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Abstraet. We study representations of the canonical anticommutation relations
having the form:

A(f) = a(Hf) + b*(K/)
A*(f) = a*(Hf) + b(K])

where a(f), b*(f) and their adjoints are two basic anticommuting fields in a Fock
Space.

A complete determination of the type in terms of |K| = (K* K)!/2 and a sufficient
condition for quasi-equivalence are given.

1. Introduction

Let € be a complex Hilbert space of test functions, denoted by
1.9, k, ... To each element f of € correspond two bounded operators on
a Hilbert space &, a(f) and b*(f), depending linearly and continuously
on f in the uniform topology of operators. We denote briefly their ad-
joints by a*(f) and b(f); therefore, these are semi-linear in f. We impose
the relations:

[a(f), a(g)]s = [b*(f), b*(9)] = [a(f), b*(9)]; = [a(f), ()] =0
[a(f), a*(9)], = [6(9), ¥* (N1 = (f, 9) (1)
f,9¢€, [4,B],=AB+ BA,

and we take for § the customary Fock-space associated with these two
anticommutating fields. Id est, we have in § a vector £, such that:

a(f)2,=0b(2=0, fgc€ 2)
and all the linear combinations of vectors having the form:

a*(fy) - . - a*(f) D* () - - - 6% (92) 26

are a dense set in §.
Now, if H and K are operators in £ (€) which satisfy:
H*H + K*K =1 ®3)
we set:
A(f) = a(Hf) + b*(Kf) . 4)
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Clearly, A4 (f) is linear and norm-continuous in f. Moreover, if 4*(f)
is the adjoint of 4 (f), a simple calculation gives:

A0, A9l =0, [AF), A*@))= (. 9)- (4)

Thus, we have defined by (4) a representation of the canonical anti-
commutation relations (CAR in the following). These representations
have been introduced in [1] and are useful for describing gauge invariant
generalized free fermion field [2], in particular, a free fermion gas with
constant density at finite temperature [3]. Their study mainly from
a mathematical point of view, is the purpose of this paper.

First, we recall some facts about the CAR. The most out-standing is
the existence of a canonical C*-algebra 2 which can be viewed as gene-
rated by the 4 (f)’s and their adjoints. Detailed constructions of it can
be found in [4]. A is a uniformly hyperfinite C*-algebra [5].

With the concept of C*-algebra is associated the concept of state:
a state o is a positive linear functional on the C*-algebra with norm one
[6]. In our case, a state w is uniquely determined by the quantities:

w(A*(fy) ... A*(fa) A(g)) - - - A ()

that is, if we have, for two states w; and w,:

o (A*(fy) - - . A*(fa) A(g1) - - - A (gm))
= wy(A*(fy) - .. A*(fa) A(g0) - - - A(9))

for all f, and g; in €, these states are identical.

A representation s of the C*-algebra 2 defined in the Hilbert space
H, is cyclic if there exits in H, a vector £ such that the set of vectors
{7 (x)Q, v € A} is a total one in H,. If 2 is normed to one, the quantity:

@)=, 02, xzc

defines a state on 2. Conversely, to each state on 2 can be associated
canonically a cyclic representation. We have the evident result of which
we shall make use in the following:

If the same state is ascribed to distinct cyclic representations these
representations are equivalent.

An important notion, which is basic for our work, is the quasi-
equivalence of two representations [6]. Among many definitions, we
take the following:

Two representations z, and 7, of a C*-algebra are quasi-equivalent
if there exist a multiple of 7, and a multiple of 7, which are equivalent.

It should be noticed that the quasi-equivalence is a true equivalence
relation.
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II. Some Auxilary Results on Quasi-Equivalence

Let Vg and Vg closed subspaces of € spanned by the values of H
and K:

Ve={H},fc€ Vg={K}.[c€
and Vi, Vi be their complementary subspaces. Generally, V3 and Vi
are distincts from the null space. We denote by %;,¢=1,2,... and k,-,

t=1,2,... some orthonormal basis in each of them. Now let &
be the closed subspace of § spanned by the vectors:

A*(fy) - A*(fa) A(g0) - - - A(gm) a*(By,) - - - a*(hy,) b*(Ky,) . . . b* (K

lq

it

)2,

(6)
n=0,1,2,...; m=0,1,2,...; f;c€ g,€€.

One the one hand, GFX, ., . is an invariant subspace for the
representation (4) in which this representation is restricted to a cyclic
representation with a*(h;) ... a* (k) b*(k;) ... b*(k;, )2, as cyclic
vector. These subrepresentations are all equivalent because the states
generated on the C*-algebra of the CAR by the various cyclic vector
are identical. This results almost immediately from the anticommutation
of the A (f)’s and 4*(f)’s with the a* (k;)’s and b*(k))’s.

On the other hand, we have:

% @ @ 814 Apifredg

D¢ .. “ip
J1-e0g

Indeed, it can be proved easily by induction that each vector in ¥
having the form:

a*(Hfy)...a*(Hf,) b*(Kgy).. . b*(Kg,) a*(hy,) . ..a*(h; ) b¥ (k) ...b*(k;,) 24

(M
can be written as a linear combination of vectors having the form (6).
Let now, in (7), fi, - o frs 015 - « +» g Tun over €, p and ¢ run over all

integers and ¢, . . . %, and 5, . . . j, over all choice of the indices, we obtain
a set of vectors which is a total one in &; then we get:

Theorem 1. The representation of the CAR defined by (4) is a multiple
of a cyclic representation. The multiplicity is equal to 27+, where r and s
are the dimensions of Vi and V.

In our case, the state which defines the cyclic representation satisfy:

o(A(f) - Af) Algy) - - - A(gn)) = (A*(f)) ... A*(fa) A(g) - - -
n(n—1)
4 (gm)QO) Qo) =(-1) 2 6nm det (K*Kg,, f}) .
Since the knowledge of these quantities characterizes completely the
state, it is clear that two representations (4) with the same value of
K* K can differ only by their multiplicity, and then are quasi-equivalent.
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Corollary. All the representations (4) having the same value of
|K| = (K* K)\/? are quasi-equivalent.

In particular, the representation (4) is quasi-equivalent to the re-
presentation defined by:

A(f) = a(|H|f) + b*(|K]]) .
Lemma 1. If H and K in L(€) satisfy the relations:
H*H + K¥K=1 HH*+ KK*=1
H*K = K*H HK* = KH*

and if K is an Hilbert-Schmidt operator, there exits in L(F) @ unitary
operator U such that:

A(f) = a(Hf) + b*(Kf) = Ua(f) U* }
B*(f)y = — a(Kf) + b*(Hf) = Ub(f) U*.

Proof. The representation of two anticommuting fields defined by the
right member in (9) is irreducible. Indeed, from (8), we get:

a(f) = A(H*f) — B*(K*f)
b*(f) = A(K*f) + B(H*{).

Therefore, an operator commuting with 4 (f), B*(f) commutes with
a(f), b*(f) and thus is scalar.
Now, if K is an Hilbert-Schmidt operator, it can be written [7]:

Kfzzligi(f,fi)a A=0 2}»%<°0,

(8)

9)

where {f;,¢=1,2,...} is an orthonormal basis and {g,,7=1,2,...}
an orthonormal set of vectors in €. The A;’s are eigenvalues of |K|. By
(8), we have for H:

Hf=XY1=Rh(f 1),
1
where {h;,1=1,2,...}is an orthonormal set of vectors. Moreover, by
the first Eq. (8), we have:
Rk g;) = 172 (ks> ;) -
So, (ks g;) = 0if ; & ;. But for A; + 0, 4, = 4, is possible only for a finite
number of 4, since K is Hilbert-Schmidt. Let ¢y, ¢,, . . . ¢, be these values
of 5. From the second Eq. (8), we get:
(i Biy) = (i 93,) -
Hence the matrix with elements (g;,, b;) is unitary and hermitian.

So, its eigenvalues are 41 and there exists a unitary finite dimensional
matrix u, such that:

%‘ hiu = £ %’ G W1 -



Anticommutations Relations 233

Setting:
9y = % Fir, Ukt
we have:
2 Upa iy P 2 Upre9y &=+1

and the terms 4, 3 g;,(f, f.), V1 — 22 X by, (f, f;,) in the expansions of Hf
k %

and K f become respectively:
%2 d (ﬂ;fﬁulk) , V=R Z (L;ff,uuc) g=t1.

If A; is zero, the corresponding f, and g; in the expansion of K are
immaterial and we can always assume A, = g; for all ¢ with 4; =0, so
that, setting now:

f;k = 4;.7 e

and dropping the dashes, we can write for Hf and Kf:
Kf=X%g:(h 1), Hi=XY1—-Regff) e==1
3 K2

where, this time, g;,¢ =1, 2, . . . is an orthonormal basis in €, as implied
by HH* + KK* =1
Then, we have:

A(f) = Z (. 1) (l/l — 73 g;a(gy) + A:b*(g,))

g==41
B(f) =2 (, ) (— Aa*(g:) + Y1 — 2 e:b(g2)) -

Now the vector:
Q=11 (l/l — 1 — e Aa*(g;) b* (gi))go

is in , as follows from the condition Y} A2 < co, and a straightforward
i
calculation gives:

Thus, the A4 (f), B*(g) defined in (9) determine an irreducible Fock
representation in the same way as the a(f)’s and b*(g)’s, therefore these
two representations are unitarily equivalent. This completes the proof
of the lemma.

As a first application, we can derive the:

Lemma 2. If, in (4), H and K are positive operators, we can always
assume that K does not admit zero or one as eigenvalues.

Proof. Let {f,1=1,2,...} and {g;,j=1,2,...} be orthonormal
basis in the eigenspaces of € corresponding to the eigenvalues one and
16 Commun. math. Phys., Vol. 9
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zero respectively. For f in €, we may write:
f=2“1f1+206791+k’ (k fz) kgﬂ) O»iaj=1:2:"‘ (10)
i i
Moreover, by (3):
Hf;=0, ¢=1,2,.. ,Hg;=¢9; ¢=12,...

Now,let {6,,1=1,2,.. .}and {w;,j = 1,2, .. .} be two sets of arguments
such that:

7T T
0<b;<5, O0<w;<3m
20 <o, Joj<o.

From the preceding lemma, we deduce the existence of an unitary
operator V in £({) such that:

a(f)U* = 3 aufcosbialfi) + sinf;b* (/)

+ 2 fi(coswsa(g) + sined*(g) + a(k
Ub¥()U* =X oci(— sinf;a(f;) + cosd;b* (f,)

:L%’ Bi(— sinw;a(g;) + cosw;b*(g,)) + b* (k)

Since the space spanned by the vectors % of (10) is invariant by H and
K, we have:

A () =UA(f)U*=a(Hh)+ b(Kh) + 3 o;(cos0;b* (f;) — sinb;a(f,))

+ 2 Bi(cosw;alg;) + sinw;b*(g;)) = a(H'f) + b*(K'f) (11)
with:
K'f=Kf— 2 (1 — cosby) (1, f)f: + Z sinw; (f, 9;)9;

H,f_Hf Zsme (f’.fzf 2 1—-cosw,) (f’ga)
j
If f given by (10) must verify K'f = 0, we have:
Kh+ )] a;co80;f; X fisinw;g; = 0.
i i

The inequalities imposed on 0; and w; imply «; = f; = 0; but, from
Kh =0, follows 2 = 0 by the definition of 4. In the same way, we shall
show that K'f = f implies f = 0. Thus we have constructed a represen-
tation with the required property, unitarily equivalent to the initial one.

Remark. One can show easily that in the conditions of the lemma, the
representation is cyclic with £, as cyclic vector. This remark shall be of
some use in the following (cf. section III).
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Let us now consider two representations of the type (4):
4;(f) = a(Hyf) + b(Kyf) (12)
A5(f) = a(Hyf) + b(Kof) (13)
where H,, K, and H,, K, are assumed positive. We state:
Theorem 2. If (H,K,— K, H,) is an Hilbert-Schmidt operator, the

representations (12) and (13) are unitarily equivalent.
Proof. Let us consider:

a'(f) = a((H,Hy + K, K,)f) — b*((H, K, — K, Hy)f),
b'(f) = a((H Ky — K Hy)f) + b*((Hy H, + K Ky)f) -
Since [H;,K;]= [H,, K,] =0, the operators H = H,H,+ K, K, and

K = K, H, — H, K, have the properties stated in the lemma 1. Therefore
there exists a unitary operator U in £(F) with:

a(f)=Ua()U*, b (H=Ub(fHU*.
But:
a' (Hyf) + b™*(K,f) = a(Hyf) + b* (Ky f) = A, (f) -
Hence:

4,(f) = U4, (HU*.

IIL. The Main Results
Since, by (3), K is bounded by one, we can define an operator @ by:
O = Arcsin K| .

Theorem 3. Each representation (4) ts quasi-equivalent to a similar
representation for which the corresponding |K| has a discrete spectrum.
Proof. Let us assume @ have a spectrum with a continuous part.
voN NEUMANN has shown [8] that we can add to © a Hilbert-Schmidt
operator, A such that & + 4 has a discrete spectrum contained in
[0, /2] as © spectrum is'. Moreover, 4 can be chosen so that [|4| < e,
where ¢ is some positive number. We can form cos(® + 4) and
sin (@ + A) which are positive operators and consider the representation
defined by:
A'(f) = a(cos(O + A)f) + b(sin(@ + 4)]) . (14)

Using a technical device customary in quantum field theory, we have:
1 1 t
et O +4) = ¢i0 (1 +i¢ [A@Q AL+ [ dt, [ di,A(8)A@E)
0 0 0

1 £ tn-1
+oeeetin fdty [dty... [ dt,,A(tl)A(tz)...A(tn)-}-.)
0 0 0

1 We owe this remark to Dr. O. E. LANFORD.
16*
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Here A (t) = e~%t94 ¢t. Since A4 (t) is a Hilbert-Schmidt operator with
the same Hilbert-Schmidt norm as A4, the series in the right member,
minus his first term, converges in the Hilbert-Schmidt norm and defines
an Hilbert-Schmidt operator. Thus we have:

i ©@+4) — ¢i® L

where 7' is a Hilbert-Schmidt operator. Taking the adjoints of the two
members, we get:
e—iO@+4) — g—i® L

and these relations imply:

T+ T* . — T*
_; R sin(@-{—A)::sm@—{-Tm. .

cos(@ + 4) = cosO +
Now:
sin (@ + 4) cos® — cos(O + A) sin@ = —;— (Tet® + T*e-19),

Since the right member is a Hilbert-Schmidt operator, it results from the
lemma 2 that the representation (14) is equivalent unitarily to the
representation defined by:

A" (f) = a(cosOf) + b*(sin@f) = a(|H|f) + b*(K]f) -

But, as a by-product of the theorem 1, this last representation is quasi-
equivalent to the original one.

Therefore, if we do not make any distinction between quasi-equivalent
representations, we may assume that K in (4) is a positive operator with
a complete discrete spectrum. Moreover, if we take in account the lem-
ma 2, we may even assume that K does not admit zero or one as eigen-
values. Thus we write:

i

where P, is the projection operator on the eigenvector f,. Since the
orthonormal set f,,%= 1,2, ... is complete and £, is a cyclic vector,
we may characterize the representation by the set of numbers:

(A*(fiy) - - - A*(fi,) A(f) - - - A(fy,) Lo o)
= o(@*(fy) - A*() AG) - A

which define uniquely a state w on the C*.algebra of the CAR. All these
numbers are zero, except if the sets (4;, . . . ¢,) and (jy, . . . j,») are identical
up to the order. By the CAR, these last quantities can be written as
linear combinations of w(N(f;,) ... N(f;,)) where N(f;) = A*(f,) A(f,),
and a direct calculation gives:

o(N(fiy) - - N(f,) :kj—jl sin%0;, .
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We must remark that the adjunction of an Hilbert-Schmidt operator to
a symetric operator does not change the limit points of the spectrum.

Thus if ® has a continuous spectrum, the discrete spectrum of @ + 4
admits all the points of a segment as accumulation points. This remark
shall be used in the following.

IV. An Equivalent Representation

We recall briefly in this section the construction of a family of
representations of the CAR, the detailed study of which was made in
[9, 10] in a slightly different form. To each 7,7 =1,2, ..., let us cor-
respond two two-dimensional Hilbert-spaces s and #® and let be
Hy= AV @ AP If 0,i=1,2,..., is a set of arguments verifying
the inequalities 0 < 0; < /2, we denote by I, the set of indices such that
0<0; < nf4 and by I, the set of indices such that m/4 < 6, < /2.
We choose in each ,}%’) the basis vectors eﬁ, j7=1,2, and we consider
f: in o#; given by:

fi = cosf;ef) ® e} + sinf;e{) ® €2 for ¢l
or:

f;=sinf,e) ® €2} + cosfe{Y ® e for i€l,.
Let us form the incomplete direct product §) of the J#; generated by the
s [111:

fi
9= ® Hy .
If a;, a¥ are operators in {12 verifying:
ad =0 are = o)
a6 =0 a¥ed=0 for ¢l
or:
=) et} =0
a;eét) =0 afeél] = e} for icl,
we obtain a representation of the CAR in £($) by setting:
A;= JT(1—2dfa)a,, A¥= JT(1- 2afa)af, (15)
i<i i<i
where we have adopted the same notations for a; and o} in € (#!) and
their extension to £(9).

The assumption on the 0,’s implies the cyclicity of ® f; and an easy
but tedious calculation shows that the corresponding state is identical
with the state of the preceding section. Since a cyclic representation of
a O*-algebra is characterized up to an equivalence by its defining state,
we get the theorem:

2 These a;, a¥ must not be confused with the a (f), a*(f) of the preceding section.
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Theorem 4. For each representation of the CAR defined by (4), there is
asetof O,1=1,2,...with 0 < 0; < 7/2 and a complete orthonormal basis
in €, {f;,i=1,2,...} such that the representation is equivalent to the pro-
duct representation defined by (15) where 4; = A(f;).

The representations (15) can be completely classified according to their
types [12, 14]. We quote here the statements of [14], adapted to our par-
ticular case:

1) The representations are of type I, if, and only if:

2 (1 —cos26,) + 3 (1 — sin%0,) < oo . (16)
i€l, i€l
2) The representations are of type 11, if, and only if:
> (1 — L (cosB, + sinei)) <. (17)
ier V2
3) The representations are of type I11 if, and only if, for some ¢ > 0:
. ap |cO8%6, (|2 2p | 8in%0; ]2 _
qLélsm 0, 70, 1c +i€Z;’, cos?0; om0, lc oo . (18)

where |x|, = inf (||, ).

4) In all other cases, the representations are of type II ..

Let us now give the detailed consequences for |K|. In case (1), we
denote by E the orthogonal projection on the subspace spanned by the
vectors f,, ¢ € I;. Since inequality (16) is equivalent to:

o+ X (F-0) <
i€l i€l,
if we take into account (@ 4 A)f; = 0,f;, we deduce:

(@ Iy %) (1—B) + (@ + 4)E — Hilbert-Schmidt operator.
But 4 is also a Hilbert-Schmidt operator. Then:

= g— (1 — E) + Hilbert-Schmidt operator.
Hence:
|K| = sin® = 1 — E + Hilbert-Schmidt operator.
Conversely, if | K| has this form, the representation is of type I, because,
from theorem 2, it is quasi-equivalent to the representation corresponding
to |K|=1— E, which is a discrete one in the sense of WIGHTMAN-
Garpine [13].
Let us now consider the case (2). Inequality (17) is equivalent to:

55 0f <o

ier\4
which implies, since 4 is Hilbert-Schmidt operator:

0= % I + Hilbert-Schmidt operator
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or, also:
K| = V_ —= I + Hilbert-Schmidt operator.
The discussion of the case (3) is a little more involved. Let us denote

by I1, I? the subsets of I, such that:

cos?0;
sin? 6;

cos?0;
sin20

~1)>c if it ( ~1)<e if eI},

Similarly, let us denote by I3, 1%, the subsets of I, such that:

-2. ‘2‘
(smo,_l)<c i iEI%,(sme'——-l)>0 it icl3.

cos?6; cos?6;
Thus, (18) can be written:

c? 21s1n26 + 22 0;212260 —{—.21 00882290 + ¢ X cos?f; = oo .
(A4 n i€} i€}

At least, one of the four series in the left member should be divergent.
This is evidently the case if the 6,’s have an accumulation point distinct
of 0, #/4 and z=/2, or, equivalently, if |K| spectrum has a limit point
distinet of 0, l/l/é and 1. In the opposite situation, we can always find
three projection operators in €, E,, E,, E,, commuting with |K| and so
that |K| By, |K|E,, |K| B, must have the unique limit point 0, l/l/é, and 1
respectively®. The corresponding representation is of type III if, and only

if, at least one of the |K|H,, |K|E, — V- E,, |K|E, — E,is compact but

not Hilbert-Schmidt operator.
It is now very easy to characterize type II,, representations: |K]|
spectrum possesses effectively the three limit points 0, 1/]/§ and 1 and

1
the three operators |K|E,, |K|E,— ﬁEz’ |K|E, — E, are all Hilbert-

Schmidt operators?.
All this discussion can be summed up in the theorem:

Theorem 5. Let us consider the representation of the CAR defined by (4).
We state:

1°) The representation is of type I, if, and only if, |K| has the form:
|K| = 1— E + Hilbert-Schmidt operator

where E is some projection operator in L (€).
2°) The representation s to type 11, if, and only if, |K| has the form:

|K| = ~V£§- I + Hilbert-Schmidt operator.

3 Tt may be that one or two of the E,’s are the null operator.
4 Tt may be that E, or E; is the null operator.
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3°) The representation is of type Il if, and only if, the spectrum of
K has the three limit points 0, 1/[/2 and 1 and the three operators |K|E,,

|K|Ey — VIQ—E’z, |K|Ey— B4 are Hilbert-Schmidt operators, where By, E,,

E; are projection operators commuting with |K| and chosen so that |K|E;,
|K|E,, |K|E; have spectra with the unique limit point 0,1/)/2 and 1
respectively.

4°) In all other cases, the representation s of type I11.

In particular, if |K| has a spectrum partly continuous, we have
necessarily a limit point distinet of 0, l/l/ﬁ and 1 and consequently the
representation is of type I1/. This is precisely the situation for the re-
presentation given in [3] and describing an infinite free fermion gas with
constant density at a temperature 7' which is finite and not zero.

V. Complementary Results

We can use theorem 5 for etablishing the reciprocal statement of the
lemma 1, and, to some extent, of the theorem 2. Indeed, we have:

Lemma 1'. If H and K in 2(€) satisfy the relations (8) and if there
exists U unitary in L () such that relations (9) are satisfied, K is a Hilbert-
Schmidt operator.

Proof. Since the representation of the CAR provided by the first
line in (9) is of type I, it results from the first part of theorem 5 that:

|K| =1— E + Hilbert-Schmidt operator.

with & some projection operator in £(€). Now, since this representation
is equivalent to Fock-representation, it can be shown easily that £ is
unity operator. Thus, |K| is actually a Hilbert-Schmidt operator; and
the same is evidently true for K.

Theorem 2. Let us consider the two sets of operators:

A, (f) = a(H,f) + b* (K, f) } (19)
Bf (f) = — a(K,f) + b* (H,f)
A5(f) = a(H,f) + b* (Kyf) } (20)
B (f) = — a(K,f) + b*(H,f)

where H;, K; are positive and satisfy:
H?+ K?=1.
If there exists U unitary wn L(F) such that:
4,(Hh=U4HU*, Bi(f)=UBF(HU*,
the operator Hy K, — K, H, is necessarily Hilbert-Schmidt.
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Proof. We can write:
a(f) = A4, (Hf)— BY (Kyf)

b*(f) = A; (K1 f) + BY (H,f) .
Hence:
Ua(f)U* = 4,(H,f) — B3 (K,f) = a((H H, + K,K))f)

+ b*((K H, — H,K))f),
Ub*(f)U* = 4,(K,f) + B;(Klf) = — a((K,H, — H,K,)f)
+ 0*((H H, + K, K,)f) .

From the preceding lemma, (K,H, — H,K;), hence its adjoint, is
necessarily Hilbert-Schmidt.
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