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Abstract, Concrete C*-algebras, interpreted physically as algebras of observables,
are denned for quantum mechanics and local quantum field theory.

A quantum mechanical system is characterized formally by a continuous unitary
representation up to a factor Ug of a symmetry group (5 in Hubert space ξj and a
von Neumann algebra 91 on § invariant with respect to Ug. The set 21 of all operators
X ζ 91 such that UgXUy1, as a function of g ζ (§, is continuous with respect to the
uniform operator topology, is a C*-algebra called the algebra of observables. The
algebra 91 is shown to be the weak (or strong) closure of 21.

In field theory, a unitary representation up to a factor U(a, A) of the proper
inhomogeneous Lorentz group (5 and local von Neumann algebras 9lc for finite
open space-time regions C are assumed, with the usual transformation properties of
9XC under U(a, A). The collection of all X ζ 9lc giving uniformly continuous func-
tions U(a, Λ)X U~λ(a, A) on © is then a local C*-algebra Qic, called the algebra of
local observables. The algebra Qic is again weakly (or strongly) dense in 9lc- The norm-
closed union 01 of the Qic for all C is called algebra of quasilocal observables (or
quasilocal algebra).

In either case, the group © is represented by automorphisms \g resp. \(a, A)
•— with VgX = UgX U~λ — of the C*-algebra Qi, and this is a strongly continuous
representation of © on the Banach space Qi. Conditions for V (a, A) can then be
formulated which correspond to the usual spectrum condition for ϋ (a, A) in field
theory.

1. Introduction and Summary

In quantum mechanics, physical quantities (observables) are re-

presented by Hermitean operators A on a certain Hubert space § . If

moreover these observables are suitably selected, they can be represented

by bounded operators A. Implicitely or explicitely, most theoretical

investigations also assume the inverse: Any bounded Hermitean operator

A on § compatible with the superselection rules (i.e., commuting with

all "superobservables") of the theory is supposed to represent a physical

observable. The set of observables then coincides with the set of all

Hermitean operators of a certain von Neumann algebra 91. In field

theory, the introduction of local von Neumann algebras 9lc for aH
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finite open space-time regions C leads to a similar assumption: The
Hermitean operators A of 9lG are supposed to represent possible measure-
ments in C.

But the sets of observables so defined are likely much too large. A
physical system without superselection rules, for instance, is intuitively
expected to have much fewer different physical observables (i.e., measur-
ing apparatus which can actually be constructed, at least in principle)
than Hermitean operators on the corresponding Hubert space. Under
these circumstances there should exist, besides Hermiticity, some extra
properties which would characterize the "true" observables in the von
Neumann algebras 9ΐ resp. 9? .̂

As a purely formal attempt to formulate such an additional property
of observables, we are going to postulate a sufficiently regular transforma-
tion behavior with respect to symmetry transformations of the physical
system: If A is any observable and Ug the given strongly continuous
unitary representation up to a factor of the symmetry group © in Hubert
space $), then UgA U^1, as a function of the group element g £ ©, has to
be continuous with respect to the uniform operator topology (norm
topology). Vice versa, any Hermitean operator A in 91 resp. 9lc with this
property is assumed to be an observable. In field theory, the group © is
identified with the inhomogeneous Lorentz group.

The set of operators A + iB with observables A and B from 91 is
then a concrete O*-algβbra 21, called algebra of observables. Similarly,
the A -f- iB with observables A, B from a local 9\Q form a O*-subalgebra
2lc? °f ^c> called the algebra of local observables belonging to the space-
time region C. In either case, the algebra of observables 21 resp. 2ίc is
weakly for strongly, ultraweakly, ultrastrongly) dense in the cor-
responding von Neumann algebra 91 resp. 9lc. The union of the local 2ίc
for all finite open regions G yields, after uniform closure, a concrete
(7*-algebra 21, the so called algebra of quasilocal observables (or shortly,
quasilocal algebra). This quasilocal algebra is the field theoretic analogue
to the algebra of observables 21 for a quantum mechanical system.

A similar mathematical structure for the observables of field theory
was proposed by ΈLAAG and KASTLER [1]. In ref. [1], however, the

concrete 0*-algebra 21 defined above and its local subalgebras $ίc (i.e.,
O*-algebras realized as operator algebras on Hubert space) are replaced
by abstract (7*-algebras.

The quantum mechanical algebra of observables 21 contains in
particular all completely continuous operators in 91. On the contrary, the
quasilocal algebra 21 cannot contain any completely continuous operator
(except zero), because the local von Neumann algebras 91^ do not contain
such operators.
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The transformations Yg defined by

ΎgΣ = U.XU-1 for all X ζ21

are automorphisms of 21 and provide a representation of the symmetry
group ©. By construction, the bounded linear operator Y^ on the Banach
space 21 is a strongly continuous function of the group element g. Condi-
tions corresponding to the usual spectrum postulate of field theory can
then be formulated purely in terms of the quasilocal algebra 21 and the
representation Ύg = Y(a,Λ) of the inhomogeneous Lorentz group © on
21 (MONTVAY [2], DOPLICHER [3]).

2. The Quantum Mechanical Algebra of Observables

Let 9t be a von Neumann algebra on a Hubert space ί) with the
following property: A suitable decomposition of $) into the discrete direct
sum ξ) = Σ Φ $s °f "coherent subspaces" ξ>s reduces 9? to the direct

s

sum 91 = Σ Φ 95 (§s) of the algebras 33 (£js) of all bounded operators on
s

Ϋ)s. This corresponds physically to the existence of an Abelian set of
super observables, all with discrete spectrum, which are simultaneously
diagonalized by the decomposition of § , 91 being the set of all operators
commuting with these superobservables. In the simplest case, without
superselection rules, 91 is simply the algebra 33 (§) of all bounded opera-
tors on ξ).

Furthermore, let Ug be a unitary, strongly continuous representation
up to a factor of a connected Lie group ©, the symmetry group of the
physical system described in § :

Ug Uh = ω (g, h) Ugh with unitary operators OJ (g, h) ζ 91' ,

JJe ~ 1 (e = unit element of ©) ,

lim C79 = Ugo (strong operator topology) .
9>Q

For 91 = 23 (£j) the unitary operators ω (g, h) are simply complex numbers
of unit modulus. In the more general case considered here, ω (g, h) £ 91'
is the appropriate generalization for representations "up to a factor".
Moreover the Ug must leave invariant all coherent subspaces ξ)s, from
which follows Ug ζ 91 and

= 91 for all g £ © .

The representation up to a factor C7g induces a representation Vff of
© by symmetric automorphisms of 9ί with

ΎgΣ= UgXυ-χ for all X £91,
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i.e.,

V9Vft = Vgft, \ e = 1 (the identity automorphism) ,

Ύg(λX + μ Y) = AV,Z + μYβ Y ,

ΎgXY=(ΎgX)(ΎgY), ΎgΣ* = (VβΣ)*, V,l = 1 ,

and the strong continuity of Ug immediately implies

lim ΎgX = Yg X (strong operator topology) . (1)

A subset 2ί of operators X ζ 9ί will be defined by the continuity
requirement

lim ΎgX = Vg X (uniform operator topology) ,

lim ϋV.X - V,,X|| = 0 , (2)

which is stronger than (1). As evident from the representation property
of Yg, 21 contains with X also all YgX, and (2) is equivalent to

lim \\YgX-X\\ = 0. (3)

Because of Tff 1 = 1 or, more generally, Yg8 = S for all operators S ξ_ $i',
the unit operator as well as all "bounded functions of superobservables",
i.e., all 8 ζ $1', belong to 21.

With X and Y also the operators λX + μ Y, X 7, and X* belong to
21: They lie in 9ί because 91 is a symmetric algebra, and the condition (3)
can be verified using simple estimates of the operator norm. Moreover,
21 contains all its accumulation points with respect to the uniform
operator topology: They lie in 91 because 9ί is uniformly closed, and (3)
is again easy to show. Thus the following theorem is proved:

Theorem 1. 21 is a symmetric, uniformly closed algebra of operators on
Hilbert space ξ>, i.e., (using the terminology of ref. [I]) a concrete C*-algebra.

In what follows 21 is called the algebra of observables. Hermitean

operators A ζ 21 will be interpreted physically as observables of the given

system. They are uniquely characterized in 9ί by Hermiticity and con-

dition (3). Any operator X £21 can be represented as A ~f iB with ob-

servables A = Y (X* 4- X) and B = ~ {X* ~ X).

Theorem 2. Any completely continuous operator X £ 91 belongs to 21,
i.e., any completely continuous Hermitean operator in 9ΐ is an observable.

Proof. It is sufficient to show A ξ 21 for any completely continuous
Hermitean operator A £ 9ΐ because then, from any completely con-
tinuous X ζ 91, one gets Hermitean
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and therefore one has X = A -{- iB ζ*Ά. A completely continuous
Hermitean A £ 91 has a spectral representation A ^ Y XtPφ. with

i

Pφ. ζ9l and lim ^ = 0, and this implies lim \An — ̂ 4|| = 0 with
n

. Because 21 is a uniformly closed linear space, it
φ

ΐ = 1

suffices to prove Pφ. £ 2ί. All one-dimensional projections Pφ ζ 9ί, how-
ever, belong to 21. Indeed, the relation (3) for any one-dimensional
Pφ, i.e.,

follows from the strong continuity of Ug, i.e., from

lim 1 1 7 ^ - φ\\ - 0 ,

if one uses the simple estimate

with ψ = Ugφ.
Theorem 3. The algebra of observables 21 is dense in the von Neumann

algebra 9v with respect to the weak (or strong, ultraiveak, ultrastrong)
operator topology, or equivalently: 21" = 9t.

Proof. According to DIXMIER [4] (Chap. I, § 3, No. 4, Corollaire 1), the
weak, ultraweak, strong, and ultrastrong closure of 21 all coincide with
the von Neumann algebra 21" generated by 21. Therefore it is enough to
show 21" == 91. From 21C 9Ϊ the relation 21" C 91 is obvious, and thus onty
9ΐc2l" remains to be proved.

The projectors P^s ζ 91' onto the coherent subspaces ξ)s belong to 21
and thus to 21", since 9V C 21. Furthermore, because of 2ί C ̂ > they belong
to 2Γ D9V too. Thus they lie in the center of the von Neumann algebra
21" as well as in that of 9ί, and one has, besides 9v = Σ

the direct sum decomposition 21" = 27 Θ (2l")§β (ref. [4], Chap. I, § 2,

No. 2). Therefore one must show (2l")^s D 23 (ξ)s). According to Theorem 2,
(2l)ί)β and thus (2l")^s contains the algebra ®(§s) of all completely con-
tinuous operators on ξ>s: (2l")^D S(§ s ). But because (2l")^s is a von
Neumann algebra on the Hubert space § s , it follows

This proof of Theorem 2 decisively uses the special structure of the
von Neumann algebra 91, together with Theorem 2. An entirely different,
but somewhat more complicated proof can be given using methods which
will be developed later in connection with Theorem 5 (for details see
§ 3): Let be fί (g), i = 1,2. . .a (5-sequence on ©, I an arbitrary operator
in 9ί, and X(fi) — f ΎgX fi(g) dg with the left-invariant integral on ©.
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Then one has X(f{) £ 21 and

lim X(fi) = X (ultrastrong convergence) ,

i.e., 9ί is the ultrastrong closure of 21. The rest of Theorem 3 follows
again from DIXMIER [4] (Chap. I, § 3, No. 4).

Corollary. Any Hermitean operator in 91 is a weak (ultraweak, strong,
ultrastrong) accumulation point of Hermitean operators from 21 (i.e., of
observables).

Proof. Let 2Z, resp. 921, be the set of all Hermitean operators in 21,
resp. 9ΐ, and denote by 9tw, 9TUW, 9ϊst, 9ΐust the closure of 91 in the weak,
ultraweak, strong, and ultrastrong topology, respectively. One has to
show

Since the involution X -> X* is weakly continuous, 9 ^ consists of
Hermitean operators, and since 9t is weakly closed, one has

%rcm. (4)
The known relations between the various operator topologies (DIXMIER
[4], Chap. I, § 3, No. 2) imply

Stuβt C 9ζ t C 3tw, 9ίu s t C 9tu w C 9tw (5)

On the other hand, according to Theorem 3 any A £ 92c is an ultraweak
accumulation point of operators X £ 21 and thus, by ultraweak con-
tinuity of the involution, also an ultraweak accumulation point of the

Hermitean operators -^ (X* + X) ζ 71, i.e.,

(6)

Eqs. (4), (5), and (6) together imply

9tw = 9ΐuw = 9R . (7)

The set 91 is convex, therefore its closures 9ΐst and 9ΐust are convex too.
According to DIXMIER [5], 9tst resp. 9ΐust are then also weakly resp.
ultraweakly closed, thus

This implies, together with (5) and (7),

9ίst = 9XW - 9Zust = 9IUW = 3R , (8)
q.e.d.

A shorter proof follows by using a (5-sequence fi(g), i ~ 1, 2 . . .
(see §3). For any A ζ 921, the A{f{) = J'Ύ'gA f^g) dg are Hermitean
operators belonging to 21, and lim A (/,) = A (ultrastrongly) implies

i>oo
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From this and (5) follows also

2ίwD92}, s t r a i t , 9iBt:>9n.

Conversely, Theorem 3 follows also from the Corollary. Any operator
X ζ-91 can be written as A -f iB with Hermitean A and B A and B
however — and thus X — can, according to the Corollary, be approximat-
ed weakly (ultraweakly, strongly, ultrastrongly) by operators from 21.

3. The Algebra of Quasilocal Observables

The methods of § 2 will be applied in this section to axiomatic
quantum field theory. This amounts to a nontrivial generalization, since
now the algebraic structure becomes more complicated: Instead of the
single von Neumann algebra 9t of § 2, local von Neumann algebras 9ίc
are given for all finite open space-time regions C. Furthermore, in con-
trast to 91 the 9lc are not invariant with respect to the representation Ug

in § of the symmetry group ©, the latter going to be identified with the
proper inhomogeneous Lorentz (or space-time translation) group.

The following postulates are assumed (compare, e.g., ARAKI [6]):
I. For any finite open space-time region C, a von Neumann algebra

9lc of operators on Hubert space 9) is given.
II. If C = .U Ci with any index set I, then

Corollary. 9ίCl c 9ΐc2 if Cλ c G2 (isotony).
III. A continuous unitary representation up to a factor U(a,Λ) of

the inhomogeneous Lorentz group © in § is given with

(Here Cf(α> Λ) denotes the region generated from C by the transformation
x -> Λx -r Ob-) —

The transformation Ύ(a, A), for any operator X on S), is defined as
above by

Y{a,Λ)X=U(a, A) X U-1 (a, A) .

The V (α, A) form again a representation of the group © on 53 (§). Because
of Postulate III, however, they are not automorphisms of the algebras
9ίcr. The set of operators X ζ 9lc with

lim \\Y(a,A)X- Xl = 0 (9)
(«,/!)-> (0,1)

will be denoted by 2to In complete analogy to Theorem 1 one proves:
Theorem 4. Qίc is a concrete C*-algebra.
In the following, Q{c is called the algebra of local observables for the

region C. The Hermitean operators in 9ic shall represent all possible
measurements in the space-time region C.
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Isotony of the mapping C -> 91Q evidently implies isotony of C -> Qίc

Postulate I I I leads to

V(α,/l)2lσ = 2lC ( f t / 1 ). (10)

Finally, the $lc satisfy the usual postulate of local commutativity if one
assumes the corresponding property of the 9ΐc.

With the same methods as in § 2 one could formally prove an analogue
to Theorem 2 for the local algebra of observables 21^. This, however,
makes no sense: No algebra 3^c should contain any completely continuous
operator except zero (MISRA, BOUCHERS [7]).

But again one can prove:
Theorem 5. The local algebra of observables Qic is weakly (ultraiυealdy,

strongly, ultrastrongly) dense in the local von Ήeumann algebra 9lc, i.e.,

As in § 2, this implies:
Corollary. Any Hermitean operator in 9lc is a weak (ultraweak, strong,

ultrastrong) accumulation point of local observables belonging to the region
C, i.e., of Hermitean operators from Qlc.

Theorem 5 is more complicated to prove than the analogous Theo-
rem 3. The algebraic structure of *2lc, m contrast to 9ί, is not explicitely
known, and especially an useful analogue of Theorem 2 is missing here.
The method of proof here applied, using ό-sequences on Lie groups, has
been developed by ARAKI [6] for the special case of the translation group.

Definition. Let be (5 any Lie group and / . . . dg the left-invariant
integral on ©. A sequence fi(g)} i = 1,2 ... oi continuous nonnegative
functions with compact carriers Supp/^ on (5 is called a (5-sequence, if

Jfilg)dg=l forall i = 1, 2 . . .
and

Supp/t -> e for i -> oo .

(The last statement means, more precisely: For any neighborhood U(e)
of the unit element e on © there exists a number N such that
Supp/^ C U(e) for all i> N.) —

For any continuous function / (g) and any ^-sequence fi (g) on (& then

\imff(g)fi(g)dg = f ( e ) , (11)
I—>oo

thus justifying the name "d-sequence". The existence of such (5-sequences
and property (11) are well known (see, e.g., DIXMIER [8]).

The subsequent lemma will be decisive for the following:
Lemma. Let Ug be a continuous unitary representation up to a

factor of the Lie group <& in Hilbert space § . Furthermore, let fi(g)ii= 1,2...
be a δ-sequence on © and X an operator from a von Neumann algebra <Γ
on § with ΎgX = UgX U'1 ζ £ for all g ζ Supp/ i5 ^ = 1 , 2 Then the
following statements hold:
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1. The X(fi) = f ΎgX fi(g) dg, ί — 1, 2 . . . are bounded operators on
ξ> with \X(f?)\ < \\X\\- For Hermitean X, the X(fi) are Hermitean too.

2. * ( / , ) £ £ , < = 1 , 2 . . . .
3. lim\\ΎgX(fi)-X(fi)\\ = 0 , ϊ = l , 2 . . . .

4. lim X(fi) = X (ultrastrong convergence).

Proof. 1. The equation

<<?, ̂ > - / (9?, V.X^) A-(?) ̂  for all φ,ψ£ξ>

defines a bilinear form on ξj, which is bounded by

\<φ, ψ>\ ^ f \(φ> v<,xψ)\ his)dg < \\Ψ\\ • \\x\\ \\y>\\ •

For Hermitean X, (φ, ψ} = (ψ, φ}*. Therefore

defines an operator

with ||Z(/f)|| ^ ||X||, which is Hermitean if X is.
2. By definition of X(f{),

(φ, YX(h)ψ) = fiφ,7 ΎgXΨ) U(g) dg

for any Y ζ %\ and since V 9 I ( ^ for all g £ Supp/Z , one can transform
the right hand side into

/ (φ, [ΎgX] Yψ) JM dg = (φ, X(U) Yψ) .

Therefore X(/,) Y = Π f t ) for all Y 6 £', i.e., Σ(fi)
3. One has

and according to the left-invariance of the integral the last term equals

fF(g~ih, g)dh^j \hXU{g^h) dh .
So one obtains

- X(h)\\ = 11/ ΎnXUΛg-1^ - U(h)] dh\\ <;

Since fi(g) is a continuous function with compact carrier, it is also
uniformly continuous. Therefore, if g -> e, the integrand \fi{g~1h) —
— fi(h)\ in the last term tends to zero uniformly in h, whereas the inte-
gration volume (i.e., the region with / i ( r ^ ) - / i ί ) φ θ ) contracts to
Supp/i? with / dh<oo because Supp/^ is compact. This implies state-

SuppA

ment 3. of the Lemma.
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4. By definition of X(fi), for any φ ζ ξ) one has

l[Σ{ft) - X]φ\\ = Sup \(ψ, [X(f{) - X]φ)\
lίv|| = i

= Sup \f(ψ,[YgX-X]φ)fi(g)dg\<

<; Sup \\Ψ\\-f\\[YgX-X]φ\\fi(g)dg<
ilvJl = x

fΞ Sup \\[ΎgX-X]φ'>ί.
g £ Supp fi

ΎgX being a strongly continuous function of g (§2, eq. (1)), the last term
vanishes for i -> oo since Supp/^ -> e. Thus

lim || [X(/,) - X] φ\\ = 0 for all φ ξ § ,

i.e., the X(/z ) converge strongly to X. Moreover, according to 1. one has
||JΓ(/f)|| ^ ||X|| for all i, i.e., all operators X{fi) belong to a common
sphere | |7 | | g const, in 93(§). Within such spheres, however, the ultra-
strong operator topology coincides with the strong one (DIXMIER [4],
Chap. I, § 3, No. 2), i.e., the X(fi) converge to X even ultrastrongly.—

With the help of this Lemma, applied to £ = 91, the alternative
proof of Theorem 3 sketched in § 2 follows immediately.

Proof of Theorem 5. One has to prove 9lc = QIQ, and it suffices to
show 9lc C 2lc since 21" C 9lc immediately follows from $lc C 9lc-

Consider an arbitrary open region B with B C C. (B denotes the closure
of B.) The set of all transformations (a,Λ) with B(aiΛ)CC is then a
neighborhood C — B of the unit element e = (0, 1) of the inhomogeneous
Lorentz group ©. Then choose a ό-sequence fi(a,Λ) on © such that
Supp/, C C - £ for all ί = 1, 2 . . . .

Let X be any operator from 9lB. The Postulates II and III imply
V(α, Λ)X i9lc for all (α, Λ) ζ C - B, thus also for all (a, A) ζ Supp/^,
i = 1, 2 . . . . Then the above Lemma can be applied with £ = 9lc

From the statements 2. and 3. of the Lemma,

and from 4., lim X(f{) == X (ultrastrongly). Therefore X, and thus the

whole algebra 9tj5, belongs to the ultrastrong closure of Sί̂ , i.e., to 51^.
On the other hand, the region C can be represented as the union of all

regions B with B C C> a n ( i Postulate I I implies

Together with the relation 9lBC^i'c J u s ^ proved this implies 9ίcC2lc ~~
Now, all local algebras of observables %[Q for finite open regions C can

be combined to a single (7*-algebra 21, the so called algebra of quasilocal
observables (or shortly, quasilocal algebra). Namely, let 21 be the closure
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of the set of operators 23 = U 0ic with respect to the uniform operator
\j iimtΌ

topology. The set 03 is a symmetric algebra of bounded operators:
Choose X and Y arbitrarily from 03, i.e., Z ζ 2lCi and Y ζ 2lc2 with
suitable finite regions CΎ and C2. As implied by isotony, the local algebra
5l O i W C a contains both 2lOi and Slσ>. Thus λX, X*, X + Y, and X Y
belong to 2lCχ w Cz and to 33 D 2lCi w ^ The uniform closure 21 of 33 is then
indeed a concrete O*-algebra.

By eq. (10), the transformations Ύ(a, Λ) are a representation of ©
by automorphisms of the algebra 33, and since ||V(α,/l)X|| = \\X\\, the
set of uniform accumulation points of 33 is also transformed into itself,
i.e., the V(α, A) are automorphisms of the quasilocal algebra 21 too. The
continuity of Ύ(a,Λ) expressed by (9) is similarly transferred from 33
to its uniform closure 2ί.

If the 9?c> and thus also the Qic, do not contain completely con-
tinuous operators [7], then the same must hold for the quasilocal algebra
21. This follows easily with the help of a theorem from RIESZ-NAGY [9].

An entirely analogous construction of 0*-algebras 0lc and 2ί can be
performed by using, instead of the inhomogeneous Lorentz group, the
space-time translation group only. Since the latter is a subgroup of the
former, one has 21^ Z> 2l<? and 2 O 21. The algebras 21^ and 2ί, however, can
also be constructed if one assumes, instead of Postulate III, only trans-
lation in variance.

Replacing the concrete (7*-algebra 21 and its local subalgebras 2t<?
constructed here by the corresponding abstract C*-algebras, one arrives
at a purely algebraic structure. Such an abstract formulation of local
field theory has been proposed by HAAG and KASTLER [1]. The quasilocal
algebra 21 given here fulfills all postulates of ref. [1] if, besides Postu-
lates I to III , also local commutativity of the algebras ^Rc is assumed.
Thus the above construction of QIQ and 2ί can also be interpreted as a
prescription how to associate abstract C*-algebras with a given concrete
(i.e., Hubert space) field theory.

4. Remarks on Algebraic Spectrum Conditions

Besides satisfying the postulates of HAAG and KASTLER [1], the

quasilocal algebra 01 constructed above has, by its very definition, a
further important property expressed by eq. (9). The representation of
the inhomogeneous Lorentz group (5 by isometric operators Ύ (a, Λ) on
the Banach space 21 is, according to (9), strongly continuous. In this sense,
eq. (9) is an "algebraic" analogue of the strong continuity of the re-
presentation of © by unitary operators U(a, A) on Hubert space ξ>
8 Coramun, math. Phys., Vol. 7
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(Postulate III). The usual Hubert space spectrum condition of field
theory is, b}̂  Stone's theorem, connected with the strong continuity of
U(a,Λ). "Algebraic" spectrum conditions, i.e., corresponding assump-
tions for the automorphisms V {a, A) of 21, can now be formulated with
the help of eq. (9).

Since only the translations V(α, 1) = V(α) are needed in this connec-
tion, one could use instead of (9) the weaker requirement

lim \\Ύ(a) X - XI! = 0 for all X ζ 21, (12)
α->0

or even treat instead of 21 the larger algebra 21 mentioned above.

MONTVAY [2] translates, almost literally, the usual spectrum con-
dition into an algebraic one by replacing the infinitesimal generators
Pi of U(a, 1) = U(a) on ί) by the corresponding generators P̂  of V(α)
on 21. The condition thus obtained implies the Hubert space spectrum
condition for all irreducible translation-invariant representations of
21 [2].

Another algebraic spectrum condition has been formulated by
DOPLICHER [3]. From it follows the existence of at least one translation-
invariant representation with the Hubert space spectrum condition;
furthermore, this representation can also be chosen to be irreducible [3].
MONTVAY'S condition is thus the stronger one, and is perhaps even too
strong [10].

We will not go into more details here, but only add a somewhat
trivial remark. In ref. [3], no continuity assumption like (9) or (12) seems
to be needed at all. Without such an assumption, however, two diffi-
culties appear. First, expressions like JY(x)A z(x) d*x with A ζ 21 and a
summable function z(x) which are used in ref. [3] are then not defined as
elements of 21. (The isometry of Ύ(x) is clearly not sufficient for this.)
Secondly, no continuity properties of the unitary representation U (a) in
the Hubert space § of a translation-invariant representation of 21, and
thus no spectral decomposition U(a) = / eiva dE(p), can be deduced.
Both difficulties disappear if eq. (12) is assumed to hold.

A continuity assumption like (12) seems thus to be necessary also for
DOPLICHER'S spectrum condition. This is intuitively expected to be true
for any attempt to formulate spectrum conditions algebraically.
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