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Abstract. The Bethe-Salpeter equation describing the interaction of two scalar
particles via the exchange of a third scalar particle with mass ¢ == 0 is in configura-
tion space a hyperbolic partial differential equation of fourth order which will be
studied with the help of the Riemann mecthod. This method yields two Volterra
equations the solutions of which are special solutions of the Bethe-Salpeter equation.
The wave function is a superposition of the special solutions. For the coefficients
one gets a system of two integral equations. The Fredholm determinant of the
system is the generalization of the nonrelativistic Jost function.

1. Introduction

An exhaustive treatment of the Schrodinger equation has been given
by NEwroN. Crucial for the success of this method is the introduction of
several modified Green’s functions leading to Volterra integral equations.
The Volterra equations can be solved by iteration for all values of the
potential-strength. Despite the fact that the Schrodinger equation is an
ordinary differential equation while the Bethe-Salpeter equation is a
partial differential equation the generalization of this method to the
Bethe-Salpeter case is possible. The Volterra equations in two variables
can be established with help of the Riemann method (2, 3] or formally by
splitting the Green’s function into a Riemann function and two residual
terms. The solutions of the integral equations which can be obtained by
iteration are special solutions of the Bethe-Salpeter equation. The
solution with causal boundary conditions is a superposition of the special
solutions. For the coefficients in this expansion we get a system of two
integral equations in one variable. The Fredholm determinant of the
system is the generalization of the nonrelativistic Jost function [4].

In Sec. IT we treat the radial Schrodinger equation. For convenience
we confine us as in the Bethe-Salpeter case to zero angular momentum.
Only those aspects are written down which can be already generalized.
In Chapt. 3 we write down the differential form of the Bethe-Salpeter
equation for two scalar particles with masses m; and m, which interact
via a potential. Here we have in mind the Yukawa potential which de-
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seribes the interaction via the exchange of a third scalar particle of mass
w == 0 but also other potentials belonging to a certain class are admissable.
Then we make use of the Riemann method by which we get the Volterra
integral equations. The difficulties for getting the Riemann function are
by-passed by the introduction of the Green’s function and its decomposi-
tion. The proof that the Volterra equations can be solved in fact by
iteration for all values of the strength of the potential is given in this
paper only for the bound state case. A generalization of this proof to
scattering seems not trivial to us.

2. The Schridinger Equation

First let us study the radial Schrodinger equation for zero angular
momentum :

Ly(k,r) = AV (r)p(k, 1) (1a)
with
d2
l:= FI k2.

The potential V (r) may satisfy

,
0
The free equation
Ly (k,7) =0 (1b)
has the solutions e~ %7 and et?%" or sinkr and coskr.

Now define to I an adjoint operator m so that v (r) lu (r) — w(r) mv(r)
will be a divergence:

v(r)lu(r) —w(r)mo(r)= 7;17 W.(v,u).

In this case m =1 and W,(v, u) = vu' — uv'; u' = %u(r). If % and v
satisfy (1a) or (1b), then W, (v, u) does not depend on r. Let us consider
7 r=r
JarfA@, " Uu@) —u@)ym A@r, )] = W.(A@Fr, ), u) | (2)
0 =0
where [’ and m’ act on the primed coordinates. Let « (') be a solution of
(1a) and let u (r') tend to u® (') for " — 0 where u°(r) may be a solution of
(1b). Further may be
m' A, ") =0
with
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It is easy to see that in this case
A(r,r") = %—sink(r —7')
and
W (A, 1), w(r )]y = o= W (A (r, 1), u® ()] = o

= W, (4(r, ), u"(r’))]r»z ,= —u(r)
because of
mA =1u®=0.
Further it is
W (A, r), w)|” =" =u(r).

Thus taking in mind I'u (r') = AV (") u(r') and m' 4 (r, ') = 0 (2) can be
written as

w(r)=ul(r)+ A fdrA@r, ) V(') ul'). (3a)
0

For u%(r) = sinkr denote the solution of (3a) by ¢(k, r) in agreement
with NEwTtox [1]. (3a) can be solved by iteration for every A. The proof
for this statement can be found in NEWTON’S paper.

There is another way for getting this Volterra equation. In the scat-
tering theory one usually converts (1a) in an integral equation which
incorporates the boundary conditions that the solution of the Schrédinger
equation without separation of the angular momentum consists of a
plane wave plus an outgoing spherical wave; thus for zero angular
momentum the integral equation reads

wik,r)=sinkr+ A [dr' Gk, r,v") V(') p(k, ') (4)
0
where G (k, r, r'), the Green’s function, is
——fdp _Sglzpl Skl:lf_’w = -—%(0 (r—r')et*rsinkr’ + (' —r) et® 7 sinkr) .

(4) can be solved by iteration only for small enough 4 [5]. The aim is now
to transform (4) into another equation like equation (3a), which can be
solved always by iteration.

This is done easily by writing

Gk, r,r") = — %e“”" sinkr + 0(r — 1) [—-%(e“” sinkr’ — etk sinlc-r)]
=——%—e“”' sinkr + 0(r — ') A(r, r') . (5)

So the Green’s function is split into a Volterra kernel and a separable
kernel. It is worthwhile for our further investigations to exhibit how the
splitting can be performed in momentum space:
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We have
1 1
S . N 2 1.2
AT R i T S r e — e — 2w (p) 0(p* — &)
and
eiprsmpr 1 I T L
_w-c f p ERDE :?0(7”_7)—2;(6 ikt gikr _ ikt g=ikr)
= 0@ —1) A, ).
Thus
o . ipr 1 + o0
oL s L[ gy et
G(k,h?)“_in ppz—kz—ie in (p+zs)—k2

-2 f dp 0 (p) 8(p? — k2) etP” sinpr

=00 — ) A, ) -—%e“”'sinlcr.

For the Bethe-Salpeter case such a splitting in the integral representation
will be the simplest way to get a Volterra kernel. Now, inserting (5) into
(4) we get

p(k, ) = sinkr — - sinkr [ a5’ 57 2V () p(k, 1)
0

+ zfdr'A<r, ") V) ke, o)
0
Recalling (3a) we see that

"/)(ka 7') = a(k) Q’(k’ 7‘)

with
alk)="Fk— 1 fdr’ ErT V) wik, r')
and so ’
all) = k= a(l) 2 [ dr' ¢+ V() gk, r)
or ’
) = 7

where 1 + A f dr' e* V(') p(k, ') is denoted by f(— k) again in agree-

ment with NEWTON
In a completely analogous manner we can find the other Volterra
equations of NEwToN

F(Fk, 1) = exir 1 ) fwdr' A, ") V(') f(Fk, ) (3Db)
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and the corresponding expansion of the solution (%, r) in terms of these
special solutions is

Pk, 1) = — g fe) + 55 S(E) [(— . 7)

with
14kt [ dr sinks V() f(k, ')
1]

S (k) =~ S
Lkt 2 Jdi’ sinker’ V() f(— 1)
0

The crucial points are the steps from (2) to (3a) and the splitting in (5)
which can be generalized to the Bethe-Salpeter case.

3. The Bethe-Salpeter Equation

3.1. The Equation and its Free Solutions

Let us now consider a system of two relativistic particles with masses
My, My, coordinates x;, x, and momenta p;, p,. We write the equation
in its differential form

(01 + mF) (Op + m3) (g, ) = AV (2 — 25) P (g, @)
where

Following ScawArTZ and ZumacH [6] we make a complete canonical
transformation
P=mp+p, X =y + pay
k= papy — pups = (ko k) @ =2 — w3 = (%, 1)
where u;, u, are constants restricted by u, + u, = 1 so that
dp,dp,=dPdk, dx,dx,=dXdx.
In the center-of-mass frame we can write

P = (03, K), Py = (wy, —Kk),
where

w;=)/m?+ Kk
thus
P=(E,0); B=ow,+ w,.

In the bound state case we have k2 < 0; k = l/iii: 1%, Further let us
split off with ScEwarTz and ZEMACH the c.m. momentum writing
P(xy, 75) = e~ P Xy’ (z) and make the phase transformation g’ — ei*%y’
where v = u,w; — 1 w,. The incident wave is written as

o (%9, 1) = €'¥'T,  independent of x, .
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Assuming that V(z) only depends on x, and r = |r| we make a partial
wave analysis and consider the Bethe-Salpeter equation for zero angular
momentum:

02 0% 0 02 02 0
v T 9 O e (T 9 % e .
(axg G~ 21 o, k ) (ax% o T 200, FEN k ) ¥ (@, 1)
= AV (g, 7) P (g, 7) -

This is a hyperbolic partial differential equation of fourth order in two
variables. It is convenient to introduce the characteristic coordinates
[2,3] 2, = ay+ 7 and 2, = @y — » so that (6) can be written in the form

Ly Ly (21, 25) = AV (21, 25) 9 (215 25) (7)
where
02 . 0 0 s
T, — 2o (g o) —
» . F F R
L2 =4 m‘ —+ 2%0)2 (Fz? -+ “agz—) — 2.

Evidently L, L, = L, L,.

r<0

Fig. 1

Because of » > 0 we have z; > 2,. 2, = 0 and 2z, = 0 are the boundaries
of the light-cone a2 = a2 — 7% = 2z, = 0.

The fourth quadrant corresponds to the spacelike domain, the lower
half of the first quadrant to the forward cone and the lower half of the
third quadrant to the backward cone.

The potential V (2, z,) will have to fulfill come conditions which will
show up in the further calculation.
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The free equation
LiLyp(z,29) = 0 (7D)
has the following special solutions:

a) two manifolds of solutions to L;¢p = 0

2

PR WO S e SR
o\ gty (B2 i —iqz
W11 (q, 21, 25) = € 2 7} e agteT VA (8a)
and
2
P2l (e ) —iaz ,,iﬂzz
Wy (q) 2 2"2) =e 2 1T e e 4q (Sb)

with ¢ > 0 or ¢ < 0.

b) two manifolds of solutions to L,¢ = 0

2

. Wy . . My .
0o (@, 29, 25) = €~ 2 1 T T iz (8¢)
and
.o, : . 7"%
Oog (s 29, 2) = €77 BT E) gmiaz g ing (84d)

with ¢ > 0 or ¢ < 0.

; ok
¢) two solutions e* 1% — ¢F15 %) of [, ¢ - 0 and L,p = 0 which
P

can be obtained by setting in a): ¢ = % -+ k 5 -

Sorinb):g= —%2~ﬁ:

For convenience let us define
1
(9> 21 22) = 55 (011(g; %1, 22) — ©12(0; 24, 20)) (8e)

1
g (95 215 22) = 57 (@21(7, 21, 23) — ©23(7; 21, 24)) (81)
and

wy(k, 29, 29) = sinkr = u (%3- + ]23 s 215 zz) = Uy (-— %2— + % ) 215 zz) (8g)
3.2. The Riemann Method

Again let us define an adjoint operator M ; to L; so that u L;v — v M ,;u
will be a divergence:

0 0
wl,v—vMu = U, T V.
It is easy to see that

0% . 0 0

ﬂ{[l = 4m—{— 22601 (*52"*‘ 3 0) — k2
0 0 2

Vi _ P . N — 2

My= 455 Zzwz(azl + 622) k
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and
U =v- 4—6———2iwlvu
22
Vy = ~u-4——— 25 m,vu
U,=v- 4 kZzwzvu
Vo= —u- 4 +2uozvu.
Thus

vLyLyu — wMy Myv = v Ly (Lyu) — (Lyu) Myv -+ (Myv) Lyw — uw My (M)
= v Ly (Lyu) — (Lyu) Myv + (Myw) Lyw — w My (M)
so that in the first case we have
d ]
vLy Lyu — uM; Myv = N Wi (v, u) + £ Wis(v, u) (9a)
and in the second case

0 0
vLyLqyuw — wM; M,v = Ern Woi(v, u) + EPN Wy (v, u) (9b)

with

Wll(v,u)=[(43%2~— 2iw1) 2u]v—}—Mv[( +2tw2) ] (10a)
Wy, u) = (Lyu) [(-4—6-2T 2@601) ] [( o Zzwz)Mv] (10D)
W, (0, u) = [(4—~+ 21,002) L u] v+ My [( LA 2m1) u] (10¢)

W o (v, u) = (Lyw) [(—4—671+ 2m2) v] + u[—4aizl - 2ia)l) sz]. (10d)
Now consider
fo dzy dzy [R(k, 2y, 29, 21, 25) L1 Lou (21, 23)

— u(21, 20) M{ MR (k, 2y, 25, 21, 23)]

where D will be the domain noted in Fig. 2 and R(k, 2, 2, 21, 23) will be
an integralkernel denoted in the following by Riemann function.
Because of (9a, b) we can write for (11):

(11)

5 , B
Jdz, Wiy (R, w)r=5 4+ [ dzgy Wiy (B, )|z =2 + fdzz Wir (B, w)lz =2
2y 2%

A z (12)
+ [del Wia(R, w)h=z + [ d2g Wig(B,u)2=2; ¢=1 or 2

2 (2%
where in Wi;(R, u) the differential operators will act on the primed
coordinates.
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Z'2 .
12,2
(Z,,Z) «——D N
(2,25) (2,29)
Z
Fig. 2

Now let 2, tend to co and choose R and u so that they meet the
following conditions:
First of all:
MiMéR(k’ %15 %25 zia Zé) =0 (133“)

Ly Lyu(zy, 25) = AV (21, 23) w21, 23) (14a)
so that (11) on one hand can be written as

}' f f dzll. dzé O(Zi - Z;) R<k7 zl’ 22, ZZ;.’ Zé) V(ZL Zé) u(zilb Zé)

Zy %

then, for R (k, z,, 29, 21, 23)

on 2y = 2;:
R:o;%R:0;(4—j—,+2@'wl) M;;R:O;(ﬁi%—%wz) M{R=0 (12D)
Zg 29 2y
on zy = 2,:
R=O;~aa;,—li=0;(4—8%,—+2iwl)MéRzO;(cl—a%—Ziwz)M{R:O (120)
1 1 1
on zy =2y = 2
R=0; MIR=0; M)R—=0 (134d)
in 2y = 2;; 25 = 2y
MiR— MR-+ (13¢)
and finally for u (z;, 2,):
a) on 2y = z5: w(zy, %) = 0; Liu(z,25) =0 (14 D)
for 21 — co u (21, z3) may tend to u{ (21, z;) where Liuf°® (21, 25) = 0 (14c)
or b) on 21 = z3: w(z(,29) = 0; Lyu(z,25) =0 (14d)

for z{ — oo u (2], z) may tend to us® (21, 73) where Lous® (21,25) = 0. (14e)
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We denote the solution of (14a, b, ¢) and (14a, d, e) by u, (2, 2,) and
Uy (%1, 29) Tespectively.

Some of the conditions on R are redundant. If they are eliminated we
can state the remaining conditions as a complete mixed boundary value
problem.

With these conditions on R (k, z,, 2y, 21, #5) and with (14a, d, e) on
u (21, 25) (12) can be greatly simplified.

Consider the case ¢ = 1. The second, fourth and fifth term vanish, in
the third term a partial integration yields

Z1
[z Wis (R, )l -

2y
= f dzy [((43% - 2i0)1) L uy (21, zé)) R(k, 2y, 2y, 21, 23)
23

‘ 2
+ gzl 2) (« 4o+ 2mg) MR (b, 2y, 29, 2 zé)]
2

+ A MR (k, 2, 25, 21, 22) Uy (21, 22)

’
=%
=2 o

A=zt =n . Y2 (215 22) -

The first term yields

A 4 z. & ’ ~
Lm [ dzy Wi (R, up)| 2™ 5 = lim [ dazj Wiy (R, u)[2™>

B> Z—roo 4

’ ’
Zg=21,2) =72
’

21 ’_
= [ day Wiy (R, u3)[P ™% = 4 MR (k, 2y, 2y, 21, 23) u5° (21, 23)
22

l2g =2
= - u;o (21, 22)

41
where we have used the fact that [ dzg W, (R, u5°) is independent of
z1. Thus, from (12) we obtain u, (z:zz) — u3° (%, %y) and hence from (11)
the equation

Uy (215 29) = U’ (21, 2)

+ Zjozfoodz{ dzy 021 — 223) Rk, 2y, 24, 21, 23) V (21, 23) s (21, 23)
and analogously with (14a, b, ¢) instead of (14a, d, ) for « considering
(12) for ¢ = 2:

Uy (21 29) = Uy’ (21, 29)
+ Zj:foodz{ dzg 021 — 25) Bk, 21, 25, 21, 23) V (21, 23) Uy (21, 23) -

Inserting for u® (2, z,) the free solutions (8e, f) we obtain two manifolds
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of special solutions of the Bethe-Salpeter equation

Pilqs 215 20) = wi(Q, 21, 29) + A [ [ d2gdzg 02 —2,)
A (15)
“R(k, 2, 2, Zi’ Zé) V(Zi, zé) ®q (g, Z{: Zé)
which will behave as u, (¢, 2, z,) for z; — co and will vanish as u; (2, z,) on
2, = 25. In a subsequent section it will be shown that for a certain class

of potentials and also for the Yukawa-potential these equations can be
solved by iteration.

All this is quite analogous to the nonrelativistic Schrodinger case.
The ¢, (g, 2, 2,) correspond to the single special solution ¢ (k, r) and as in
the Schrédinger case where (&, 7) = —f(f—k) @k, r) we will see that the
wave function y(k, z;,2,) can be expressed as a superposition of the
Pi(qs 215 2)

Wik, 2y, 20) = [ dq f1(q, k) p1(q, 21, 20) + [ dq [2(q. k) @a(q, 21, 22) -
In the Schrodinger case it was easy to construct the Volterra kernel
A (r, ") and the coefﬁcientf(—fl—g

cult in the Bethe-Salpeter case but splitting the Green’s function will
help here, too.

. Both problems are much more diffi-

3.3. Splitting of the Green’s Function

The Green’s function with causal boundary conditions is

e—ip(z—a’)

6la') = @y [ 4 Gy Tt o P

ScawarTz und ZEMACH have shown that the wave function defined by
the integral equation

pk, &)= X T4 ) [dia' Gk, z, ") V(@) pk, 2') (16)
has the desired behaviour for » — co, namely

eikr- ) ) |k|
r b

p(k, 2) = 5 f(K < k)

with
f(kK' <~ k)= %LE Afd e iKY V(') wk, 2') .

For zero angular momentum (16) reads

4+ o0 4+ oo
Wk, xg,r)=sinkr+ 1 [ [ dagdr’ Gk, zy, 1,2, 1)V (g, ') w(k, g, ')
0

— 00
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where

!
Gk, zg, 7, 2, ')
+ 0 . ,
. e— ip0 (20— o) sinpr sinpr’

1
sl Of‘lf"’df’”[(pT% 0)F = p* = mE 4 i€l [(po — @) — p* — mf + ie]

— 00

. 1 .
and with z{ = g + 7', 23 = 2g — 1’ where dx, dr’ = 5 dz] dz; we obtain

+ oo
p(k, 2, 25) = ug(k, 2y, 25) + A [ [ dzy dz5 0(21 — 25)
e (17)
X G(k’ 217 Z2> Z{, Zé) V(Z]’: Zé) 1/)(IC> Z{, Zé)

1
where we have set G(k, 2y, 25, 21, 25) = 5 G(k, xy, 1, 25, 7).

The scattering amplitude for zero angular momentum is

’ 2‘ " ’ ! 4 ’ ’ 7 ’ ’ ’ ’ ’
1 k) =0 [ [ del deh 06— 20) wg(k', 21, 20) Ve, 25) p (b, 21, 20)

and on the mass shell we evidently have k' = k.
Keeping in mind the method of splitting the Green’s function in the
Schrédinger case we presume that we have to split from
1
[(po + @1)* — p* — m} + ie] [(po — wo)* — p* — m3 + i¢]
the term

1
Tpo + @1 — i8)* — p* — m3] [(py — @y — i6)* — p* — m3]
and that
Rk, 215 295 215 29)
4o 4+ o0

. 7/ . .
e~ iP0 (20— ) sinpr sinpr’

1
*?_f 6[dpo dp [(po + wl——ig)2 — p* — m%] [(po — wy — 7€)% — P2 — mg]

will be a Volterra kernel and will lead us to the Riemann function. So let
us make the following decomposition:
1
[(po + @1)* — p* — mf + ie] [(po — @)* — p* — M3 + ve]
- 275 0(py + ;) 5((py + 1)* — p* — mj)
(P — wp)* — p* — m3
_ 270 0(py ~ @y) 3((Po — wg)? — p* — mj)
(po + @y)? — p* — m}
1
+ [(po + w1 — 1) — p* — mi] [(Po — w, — 18)* — p* — mj]

(18)

thus
Gk, xg, 7, 20, 1) = Ay (K, 24, 7, 25, 1)
+ Ay (k, g, 7, 2, 1) + Rk, x4, 7, 5, 1)

17 Commun. math. Phys., Vol. 7
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with
Ay (b, g, 7, 20, 1) = —271— f fdpodp
—c 0

e~ 1P (%—2) sinpr sinpr’

(Pe — w))* — p* — mj

<0(po + @) 6((po + 1) — p* ml)
and an analogous definition for 4,.
Firstly we will show that Rk, Zg, T, 20, ') leads us to the Riemann
function.
Do+ P Po— P

2 Ty
where dp,dp, = 2dg, dq, writing again xy+ r =z, ¥, —r =z, and

Introducing the new integration variables ¢, ==

. . . 1 ’
taking in mind G (k, 2, zz, 21, 28) = & G(k, @y, T, g, 1) We have

R(k 215 %as 21 22) 412 ffdQIdQ2

e—it(n—7]) g—it (z2~22) — e—iti(n—25) g—it(za—2])
g+ g2+ 01 —16) — (g1 — gu)* —mi] (@1 + g2 — @a — 1€)* — (¢1— qa)* — m3] ~
Yet another representation will be convenient in the following. Intro-
ducing a Feynman parameter like ScawarTZ and ZEMACH we obtain

(19)

Rk, 2y, 2}, 2)) = —— 472 & fdy 6"7 (20 + 22 —2] —25)

e~ it (mn—2) g—ite(a—2) _ (21 = zg)
' 6Q2 ) fquld% Ry P F T
where @2 (y) = y? — k2.
Evidently R can be written in the form

(20)

Bk, 2, 29, 21, 23) = Ak, 2y, 29, 21, 2) — A (K, 24, 29, 25, 21)
or (21)
= Ak, 215 R 217 Zé) — Ak, %9 %15 Z;, Zé)
and the integral appearing in (20) can be calculated [7]:

ff ‘zq; 7n—2]) g—i: (2—25)
dgy dgs—y 4(qy — i6) (qa — 1) — Q2 (20a)

—726<z1—z1>0<z2 2) FoQ) (41 — #) (2] — 29)

where £ (z) is the Bessel function of zero order.

So we have
Ak, 2y, 2y, Zi, Zé) =0(z — %) G(Zé — 2,)
1 ' iy (21 + 2—2] ~2 /%___“ -
5 F dye? 1) Vi 51(?/()22 ) QWYL ) B )

—w,
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2 |
| |
! 1 -
| |
e Vs
(22.21)
(Zy,29)
Z
Fig. 3

and taking advantage of the series for 4, (z) we can write:

Ak, 2y, 29 21, 23) (22)
= ‘ 2! L v (__;)2; ’_ r_ 1+1
=0z — 2) 0z — Zz)—@ %0 HESY Fil(z1 = 2) (22 — 29)]

with

fldy . 2 (z, + 2,2 —2p) (y? — 1)L
The first term of R, A(k, z,, 2,, 21, 25) does not vanish only in the first
quadrant starting from (z,, z,) while the second term A (k, z, 2, 21, 23)
does not vanish only in the first quadrant starting from (z,,z;). On
2] =z both terms are equal, hence R = 0. Because we consider the domain
21 > zy in D, the second term contributes only in the hatched domain.
Applying the differential operator My or M} to R we get

D ’ ’
MlR(ka 215 %95 1 22)

—io e—in{n— Y o—is(2a—25 4 /
_ _E_i(z 4z, —2]—2) ( /f k in(a—2) =it (n-2) — (71~ 29)
= A1 A2 gl i) (g — i) — m3

hence with (20a):

1 i %, +zg—2y—2p , B
MRk, 2y, 29, 21, 25) = 3¢ 2 ( 1) [0(z1 — 21) O(25 — 2,) (23)

S (sz - zl —7" Z ) 0 (21 —25) 0 (25— 2) 5, (mz V(;T:éz)(zé — 21))]
and analogously we find:

i
e Zl (1 + 22

‘Zl/[‘_;,R(k7 zl? 295 Z{, Zé) = Z 1—‘22) [0 (Zi - zl) 6(2:2 - 22) (24;)
- F (mll/(zl——zl ——z ) — 021 —2,) 0 (25— 2,) & (le — 22 (22,,“ zl))]

17%
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Now it is easily seen that R will be identical with the Riemann function
if we omit the 0 (2] — 2;) 0(25 — 2,) in front of A (k, 7,2y, 21, 25). (13b,¢)
follows from (22), (23), (24) taking in mind the series of .#,(z) [7]

I = 2) (25— 2a) = L= 5 (2f = 2) (2 + 2) + — -

(13d) follows from (21), (23), (24); (13e) follows from (23), (24).

Ttis M7 My R (k, 21,22,21,%5) = 0 (2] — 21) 0 (23 — 25) — O (2] — 25) O (25 — 2y)
but the second term on the right hand side always vanishes because the
support of the §-functions is in the inadmissable domain 7" < 0. Hence
after cancellation of the 0 (2] — z;) 0(z5 — 2,) in front of A (&, 2y, 25, 21, 23)
which produce the §(z; — z,) d(25 — 2,) also (13a) will be fulfilled. So it
is shown that

R(k, 21, 29, 21, 23)

1 W vy V= ) (5 — 2) _
Zﬁfdye P (ot 1 2)Lz1__§(7)(§/'272ﬁj1(@(y)V "21) 22))

—w,

— 021 — 29) O(25 — 2)

At ra—zi—2l) V( — 25) (25— 2
X4Efdyeo(z 2 2’1 22)‘(1 28((2 41)_] (Q y)V _‘32) _zl))
is a solution of the boundary value problem. But this solution is unique,
hence R is the Riemann function.
It may be noted that

0 oo

f f dz],. dzé B(Z],. - Zé) R(k5 21> % 213 22,) V(Z_{’ ZZ,) ZL(Z{, Zé)
21 2

SIS

= [ [dz1dz; 0(z1 — 23) B(k, 2, 25, 21, 23) V (21, 23) w (21, 25) -
2y 2
Riemann function R and retarded Green’s function R are different only
through the 0(z{ — 2,) 0(21 — 2,) in front of A (k,z,, 2, 21, 23). So it is
M{M3R = 6(z; — 2,) (24 — 2,) while M{MjR = 0.

3.4. Proof of Convergence

Now we can use the knowledge of the Riemann function to prove
that the integral equation (15) can be solved by iteration for all 1. As
potential we take the Yukawa potential

; —ikz
V@ = [
or
o HP (1212, — i)
Wz —ie

Vi(zg,25) =2
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This proof will at the same time exhibit a whole class of potentials for
which the iteration of the integral equation does converge.
Using the integral representation for 4 (%, z,, 2,, 21, 23)
A (k %1 zz, 215 23)
e—in(zi—7) g—i0:(2—7)
= A f f dqy dgs- 2 ;
4n* (4. + 2wi(qr + @) + K — 24e(qy + 2 + )]
[4qige — 205(gs + q2) + B — 206(qy + g2 + w5)]

and performing the g,-integration we get
', , 1 4
Ak, 2y, 29, 21, 22) = 0(21 — 21) 0(25 — 25) 4= i o Lilk, 2y, 20, 21, z3)  (25)

i=1

where
’ ’
L (k, 215 29, 21, 22)

1""%< ) +iq—n)

i (2] —z 1q(2h—2

4q B e 2
o \2_ Ak
2 4

1n% ’ - ’
—ie (@2 —ia(Z—22)
4q e

 —am '“‘(zx +2p 21“'22)/‘
~am ©

Iz(k7 21 %o Zlﬁ ZZ)

. 1w, ’ 7 o
_ —im g (71 + 22 ~21—23) d e
Y q 0 \2 ke
0 1) T
IS (k> 217 227 z]’.} Zé)
"8 ) iz
o (27— [ —2,
. 17T _‘_—(Zl”‘zz zl——zz) _8 4q v e 2
Y q 0 \2 k2
0 1t%) %

I4(k’ zl> Zza z{, Zé)

o7 ——é;)—z(z1 + 2,2 —23)
Y qu

7712
- @—~(ZI~Z1) _@(1(22—22)
e

_ wz)z_ﬁ
(q 2 4

By the method of stationary phase [8] we can show that for the bound
state case i.e. for k2 < 0 each I;(k, z;, 25, 21, #3) can be estimated by
7 7 ]'
i (k, 215 29, 21, 22)| = € 1+ [(Z — 2) (2 — z) 118
hence we can write:
' |21 — 2] 25 — 2
|4 (k, 21, 29, 21, 25)| = € T 2] — 2ot 1+ |z — 2Pt -
Now it is readily seen that for z; < 0 or z, < 0 the possible upper bound
for the first iteration

[ [dzdzg 61 — 2) |B(k, 20, 29 21, 2)| |V (21, 22)] [0 (21, 22)| =

212,

Z1 %
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does not exist because of the bad decrease of V(z,z,) as well as the

(m) -singularities onz, z, = 0. Thus the proof can not be established
1“2
in the usual manner. A way out is the following:
First we take into account the asymptotic expansion of H{ (z) and
the expansion about 2,2z, = 0 [7], thus decompose V (z,, z,) as follows:
Viz, 22) = Vi1, 20) + Valzy, 20) + V2, 20)
with
. 1
V121, 20) = 44 PP -
Valen 2a) = (Sau o) 13047 5y )9 o=V
then we can write for V,(z,, z,) the estimation:
1
1+ |z

[Va(21, 20)| = clry2g7 3/
Then we consider
RO (k, 2,24, 27,25) = ARVR

=0y —2) 0@y —2) A [ [de{dzy Ak, 2y, 29, 21, 23)

“ V(21 20) Ak, 21, 25, 21, 25)

rr 17
2y 7y

1
— 0 —2) 05 — =) A [ [daidzy Ak, 2y, 21, 21, 23)
2s 21
V(a1 20) Ak, 29, 25, 2, 20)
It can be shown [9] that for R® we have the following estimation:
[B® (&, 2y, 20, 21, 23]

< ¢ ler = | 1 ! 1 ! (26)

e>0.
Now write

(21, 25) = /'Lj:foodz{ dzs 0(z1 — 23) R(k, 2y, 29, 21, 23)
Va1, ) v(g, 21, 23)
+ 2 foofcodz{ dzy 0(21 — 23) R (k, 21, 29, 21, 23)
2 2
V(e ) (g 4 2); j =1 or 2
A e za) — 2 [ [ def dzg 0021 — 25) RO (b, 2 20, 4, 20)
2 7

Valan, 22) 97 (21 22)

BT Moy z) = A [ [dzidzy 021 — z5) RO (k, 2y, 25, 21, 25)

Z1 2y

“(Vaer 22) + Vs (a1, 22) ¢ (1 22)
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and let us take 2z, < 0, z, < 0; for the other cases the proof is not so
difficult so that we may omit it here.
The estimations

[@" (21, 22)| = | @ (215 22) + @B (215 29)]

/A|z—z2[ 1
Tltla _zz1l+lz1|‘“81+lz[”4SnI[ fsz ] (27a)

1+ 2

[@" (21, 25) — @™ (2, 0) — @™ (0, 2,)]

2 [z 1 o
=T TT[ fd FN] (27b)

2+ 2,

where!
1 1 o
Fz)=c+ T e[i=e 1 Jpriae l2|

will now be shown by induction. For n = 0 the estimations are shown in
the appendix.

Firstly because of |V, (2, z,) + V(% 25)] = ¢|2,2,]7%* we have

[ — 2 1 1
Lt o — 2] 1 [afth72 1 [aftide

I¢n+1 (21, 29)] = ¢

! 1
f/ d21 dZZ )1 + lz ’1/1 e 1+ |,/‘1/4 ry |21~é| 3/4
bos n
! 1 1 ’r ’
T [ e T 4 [ofia—e 7[ /f dz" F(z )] )
z + 2

Taking 2" = z] + 25, ' = 2{ — 2z as new variables we can perform the
r’-integration. The integral can be estimated by

1 , .
fdr U+ [ — r[tia-e |22 — ¢332
1 1 /
1+ |7 — r|ia-e =F )
hence we get
* [ — 2| 1 . .
|l 1(21,22)] = 1 +1{z1 jzg, B 7 T e iie ul
deF,[de“F /,:l
2t 2y
i { n+1
2y — 29 1 ]
1+(21_22|1+|z1[1/481—}—!z[1/45n+ [ fsz
2y 22

+ All inessential factors may be gathered in the following in c.
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To estimate @ ¥1(z, 2,) we write

A

L RS 44

1
42 ff dzy dzy 0(21 — 23) |R® (&, 2y, 29, 21, zz)ll E

: ‘an(zi’ Zé) - <Pn(21: 0) — (Pn(os 22)|

+4/1fd21$fd2é 0 (21 — 23) B (k, 21, 25, 21, 22) 57 19" (21, 0)]
2, 23
1
+42 f az f 424 04 — #4) RO (b, 2,724, #) =55 |90 )]

Take 21 > 0 and let @ be a number with z, < —a <0 < a < z{ then

1
o N
2%y — 1€

[ 4200 - =) RO (b, 2, 2, 24, 2)

22

—a
]‘ ’ ’ ’ ’ ‘l
=z | [ au 06— #) ROt n 2 s g,
22

, ie
25 — 2
fee]
1
+ f dzy 0(z; — 23) R® (k, 2y, 29, 21, 23) — T
a ‘2 - Zi
+a
1 ’ 14 1
+ [ A2 06— ) (RO (b, 2, 2 2, 28) — ROk, 20,2, 2, 0)) 5
“a 25 — i
+a
1
+ RO (b, 2, 7,71, 0) [ dzj———
PN 1 1 1

14 Jay — 2] 1+ Jzyti-2 1+ [zzim O AR 3 lbzl

Here we have estimated the four terms separately and we have used
(25) and

[R(2) (’{}, 215 %9 Zi, Zé) - R(z) (k: 215 % zi: 0)}

|2a] |2, — 2 1 1 1

=c 1+lz2[ UF o — 2 L+ [z ¢ 1 4 g5 1 [f]a-e

Evidently the above estimation is correct also for z; < 0. In the same
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manner we get

[e)

’ ’ ’ 1

f dzi 0(z1 — 23) RO (k, 2, 25, 21, 23) P grre
¥
~ oo =l 1 1 1 1
= 1 + ‘zl — z2| q + Iz I1/4 e 14 |z211’4 e 1. ﬁ lz !1/1 3 lzl
hence

nt1 e U S
Lot Tz, 20| = CTF oy — za] 1 4 [zt 1 [agltae

[ee) o0 i
4 1 1 ]' 1 1 r
f Iy e T 14 Fe ‘n([ f dz" F(z )]
Z

+/fmﬂ%»ﬁ-) : ! Lo El

1+|2|1/4 2 14_|Zi1/4 3 (422| 1+|z{!‘

2, 2

n oo
. rr u ’ 1 1
[ f e ] [ as e T
21 2

ﬁzz

[e) n
1 1 124 T rr
REa= ;:.r[f ="z >J
4

Again we introduce in the double integral z’ = z{ + z;, »’ =2z; — 25 and

estimate the »’-integral by

1 1 1 1

dr' -

1 1
TR T+ 7

N Sy

I = F().

Likewise we set in the other integrals

1 1 1
UF = T4 [z 1+ [z

< Flz) i=1,2

|

so that finally we obtain

ntli, .\ < _f_}j‘_?z}l_" ,,1 I *,,1_¥, ,
|(P1 (41> 42)! = 1 + Izl — zzl 1 l |1I4—e 1+ |22P“_5

_‘r_
w41
__;LTI)_!_[ (lz//ﬁY(z// ]

co n+1
1 1 1 1
*‘“(n+1)![ fdz P )} ERTES)

21T 2,

fu—

U5 +7fime 14— i T3 ] T+ =]

!—[foodz"F(z”)]

[z

TR

n+1



254 J. HONERKAMP:

fo0]

Because of 2, < 0,2z, <0itis [ dz" F(@E'")Y< [ dz'F

( rr
21+ 2
the desired bound for ¢} ** (zl, zz) and hence for ¢" *1(z, ).

The estimation for |[¢"+1(z, z,) — @" (2, 0) — @"*1(0, z,)| is done
in the same manner, we have to use here
iR(Z) (k: Zla Z2, le_ls zél) - R(2> (k; 219 03 7’1,) "”)
1 - lelf_ 24|
1 T Iz//|114 I iz"ll/l e ] + Ezll 1 + 'z24
The solution of (15) is now

) so we get

R()(lc 0 Z9, 21 ,A;/H

'L/\

)+ X " (21, 25)

n=0

@ (21, 29) = Uy (€, 2, 25
which thus can be estimated by
(2, 29) = ¢

f dz"’ F(z)

|21 — 2] 1 1 piin

R A I e e e R A
The bad decrease of V (z;, z,) for |z;2,| — oo forced us to go to the iterated
kernel R® (k, z,, 2y, 21, 25). But having done the estimation for R® and
the above mentioned estimation we see immediately that all potentials
which decrease faster than |zz,|=%47¢, &> 0 for |2,z,| - co and which
are less singular as (z,2,)72%%, ¢ > 0 on 2,2, = 0 admit cruder methods of
estimation. For all other potentials like the Yukawa potential we have to
take into account their special properties like the oscillating function

e—iWVa7 if generally a proof can be established.

3.5. Representation of the Wave Function

We turn now to the remaining terms in the decomposition of
Gk, 21, 24, 21, 23). Proceeding analogously as with R(k, z,, 2, 21, 25) We
get
Ay (k, 2, 29, 215 25)
in(zﬁ% 2

—14 /2 )
T 2im

_[fd% dqy 0(qy + q5) 0(44195 — m3)

—oc
0
ei(II(z]/._zl) ei(I:(zé“z:’) — (z{ s zz

~((Zl + gy — 182 — (¢ — ¢2)* — m3

ul (¢s 21, 22) W11 (g5 21, Zz)

al

44

where we have used the definitions (8a—g).
Similarly
f dq

Uy (g, 21, 23) 0F (g, 21, 23)
A (k 215 29, 21, 22 2

‘SE((HT) :

4
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From the integral equation (17) we obtain

Pk 2 20) = gk, 2, 20) + 2 [ [ daf 2 01 — 28) [y, 2, 2, 2, 25)
_}ﬁ A‘.’,(k> zl’ 22, Zi? 22’) + R(k> 21! 22’ 2{9 Zé)] 17 (Zl’a Zé) 7/’ (k5 Zi, Z.;_)

- 2 7) Dag, b
:1‘0(k>31’z2)+qu e Zl% z(q ;)Cz‘"
oosE(le-) %)

+qu u2(q>zl>22) Fz( k)

kv2
i
A f fdz{ dzy 0(z1 — 23) R(k, 21, 25, 21, 23) V (21, 25) w(k, 21, 23)
2 2
where

1 4 ’ ’ ’ ’ ’ 7 ’ ’
k) = . A ff dzy dzg 0(21 — 25) W}y (g, 21, 23) V (21, 22) p(k, 21, 23)

Remembering the special solutions ¢, (g, z;, z,) defined by the integral
equations (15) and putting

w. I w2 0 'Z“ ‘

we see that y(k, z;, z,) can be written as a superp051’c10n of these special
solutions:

(,Ic,z, ) = (k, 2y, )+ d (9»@#«2)2(% *)—,—
e fa Y
_[_qu ©a(q, 215 25) Fzﬁqﬁ,ﬁlc)ﬂ_-‘

s 5] - %)

Thus we naturally obtain the expansion of the wave function in terms of
the special solutions from the decomposition of the Green’s function.
The coefficients (g, k) in this expansion also can be expressed easily,
inserting (28) into the definition of I (g, k). We obtain

z] H 1 k
rz’(Q» k) = zO % ]") qu (@4 (ELL L k2

(TR VY

+fd/ K12Q9 )Fz(/zs) L

(29)




256 J. HONERKAMP:
with

’ ] “ r LY W ’ ! ’ ’ ! ! ’ ’ ’
Kij(g:9) = _/f dzy dzg 0(z1 — 23) 0fi(q, 21 2) Vizn 22) ¢45(¢5 215 22)
- j=0,1,2.

In the Schrodinger case we have instead of (29):

a(k) =k — g (k) a(k) (30)

with

= [dr ¥V () gk, 1) .
0

This is an cquation which can be solved readily. In the Bethe-Salpeter
case because of the partial differential equation and the two differential
operators this equation is blown up to a system of integral equations for
the two unknown functions I7(g, k). Remarkable is also the similar
structure of the kernels K, ;(g, ¢') and g (k).

We have bound states in (30) if the homogeneous equation can be
solved i.e. if a(k) = — g (k) a(k) or f(— k) = 0. In the Bethe-Salpeter casce
we have bound states for those & for which the homogeneous system of
(29) can be solved, i.e. the Fredholm determinant of the system is zero.
Thus the Fredholm determinant is the natural generalization of the Jost
function [4].

Instead of (18) we could have made the following decomposition

1

Tpo + @) — p* — md + 1e] [(po — wo)2 — P2 — mj + ie]
—27000(—po — @) 8((Po + ©1)* — p* — mi)

(P — wa)? — p* — m3
%{{fﬁ@(j?o + 05) 6((Po — wo)* — p* — m%)

(po + ©1)* — p* — m}
+ - ! _
(po + @y + i8)* — p* — mi] [py — wq + i6)2 — p* — mi]

and thus we would have obtained
’ ’ ’ ’ ’ 73 ’ ’
G(k’ %15 %9 215 22)=B1 (k’ 21> %95 21’.7 zz) + B2 (k> ?1> %9y %15 22) _:‘R (k’ R1> %95 215 2_,‘)
with
ul (9> 215 2y) wn ((1, 215 fz)
B(k 21,22>41,~z —“:c / . -
—_0

srlfe- g6

/ d Uy (9> 215 23) WE (g, 21, 2)
—_C

(o) =)

and

B, (k, 21, 29, 215 23) =
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and

w; . + o
o~ . 1 1 2 b a—df—2y) D
R (k, 2y, 25, 21, 23) = i f dye? ¢ P 2Q2(y) f dg, dg,

T 4n?

e—it (n—7) e—ite (2—2) — (2] <~ 2)
L 4(qr + 1e) (g2 + 16) — Q*(¥)
Similar to B R leads to a Riemann function. This Riemann function is
zero outside the domain D’ (Fig. 4) and satisfies similar conditions on
the boundary of D’ as R on the boundary of D.

A
Z3

1(Z24.Z5)

>

Z

.
s

Fig. 4

In the same manner we can define special solutions:

2 2
Pi(qs 21, 2) = s (q, 215 25) + A [ [ dzidz; 0(z — 2,)

: E(k7 21, ZZ’ Z{, Zé) V(Z{, Zé) (?)z(q: zi’ Zé); 7: == 0: l: 2
and these integral equations can also be solved by iteration.
Thus we get the decomposition

0 ~

— o0

0

(9, 21, %2) To(q, k)

+qu 2(!11;)2;q o
o8B (o) =)

in terms of the special solutions @, (g, 2, 2,). The asymptotic behaviour
for z,—> —oo is determined by wu,(q,2;,2,). Furthermore §;(g,2,2,)
have to vanish on z; = 2, as u;(q, 2, 2;). The coefficients I';(q, k) are the
same as in (28) but the integration now runs from — oo to 0.

Acknowledgment. I would like to thank Prof. Dr. K. MEETZ for many illuminating
discussions and for the critical reading of the manuscript.
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Appendix

In this appendix we will establish the estimations (27) for » = 0 [9]:
Consider:

(&8}

1/)2(~1’ Zg) = 57 f fd‘l dzy Ak, 21, 25, 21, 23) Va(21, 23) 051(q, 215 23)

’ j=1or 2.
Using the representation (25) for 4 and writing

Iz(k? 21’ Z‘Z’ 217 2.;.) = fz (zb 227 Z{z Zé) gi(zh ""’:Z’ Z]’: Zé)
where e.g.
iwl 7’ TN
—— (2 + 2s—2 —2 wz 2 —z —
fl(zl) 22: Z{, Zé) =€ 2 ( , ! 9 XV( 1 )
we have

’ ’ ’ 7 ’
V2 (21’ ) 2@ 472 z_/ f fdzl d2> gz 15 R R 22) hz (21} Ros R1s ZZ)
zl EN

with
h (21,Z2,21,22 fl 21,22 Z17Z2) (87-6#)1/2ez3/4‘7( ).—3/.1l o "V3122w (q:zlv‘"))'

Let us study the decrease in z,: then clearly z; > 0 but it may be z, < 0.
This is the most difficult case:
The contributions

oo 0

(87w )M/ ets/4r | dzy [ dzy 9,2, 29, 21, 25) [, (245 29, 21, 25)
2 2

1,771
e ey eVl g (g, 2, 20)
can easily be estimated by

r 0 1 77
¢ [degley — 2 [TH aq [ [ dzgfrg| 3 o~V El
% 2

= ¢ [dmla -z Ml = e[

where we have used for g, (2. 25, 21, z;) the estimation:
|gz (21’ Z2, zi’ zz)l é C|21 - zl‘—1/4

which can be read off from the estimation for I,(k, z, 2,,21,25). To
estimate

[eclie o}
f f d21 dZé gz (zb 22, Z]{Zé) h; (zlz %95 Z{: Zé)
z, 0

define

!
hi (zls Ras %15 22 f dzz Zl’ 295 21, 22)
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so that by a partial integration in %, we get
(o) Zé= o]
de{ 94 (zla 295 Zi) Zé) kz (21, 28 217 Zé)

’
2y Zo

o0 o
0
’ ! ’ ! ! ’
- f [dzl dzy (_37; 9i(21 29, 21, 22)) hi(z, 29, 215 23) -
2, 0

0

The integrated term vanishes because A, (2, 29, 21,25 = 0)=0 and
(21, 29, 21, 23) tends to zero for z; — + oo while f; remains bounded. By
the method of stationary phase [8] we obtain the estimations

21 — 2| 1

| @ ;o
— . < e [t
1 azé (z(21:z2>z1722). =¢C 1+ Iz; —_ 21’5/4 1+ {Zé _ z2|5/4

1
s (215 29, 20, 23)] = ¢
=]

so that the remaining double integral can be estimated by

fee} oo
1
P —1/4 |,/ |—1/4 P —1/4
o [ dzilet =m0 1 [ e = ol
21 0
Analogously the same decrease in z, is shown, hence

1 1
Y3 (2, 2)| = ¢ UF U8 1 [z

and thus

[ [ dat az; 061 — 25 Rk, 20 20 21, 28) Valet, 28) (g, 24, 25)
P !

. |2y — 2] 1 1
=T —a] T ™ Lt e
With cruder methods and with methods indicated by the estimation for
@} T 1 (2, 2,) we obtain (i = 1, 3)

!

[ [ aedzs 01— 20) Rk, 2, 20 20 2) Vel 28) (g, 24, 2)

31

|
|21 — 2] 1 1

] + |2y — 22|' T F Jefvi-e 1 4 Jgti—e -
Hence the same estimation can be derived for

A

X 20) = A [ [dzydzy 0(z1 — 2))
2 2
"Rk, 21, 20,21, 2) V(21 20) uy(g, 21, 22); j=1 or 2.
Now it is easily seen that we can get the same bounds also for
Xz(zlﬁ 22) =2 f f dz{ dZé 6('2{ - Zé) R(k> %15 %95 Z{, Zé) V(Z{,Zé) Xl (2{: Zé) .
2y 2

Thus the estimation (27a) for » = 0 is proved. The prove for (27b) runs
similarly.
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