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Abstract, Concrete C*-algebras, interpreted physically as algebras of observables,
are defined for quantum mechanics and local quantum field theory.

A quantum mechanical system is characterized formally by a continuous unitary
representation up to a factor U, of a symmetry group ® in Hilbert space $ and a
von Neumann algebra R on $ invariant with respect to U ,. The set 2 of all operators
X € R such that U, X U;™, as a function of g € &, is continuous with respect to the
uniform operator topology, is a C*-algebra called the algebra of observables. The
algebra R is shown to be the weak (or strong) closure of 2.

In field theory, a unitary representation up to a factor U(a, A) of the proper
inhomogeneous Lorentz group ® and local von Neumann algebras R, for finite
open space-time regions C are assumed, with the usual transformation properties of
Re under U(a, A). The collection of all X € R, giving uniformly continuous func-
tions U(a, A) X U-*(a, A) on ® is then a local C*-algebra 2, called the algebra of
local observables. The algebra U is again weakly (or strongly) dense in R4. The norm-
closed union 2 of the U, for all C is called algebra of quasilocal observables (or
quasilocal algebra).

In either case, the group ® is represented by automorphisms V, resp. V(a, 4)
— with V,X = U,X U;" — of the C*-algebra 2, and this is a strongly continuous
representation of & on the Banach space 2. Conditions for V(a, A) can then be
formulated which correspond to the usual spectrum condition for U (a, A) in field
theory.

1. Introduction and Summary

In quantum mechanics, physical quantities (observables) are re-
presented by Hermitean operators 4 on a certain Hilbert space $. If
moreover these observables are suitably selected, they can be represented
by bounded operators A. Implicitely or explicitely, most theoretical
investigations also assume the inverse: Any bounded Hermitean operator
A on 9 compatible with the superselection rules (i.e., commuting with
all “superobservables”) of the theory is supposed to represent a physical
observable. The set of observables then coincides with the set of all
Hermitean operators of a certain von Neumann algebra R. In field
theory, the introduction of local von Neumann algebras Ry for all
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finite open space-time regions C leads to a similar assumption: The
Hermitean operators 4 of R are supposed to represent possible measure-
ments in C.

But the sets of observables so defined are likely much too large. A
physical system without superselection rules, for instance, is intuitively
expected to have much fewer different physical observables (i.e., measur-
ing apparatus which can actually be constructed, at least in principle)
than Hermitean operators on the corresponding Hilbert space. Under
these circumstances there should exist, besides Hermiticity, some extra
properties which would characterize the “‘true” observables in the von
Neumann algebras R resp. RNg.

As a purely formal attempt to formulate such an additional property
of observables, we are going to postulate a sufficiently regular transforma-
tion behavior with respect to symmetry transformations of the physical
system: If A is any observable and U, the given strongly continuous
unitary representation up to a factor of the symmetry group ® in Hilbert
space §, then U, 4 U, !, as a function of the group element g ¢ &, has to
be continuous with respect to the uniform operator topology (norm
topology). Vice versa, any Hermitean operator 4 in R resp. Ry with this
property is assumed to be an observable. In field theory, the group © is
identified with the inhomogeneous Lorentz group.

The set of operators 4 + ¢ B with observables 4 and B from R is
then a concrete C*-algebra 2, called algebra of observables. Similarly,
the 4 + ¢ B with observables 4, B from a local R form a C*-subalgebra
A of R, called the algebra of local observables belonging to the space-
time region C. In cither case, the algebra of observables 2 resp. ¢ is
weakly (or strongly, ultraweakly, ultrastrongly) dense in the cor-
responding von Neumann algebra R resp. R. The union of the local Ay
for all finite open regions C yields, after uniform closure, a concrete
C*-algebra 2, the so called algebra of quasilocal observables (or shortly,
quasilocal algebra). This quasilocal algebra is the field theoretic analogue
to the algebra of observables 21 for a quantum mechanical system.

A similar mathematical structure for the observables of field theory
was proposed by Haac and KastieEr [1]. In ref. [1], however, the
concrete C*-algebra 2 defined above and its local subalgebras g (i.e.,
C*-algebras realized as operator algebras on Hilbert space) are replaced
by abstract C*-algebras.

The quantum mechanical algebra of observables A contains in
particular all completely continuous operators in R. On the contrary, the
quasilocal algebra 2l cannot contain any completely continuous operator
(except zero), because the local von Neumann algebras R do not contain
such operators.
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The transformations V, defined by
V,X=U,XU;' forall Xc2

are automorphisms of 2 and provide a representation of the symmetry
group &. By construction, the bounded linear operator V, on the Banach
space 2 is a strongly continuous function of the group element g. Condi-
tions corresponding to the usual spectrum postulate of field theory can
then be formulated purely in terms of the quasilocal algebra 2 and the
representation V, = V(a, 4) of the inhomogeneous Lorentz group ® on
A (MoxTvAY [2], DoPLICHER [3]).

2. The Quantum Mechanical Algebra of Observables

Let R be a von Neumann algebra on a Hilbert space § with the
following property: A suitable decomposition of § into the discrete direct
sum 9 =2 @ H, of “coherent subspaces” 9, reduces RN to the direct

$
sum R =}’ & B(H,) of the algebras B ($,) of all bounded operators on

8

9,. This corresponds physically to the existence of an Abelian set of
superobservables, all with discrete spectrum, which are simultaneously
diagonalized by the decomposition of £, R being the set of all operators
commuting with these superobservables. In the simplest case, without
superselection rules, R is simply the algebra B () of all bounded opera-
tors on $).

Furthermore, let U, be a unitary, strongly continuous representation
up to a factor of a connected Lie group &, the symmetry group of the
physical system described in $:

U,U,=wl(g,h) U,, with unitary operators w(g, h) €R’,
U,=1 (e = unit element of ®),

gli_% U,= U, (strong operator topology) .
For R = B () the unitary operators w (g, ) are simply complex numbers
of unit modulus. In the more general case considered here, w (g, h) € R’
is the appropriate generalization for representations ‘“up to a factor”.
Moreover the U, must leave invariant all coherent subspaces %, from
which follows U, € R and

URU;P=R forall g€6.

The representation up to a factor U, induces a representation V, of
® by symmetric automorphisms of R with

V,X=U,XU;' forall X¢R,
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ie.,
V, V.=V, V,=1 (the identity automorphism) ,
VoAX + uY)=AV, X+ uV, Y,
V, XY = (V,X)(V,Y), V,X*=(V,X)*, V,1=1,
IV, X] = 1],
and the strong continuity of U, immediately implies
lim V,X =V, X (strong operator topology) . 1)
g—>go
A subset 2 of operators X ¢ R will be defined by the continuity
requirement
lim V,X =V, X (uniform operator topology) ,

g9
ie.,

lim |V, X -V, X| =0, (2)
g0

which is stronger than (1). As evident from the representation property
of V,, 2 contains with X also all V, X, and (2) is equivalent to

lim |[V,X — X| =0. 3)
g—e

Because of V,1 = 1 or, more generally, V,S = § for all operators S ¢ R/,
the unit operator as well as all “bounded functions of superobservables”,
ie., all 8§ €X', belong to 2.

With X and Y also the operators AX + p Y, XY, and X* belong to
2U: They lie in R because N is a symmetric algebra, and the condition (3)
can be verified using simple estimates of the operator norm. Moreover,
A contains all its accumulation points with respect to the uniform
operator topology: They lie in R because R is uniformly closed, and (3)
is again easy to show. Thus the following theorem is proved:

Theorem 1. 2 is a symmetric, uniformly closed algebra of operators on
Hilbert space 9, i.e., (using the terminology of ref. [1]) a concrete C*-algebra.

In what follows 2 is called the algebra of observables. Hermitean
operators 4 ¢ Q will be interpreted physically as observables of the given
system. They are uniquely characterized in R by Hermiticity and con-
dition (3). Any operator X ¢ 2 can be represented as 4 - ¢ B with ob-

servables 4 = »;— (X* 4+ X) and B = % (X* — X).

Theorem 2. Any completely continuous operator X ¢ R belongs to A,
t.e., any completely continuous Hermitean operator in R is an observable.

Proof. It is sufficient to show 4 ¢ 2l for any completely continuous
Hermitean operator 4 ¢ R because then, from any completely con-
tinuous X € R, one gets Hermitean

~ 5 (X*+X) €A, B=o (X% X) €A,
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and therefore one has X =4 +iB¢c2. A completely continuous

Hermitean 4 ¢ R has a spectral representation A4 = }'4, P, with

P, eR and lim 2; =0, and this implies lim |4, — A| =0 with
n—>x

A, =2"2;P, ¢R. Because QU is a uniformly closed linear space, it
i=1

suffices to prove P, €2l All one-dimensional projections P, € R, how-
ever, belong to 2. Indeed, the relation (3) for any one-dimensional
Py ie.,

lim HVgPsv - Psv” = lim HPqu: - t;)” =0,
g—>e g—>e
follows from the strong continuity of U, i.e., from
im [Uyp — ¢ =0,
g—re
if one uses the simple estimate

1P, — Py = 2]y — ¢
with y = U, ¢.

Theorem 3. The algebra of observables QA is dense in the von Neumann
algebra R with respect to the weak (or strong, ultraweak, ultrastrong)
operator topology, or equivalently: A" = R.

Proof. According to Drxmrer [4] (Chap. I, § 3, No. 4, Corollaire 1), the
weak, ultraweak, strong, and ultrastrong closure of 2 all coincide with
the von Neumann algebra Q" generated by 2. Therefore it is enough to
show " = R. From A C N the relation A" C RN is obvious, and thus only
R A" remains to be proved.

The projectors Pg, ¢ R’ onto the coherent subspaces £, belong to 2
and thus to 2", since R’ C A. Furthermore, because of A C R, they belong
to A’ DR’ too. Thus they lie in the center of the von Neumann algebra
A" as well as in that of R, and one has, besides N = Z' ® B(H,), also

the direct sum decomposition A"’ = 2 & (A”)g, (ref. [4] Chap. 1, §2,

No. 2). Therefore one must show (Ql”)g DB (9,). According to Theorem 2,
(A)g, and thus (A")g, contains the algebra €(9,) of all completely con-
tinuous operators on 9,: (A”')gs O €(H,). But because (A”)g, is a von
Neumann algebra on the Hilbert space $,, it follows

QA)g, = A")5, 0 €(9y)" = B(Hy) -

This proof of Theorem 2 decisively uses the special structure of the
von Neumann algebra R, together with Theorem 2. An entirely different,
but somewhat more complicated proof can be given using methods which
will be developed later in connection with Theorem 5 (for details see
§3): Let be f;(g), 2 =1,2...a d-sequence on &, X an arbitrary operator
in R, and X(f,) = [ V,X f,(9) dg with the left-invariant integral on .
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Then one has X (f,) €U and

im X(f,) =X (ultrastrong convergence) ,

1

ie., N is the ultrastrong closure of A. The rest of Theorem 3 follows
again from Dixmrer [4] (Chap. I, § 3, No. 4).

Corollary. Any Hermitean operator in R is a weak (ultraweak, strong,
ultrastrong) accumulation point of Hermitean operators from A (i.e., of
observables ).

Proof. Let R, resp. M, be the set of all Hermitean operators in 2,
resp. R, and denote by Ny, Ny, Ny, Ny the closure of N in the weak,
ultraweak, strong, and ultrastrong topology, respectively. One has to
show

MRy, MWy, MR, M Ny -

Since the involution X — X* is weakly continuous, 9, consists of
Hermitean operators, and since R is weakly closed, one has
Ny M. (4)

The known relations between the various operator topologies (DIXMIER
[4], Chap. I, § 3, No. 2) imply

C")zust C gzst C C“)tw s Qzust C Qzuw C sz . (5)

On the other hand, according to Theorem 3 any A4 € 9% is an ultraweak
accumulation point of operators X €2 and thus, by ultraweak con-
tinuity of the involution, also an ultraweak accumulation point of the

Hermitean operators % (X*+ X) €q, e,

Wy O M. (6)
Egs. (4), (5), and (6) together imply
Ny = Wy =M. (7)

The set A is convex, therefore its closures RN and N, are convex too.
According to DixmIer [5], 9 resp. A, are then also weakly resp.
ultraweakly closed, thus

stt ) Qtw > Qzusi; P gzuw .

This implies, together with (5) and (7),
stt =N, = Qzusl; =Nuw=MW, (8)
q.ed.
A shorter proof follows by using a J-sequence f,(g), ¢ =1,2...
(see §3). For any 4 €M, the A(f;)= [ V,4 f;(9) dg are Hermitean
operators belonging to 2, and Zli)nrolo A(f;) = A (ultrastrongly) implies

Nyt DM .
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From this and (5) follows also
Ny DM, NuwoO M, AGOM.

Conversely, Theorem 3 follows also from the Corollary. Any operator
X € R can be written as A + 7B with Hermitean A and B; 4 and B
however — and thus X — can, according to the Corollary, be approximat-
ed weakly (ultraweakly, strongly, ultrastrongly) by operators from 2.

3. The Algebra of Quasiloeal Observables

The methods of §2 will be applied in this section to axiomatic
quantum field theory. This amounts to a nontrivial generalization, since
now the algebraic structure becomes more complicated: Instead of the
single von Neumann algebra R of § 2, local von Neumann algebras Rq
are given for all finite open space-time regions C. Furthermore, in con-
trast to R the Rp are not invariant with respect to the representation U,
in $ of the symmetry group &, the latter going to be identified with the
proper inhomogeneous Lorentz (or space-time translation) group.

The following postulates are assumed (compare, e.g., ARAKI [6]):

I. For any finite open space-time region C, a von Neumann algebra
R¢ of operators on Hilbert space $ is given.

II. f C = iLEJI C; with any index set I, then

o= Y, )

Corollary. R, C Ry, if Oy C Oy (isotony).
IIT. A continuous unitary representation up to a factor U(a, A) of
the inhomogeneous Lorentz group ® in $ is given with

U(a: A) 9?0 U_l(a’ A) = 9{C‘(a./l) .

(Here C(,, 4 denotes the region generated from C by the transformation
x—>Ax+ a)—
The transformation V(a, A), for any operator X on 9, is defined as
above by
Ve, )X = Ul(a, A) XU (a, A).

The V (a, A) form again a representation of the group ® on B (). Because
of Postulate 11I, however, they are not automorphisms of the algebras
Re. The set of operators X € R with
lim  [[V(e, )X - X[=0 (9)
(a, 4)—(0,1)
will be denoted by 2c. In complete analogy to Theorem 1 one proves:
Theorem 4. A; is a concrete C*-algebra.
In the following, 2. is called the algebra of local observables for the
region C. The Hermitean operators in Qs shall represent all possible
measurements in the space-time region C.
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Isotony of the mapping C' - R¢ evidently implies isotony of C' — Up.
Postulate III leads to
V(a, M)U¢ = Aoy, 4, - (10)

Finally, the 2y satisfy the usual postulate of local commutativity if one
assumes the corresponding property of the R¢.

With the same methods as in § 2 one could formally prove an analogue
to Theorem 2 for the local algebra of observables Q,. This, however,
makes no sense: No algebra R should contain any completely continuous
operator except zero (Misra, BorcHERS [7]).

But again one can prove:

Theorem 5. The local algebra of observables Ug is weakly (uwltraweakly,
strongly, ultrastrongly) dense in the local von Neumann algebra Rg, i.e.,
Ay = Re.

As in § 2, this implies:

Corollary. Any Hermitean operator in R¢ is a weak (ultraweak, strong,
ultrastrong ) accumulation point of local observables belonging to the region
C, i.e., of Hermitean operators from Ug.

Theorem 5 is more complicated to prove than the analogous Theo-
rem 3. The algebraic structure of R, in contrast to N, is not explicitely
known, and especially an useful analogue of Theorem 2 is missing here.
The method of proof here applied, using d-sequences on Lie groups, has
been developed by ArRAKI [6] for the special case of the translation group.

Definition. Let be ® any Lie group and [ ...dg the left-invariant
integral on ®. A sequence f;(g), ¢ = 1,2 ... of continuous nonnegative
functions with compact carriers Suppf, on ® is called a J-sequence, if

[ig)dg=1 forall i=1,2...
and
Suppf; »e for i—>oc.

(The last statement means, more precisely: For any neighborhood U (e)
of the unit clement ¢ on ® there exists a number N such that
Suppf; CU(e) for all s > N.) —

For any continuous function f(g) and any d-sequence f;(g) on & then

Yim [f(g) f:(9) dg = 1 (o) , (11)

thus justifying the name “d-sequence”. The existence of such d-sequences
and property (11) are well known (see, e.g., DIXMIER [8]).

The subsequent lemma will be decisive for the following:

Lemma. Let U, be a continuous wunitary representation up to a
factor of the Lie group & tn Hilbert space &. Furthermore, let f,(g),t=1,2...
be a d-sequence on & and X an operator from a von Neumann algebra €
on § with V, X =U, XU €Z for all g € Suppf;, i =1,2.... Then the
following statements hold :
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1. The X (f;) = [ V,X f:(9)dg, ¢ = 1,2 ... are bounded operators on
9 with | X (f)| = | X|. For Hermitean X, the X (f;) are Hermitean too.

2. X(f) €S, i=1,2....

3. lim [V, X ()~ X() = 0.i=1,2....

4. lim X (f,) = X (ulltrastrong convergence).
1—>Q
Proof. 1. The equation
(g9 =[ (@, V,X9) [i(g)dg forall @,p€9H

defines a bilinear form on $, which is bounded by

Kol = [ e Vo X9)l fi@) dg = [ o] - [ X] - vl -
For Hermitean X, (¢, v) = (y, @)*. Therefore

() = (o, X(f2) p)

X(t:) =T Vo X fi(g) dg
with | X (f,)| £ | X|, which is Hermitean if X is.
2. By definition of X (f;),

(p, Y X(f)w) = [ (9, YV, Xp) f:(9) dg

for any ¥ € %’, and since V,X €< for all g € Suppf;, one can transform
the right hand side into

[ (@, [V, X1Y9) fi(9) dg = (¢, X(f,) Yp).

Therefore X (f,) Y =Y X(f;) forall Y ¢ €', ie., X(f,) €S =Z.
3. One has

VX)) =V, Vi, Xf;(R)dh= [V, X[, (h)dR
= Fg)an,

defines an operator

and according to the left-invariance of the integral the last term equals

[ F(g2h,9)dh = [V, X f;(g~*h)dh .
So one obtains

Vo X (f) = X(F)| = 1/ VaX[filg= R) — fi(R)] dh| =
= X[ [ 1falg™R) = fi(R)| dh .

Since f;(g) is a continuous function with compact carrier, it is also
uniformly continuous. Therefore, if g —e, the integrand |f,(g~1%) —
— f:(R)| in the last term tends to zero uniformly in A, whereas the inte-
gration volume (i.e., the region with f;(g~t%)— f;(k) == 0) contracts to

Suppf;, with [ dh < oo because Suppf; is compact. This implies state-
Supp fs
ment 3. of the Lemma.
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4. By definition of X (f,), for any ¢ € $ one has
X () — Xe] =”S”‘1P1|(1% [X(f) — X]o)|
vl =

= Sup |[ (p, [V,X — X]9)f:(9) dg| =

vl =1

gnsuuf1 vl LIV, X = Xo| fi(9) dg =

= Sup [V, X — X]g].
gESupp/;
V, X being a strongly continuous function of g (§ 2, eq. (1)), the last term
vanishes for ¢ — oo since Suppf, — e. Thus

Jim |[X(f) - X]g| =0 forall g¢9,

i.e., the X (f;) converge strongly to X. Moreover, according to 1. one has
| X ()] = | X] for all ¢, ie., all operators X(f,) belong to a common
sphere |Y| < const. in B(9). Within such spheres, however, the ultra-
strong operator topology coincides with the strong one (Dixmier [4],
Chap. I, § 3, No. 2), i.e., the X (f;) converge to X even ultrastrongly.—

With the help of this Lemma, applied to € = R, the alternative
proof of Theorem 3 sketched in § 2 follows immediately.

Proof of Theorem 5. One has to prove Ry = Ay, and it suffices to
show Re C Ay since Ay C Re immediately follows from Ay < R

Consider an arbitrary open region B with B ¢ C. (B denotes the closure
of B.) The set of all transformations (a, A) with B(,, 5 CC is then a
neighborhood €' — B of the unit element e = (0, 1) of the inhomogeneous
Lorentz group ®. Then choose a d-sequence f;(a, A4) on & such that
Suppf;cC — Bforalli=1,2... .

Let X be any operator from Rp. The Postulates IT and III imply
V(a, A)X € R for all (a, A) € C — B, thus also for all (a, A) € Suppf,,
t=1,2... . Then the above Lemma can be applied with € = R.
From the statements 2. and 3. of the Lemma,

X(f) = [ Vi@, A) X fi(a, A) d(a, A) €2Ac ,
and from 4., lim X (f,) = X (ultrastrongly). Therefore X, and thus the
1—> 00
whole algebra Ry, belongs to the ultrastrong closure of 2, i.e., to QA .
On the other hand, the region C' can be represented as the union of all
regions B with B c C, and Postulate 1T implies
9 — U Q rr .
R = {32, )
Together with the relation Rp C 2l just proved this implies Rp < Ay —
Now, all local algebras of observables 2l for finite open regions C can

be combined to a single C*-algebra 2, the so called algebra of quasilocal
observables (or shortly, quasilocal algebra). Namely, let 2 be the closure
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of the set of operators B =Cf!;|iteQ[c with respect to the uniform operator

topology. The set B is a symmetric algebra of bounded operators:
Choose X and Y arbitrarily from B, ie., X €%y, and Y €2y, with
suitable finite regions Cy and C,. As implied by isotony, the local algebra
A¢, U, contains both Ay and Ay, Thus X, X*, X + Y, and X Y
belong to g, \ ¢, and to B DAy, ¢,- The uniform closure 2 of B is then
indeed a concrete C*-algebra.

By eq. (10), the transformations V(a, /) are a representation of ®
by automorphisms of the algebra B, and since |V (a, A) X|| = | X|, the
set of uniform accumulation points of B is also transformed into itself,
i.e., the V(a, A) are automorphisms of the quasilocal algebra 2 too. The
continuity of V(a, A) expressed by (9) is similarly transferred from 3B
to its uniform closure 2I.

If the Rg, and thus also the Ay, do not contain completely con-
tinuous operators [7], then the same must hold for the quasilocal algebra
. This follows easily with the help of a theorem from Rimsz-Nacy [9].

An entirely analogous construction of C*-algebras 2y and 2[ can be
performed by using, instead of the inhomogeneous Lorentz group, the
space-time translation group only. Since the latter is a subgroup of the
former, one has 9y > A and 2 > A. The algebras 2 and 3, however, can
also be constructed if one assumes, instead of Postulate III, only trans-
lation invariance.

Replacing the concrete C*-algebra A and its local subalgebras Qg
constructed here by the corresponding abstract C*-algebras, one arrives
at a purely algebraic structure. Such an abstract formulation of local
field theory has been proposed by Haac and KasTLER [1]. The quasilocal
algebra 2 given here fulfills all postulates of ref. [1] if, besides Postu-
lates I to III, also local commutativity of the algebras R is assumed.
Thus the above construction of 2y and 2 can also be interpreted as a
prescription how to associate abstract C*-algebras with a given concrete
(i.e., Hilbert space) field theory.

4. Remarks on Algebraic Spectrum Conditions

Besides satisfying the postulates of Haac and Kastrer [1], the
quasilocal algebra 2 constructed above has, by its very definition, a
further important property expressed by eq. (9). The representation of
the inhomogeneous Lorentz group ® by isometric operators V (a, /1) on
the Banach space 2l is, according to (9), strongly continuous. In this sense,
eq. (9) is an ‘“‘algebraic” analogue of the strong continuity of the re-
presentation of & by unitary operators U(a, A) on Hilbert space ©
8  Commun. math. Phys., Vol. 7
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(Postulate ITI). The usual Hilbert space spectrum condition of field
theory is, by Stone’s theorem, connected with the strong continuity of
U (a, A). “Algebraic” spectrum conditions, i.e., corresponding assump-
tions for the automorphisms V(a, A) of 2, can now be formulated with
the help of eq. (9).

Since only the translations V(a, 1) = V(a) are needed in this connec-
tion, one could use instead of (9) the weaker requirement

lim [V(@) X — X| =0 forall Xea, (12)

or even treat instead of I the larger algebra 2 mentioned above.

MoxnTvay [2] translates, almost literally, the usual spectrum con-
dition into an algebraic one by replacing the infinitesimal generators
P;of U(a,1)= Ul(a) on $ by the corresponding generators P, of V(a)
on Q. The condition thus obtained implies the Hilbert space spectrum
condition for all irreducible translation-invariant representations of

9 [2].

Another algebraic spectrum condition has been formulated by
Dorricaer [3]. From it follows the existence of at least one translation-
invariant representation with the Hilbert space spectrum condition;
furthermore, this representation can also be chosen to be irreducible [3].
MoxTvaY’s condition is thus the stronger one, and is perhaps even too
strong [10].

We will not go into more details here, but only add a somewhat
trivial remark. In ref. [3], no continuity assumption like (9) or (12) seems
to be needed at all. Without such an assumption, however, two diffi-
culties appear. First, expressions like [V (2) 4 z(z) d*x with 4 ¢ 2 and a
summable function z (x) which are used in ref. [3] are then not defined as
elements of 2. (The isometry of V(z) is clearly not sufficient for this.)
Secondly, no continuity properties of the unitary representation U (@) in
the Hilbert space 9 of a translation-invariant representation of 2, and
thus no spectral decomposition U (a) = [ €i?¢ d B (p), can be deduced.
Both difficulties disappear if eq. (12) is assumed to hold.

A continuity assumption like (12) seems thus to be necessary also for
DorricHER’s spectrum condition. This is intuitively expected to be true
for any attempt to formulate spectrum conditions algebraically.
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