r be the set of all configurations. The Hubert space ^1(N1)

is defined as follows :
An element / in 3%^ (Nί9 N2) is a set of functions

with /p ζ ^2(1^3(^ + ̂ -1^)^ Tne linear structure and the norm

are given by

r+ μ gr}rzG

fr\\*.

The system of variables for fr is a system of 3 -momenta

{p(ΐι./ι) P(*\r\ *\r\) ' *il ^ίl^W' ^ ^^(aW} = (P, k, l)r

^ V r

/Γ is to be interpreted as a wave function for the F-particles V ( i , j )
( ( i 9 j ) ζ Γ ) 9 the Θ-particles Θ(i) (i ζ -Γ(l)c) and the ^-particles N(j)

The free Hamiltonoperator is defined as

= 27 ^ o + + Z1 o - + Σ
((i,

If we put

= 0 otherwise

11*
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we get

(U)
Now a linear operator A in Jf\ (Nl9 N2) is given by its matrixelements
AΓtΓ>. In particular we want to construct a Hamiltonoperator
Consider the bounded operators ^ΛX (χ) and ^4<ί '̂)> (χ) =
where J.(ί ?')<: (#) is defined as follows

A^<(χ)ΓίΓ.= 0 if

and if Γ = Γ' w (&', j) we put

where
2 μ ω (ί, j) = £2 (ΐ, j)

P<i.A = &i + 1}
{(P, k, l)Γ, k{, I,} = {(P, *, l)Γ., P(4.Λ} .

^(ί,?) < (χ) is thus an operator which destroys the particles Θ(i) and

and creates V(i,j).
The Hamiltonoperator of our system of distinguishable particles is

now defined to be

H1(χ) = HQ1(U) + Σ (^(U)< (χ) + -4(U)> (X) + A(^(χ]\
ttfl [ (10)

= H01(ϋ) + V,(χ) . \

Vι(χ) is bounded and selfadjoint, so by the theorem of KATO [9] H^χ)
is selfadjoint and the domains of definition of H^ (χ) and H0:L(U) coincide.
Let γn be the symmetric group of n objects. In 3?^ (N1} N2) there is a
(canonically defined) unitary representation U of γNι x γNz which a

commutes with H^χ). Let ^(N^N^) be the closed linear subspace
of ^fj (Nl9 N2) consisting of all / with

ϋ (Qv Q2) f = (sign Qa) / (Q^ Qa) ζ y^ x y^a ,

Let ^(^) be the restriction of H^χ) to 3(?(N19 N2). Then the theories

(jff (^), Jf(Nl9 N2)) and (ίΓ(χ), ̂ ( 1̂? N2)) are unitarΠy equivalent.
We want to inspect the resolvent r ( χ , z ) of H^χ):
Let ίZ(2j) for complex z be the distance of z to the intervall

[MίΏ.(N1} N2) U,oo). Then the resolvent rQ(z) of JjΓ01(ί7) satisfies the
estimate

Since V 1 ( χ ) is a bounded operator, (11) therefore implies the convergence
of the Born series of r(χ, z) for sufficiently large d(z) :

r ( χ , z ) = r0(z) Σ OWr0(z))». (12)
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In order to perform a partial summation in (12) we need some notations:
Def. 2. An index sequence I(n) of length n ̂  1 is an ordered sequence

of symbols al (1 ̂  I ^ n)
I(ri) = (%. . .an)

where each al is of the form (ί,j) or ( i , j ) < or (i,j) > (1 ̂  i ^ N19

1 ^ j ^ N2). al is called the l-th value of I(ri). If al is of the form (i,j)
we call al a self energy term. 1(0) is defined to be the empty set.

The number of index sequences of length n is (SΛ/Ί N2)
n. To each I(n)

and z(d(z) > 0) we associate a bounded linear operator:

A(I(n), χ, z) = r0(z) fl {A"(χ) r0(z)} n ̂  1
1 = 1

A(I(0),χ,z) = r0(z).

For sufficiently large d (z) we obtain

r ( χ , z ) = r0(z) + Σ Σ A(I(n),χ,z ).
n = l I(n)

Def. 3. I (n) is said to contain a polarization of type (i, j) if there exist
lv Z2 (̂  < 12) such that

<*h = (*'» i) < aιz = & /) >
and for all Γ (^ < Γ < Z2) a^ is of the form

«ι =(»',?')& *'Φ *;?" + ? .

Z>e/. 4. I(n) (n ̂  1) ί« called polarized, if there exists an m such that
I(n) contains m polarizations and n — 2m self energy terms. Such index
sequences we denote by Ip(ri). By definition 1(0) is polarized.

Def. 5. Let I(n) = (a1 . . . an) n ̂  1

W(n) = (al al+1 . . . av_± av) I ^ V .

I(n) is called renormalized if for all (I, I') 1 ̂  I ^ V ̂  u, Il>l'(n) is not
polarized. In particular I(n) contains no self energy terms. We will denote
renormalized index sequences by IR(n). 1(0) is by definition renormalized.
Let I(n) be given with A(I(n), χ,z) φ 0. If Ill>lz(n) and Ill'>l*'(n) are
polarized and ^ ̂  l{ ^ Z2 + 1 then also /*ι»maχtf>'*«/)(7&) is polarized.
This shows the existence of a unique maximal set of nonintersecting
intervals [l^, lj] 1 ̂  i ^ m (0 ̂  m ̂  n) such that each Illί>lzi(ri) is
polarized and not properly contained in any polarized Il>l'(n). Put

I(P) = ai, - - - Vip 1 ̂  *fc < ijc+i ^ n %

defined to be the complement of the above intervals in
m

\\9ri\, therefore p = n — Σ (^2* — ̂ i* + 1). It is easy to show that I(p)
i = l

lla
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is renormalized. This gives for large d (z)

r(χ,*)=Σ Σ Σ Σ ••• Σ Σ Π (is)
n = 0 /«(») It = 0 JPft) 1MI = 0 IP (*»+>) * = 1

• {A(IP(lk), χ, z) A"*(χ)}A(IP(ln+1), χ, z)
where

Putting

and

(13) gives

r(χ, 2) = rf(χ, z) + Σ B(IR(n), χ, z) . (15)
n = l !R(n)

We call r0

R(χ, z) the renormalized propagator and (15) the renormalized
Born series. Our intention is to show that (15) still makes sense for χ = 1
and sufficiently large d(z). To this end we have to inspect r0

R(χ, z) more
closely.

(11) and (14) immediately give
Lemma 1.

lim \\zr0

R(X)z)-l\\ = 0.
a(z)—>oo

Since the full Z-particle F- propagator is known [cf. (3)], r o R ( χ 9 z ) may
also be obtained in a different way ([12]): Let HQ(χ, z) = z; H±(χ, z)
= H ( χ , z) and define Hn+1(χ, z) inductively by

1 1 i r l T i •,
Hn+1(χ, z) Hn(χ, z) πj Hn(χ, z - τ) lm H^χ, τ) ̂  '

-u

ImH1~~1(χ,τ) is integrable in [— U9 oo) so complete induction
immediately gives

Lemma 2.
a) Hn~

l(χ, z) is analytic in the cut plane —U^z<oo except for
a simple pole at z = 0. The residue of this pole is 1.

b) ffn-ι (χ, z*)* = Hn~ι (χ, z) lim z H-* (χ,z) = Zt—,
α(z)— >oo

c) Hn~
l(χ, z - p*) is in Jg?"(R8); v = 2, oo.

e corresponding norms we get

\\Z« fl .-i (χ, z - 2)|| , 5ϊ <72 (», β) d (z)- V« +• 0 < ε <
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r0

R(χ, z) is then given by

*

The important point is now that Lemma 2 still holds for χ=l In
particular C2 (n, ε) and (7^ (n) may be chosen independently of χ.
(17) then defines for χ = 1 a bounded operator rQ

R(z) which is analytic
in z for d(z) > 0.

Remark 1. Lemma 1 still holds for rQ

R(z).
Let

02(e) = Max<72(w, ε)

0^ n^ Mm(N1}N2)

C^ = Max Coo (Λ).

Then Lemma 2 gives (χ = 1 included) :
Lemma 3. For d(z) Φ 0 y0

Λ(%> 2) ̂  an analytic operatorvalued function
with

fa*(x,*n£oad(z)-*.
Let p be any of the momenta in (P, k} l)Γ. Then (rQ

R(χ, z) f)r may be
regarded as a ̂  junction in p and as a 3? 2 junction in the remaining
variables. If we denote the so defined norm by || \\Γwe obtain

\\(r0

R(χ, 2) f)r\\r ^ ll/rll Ct(e) d(z)~^ + e .

Remark 2. p may also be chosen to be one of the momenta one obtains
on performing a linear transformation on (P, k, l)Γ. Also || \\r evidently
depends on the chosen p. Since in future, however, we shall only have to
deal with a finite number of different momentum systems for each Γ,
<72 (ε) may be chosen independently of all such p and all Γ. We also put

Before we can formulate the next theorem, we need one more definition :
Def. 6. The final state configuration Γ(IR(n)) of IR(n) is defined

to be the maximal configuration

n)) = ft, h) v (»* ?*) 0 ̂  k ̂  Min(n, Min(^, NJ)

such that the following statements hold.
For each m(l ^ m ̂  k) there exists an l(m) 1 g l(m) ^ n such that

al(m) is of the form (tw, jm) > and al is of the form (i, j) (<> ί Φ ~im, j Φ ~jm

for all I 1 ̂  I < l(m). Maximal means that \Γ(IR(n)\ shall be maximal.
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Thus Γ(IR(nγ) is unique. Also the numeration is to be chosen in such a way
that l(m) < l(m') for m < m'.

By Def. 6 (B(IR(ri), χ, z)/)Γ is zero unless Γ \J Γ(IR(n)) is a con-
figuration. Applying a linear transformation (out of a fixed finite set of
linear transformations) on (P, k, l)Γ, we may therefore obtain a system

(P)r(I (n)) °̂  momenta, which contains the variables

4 (*«P ?m) = mϊl (mz lϊm ~ mz fym ) (*«, L) 6 Γ(IR (n)} .

Let now A^ί>J)< and ,4 (*»?)> be the formal operators we obtain setting
χ^ 1 in 4(< Λ < (%) and ̂ >?» (χ). Define B(IR(n),z) in the same
way. We will prove

Theorem 2. For d(z) > 0 ^(/^(TI), 2) is α bounded linear operator in
3? j (̂ 1? JV^) which is analytic in z.

The norm satisfies the estimate

[B(I«(n),z)|l ^ A? 0,0 Og(β) ί(«) -τ--1 + ne . (18)

B(IR(n),z)ΓfΓ> is equal to zero unless Γ\jΓ(IR(n)) is a configuration.
If pί(p}Γ

Γ(IK(n)) is none of the q(ϊm,~jj, (»„, ?J ζ Γ(/«(»)) then
(B(IR(ri), z) f)R is a ̂  function in p and a «j£?2 function in the remaining
variables. The norm || || ̂  in these variables satisfies

1B(IΛ(»M)/IU ^ A J f l / l ί7a(ε)«+M(2)-J^+(" + 1)£. (19)

The proof proceeds by complete induction : n = 0 is simply Lemma 3.
Let now n Ξ> 1 and consider B(IR(ri), z). Define 10 to be the smallest I,

such that al does not belong to any polarization. Since IR(ri) is re-

normalized such a IQ exists with 1 ̂  10 ̂  — „ — . IR (n) then necessarily

has the form

(ίv jj < \J (i, ?2) < w w (i.i, _!) <

where /Zo + 1'w(^) also is renormalized. So we may assume that theorem 2
already holds for B(Ilo + l>n(n), z). We consider the following two cases
separately :

a) alo has the form ( ί l o , jlo) < . Then

and

(h> λ) ^ (<2i #2) ' ' u (<,.-!, y

b) α?o has the form (iZo, /Zβ) > . Then

(iZϋ, ̂ o) is the first term in Γ(IR(nγ)
and
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For the case a) we choose the system (#0τ ° '%(n)' to contain the
momenta q ( i ι , j ι ) 1 ̂  I ^ 10.

By assumption (B (Il° + l>n (n), z) f)Γ is in Jδ?1 with respect to #(^0, jι)
and in £?* with respect to the remaining variables. Application of
^(^β.ΛβX means we have to carry out the q ( i ι 0 , j ι Q ) integration and
multiply by λQ. Further application of r0

R(z) on ^4(̂ 0-1^0-1) <
o + 1>n(n), z)f)Γ gives a ^-function in #(^0-ι,?Zo-ι):

is therefore in j£?2 with respect to each variable etc., so finally

( JΪ^ '̂X r0*(z)} 4<* Λ.X B(I^+^n(n)9 z) f]
\z = ι 7r

is in Ji?2 in each variable. A last application of rQ

B(z) implies that
(B(IR(ri), z) /)Γeven is in ̂ for one arbitrary variable. We immediately
obtain the estimates

The statement for n then follows if we use the estimates for B (Il° + l>n(n),z).

We turn to the case b) :

If we apply ̂ 'Λ ) > to B(Il°+ l n(n),z)fthen(A* *> > B(Il°+ l n(n),z)f)Γ

will be in J£°° with respect to q ( i ι ΰ , j ι 0 ) , in Jδf2 for every remaining

variable and even in Jδf1 for one pζ(p)p^10 'n(n» which is not a
q(i, j), (ί, j) ζ Γ(Ilo+l>n(n)). Application of rQ

R(z) gives a J^f1 function in
y(ίι9-ι>jι0-ι) Therefore we may apply ^(*ίβ-ι»Λβ-ι)< etc., so finally

will be in -S? °° with respect to q(i^ Jι0), in oSf2 for every remaining variable
and even in Jδf1 for one p £ (p)Γ

(IR(n^ which is none of the momenta
g(ί, j), (i, j) ζ Γ(IR(n)). A last application of /^(z) gives a J£?2 function in
q ( i ι 0 , j ι 0 ) , leaving the properties in the other variables unchanged. This
gives the estimates

\\B(IR(n),z) f\\ < %Ct°(e)d(z)-$ + l

Using the estimates for B(Il°+1>n(n), z) we again obtain the statement
for n. Theorem 2 is proved. Theorem 2 and Lemma 1 (cf. remark 1) give



166 R. SCHRADEB:

Corollary 1. The series

'(*) = Σ Σ B(IR(n),z)

converges for sufficiently large d (z) and we have

lim ||zr(«)- 1111 = 0. (20)
d(z)-*oo

Furthermore we have
Corollary 2. For sufficiently large d (z)

r(z) = r(z*)t (21)

and r (z) commutes with the representation U of γNι x γNt.
Proof. Since d(z) = d(z*) we may suppose r(z*) to be defined when-

ever r (z) is defined. The first statement follows from

rβ*(**)t = »oa(«)

and the following consideration : Let

/*(») = K ...«„)
and put

where
=(i,j)< if α =(*,/)>

= (ί, ?*) > if α = (ί, 7) < .

Then the ma,pIR(n) -> IR(n) is a one to one map on the set of all re-
normalized index sequences of length n such that B(IR(ri),zf
= B(IR(n), z*). The second statement follows from a similar considera-
tion : γNι x γNz acts in a canonical way as a transformation group on
the set of all renormalized index sequences of length n and therefore

Qύ Σ

for all n, (Q1} Q^ ζ γNι x γNz and z(d(z) > 0), since rQ

R(z) commutes
with U.

For the next theorem we need a further lemma. Let χN be chosen in
such a way that 0 ̂  χN ^ 1 and χN(ω) = 1 for ω ̂  N.

Lemma 4. For 0 ̂  n ̂  Min(ΛΓ

1, N2) we have

\\Zχ^Hn^(χN) z- *)- ZfHn-i(z - -2)||a ̂  C2(N, s) d(z

||̂ » JSΓΛ-l(^, »-•»)- ZfHn-^Z - 2)|U ^ ^(ΛΓ) ίZ^)

n(z) = Hn(χ=*l,z); Zl = Zχnl9 and <72(^,ε)->0,
for N -> oo α^dί /fo?ed ε.
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Theorem 3. Let Gτ = {z\ d(z) ^ τ}.
Then for sufficiently large τ

Km \ \ r ( χ N , z ) - r ( z ) \ \ =
JV— >oo

uniformly in Gτ.
Proof. We want to give an estimate for

B(IR(n), χN, z) - B(IK(n), z) = £

K(n), χN, z) = l (r0

R(%N, z) Aa'(χN)) (r^(χN, z) - r0«(Z))
z = ι

• fl (Aa'rox(z))
ί-* + l

G*(ia(»), χN, z) = r0*(χs, z) "if (A<»(χs) r0*(Xs, z))

First of all we remark that the estimates of theorem 2 also hold uniformly
in χN for B (IR (n), χN, z). According to our convention λ0 (χN) = %XN~ 1/2 λ
λQ = Z^~1/2λ with λ fixed. Thus λ0(χ^) ^ λ0. Remembering how we
estimated each factor rQ

R(z) in B(IR(n), z), Lemma 4 immediately gives

χN, z)\\ ^ V C«(e) [Gt(N, ε) + C

C(ε) = Max^ίε), Oa) , d(z) ^ 1 . (22)

In order to estimate Gk(IR(n), χN, z) we may assume that ak has the
form (ijc,jk) <. Otherwise we consider (Gk(IR(n), χN, z))"1". Now A^kt^ <

corresponds to an integration over q(ik, jk). All integrations of this kind
have been estimated in theorem 2. The operator A^h^ < (χy) — A^ikt^<

corresponds to multiplication by λQ(χN) χ(ω(ik)jk)) — λ0 and then
integration over q(ik,jk) Repeating the estimates of theorem 2 gives

n -f 1

%0*(I*(»), to 2)11 ^ V C"(ε) C'(N, ε) d(z)—ϊ- + (n + l)8

 (28)

d(z) ^ 1

where C' (N, ε) -> 0 for N -> oo and ε fixed. G' (N, ε) is of course indepen-
dent of k, IR(n) and z. If we sum the estimates (22) and (23) theorem 3
follows.

Corollary 1. r(z) is a pseudoresolvent in Gτ for sufficiently large τ.
Proof. Consider the identity

r(XN> *ι) ~ *(XN> «a) = («2 ~ zι) r(Xx> %) r(χN, zz)

which is valid because r(χN, z) is the resolvent of H^



168 R. SCHBADER:

According to theorem 3 we may take the limit N -> oo for sufficiently
large τ and obtain

r(z1)-r(z,)^(zί-z1)r(z1)r(zί). (24)

We are now ready to prove the existence of a local Hamiltonian : Choose
T0 such that r(z) exists for z £ GTg and (21), (24) hold. Let N(z) be the
kernel of r(z) (z ζ GTo). Because of (24) N (z) does not depend on z, there-
fore (20) implies that N(z) is zero.

Lemma 5 [13]. A pseudoresolvent is a resolvent of a closed linear
operator iff its kernel is zero.

Thus we may define
H1 = z-r(z)~1. (25)

Because of (24) Hl is independent of z ζGTo. Since N(z) is zero, (21)
shows that the range of r (z) is dense : H± is densely defined.

Lemma 6 ([14], Chap. XII). Let T be a densely defined linear operator
in a Hilbert space such that T~l exists and is densely defined. Then (T^)~l

exists and is equal to (T-1)^.

If we apply this lemma to r(z) and use (21), (25) gives

Theorem 4. H± is a self adjoint linear operator. The spectrum of H^ is
bounded below.

The last statement follows from the fact that GTo contains the intervall

(-«>,- τ0

Because of corollary 2 of theorem 2 the same arguments give a self-
adjoint operator H in ^(N^N^ which is the restriction of H^ to

J^(NV N2). Theorem 3 permits us to interpret H as the local Hamilton-
operator of the Galilean invariant Lee model.

§ 3. Scattering Theory in the FΘ-JVΘΘ-Seetor

In this sector we want to discuss H in the sector 3^(2, 1). The
discussion in ^(1,2) proceeds in the same way. Since 3^(2, 1) also
describes 3 particle configuration, namely one N particle with momentum
I and two Θ particles with momenta Jcl} k2, it will be useful to introduce
the following variables

P = k + fc + Z ,

K + m2)-! (m2(l + ij - m1 ̂ ) (26)

(mj + m2)-l(m2(l + k2) - m1 k%)

2μ ωl = q^ 2μ ω2 = q£ .
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The following relations hold
ra2 w2ft = ?2 + -jjpi <?2 = PI + - f t >

_ __ _
2m3 ^ 2m2 ^ 2m3 2(wh + m2) ^ 2v ~*~ ™l 2(m^ + ma) "*" 2v "*" ω* '

r (raj + m2) = mj m2 .

Since Θ is defined to be a boson, all expressions must be symmetric in k±
and k2, i. e. they must be invariant with respect to the substitution
(Pι> ft) ̂  (P& #2)- We will often therefore simply write (p, q). We may
also identify 3 ί ? ( 2 , I ) with ̂  <8> Jf2 where again ̂  is the Hubert
space of the center of mass motion and 3tf 2 = ^2(R3) e ^2s(R6).
Here Jδf2s(R6) consists of all / ζ Jδf2(R6) such that f(pv ?1) = /(p2, ?a).
Since £T commutes with (2 ̂ J"1 ̂ 2 it will suffice to consider Hs

= H - (2 Jt}~^ @>*. Hs only acts on ̂ 2. The resolvent rs(z) of Hs then
may be written as a 2 x 2 matrix with the kernel :

> q.

In analogy to § 1 we further introduce e! and r0

R> s (z) by
0

0

- p')

frfa-PiQa'Cgi-giO

\t(z))r0^
s(z) (27)

then for sufficiently large d(z) the renormalized Born Series for r(z)
gives the following expression for t (z):

*ιι (*)(',£')= Σ K(z}-I(z)(;p') (28)
where n ~ °

= I(Z) (p>, p) (28a)

K(z) (p, p') = I(β) (#, 0') ff-i z - ϋ - (28 b)

~6*(Pl P)+ J/2

) ϋ / f<y\ I m !Zf\ If\C\\
I A l\\\Λ) \Jt'29 P ) (ZVίj

~ ^ ~ 1 / Λ / /M 2 \ ~*" 1/0~ / ΛJ 2 \

= t (z) (Ί)' Q' ' /j5) (30)
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\ /

WsΛΛ/W —

describes the renormalized propagator of a noninteracting F
and Θ particle, w~ the propagator of two Θ particles and one N
particle. The symmetry conditions have not been taken into account.
Each vertex corresponds to a multiplication by λ0 and momenta are
conserved. Integration is carried out over all closed loops. λ0 = Z~^2 λ
has been used. t(z) is the scattering amplitude. Scattering processes
with 3 particles in the initial or final channel contain factors describing
initial- or final-state interactions [6, 15].

Summing (28) gives the Kάllen-Pauli equation [4]

ίu (*) (P, P') = I (z) (p,p') + fK (z) (p, p") ίu (z) (p", p') d?p" . (32)

K(z) is a Hilbert-Schmidt operator in <S?2(R3), analytic in 6?0+

= {z I d(z) > 0} and the Hilbert-Schmidt norm satisfies

Mm p: (2)|| = 0.
d(z)—>oo

Also sup ||/(z) ( , β')||a < oo, thus the above series (28) converges for

sufficiently large ίZ(2) uniformly in p'. Furthermore since (1 — K(z))~1

exists for sufficiently large d (z), by a theorem of RELLICH ([14], Chap. VII,
[16]) (1 — K(z))~1 is meromorphic in G0+ with values in the set of all
bounded linear operators in Jδf2(R3). Some trivial estimates then show
that if we define rs(z) by (27), (29), (30), (31) and (32) ^(z) becomes a
bounded linear operator which is meromorphic in G0+. By the identity
theorem of analytic functions, this must then be the resolvent of Hs.
Therefore it will be sufficient to discuss the Kallen-Pauli equation.
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Theorem 5. For Imz φ 0 no nontrίvial solutions of the homogeneous
Kallen-Pauli equation exist and (32) has therefore always a unique solution
in that case.

Proof. Assume the contrary and let φ be a solution of the homogemeous
Kallen-Pauli equation for z0 (Imz0 Φ 0):

φ (p) = / K (*0) (φ, p')φ {$') d? p' . (33)

Define Φ ζ 3P2 to be (g, /) where

a(Λ\

A lengthy calculation using (32) and (33) gives

rs(z)Φ = Φ , (35)v } z - z0

 v '

d(z) sufficiently large. But then Φ would be an eigenstate of Hs with
eigenvalue ZQ. This contradicts the selfadjointness of Hs.

Thus we only may have solutions of the homogeneous Kallen-Pauli
equation for z = τ ± i' 0 (τ real). Let Φ± be the set of those τ, for which
z = τ ± i 0 gives nontrivial solutions of (33).

It is not hard to prove that (Φ+ \JΦ~) r\ (—oo, U) is exactly the set
of poles of rs(z) in G0+.

Let 9?/(I ^ Z ^ -ZV(;/) < oo) be a basis for the linear space of all solu-
tions of the homogeneous Kallen-Pauli equation at zj < U. Define Φt

j

by (34) and let Pj = lim (z — Zj) rs(z). Some easy calculations show

that P* is the projection on the linear span of ΦJ.
In order to consider K (z) on the cut U ̂  z < oo we apply methods,

which habe been extensively used by FADDEEV [11] in the three body
problem:

Let b (1 + Θ, μ) be the linear space of all Holder continuous functions
no R3 of index μ such that

| |/ | |®> Aι= sup (i-

0«9; 0 < μ ; g l ; p, Zl £ R3 .

With this norm δ (1 + Θ, μ) becomes a Banach space. With respect to the
inclusion 6(1 + Θ, μ) C b(l + Θ', μ'), Θ> &, μ> μ' a bounded set in
δ(l + (9>μ) is relatively compact in 6(1 + &, μ'). Using Faddeev's
estimates we proved the following ([11], page 41 if.):
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Theorem 6. For all z in the cut plane U ^ z < <χ> the maps

K(z):b(l + θ, μ') -> b (2, μ") μ" < Min (y , μ') y < & < 1

#4(z) : 6(1 + ft μ'") -> 6(2, μ); μ < -g-, 0 < X" < 1

are continuous. The following estimates hold

\\K(z)f\\ltμ^Cλ^l^\z\)-

\\(K(z + Δ) - κ(z)}i\\l>μί <; cλ*(i +

(7 ma?/ 6e chosen independently of z and λ (0 < |λ| ^ Ax <
In particular UΓ4(2) may be considered as a compact operator in

6(1 + ft μ) since the continuous image of a bounded set is bounded.
Therefore Fredholm's alternative holds ([17]):

I. Either the equation

/ = K ( z ) f ; f £5(1 + &, μ) = ̂ .6(1 + &, μ')

has a nontrivial solution or
II. / = g + jfiΓ(z) / has a unique solution

f ζ b ( l + &,μ) for (̂1 + 0,^).

If II is satisfied then / depends continuously on (g, K (z) g, K2 (z) g,
KB(z) g) where all elements are considered as elements of 6(1 + Θ, μ).
But then theorem 6 gives

μ>μ

Let / be a solution of the homogeneous equation. / = K(z) / implies
in particular / = K12 (z) f. The estimates of theorem 6 then give

\\Ki*(z)f\\~Θ)~μ £ C*λ"(l + |z|)-2Θ1#4(z)fe

Since Θ > -^ , Θ' may also be chosen > -~- . For sufficiently large \z\ or

sufficiently small λ there are thus no solutions of the homogeneous
Kallen-Pauli equation [5 a].

Generally we have
Lemma 7. Φ± are closed sets.
This is simply lemma (7.8) of FADDEEV ([11]). We will, however,

assume that there exist no solutions on the cut1.

See Appendix B for a discussion of the possible solutions on the cut.
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As we have seen this is the case for sufficiently small λ.
In particular Lemma 7 shows that the number of poles of rs (z) below

the cut is finite since U is the only possible limit of these poles.
Now theorem 6 is not immediately applicable to (32) since I(z) ( , p')

is not in 5(1 + &, μ) for z on the cut. We define

Using the same estimates as for theorem 6 we have shown that I<3) (z) (p, p')

is Hόldercontinuous with index μ <-g-in all variables such that

Defining t^(z) (ft 0') = tn(z) (p, p') - Σ /(ί)(*) (ft P') we get the

t = 0
following equation instead of (32) :

*ιι(3) (z) (', P') = /(3) (z) (', P') + K (z) ίuW (z) ( , 0') . (32')

The above discussion gives

Theorem 7. ίn(
3) (z) (p, pf) ίs Hδldercontinuous of index μ < -g- m

αZZ variables for all z in the cut plane except for z ζΦ±. The following
estimates hold

l*uw («)(•>!>')! 9. ̂ ^(M)

4 ξ C , J2 ζ R3 , fa+μz^ μ. (36)

behaves as (1 + |z|) /or toye |«|.
We are now ready to discuss the scattering theory :
Let Δ (τ) be given by

(p -ψ) 0 \

Then J (τ) J (τ') = A(τ)δ(τ- τ').
Put

M± = f(e + r0

B-s(τ T i 0) ί(τ T » 0)) J (τ) <ίτ . (37)
— 00

u ± are defined on the dense set ^0 in e 2̂ consisting of all Φ = (gr, /)
where g, f are smooth and have compact support. Using the same
arguments as FADDEEV ([11], page 60ff.), (32) resp. (32r) and the estima-
tes (36) show that u± are isometric operators on ̂ 0 and therefore may be
extended to isometric operators on 3? a. Let r0

s (z) be the resolvent of the
free Hamiltonian HQ

S(U) = H0(ϋ) - (2 ^)~l ^2. Then u± are inter-
twining operators for HQ

S ( U) and Hs and thus the standard scattering
operators :
12 Commun. math. Phys. , Vol. 1 0
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Theorem 8. u^ are isometric operators on ffl \ and the following relations
hold for all z (Imz Φ 0) :

± = u± r0

s(z) . (38)

The calculations leading to (38) are lengthy but straightforward. The
Kallen-Pauli equation and the defining relation for the renormalization
constant 2^ have frequently been applied.

In order to prove unitarity, we start from the spectral resolution
E(τ) of Hs. Let P = Σ Pj be the (by the above assumption finite

u
dimensional) projection on the bound states. Then P — f dE(r).

— 00

For Φlf Φ2 ζ <&Q

τ2 rz

f d(Φl}E(τ) Φ2) = —ί-r lim f (Φ1? ^(τ - i ε) - rs(τ + i ε) Φ2) dτ.
J AtWd β X O J

Theorem 9. For τ ^ U, Φ1? Φ2 ζ &0

lim _ fφ yS fa _ ί ε) _ γS ίr _j_ j ε\ φ\
e φ o 2π&

= Hm — (Φ1? r
s(τ + < ε) rs(τ - i ε) Φ2)

e|0 n

= Hm — (φlf r*(T - < ε) ̂ (r + ί ε) Φ2)

/7i particular
u±(u±)*=l-P. (39)

For the proof the defining relation (27) must be used. In contrast to
FADDEEV ([11], page 63) however we may not take the isolated limit

lim -LrQR s(τ + i ε) rQ

R>s(τ — i ε) .
n

The reason is that t(z) is not sufficiently smooth, i. e. t(z) contains
(5-f unctions in the momenta.

(39) finally allows us to consider the time-dependent behaviour. Let

Suppose g(P, p) and /(P, pv gx) = /(P, p2, q2) are smooth with compact
support (P, pv q1} p2, q% were defined in (26)).
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Theorem 10.

.fl 6>*

= Z1V*fg(P,f)\ VΘ(P,p) )±d*Pd3p,

s-1ίm e*
st e-w Wt / /(P, 23, g) iV* (ϋ) 6>* ft) Θ*(ka) Ω

ί-»±θO

= / t(p> P> ϊ) l# Θ Θ(P, p, j)>±

The scattering states l*^ are defined according to (37).

Conclusions

The Galilean invariant Lee model has a ghostless Hamiltonoperator
in each sector even in the limit of local interaction. The main reason is
the energy-momentum relation in the nonrelativistic case : E = (2m)"1 pz

+ U. This has also been used by E. NELSON [18] in the case of the scalar
field with recoil.

Apart from the not completely solved problem connected with
possible bound states in the continuum, we also obtained a satisfactory
scattering theory in the lowest sectors 3tf (1, 1), 3tf (2, 1) and Jf(l, 2).
For the higher sectors we encounter the same problems as in the multi-
particle case of potential scattering. To study H in ^(N^N^)
(N19 N2 ^ 2) it would first be necessary to set up FADDEEV-YAKUBOWSKI
([19]) equations.
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Appendix A

We give a short discussions of H(χί z) :
Put

ίJ (U__

then H (χ, z) = z Q(χ, z). G(χ,z) is still defined for χ = 1. Denote the
corresponding functions by G(z) and H(z). G(z) may explicitly be
12*
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calculated

Generally G(χ,Q)=l9 G(χ,oo) = ZΓ G ( χ , z ) is an analytic function
in the cut plane — U ̂  z < oo.

If we set

, τ) = λ2 4π2 τ~l(2 μ*(τ + Z7))1/* f(τ + U)

τ>-U

we get the following dispersion relations [10]

z f
= 1 + — /n J

-u

z ImO(χ,τ)
- -- —-- r

τ(τ — z)
-U

—u

This gives another expression for Zχ :

Appendix B

We want to make some remarks about possible solutions of the homo-
geneous Kallen-Pauli equation on the cut. Let φ (p) be a solution of the
homogeneous Kallen-Pauli equation for ZQ = τ (i) ί 0, τ £ (U, 0). Then
it may be proved ([11], page 21 ff.): φ(p) is Holder-continuous of index
μ > 1/2 and

*p = 0. (Bl)

Defining Φ by (34), Φ therefore becomes an element of ̂ 2 and rs(z) Φ
= (z — τ)"1 Φ (Imz Φ 0) i. e. Φ is an eigenstate of Hs with eigenvalue τ.
(B 1) further shows that the set of solutions of the homogeneous Kallen-
Pauli equation for τ + ί 0 and τ — ί 0 coincide. Furthermore
(φ+ vy φ-) n ( ?7, 0) is countable and the only possible limit points are
U and 0 ([11], page 58). For τ > 0, i. e. above the tresholdfor the inelastic
process V Θ -> N Θ Θ, the above arguments no longer work. However,
one then hopes to be able to discuss the Kallen-Pauli equation by making
a contour deformation of the integral.



Lee Model 177

If we assume that Φ^ is nowhere dense in [0, <χ>) the isometry of u^
may still be proved. The dense domain of definition ̂ 0' for u^ is then
defined to consist of elements (g, /) ζ &0 such that ([11], page 69)

1) <7(jP) = 0 in a neighborhood of U + ~Λ~ = t
& <?

2) / (p, q) == 0 in a neighborhood of -5 — h -5 — = τ

Unitarity may also be proved : We split the spectral function E (r)
into a continuous part Ec(τ) and a step function Ed(τ). Although we
could not prove that all solutions of the homogeneous Kallen-Pauli
equation define eigenstates of Hs, it is clear that the set of " Sprung -
punkte" [21] belongs to Φ+ w Φ~ because of theorem 7. For Φ1? Φa £ ̂ 0'
we then have

£ (ΦI9 JEc(r) Φ2) = (ΦI9 u± A (r) (u±? Φ2) .

+ 00

Putting Pd = / dEd(r) we now obtain
— oo

tt±(w±)t = l- pd. (B2)
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