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Abstract. We give a complete characterization of quasi-free states (generalized
free states) of the C.C.R. algebra. We prove that the pure quasi-free states areall Fock
states and that any two Fock states are related through a symplectic automorphism
(Bogoliubov transformation). We make an explicit construction of these representa-
tions which correspond to primary quasi-free states.

I. Introduection

In this work we study the set of quasi-free states on the C.C.R.
algebra. The notion of quasi-free states is introduced by D. W. RoBINsoN
[1] in his study of the ground state of the Bose gas. Until now, one was
not able to construct exactly solvable physical models, whose solutions
do not belong to the set of quasi-free states. It is interesting to study
this set of states in order to derive its most general properties hoping
that their general properties may throw some light on the problem of
construction of non-trivial models.

From a technical point of view, we start with a symplectic space
(H, o) and consider the C.C.R. C*-algebra A (H, ¢) [2] built on it. We"
prove that the pure quasi-free states are all Fock states and that any
pure quasi-free state can be obtained from another pure quasi-free state
by acting on it through an automorphism of the algebra induced by
a symplectic operator on (H, ¢). The converse statement is well known
by physicists as Bogoliubov transformations. Explicit representations
induced by quasi-free states of C.C.R. are given. Amongst all representa-
tions we characterize the primary ones. The last property turned to be
important to characterize physical systems in statistical mechanics [3].
This property was outlined by Arart and Woobps [4] for the temperature
states of the free Bose gas which are quasi-free states.
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In section II we recall the definition and some properties of our basic

C*-algebra 4 (H, o), and collect the mathematical tools we need in
section IIT for the treatment of quasi-free states.

II. Mathematical Preliminaries
II.1 The C.C.R. algebra A (H, o)
For completeness we recall the definition of the C.C.R. C*-algebra

A(H, ¢). More details can be found in ref. [2].

Let H be a real vector space and ¢ a symplectic form on H (i.e. ¢ is
a bilinear, antisymmetric, regular mapping from H x H into R). We
denote by d, the real function on H defined by d,(¢) = 0 if 9 + ¢ and

0, () = 1. The product of J, with §, is defined by
%dp = g—%0(¥, ¢)5'p+¢

and we consider the complex algebra A (H, o) generated by the d,’s for
all 9 € H; equiped with the involution ¢, (J,)* = J-, the algebra
A(H, o) becomes a *-algebra.

The set Z (H, o) of representations of the C.C.R. is the set of represen-
tations zz of 4 (H, o) such that the mapping A € R — 7 (d;,) is a weakly
continous mapping from R into £ () for all ¢ € H. All these representa-
tions induce the same norm ||-| on 4 (H,0) (i.e.Ya €4 (H,0) :|a| =| 7 (a)]).
The completion of A(H, o) with respect to this norm is the C*-algebra
A (H, 6), isomorphic with the C*-algebra generated by the Weyl opera-
tors e?B®) where B(yp) are the field operators.

Let _# be the set of all functions f mapping H into C and satisfying

n

the condition J' @,a;ei°Wv)f(y; — y;) = 0 for all a; €0, y, €H,
ki=1
ke{l,...,n}and n €N.

Proposition 1. w is a positive linear form on A(H, o) if and only if
the function f, defined by f(y) = w(d,) for all y € H, belongs to #.

Proof. See ([2], 3.2.1.).

Under these conditions @ is denoted by w; and the representation
induced by w, through the construction of Gelfand-Naimark is denoted
by 7, or 7,,.

Proposition 2. Let f € #, it is necessary and sufficient, in order that
7wy € (H, o) that the mapping A€ R — f(Ayp + @) be continous for all
v, ¢ €H.

Proof. See ([2], 3.2.2).

We denote by 7, the set of all elements f € # such that 7, € Z(H, o).

A symplectic operator 7' on (H, ¢) is an operator from H onto H
satisfying o (Ty, T'p) = o (y, ) for v, ¢ € H; let S(H, o) be the group
of symplectic operators on (H, o).
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Proposition 3. For every T ¢ 8(H, o), the mapping T7:0, — O, can be
extended to a unique automorphism of A (H, o).

Proof. See ([2], 4.1.1).

Proposition 4. Let H* be the algebraic dual of H. For every y ¢ H* the
mapping ,: 0,., €*W4, can be extended to a unique automorphism of
A(H, o).

Proof. See ([2], 4.4.1).

Proposition 5. Let 7 be a cyclic element of % (H, o), and s a seal scalar
product on H, such that o is s-norm continous and has a continous reqular
extension o’ to the s-norm closure H* of H. If the mapping v € H - (3,
is s-weakly continous, m has a unique continous cyclic extension 7' to
A(H?, 0') and for every y € He, 7' (8,) € (4 (H, 6))"".

The proof is an immediate extension of the proof of ([2], 3.3.4).

Corollary. With the same notations as in prop. &, m s irreducible
(primary ) if and only if 7’ is trreducible (primary).

I1.2 Real Scalar Products on (H, o)

We consider the set & of bilinear, symmetric, positive forms s
mapping H x H into R such that

a) |o(p, )| = s(y, p)*2s(p, p)Y/? (implying that s is a scalar product).

b) The norm continous extension ¢’ of ¢ to H* is non degenerate.
Each s ¢ & induces on H the s(H)-weak topology (the weak dual is
denoted by s(H) = {s,|y € H, s,(p) = s(w, ¢)}) and the s-norm topology
(the norm dual is denoted Hy).

Proposition 6. If s ¢ & and H is s(H)-quasi-complete, then H is s-norm
complete (we have H = H* or (H, s) is a real Hilbert space).

Proof. By definition H C H*. We show that H*C H. If vy, ¢ H¢, then
there exists a Cauchy sequence (y,), in H, norm converging to ,. Using
Schwartzs inequality (¢,), converges weakly in He to y,:

8(Pn, @) = 8(yg, @) forall p H?.
As H is quasi-complete, there exists a ¢, € H such that

$(Wn, @) > 8(@, ) forall p €H .
Therefore s(p,— ¥, @) = 0 for all ¢ € H. Noting that H is strongly
dense in H* we have that y, = @, € H.
We denote by o(H) the set {o,| v € H, 0,,(¢) = (v, ¢)}. The vector
space H equipped with the o (H)-weak topology is a Haussdorff topological
vector space (the weak dual is ¢ (H)), because ¢ is supposed to be non

degenerate.
Let A be a o (H)-weakly continous linear operator of H, then there

exists a unique linear continuous operator A" of H such that o (y, 4 ¢)
=a(Aty, @) for all y, ¢ € H([5], p. 419); A" is called the adjoint of 4
with respect to o.
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Proposition 7. Let s € & and let D be the linear operator s—1o mapping
o~ (o (H) N s(H)) onto s~*(c (H) N s(H)) then

19 |Dy], < [o], = 1(ucus sup oy, ¢ l)

llolls=|lv|ls=1
D,H:=H
29) If H* = H we have o (H)Cs(H) and {| D, = | o],
Df =— D,

3%) If H* = H and o (H) = s(H) we have that A, = — D;1 is bounded
and Af A, = 1.

Proof. Noting that D, is a mapping from a normed vector space into
another one and that

IDs¥lls _ 8Dy, Dyy) __ |o(y, D,y)| < |0
il llelLliDeylle [lllliDalle = "0
for all w € H, we prove 19).

It follows from the fact that D; is injective, normal (o(y, Dsy)
= — ¢(D,;p, @) and every where defined on H that D, D,H* = H and
o=s0D,

Therefore

8ot ¥)| o NPs¥lle _
Iole = 2 Tl Tl = Sob Tl 1Pl
which proves 2°).

If H*= H and o (H) = s(H) then D, is a one-to-one mapping from
H onto H. Consequently A,=— D;1 is a bounded operator and
Af A, =1 ([6], §4, th. VI).

A complex Hilbert structure ([8], p. 28—29) on (H, ¢) is given by an
operator J on H satisfying J2=—1,J*=—J and s;=—c0J = 0.
It follows from prop. 6 that s; € & and that (H, s; + 10) is a complex
Hilbert space.

Consider an element s € # and suppose that H* = H, it follows from
prop 7 that A, = D;! is a normal operator defined on a dense domain
of H.Let D, = J|Dy| be the polar decomposition of D, then [J, |D,|]- =0,
Jt = —J, J2 = — 1([5], part II, p. 935). The operator J defines a com-
plex structure on (H, o), because the range of |D,| is dense in H and

87 (|Ds| @, | D5l p) = — (I | Dyl p, | Dg| p) = — o(Dsp, | Ds| p)
= §(D; v, IDs‘Ds’/’) =0 and [syfs=o],-

From the polar decomposition of D, and 4; = — D;! and the uni-
queness of the polar decomposition ([5], part II, sect XII, 7) it follows
that 4, = J|4,| where |[4,| = |Dy|-* = 0.

For every Hilbert space, in particular for (H*, sy + 40), there exists
at least one conjugation A (i.e. [4, J1; = 0, A% = 1) ([7], prof. Al). Now
we prove.
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Proposition 8. For all s ¢ & verifying H = He, a conjugation A can
be found on (H%, sy + i0) such that [A4, |4,]]- = 0.
Proof. Let us firstly notice that:

&, Duy) 2(D,|D,[*y, D, |D,}11%y)
—— = 8l —ID...
sr(y, ) v GE s(|Ds[*2y, [D,[2y) [-Dss

"Ds”s.r = sup
yEeH

The last equality follows, since the range of D, is dense in H. Thus

D, has a unique continuous extension (denoted as D,) to H*. Further-

more, for any v € H, |y|,, = | |Ds**y|s =< | 9|s> and the conditions to

get a Friedricks extension ([9], n° 124), are satisfied. The range of D, is

known to be included in H. The following formula is satisfied in e,
[1Dll

D)= [ AdE().
0

— [1Dsl]
We get H = [ H,d2, so, let A; any conjugation in H,, then it
@0 —
readily follows that A = [ 4,d A is a conjugation in (H¥, s; + ¢g), com-
®

muting with |D,|; consequently A commutes with |4,| also.

Remark that the operators 4 and B are said to commute if they
commute on their common domain. It follows from prop. 8 that A
commutes with (|4, + 1)%/2 which exists because |4,| = 1.

Proposition 9. Let H be o (H)-quasi-complete and J,, J, be operators on
H defining a complex Hilbert structure on (H, o), then there exists an
operator T € S(H, o) such that J, = T+ J,T.

The proof of this proposition is completely analogous to that of
([71, lemma 1).

I11. Quasi-free States

II1.1 Definitions
Let f be a mapping from H into C such that f(0) = 1, then f is called
quasi-free if
f(y) = exp {fé(w) + 3 ,,,)}
where
(¥, ¥) = fo (v, v) — fo(y)?

](;(,‘P)___ }]'1-3) f(?"l‘l’ﬁ)"f(q’)

and consider the mapping ¢ € H — f, () € C then

73 . f’l,("/’)‘f(’l’)
w(‘/’l:‘ﬂz):}lﬂ P 1,1 AL

A quasi-free mapping is therefore at least twice differentiable in the
above sense.
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Suppose that f is a quasi-free mapping, we define a linear form w; on
A(H,0) by ws(d,) = f(w). From proposition 1 it follows that w, is
a state if and only if f € #. Remark that for quasi-free mappings f € #
implies f € #,. Under these conditions w; is called a quasi-free state and
we denote by @ the set of quasi-free states. Let us remark that this
definition of quasi-free states coincides with that of D. W. RoBinson [1],
fo and f; are in a trivial way related to the one-point and two-point
Wightman functions respectively.

For any w; € @, by Stones Theorem 7;(8,) = €' B) where B;(y) is
a hermitean, unbounded operator on the representation space, B, is
linear and

wy(8,) = (& eBW|EL 1

where & is the cyclic vector of ;. From (1) it follows that

fo(w) = 1(&| Bs(y) &)

—ifo €H*.

In what follows we suppose that f; = 0, because if

and

g(y) = exp {% fr(yp, w)} :
Then
w;=w,00_y and m=m,00
where {_j is a gauge automorphism (proposition 4).
Denote by @, the set {w; € @|fy = 0}. If w; € @, then

f?z"(%a Pa) = 10 (Y1, wa) — (& By (1) By (w2) &)
and

fz(p, 9) = — (€] By (p)1é) = — s(p, p) -
Therefore any w; € , can be written as
wr(8,) = 0,(3,) = exp {— 5-3(p, v}

where s is a bilinear, symmetric form on H.
Proposition 10. Tke linear form w, belongs to Qq if and only if

lo(p, @)FF = s(p, y)s(p, ¢) forall y,pcH. )
Proof. If w, € @y then one has
(&l Bs(p1) Bs(a) &) = s (w1, wa) + i0(91, 92) -
A necessary condition for the positivity of w, is
(&7 [Bs(y) + i By ()] [Bs(y) — i By(9)] ;) = 0 forall y,p€H.
This implies
lo(y, @)l = s(p, )12 s(g, @)/
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The converse statement follows from theorem 2 and 3 below.

Proposition 10 shows that a one-to-one mapping can be found from
the set @, onto the set of all elements s satisfying (2).

Now we only consider those quasi-free states w, such that s € &.
The remaining quasi-free states will be discussed at the end. Without
loss of generality we suppose that for any s € &, H is complete for the
s-norm topology (prop. 5 and corollary).

II1.2 Pure States
The Fock states on A4 (H, o) are the elements w, € @, such that

A% = — 1. The operators A, define then a complex structure on (H, g).
The corresponding creation and annihilation operators are

BE(y) =5 {B,(y) TiB,(4,y)} forall pecH.

The cyclic vector £2; of the Fock representation 7z, induced by w,,

satisfies
By () 2,=0 forall pcH.

Fock representations are irreducible, therefore the Fock states are pure.

Since we supposed H s-norm complete, it follows from the fact that
A, is a bijection of H, that ¢(H) = s(H), and that H is also o (H)-quasi-
complete. Proposition 6 insures that H remains complete for the norm
topology induced by any other complex structure. The proof of the
following theorem is now a direct consequence of proposition 9.

Theorem 1. If w, and w, are both Fock states, then an operator
T ¢ S(H, o) can be found such that w, = w, O Ty
7p is the Bogoliubov transformation; see ([7], appendix A).

IV. Representations

In this section we construct all representations sz, induced by quasi-
free states w; € @y, s € &. It follows from proposition 7 that any state
ws €@, in uniquely determined by an operator 4; on H such that
A} =— A;and AF A, = 1. In section IT we found the polar decomposi-
tion of 4;: A, = J|4,| where |4,| = 1 and | 4| defined on a dense domain,
say H, of H. Furthermore [J, |4,|]- = 0.

We consider the following operators on H,

T, = —Vl; (14,] + 1) 3)
T, = (|14, — 12 @)

2 Vé
21 Commun. math. Phys., Vol. 9
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where A is a conjugation commuting with |4,| (prop. 8), and we consider
the algebra A (H,,0); remark that the restriction of ¢ to H, remains
regular, that A(Hy,o)CA(H,o) and n,(d4(Hy, 0))" = n(4(H, )"
(prop. 5). The restriction of the state w, on 4 (H, o) to 4 (H,, o) is again
a quasi-free state, we denote it by the same symbol.

Theorem 2. Let s € &, T, and T, defined as in (3) and (4), then n, is

a subrepresentation of the representation
7(8y) = 77 (07,4) ® 7;7(07,,) forall ¢ H, of A(Hy, o), (5)

on Hy® H j(Hy= Fock space associated with 7;) with cyclic vector
2, Q; and reproducing the quasi-free state w;.

The proof of this theorem is only a matter of verification by noting
that the domains of 7, and 7', contain H,,.

Proposition 11. AUl representations  induced by the states w, € Q, such
that s € & are primary.

Proof. One readily verifies that n’ defined by

7’ (8y) = ”J(‘ST,W) ® nJ(awa) s yE€H,,

is a representation of 4 (H,, ¢) commuting with the representation s
defined in (5).

Let L be the von Neumann algebra generated by the representation
7 (5), then

{7’ (0,)|p €Ho}'C L.
Remark that

7 (0, ) 7' (0m, ) is equal to 7;(d,) ® 1 up to a scalar
and that
7 (0p,,) 7' (Or,,) is equal to 1 ® 7, (d,) up to a scalar.
Therefore
L(H)e 1lc{LyulL}"
and
1@ L(HyC{LuL}'.

The set of operators P® @ on ;@ S is dense in L (£ ;® Hy)
and every operator of this form commuting with {L U L'}" must be a
multiple of the identity. Consequently

{LuLl}y=LnL=C1.
q.e.d.

Proposition 12. 4 state w, € Q, is pure if and only if AF A, = 1.

Proof. If A} A, = 1 then w, is a Fock state and therefore pure. On
the other hand if w, is pure, we prove that 4] 4, = 1. Suppose that
AFfA,+1 then a vector yp¢H can be found such that K2y
=((4F 4,2 — 1) p + 0. We define the operator £ by

Sy (K Y, q)) .K’lp

Bo =Ky Ky)=

sj(w,p)=1 forall @cH,,



Quasi-Free States 301

where J, is the unitary part of the polar decomposition of 4,. We define
the bilinear, symmetric form s€ on H by

sE (@1, 2) = s(@1, 02) — 85 (@1 Bp) 87 (B, @5)
satisfying
sB(p, ¢) = s;(p, @)
and therefore
lo (@1, @2)|* = 8% (@1, 1) % (@, @3) -

Consequently the linear forms w; on the C.C.R. algebra defined by

. 1
wy(6,) = exp {@lsJ(E P, ) — 5 s%(p, <p)} ,p€H,
belong to the set . One readily verifies that

f (271)1/2 e~ ¥ w3,

which proves that w, is not pure, in contradiction with the assumption.

Finally we discuss the quasi-free states w, such that s ¢ &. This
means that s satisfies the formula (2) but the sympletic form ¢ has not
a continous, regular extension to H®.

Theorem 3. Let s be a bilinear, symmetric, positive definite form on H,
such that o (p, )| = s(y, p)Y2s(p, @)'/2 for all y, ¢ € H, and such that the
continous extension ¢’ of o to H® is not regular, then w, is a quasi-free state.
The representation 7, induced by w, 18 not primary.

Proof. Let v in H* such that o(y, ) =0 for any ¢ ¢ H®, and let
(¥n)ne v any sequence in H wich converges to . The sequence of unitary
operators (7, (J,,))nec y converges in strong sense to an operator U: for
any p € N and any ¢ ¢ H,

" [ns(avp,,) — Tt (6wn+p)] 8«11”2 =2 [1 — Re exp {7’(0'(1/}1“ '/)fn+m)
- 0’(% "/’n) - O'('/"'n+w (P)) - 1/2 "w'n - "/’n+p“2}] ’

vanishes when » goes to infinity. From the corollary of lemma 2.2 in [4],
we know that U is unitary. U is commuting with 7, (d,) for any ¢ € H,
from strong continuity of the mapping S — ST and S — TS, together
with the relation

Ty (610,,) “s(acp) = 219 (¥n?) ns(éq,) TTs (6%) .

Consequently U € (4 (H, o))"’ N 7,(4(H, 0))'. Nevertheless U is not
a scalar operator because if U = A1, it would follow from unitarity of
U, |A| = 1, and this would contradict:

|<3OIU30>I = e—%"w"? < 1 .

Therefore 7, is not a primary representation.
21%
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