
Commun. math. Phys. 9, 229—241 (1968)

On Some Representations
of the Anticommutations Relations

G. RlDEAU
Institut H.-Poincare, Paris

Received April 20, 1968

Abstract. We study representations of the canonical anticommutation relations
having the form:

A(f)=a{Hf)+b*(Kf)
= a*(Hf)+b(Kf)

where a(/), &*(/) and their adjoints are two basic anticommuting fields in a Fock
Space.

A complete determination of the type in terms of \K\ = (K*K)112 and a sufficient
condition for quasi-equivalence are given.

I. Introduction

Let S be a complex Hilbert space of test functions, denoted by
/, g,h, . . . To each element / of (£ correspond two bounded operators on
a Hilbert space $, a(f) and b*(f), depending linearly and continuously
on / in the uniform topology of operators. We denote briefly their ad-
joints by «*(/) and &(/); therefore, these are semi-linear in /. We impose
the relations:

[«(/), «(<?)]+ = [&*(/), b*(g)]+ = [«(/), &*(?)]+ = [«(/), b(g)]+ = 0

[«(/), <**(?)]+ = [b(g), &•(/)]+ = (/, g) (l)

and we take for 5 the customary Fock-space associated with these two
anticommutating fields. Id est, we have in 5 a vector Qo such that:

= 0i f,gt<£ (2)

and all the linear combinations of vectors having the form:

are a dense set in 5-
Now, if H and K are operators in 2 (<£) which satisfy:

H*H+K*K = I (3)
we set:

(4)
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Clearly, A(f) is linear and norm-continuous in /. Moreover, if
is the adjoint of A (/), a simple calculation gives:

[A (/), A (g)]+ = 0 , [A (/), A*(g)}+ = (/, g). (5)

Thus, we have defined by (4) a representation of the canonical anti-
commutation relations (CAR in the following). These representations
have been introduced in [1] and are useful for describing gauge invariant
generalized free fermion field [2], in particular, a free fermion gas with
constant density at finite temperature [3]. Their study mainly from
a mathematical point of view, is the purpose of this paper.

First, we recall some facts about the CAR. The most out-standing is
the existence of a canonical O*-algebra 21 which can be viewed as gene-
rated by the A (/)'s and their adjoints. Detailed constructions of it can
be found in [4]. 21 is a uniformly hyperfinite (7*-algebra [5].

With the concept of (7*-algebra is associated the concept of state:
a state co is a positive linear functional on the 0*-algebra with norm one
[6]. In our case, a state co is uniquely determined by the quantities:

co(A*(f1)...A*(fn)A(g1)...A(gm))

that is, if we have, for two states cox and co2:

a1(A*{f1)...A*{fn)A(g1)...A{gm))

= m2(A*(f1) . . . A*(fn)A(9l). . .A(gJ)

for all jt and g$ in (E, these states are identical.
A representation n of the (7*-algebra 21 defined in the Hilbert space

Hn is cyclic if there exits in Hn a vector Q such that the set of vectors
{TZ(X)Q, x 6 21} is a total one in Hn. If Q is normed to one, the quantity:

co(x) = (TZ(X)Q,Q) , x £21

defines a state on 21. Conversely, to each state on 21 can be associated
canonically a cyclic representation. We have the evident result of which
we shall make use in the following:

If the same state is ascribed to distinct cyclic representations these
representations are equivalent.

An important notion, which is basic for our work, is the quasi-
equivalence of two representations [6]. Among many definitions, we
take the following:

Two representations TZ1 and TZ2 of a (7*-algebra are quasi-equivalent
if there exist a multiple of nx and a multiple of n2 which are equivalent.

I t should be noticed that the quasi-equivalence is a true equivalence
relation.
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II. Some Auxilary Results on Quasi-Equivalence

Let F s and F^ closed subspaces of S spanned by the values of H
andZ:

and F#, Vji be their complementary subspaces. Generally, F# and Vji
are distincts from the null space. We denote by hi9 i — 1, 2, . . . and k{i

i= 1, 2 , . . . some orthonormal basis in each of them. Now let t̂ ff— ;̂̂  •••;/<,
be the closed subspace of 5 spanned by the vectors:

(6)
rc = 0, 1, 2, . . .; m = 0, 1, 2, . . .; /< € « ; ft € « .

One the one hand, <5^.ip-,j1...ja ^s a n invariant subspace for the
representation (4) in which this representation is restricted to a cyclic
representation with a*(hit) . . . a*(hip) b*(kj^) . . . b*(kjp)Q0 as cyclic
vector. These subrepresentations are all equivalent because the states
generated on the <7*-algebra of the CAR by the various cyclic vector
are identical. This results almost immediately from the anticommutation
of the A{f)9s and A*(f)9s with the a*(^-)'s and &*(fy)'s.

On the other hand, we have:
Cfc — /T \ (T\ CtHH

P,Q if.Ap
h - - >h

Indeed, it can be proved easily by induction that each vector in 5
having the form:

«»*(£%)... a*(Hfn) b*(Kgi)... b*{Kgn)a*(\)... a*(hip) b*(kh)... b*{kh)Q0

(7)

can be written as a linear combination of vectors having the form (6).
Let now, in (7), fv . . ., fn, gv . . ., gm run over @, p and q run over all
integers and ix . . . iv and jx . . . jq over all choice of the indices, we obtain
a set of vectors which is a total one in 5 ; then we get:

Theorem 1. The representation of the CAR defined by (4) is a multiple
of a cyclic representation. The multiplicity is equal to 2r+s, where r and s
are the dimensions of F# and Vj[.

In our case, the state which defines the cyclic representation satisfy:

co(A ( A ) . . . A ( f n ) A ( & ) . . . A (gm)) = ( A * & ) . . . A * ( / » ) A ( 9 l ) . . .

...A (gm)QOi Qo) = ( - 1) 2 dnm det(K*Kgi, /,) .

Since the knowledge of these quantities characterizes completely the
state, it is clear that two representations (4) with the same value of
K*K can differ only by their multiplicity, and then are quasi-equivalent.
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Corollary. All the representations (4) having the same value of
\K\ = {K^Kfl2 are quasi-equivalent.

In particular, the representation (4) is quasi-equivalent to the re-
presentation defined by:

Lemma 1. If H and K in £(S) satisfy the relations:

H*H + K*K = / HH* + KK* = I

and if K is an Hilbert-Schmidt operator, there exits in £(5) a unitary
operator U such that:

A(f) = a(Hf) + b*(Kf) = Ua(f)U*

B*(f) = - a(Kj) + b*(Hf) = Ub(f)U* .

Proof. The representation of two anticommuting fields defined by the
right member in (9) is irreducible. Indeed, from (8), we get:

a(f) =

Therefore, an operator commuting with A (/), B* (/) commutes with
a(f), b*(f) and thus is scalar.

Now, if K is an Hilbert-Schmidt operator, it can be written [7]:

where {/i5 i = 1, 2, . . .} is an orthonormal basis and {gif i = 1, 2, . . .}
an orthonormal set of vectors in ®. The A/s are eigenvalues of \K\. By
(8), we have for H:

where {hif i = 1, 2, . . .} is an orthonormal set of vectors. Moreover, by
the first Eq. (8), we have:

So, (hi} gj) = 0 if Xt 4= ̂ - But for A* #= 0, ̂  = A;- is possible only for a finite
number of j , since K is Hilbert-Schmidt. Let ^, i2, . . . fn be these values
of ?". From the second Eq. (8), we get:

Hence the matrix with elements (^A, Â ) is unitary and hermitian.
So, its eigenvalues are ± 1 and there exists a unitary finite dimensional
matrix u, such that:

E Kuhi = ±U 9ik
uki •

h k
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Setting:

we have:
= 2

9ik = 2 UkiQip hk = 2 ukiei9ii> £i = ± 1
i i

and the terms A* 2 gik(f, fik), j / l ~ /If 27 ^(/> /^) in the expansions of
A k

and i£/ become respectively:

V n\ ii V/. 01.,, \ 1/1 — T4 V B.n\ U Vf. or.A P7 = 4-

If Xt is zero, the corresponding \i and ^̂  in the expansion of K are
immaterial and we can always assume ^ = g{ for all i with ^ = 0, so
that, setting now:

fik ̂  2 fiiulk

and dropping the dashes, we can write for Hf and Kf:

i i
where, this time, gi} i = 1, 2, . . . is an orthonormal basis in @, as implied
by HH* + KK* = I.

Then, we have:

A (/) = E (/, U) ( l / l ^ )
i

Si = ± 1
B{f) = E (/, /,) ( - A,a*fa) + j / l - n stbigd) •

i

Now the vector:
Q = nt (J/l - If - 8,^0* (jr,) 6* (fir<))£>0

is in 5> a s follows from the condition 2J A| < oo, and a straightforward

calculation gives:
O, /, jr € « ;

Thus, the ^1(/), B*(g) defined in (9) determine an irreducible Fock
representation in the same way as the a(/)'s and 6*(<7)'s, therefore these
two representations are unitarily equivalent. This completes the proof
of the lemma.

As a first application, we can derive the:
Lemma 2. / / , in (4), H and K are positive operators, we can always

assume that K does not admit zero or one as eigenvalues.
Proof. Let {fi} i = 1, 2, . . .} and {g3-, / = 1, 2, . . .} be orthonormal

basis in the eigenspaces of (£ corresponding to the eigenvalues one and
16 Commun. math. Phys., Vol. 9
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zero respectively. For / in ©, we may write:

/ = E «</< + E PM + A > (A, /,) - (A, ft) = 0, f,; = 1, 2, . . . (10)

Moreover, by (3):

# / , = 0 , i = 1, 2, . . ., tf ft = ^ » = 1, 2, . . .

Now, let {0,, i = 1, 2, . . .} and {(Dj} j = 1, 2, . . .} be two sets of arguments
such that:

0O 0 < <

E0t<°°> 2>f < oo .
From the preceding lemma, we deduce the existence of an unitary

operator V in 2 (5) such that:

Va(f) U*=Z

+ E fo(po*wM9j) + sinco^*(^.)) + a(h) ,

Ub*(f) U* = E «*(- s i n ^ a ^ ) + 008 0,6*(/,))

(— sin co,-a (̂ -) + coscty&*(ft)) -f 6* (A) •

Since the space spanned by the vectors h of (10) is invariant by H and
K, we have:

A'(f) = UA (f) C7* = a(Hh) + b(Kh) + E 0,(008 0,6*(/,) - sin0,a(/*
i

with:
K'f = Kf~E(l~ oos0,) (/, /,)

A /<)/* - E (i -
i ^

If / given by (10) must verify K' f — 0, we have:

Kh + E a,oos0,/, JT pjmi(Djgj = 0 .

The inequalities imposed on 0t- and co,- imply a, = (5$ — 0; but, from
Kh = 0, follows & = 0 by the definition of h. In the same way, we shall
show that K' f = f implies / = 0. Thus we have constructed a represen-
tation with the required property, unitarily equivalent to the initial one.

Remark. One can show easily that in the conditions of the lemma, the
representation is cyclic with Qo as cyclic vector. This remark shall be of
some use in the following (cf. section III).
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Let us now consider two representations of the type (4):

, (12)

) , (13)

where Hl9 Kx and H2i K2 are assumed positive. We state:
Theorem 2. / / (H1K2 — KxH^j ^s an Hilbert-Schmidt operator y the

representations (12) and (13) are unitarily equivalent.
Proof. Let us consider:

Since [H^K^ = [#2,i£2]
 = °> t n e operators H = fl"^ + J^^a and

JT = K-JI^— HtK2 have the properties stated in the lemma 1. Therefore
there exists a unitary operator U in £ (5) with:

a'(f)=Ua(f)U*, b'(f)=Ub(f)U*.
But:

a'(H,f) + b'*(K,f) = «(#!/)
Hence:

III. The Main Results

Since, by (3), K is bounded by one, we can define an operator © by:

© = Arcsin|Z| .

Theorem 3. Each representation (4) is quasi-equivalent to a similar
representation for which the corresponding \K\ has a discrete spectrum.

Proof. Let us assume 0 have a spectrum with a continuous part.
VON NEUMANN has shown [8] that we can add to 0 a Hilbert-Schmidt
operator, A such that 0 -f- A has a discrete spectrum contained in
[0, 7t/2] as 0 spectrum is1. Moreover, A can be chosen so that ||^|| < e,
where e is some positive number. We can form cos(@ + 4̂) and
sin(0 + A) which are positive operators and consider the representation
defined by:

A'(f) = a(eos(<9 + A)f) + 6(sin(0 + -4)/) • (14)

Using a technical device customary in quantum field theory, we have:

eH0+A)==zei0 h + i j A(t)dt+i* f d^ f dtzAitJAitz)
\ 0 00

+ ••• + *• f dtx fdt2... Y dtnA(t1)A(t2)...A(tn)+)
0 0 0 /

1 We owe this remark to DR. 0. E. LANFORD.
16*
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Here A(t) = e-it@Aeit@. Since A(t) is a Hilbert-Schmidt operator with
the same Hilbert-Schmidt norm as A, the series in the right member,
minus his first term, converges in the Hilbert-Schmidt norm and defines
an Hilbert-Schmidt operator. Thus we have:

where T is a Hilbert-Schmidt operator. Taking the adjoints of the two
members, we get:

and these relations imply:

cos(0 + A) = cos© + 2 5 sin(0 + A) = sin© + —^-.— .
Now:

sin(0 + A) cos© - cos(<9 + A) sin© = ~ (Tei@ + T*e~i&) .

Since the right member is a Hilbert-Schmidt operator, it results from the
lemma 2 that the representation (14) is equivalent unitarily to the
representation defined by:

A"(f) = a(cos©/) + 6*(sin©/) - a(\H\f) + b*(\K\f) .

But, as a by-product of the theorem 1, this last representation is quasi-
equivalent to the original one.

Therefore, if we do not make any distinction between quasi-equivalent
representations, we may assume that K in (4) is a positive operator with
a complete discrete spectrum. Moreover, if we take in account the lem-
ma 2, we may even assume that K does not admit zero or one as eigen-
values. Thus we write:

K = 2J s'mQiPfi > 0 < 0t < nj2

where Pf. is the projection operator on the eigenvector jt. Since the
orthonormal set fit i — 1, 2, . . . is complete and Qo is a cyclic vector,
we may characterize the representation by the set of numbers:

(A* (fh) . . . A * ( / J A (fh) ...A (fjm) Qo, Qo)

= m(A*(fil)...A*(fJA(fh)...A(fjm)),

which define uniquely a state co on the 0*-algebra of the CAR. All these
numbers are zero, except if the sets (iv . . . in) and (jv . . . jm) are identical
up to the order. By the CAR, these last quantities can be written as
linear combinations of co(N(fh) . . . N(fJ) where N(ft) = A*(fi)A(fi),
and a direct calculation gives:

j) = n ^eih.
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We must remark that the adjunction of an Hilbert-Schmidt operator to
a symetric operator does not change the limit points of the spectrum.

Thus if 0 has a continuous spectrum, the discrete spectrum of 0 + A
admits all the points of a segment as accumulation points. This remark
shall be used in the following.

IV. An Equivalent Representation

We recall briefly in this section the construction of a family of
representations of the CAR, the detailed study of which was made in
[9, 10] in a slightly different form. To each i, i = 1, 2, . . ., let us cor-
respond two two-dimensional Hilbert-spaces JtifW and JtifW and let be
jf. = tfW 0 jtf>f\ If $i9 i = i, 2, . . ., is a set of arguments verifying
the inequalities 0 < 0$ < n/2, we denote by Ix the set of indices such that
0 < Oi g nIf4 and by 72 the set of indices such that TT/4 < 6i < nj2.
We choose in each Jtfft the basis vectors e[f, j = 1,2, and we consider
fi in ffii given by:

fi = cos 0^1 <g> ef\ + sin<V^2 ® efl for i 6 Ix

or:
fi = sin 6^1 0 ef\ + cosflie^ <g> e{2)

2 for i 6 I 2 .

Let us form the incomplete direct product § of the M>
i generated by the

If â , a* are operators in J^^2 verifying:
a« e t 5 l ~ U ai ei,l ~ ei,2

a<*$ = 0 ^*ei2 = 0 for
or:

for » t / 2

we obtain a representation of the CAR in 2 (£j) by setting:

2afaMi , Af = 77(1 - 2o,*a,)a? , (15)
? < i j <i

where we have adopted the same notations for at and a* in £ ( J fP ) and
their extension to £(§) .

The assumption on the 0/s implies the cyclicity of (8) /̂  and an easy
but tedious calculation shows that the corresponding state is identical
with the state of the preceding section. Since a cyclic representation of
a O*-algebra is characterized up to an equivalence by its defining state,
we get the theorem:

2 These a{, af must not be confused with the a(f)9 a* (/) of the preceding section.
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Theorem 4. For each representation of the CAR defined by (4), there is
a set of 6iy i = 1,2, . . . with 0 < 8t < n{2 and a complete orihonormal basis
in (£, {fi} i = 1, 2, . . .} such that the representation is equivalent to the pro-
duct representation defined by (15) where At = A(fi).

The representations (15) can be completely classified according to their
types [12, 14]. We quote here the statements of [14], adapted to our par-
ticular case:

1) The representations are of type 1^ if, and only if:

£ (1 - cos2<9,-) + 2J (1 - sin2f9,.) < oc . (16)

2) The representations are of type IIX if, and only if:

1/2
3) The representations are of type III if, and only if, for some c > 0:

cos2^-
— 1 Bin2 et 1 = oo. (18)

where \x\c = ird(\x\, c).
4) In all other cases, the representations are of type 11^.
Let us now give the detailed consequences for \K\. In case (1), we

denote by E the orthogonal projection on the subspace spanned by the
vectors fif i £ Iv Since inequality (16) is equivalent to:

if we take into account (0 -f A)ft = dtft, we deduce:

+ A - Y) (1 - E) + {0 + A)E = HHbert-Schmidt operator.

But A is also a Hilbert-Schmidt operator. Then:

0 = ~ (1 — E) + Hilbert-Schmidt operator.

Hence:
\K\ — sin© = 1 — E + Hilbert-Schmidt operator.

Conversely, if \K\ has this form, the representation is of type 1^ because,
from theorem 2, it is quasi-equivalent to the representation corresponding
to \K\ — 1 — E, which is a discrete one in the sense of WIGHTMAN-

GARDING [13].

Let us now consider the case (2). Inequality (17) is equivalent to:

<oo

which implies, since A is Hilbert-Schmidt operator:

0 = -j- / -f Hilbert-Schmidt operator
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or, also:

\K\ = —j=r I + Hilbert-Schmidt operator.

The discussion of the case (3) is a little more involved. Let us denote
by /} , If the subsets of Ix such that:

Similarly, let us denote by / | J ̂ i> the subsets of 72 such that:

Thus, (18) can be written:

cos220, ^ cos220,
2:

At least, one of the four series in the left member should be divergent.
This is evidently the case if the 0/s have an accumulation point distinct
of 0, JT/4 and rc/2, or, equivalently, if \K\ spectrum has a limit point
distinct of 0, l/j/2 and 1. In the opposite situation, we can always find
three projection operators in @, El9 Ez, E3, commuting with \K\ and so
that |^ | ^x, |^ | ̂ a, 1-̂ 1̂ 3 must have the unique limit point 0, l/j/2, and 1
respectively3. The corresponding representation is of type / / / if, and only

if, at least one of the \K\El9 \K\E2 - T ^ 2 , \K\E3 - E2 is compact but
|/2

not Hilbert-Sehmidt operator.
It is now very easy to characterize type II^ representations: \K\

spectrum possesses effectively the three limit points 0, l/|/2 and 1 and
the three operators \K\EV \K\Ez — -n=-lB29 \K\E3— Ez are all Hilbert-

|/2
Schmidt operators4.

All this discussion can be summed up in the theorem:
Theorem 5. Let us consider the representation of the CAR defined by (4).

We state:
1°) The representation is of type 1^ if, and only if, \K\ has the form:

\K\ = 1 — E + Hilbert-Sehmidt operator

where E is some projection operator in
2°) The representation is to type IIX if, and only if, \K\ has the form:

\K\ = —~ I -\- Hilbert-Sehmidt operator.

3 It may be that one or two of the iz/s are the null operator.
4 It may be that Et or E3 is the null operator.
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3°) The representation is of type 11^ if, and only if, the spectrum of
K has the three limit points 0, l/j/2 and 1 and the three operators \K\EV

\K\E2 — ~j=rE2i \K\EZ — E3 are Hilbert-Schmidt operators, where Ex, E2,

E3 are projection operators commuting with \K\ and chosen so that \K\EV

\K\E2, \K\EZ have spectra with the unique limit point 0, l/j/2 and 1
respectively.

4°) In all other cases, the representation is of type III.
In particular, if \K\ has a spectrum partly continuous, we have

necessarily a limit point distinct of 0, l/j/2 and 1 and consequently the
representation is of type / / / . This is precisely the situation for the re-
presentation given in [3] and describing an infinite free fermion gas with
constant density at a temperature T which is finite and not zero.

V. Complementary Results

We can use theorem 5 for etablishing the reciprocal statement of the
lemma 1, and, to some extent, of the theorem 2. Indeed, we have:

Lemma 1'. If H and K in £(@) satisfy the relations (8) and if there
exists U unitary in 2 (5) such that relations (9) are satisfied, K is a Hilbert-
Schmidt operator.

Proof. Since the representation of the CAR provided by the first
line in (9) is of type 7^, it results from the first part of theorem 5 that:

\K\ = 1 — E -}- Hilbert-Schmidt operator.

with E some projection operator in <£((£). Now, since this representation
is equivalent to Fock-representation, it can be shown easily that E is
unity operator. Thus, |JKT| is actually a Hilbert-Schmidt operator; and
the same is evidently true for K.

Theorem 2'. Let us consider the two sets of operators:

A2(f) =a(

where Ht, Kt are positive and satisfy:

H\ + K\ = I.

If there exists U unitary in £(5) SUC/h that:

A,(f) = VAx{j) V* , £*(/) = UB*(f) U* ,

the operator H1K2 — K1H2 is necessarily Hilbert-Schmidt.
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Proof. We can write:

a(f) = A1(H1f)-B*(K1f)

b*(f)=A1(K1f)+Bf(H1f).
Hence:

Va(f) V* = A2(Htf) - B* {Kxfi = a((#2#x +

Ub*(f) U* =

From the preceding lemma, {K2H1 — H2K1), hence its adjoint, is
necessarily Hilbert-Schmidt.
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