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Abstract. We present some remarks on the representations of Canonical Com-
mutation or Anticommutation Relations which describe free massless particles.

In connection with the Goldstone theorem, there has been some
interest in the degeneracy of the positive energy representations of a free
(scalar) massless field. Namely it has been stressed that:

1. There exist many positive energy (non-vacuum) representations

[1], [2]
2. There exists a degeneracy of the vacuum state, given by the

(broken) symmetry group φ -> φ + λ [3]1.

We present some elementary comments on this subject, that can be
summarized as follows:

α) The vacuum states given by the degeneracy 2. are the only ones for
the scalar massless free field.

β) In the case of a free Dirac massless field one has that :
βl) There exist many positive energy representations.
β2) There exists only one vacuum state.

Proof of oc): The intuitive reason is that, in order to make an invariant
state with zero energy for the free Hamiltonian, we can only add particles
with zero momentum.

Let α(/), / £ <^(3), be the (closed) destruction operators in an irredu-
cible representation of the canonical commutation relations: we specify
the free massless case assigning the translation automorphisms

/->/.. /*(P) = e-i(l»lχ'-p χ>/(p) . (1)

We assume furthermore positivity of the energy; namely there
should exist a unitary (strongly continuous) representation U (x) of the
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1 See also [4] for a proof of the Goldstone theorem.
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translation group with the property

ϋ x a U x - ι = a(
(ϋ(x)= f e

v+
Finally there should exist a vacuum state Ω which is in the domain of the
operators α(/), such that U(x)Ω = Ω. It is well known that Ω is the only
vector with the last property.

Let us consider the vector

a(f)Ω, /

it follows from eq. (1) and (Γ) that its spectrum of energy is

spectrum a(f)Ω C {— |p| : p £ Support /} ,

then the spectrum condition implies

with λ(f) a c-number which is zero if 0 $ Supp/.
But

λ(f) = (Ωa(f)Ωy is a (tempered) distribution

λ(/) = λ(fx) because ϋ(x) a(f)Ω = a(fx)Ω ,

these two conditions imply λ(f) = c f /(x) d3x, then

i.e.

«(/) = «Fock(/) + c / /(χ) d3χ> q e d

Proof of β2) : In this case we cannot fill up the zero momentum level
with infinitely many particles, because of the exclusion principle, so that
the result is intuitively clear.

Let a (/) be the destruction operators in a representation of the CAE.

H/), α(<7)*]+ = / /(x) <Kx] d*x , (2)

it is known that it follows from (2) that a(f) is a bounded operator and

l l«(/)l l = ll/b = {/l/(χ)la^}1/a, (3)
so that as a test function space we can consider the whole Hubert space
of square-integrable functions. Assume again (1) and (I7) as in the CCR
case, and suppose that there is a cyclic vector Ω for the α(/) and α(/)*,
which is invariant for U(x).

As above
α(/)β = 0 if 0$Supp/

Now the functions whose support is momentum space does not
include the origin are dense in o£?2(R3, d3x), so that by eq. (3) it follows
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Proof of βl): We observe that the result has to be expected because
in each small neighbourhood of the origin in momentum space there are
infinitely many degrees of freedom which can be filled each with one
particle. Let us in fact proceed as follows:

Let 01? 02, . . . be an infinite sequence of non overlapping domains in
momentum space, such that On is contained in the sphere of radius
ε 2~n around the origin.

Let {fn} be an orthonormal set of functions in j£?2 (R2, d3x) such that Jn

has support in On, and let {fn, gm} be its extension to a complete ortho-
normal set.

Then every discrete representation [5], which is non-Fock for the
degrees of freedom jn and which is the Fock representation for the degrees
of freedom gm, will provide an example; it is in fact clear that the free
Hamiltonian will be convergent, because each wave packet fn has
energy not greater than ε/2w, and Σ εβn — ε

To explain this explicitly, let us call a(fn) = an, a(gm) = bm, and
specify an irreducible representation of CAR requiring that it contains
a cyclic vector Ω with the property

To each x in a neighbourhood of zero, we define the translated vector
Ω (x) in the following way. The state Ω is infinitely occupied with particles
each in the state fkί and we want to replace them with particles each in
the translated state fkt x*. To this end consider

•On 0*0 = α(/n,a)* »n» (/«-!,«)* «n-l ^(/l,*)*^^ I

an elementary computation shows that

\\Ω«(x)\\ = \\Ω\\ (4)
on the other hand, if we define

*nO*0 = fnχ — fn> (so that α(/Λ,β)* ak - (1 + α(Afc(a;))*αfc}αJαΛ)

we have Qn(x)Ω = Ωn(x), and \\hn(x)\\ ^ -|r (W + I xl) ' so tiιat if

|a;0| + |x| < ε~Λ Qn(
x) converges uniformly to a bounded operator Q(x)9

2 After this note was completed, R. Γ. STEEATER informed me that he proved
on different lines statements similar to α) and 02).

3 Remark that fkfX is orthogonal to all fh for Λ =4= &, because of definition (1)
and of the support properties of fk in momentum space.



Fock Representation and Massless Particles 231

which satisfies

||1 - Q(x)\\ ^ -^ ,with λ = ε(|*0| + |x|) .

If x, x' are such that xr — x is contained in an appropriate neighbour-
hood ^(0) of the origin, define similarly

Q(x, x') = lim α(/n,β)* α(/Λ(β,) . . . α(/ l fβ)* α(/lf ^)
n-»oo

then one verifies easily that, for x — x'9 x' — x" , x — x" ζ N (0),

Q(x,x')Q(x',x") = Q(x,x"). (5)

Then by eq. (4) there exists a vector Ω (x) such that

it is easily seen that

from these properties one can conclude that, to each translation x \
there exists an unitary operator U (x) such that

U(x)a(f) U(x)-1 = a(fx) (6)

ϋ(x)Ω = Ω ( x ) . (7)

Equation (6) implies, using the Deducibility of the representation α(/),

U(x) U (y) U (x + y)"1 — c(%, y) (c-number)

moreover, of course, using (5) and (7), if x,yζN(Q),

U ( x ) U ( y ) Ω = ϋ(x)Q(y)Ω

= Q(x + y, x) Q(x)Ω = Ω(x + y) = U(x + y)Ω ,

so that c (x, y) = 1 and, using the group property, U (x) can be defined
for all x9 giving a unitary representation, which is evidently weakly
continuous.

To verify the spectrum condition, we notice first that, by differentiat-
ing eq. (7), we get

3 3

(8)

where / -> pμf is the energy-momentum operator in the underlying one-
particle space J*?2(R3, d3x) (see eq. (1)).

Denoting by ^(Ok) the subspace of J^?2(EJ

3, dBx) consisting of func-
tions which have Fourier transform vanishing outside Ofc, we have that
the vectors

a(g)*akΩ, gί&(Qk)

form a closed subspace of the representation Hubert space, unitarily
16 Commun. math. Phys.> Vol. 3
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equivalent to j£? (0A) if we define the operators

on vectors a(g)*Φ such that g

α(/)Φ = 0 for all

pW) = 0 on the orthogonal complement ,
we have that, up to a multiplicity, the mentioned unitary equivalence
carries P^ onto the restriction of pμ to JSf (0^).

As the latter operators have spectrum in the forward light cone, the
same is true for P(*\ Since by eq. (8) we have

DO

p Q _ y p(k) Q
Γ** — r μ̂

and a similar relation holds for all powers of Pμ, because by construction
P^ U(x) — U (x) P^\ we conclude that the energy momentum spectrum
of Ω is contained in the forward light cone. On identical lines the same
property is proved for all vectors of the type anl . . . ansΩ. Moreover,
each creation operator δ*, adds an energy momentum on the forward
light cone since by application of all monomials in αn, δ* (n, m = 1,2,...)
to Ω we get a complete set, we can conclude that U(x) satisfies the
spectrum condition.

I gratefully acknowledge discussions on subjects related to the present note
with Prof. D. KASTLEB, Dr. D. W. ROBINSON, and Prof. N. CABIBBO.
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