
Communications in Mathematical Analysis
Volume 19, Number 2, pp. 62–67 (2016)
ISSN 1938-9787

www.math-res-pub.org/cma

A N  C   S  T C
S   B S∗

Z-M Z†
College of Mathematics and Information Science

Jiangxi Normal University
Nanchang, Jiangxi 330022, People’s Republic of China

H-S D‡
College of Mathematics and Information Science

Jiangxi Normal University
Nanchang, Jiangxi 330022, People’s Republic of China

(Communicated by Simeon Reich)

Abstract
Let X be a Banach space, and M,N be two closed subspaces of X. We collect several
necessary and sufficient conditions for the closedness of M +N (M +N is not neces-
sarily direct sum), and show that a necessary condition in a classical textbook is also
sufficient.
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1 Introduction

Let X be a Banach space, and M,N be two closed subspaces of X. Then, M + N is not
necessarily closed in X even if X is a Hilbert space and M ∩N = {0} (see, e.g., [6, p.145,
Exercise 9]). So, to study when M+N is closed in X is always an interesting problem.

For the case of M∩N = {0}, a necessary and sufficient condition for M+N being closed
in X is given by Kober [3] as follows:

Theorem 1.1. Let X be a Banach space, M,N be two closed subspaces of X and M∩N =
{0}. Then M+N is closed in X if and only if there exists a constant A > 0 such that for all
x ∈ M and y ∈ N we have ‖x‖ ≤ A · ‖x+ y‖.
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It seems that there are seldom published results concerning necessary and sufficient
conditions for M +N being closed in X in the case of M +N being not necessarily direct
sum. To the best of our knowledge, the first result of a necessary and sufficient condition
for M+N (not necessarily direct sum) being closed in X is given by Luxemburg:

Theorem 1.2. [5, Theorem 2.5] Let X be a Banach space, and M,N be two closed sub-
spaces of X. Then M+N is closed in X if and only if T : M×N→ X; (m,n) 7−→ m+n is an
open mapping.

Luxemburg [5] obtain the above theorem in a more general setting. Theorem 1.2 is only
one of the interesting results concerning this topic given by Luxemburg. We refer the reader
to [5] for more details.

In addition, for the case of X being a Banach lattice or a Hilbert space, there has been of
great interest for some researchers to study if the sum of two closed subspaces of X is still
closed. We refer the reader to [4, 5, 8, 9] and references therein for the case of X being a
Banach lattice or a Fréchet space and to [2, 7] and references therein for the case of X being
a Hilbert space.

This short note is also devoted to this problem for the case of X being a general Banach
space. As one will see, we give a Kober-like theorem for the case of M + N being not
necessarily direct sum, and show that a necessary condition in the classical textbook [6] is
also sufficient (see Remark 2.4).

2 Main Results

Lemma 2.1. Let X be a Banach space, M and N be two vector spaces of X. Assume that N
is closed in X and contained in M. The following assertions are equivalent:

(1) M is closed in X,

(2) M/N is closed in X/N.

Proof. The implication of (1)⇒(2) follows from the well-known fact that M/N is a Banach
space (see, e.g., [6]). On the other hand, the implication of (2)⇒(1) follows from the
inequality: ‖x‖ ≥ ‖x+N‖ for every x ∈ X. �

Theorem 2.2. Let X be a Banach space, and M,N be two closed subspaces of X. Then the
following assertions are equivalent:

(i) M+N is closed in X;

(ii) (M+N)/N is closed in X/N;

(iii) there exists a constant K > 0 such that for every x ∈ M+N, there is a decomposition
x = m+n such that

‖m‖ ≤ K · ‖x‖,

where m ∈ M and n ∈ N;

(iv) T : M×N→ M+N; (m,n) 7−→ m+n is an open mapping.
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Proof. ”(i) =⇒ (ii)”. Obviously, it follows from Lemma 2.1.
”(ii) =⇒ (iii)”. Define a mapping φ : (M+N)/N→ M/(M∩N) by

φ(x+N) = m+ (M∩N),

where x=m+n ∈M+N, m ∈M and n ∈ N. It is easy to see that φ is well-defined. Moreover,
φ is linear and bijective. Noting that

‖φ(x+N)‖ = ‖m+ (M∩N)‖ ≥ ‖m+N‖ = ‖x+N‖,

we conclude that φ−1 is a bounded linear operator from M/(M ∩N) to (M +N)/N. Since
(M + N)/N and M/(M ∩ N) are both Banach spaces, it follows from the open mapping
theorem that φ is also a bounded linear operator from (M +N)/N to M/(M ∩N). Taking
K = ‖φ‖+1, the assertion (iii) follows. In fact, letting x = m′+n′ ∈ M+N and x , 0, where
m′ ∈ M and n′ ∈ N, we have

‖m′+ (M∩N)‖ = ‖φ(x+N)‖ ≤ ‖φ‖ · ‖x+N‖ ≤ ‖φ‖ · ‖x‖ < K‖x‖.

Then, there exists y ∈ M∩N such that

‖m′+ y‖ < K‖x‖.

Letting m = m′+ y and n = n′− y, we get x = m+n and ‖m‖ < K‖x‖.
”(iii) =⇒ (iv)”. It is easy to see that

kerT = {(x,−x) : x ∈ M∩N}.

Let π be the quotient map from M×N to (M×N)/kerT , and T̃ : (M×N)/kerT → M+N be
defined as follows

T̃ [(m,n)+ kerT ] = m+n, (m,n) ∈ M×N.

Then T̃ is linear and bijective. For every (m,n) ∈ M ×N, by (iii), there exist m′ ∈ M and
n′ ∈ N such that m+n = m′+n′ and

‖m′‖ ≤ K‖m+n‖,

which yields that
‖m′‖+ ‖n′‖ ≤ (2K +1)‖m+n‖.

Then, we have

‖T̃ [(m,n)+ kerT ]‖ = ‖m+n‖ ≥
‖m′‖+ ‖n′‖

2K +1
≥

1
2K +1

‖(m,n)+ kerT‖,

which means that T̃ is an open mapping. Combing this with the fact that π is open, we
conclude that T = T̃ ◦π is also open.

”(iv) =⇒ (i)”. As noted in the Introduction, (i) is equivalent to (iv) has been shown by
Luxemburg using a more general setting. Here, we give a different proof (maybe a more
direct proof in the setting of Banach spaces).
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Let π, kerT, T̃ be as in the proof of ”(iii) =⇒ (iv)”. For every (m,n) ∈ M × N and
x ∈ M∩N, there holds

‖m+n‖ ≤ ‖m+ x‖+ ‖n− x‖ = ‖(m+ x,n− x)‖ = ‖(m,n)+ (x,−x)‖,

which yields

‖T̃ [(m,n)+ kerT ]‖ = ‖m+n‖ ≤ inf
x∈M∩N

‖(m,n)+ (x,−x)‖ = ‖(m,n)+ kerT‖,

i.e., ‖T̃‖ ≤ 1. On the other hand, since π : M×N→ (M×N)/kerT is continuous and T is an
open mapping, for every open set U ⊂ (M×N)/kerT ,

T̃ (U) = T (π−1(U))

is also an open set. Thus, T̃ is an open mapping, which means that
(
T̃
)−1

is continuous,
and so bounded. Now, we conclude that as normed linear spaces, M+N and (M×N)/kerT
are topological isomorphic. Therefore, it follows that (M×N)/kerT is a Banach space that
M+N is also a Banach space. This completes the proof. �

Remark 2.3. Very recently, Blot and Cieutat [1] prove that (i) is equivalent to (iii) by a dif-
ferent and interesting proof (see [1, Theorem 3.1]). Also, by applying this result, they obtain
a class of interesting and important results about sufficient conditions for the closeness of
the sum of two closed subspaces of the Banach space of bounded functions.

Remark 2.4. In the classical textbook [6] (see p.137, Theorem 5.20), it has been shown that
(iii) is a necessary condition for (i) by using the open mapping theorem. Here, we show
that (iii) is also a sufficient condition for (i). In fact, the fact that (i) is equivalent to (iii) is
a Kober-like result for the case of M +N being not necessarily direct sum. Moreover, by
using the idea in the proof of [10, Theorem 2.3], we will give a direct proof of ”(iii) =⇒ (i)”
in the following. We think that it may be of interest for some readers. Here is our proof:

Let {x j}
∞
j=1 ⊂ M +N and x j → x in X as j→∞. Then, we can choose a subsequence

{xk} of {x j} such that

‖xk+1− xk‖ ≤
1

2k ·K
, k = 1,2 . . . .

By taking x = x2− x1 in the assertion (iii), there exist m1 ∈ M and n1 ∈ N such that x2− x1 =

m1+n1 and

‖m1‖ ≤ K · ‖x2− x1‖ ≤
1
2
.

Similarly, by taking x = x3− x2 in the assertion (iii), there exist m2 ∈M and n2 ∈ N such that
x3− x2 = m2+n2 and

‖m2‖ ≤ K · ‖x3− x2‖ ≤
1
22 .

Continuing by this way, we get two sequences {mk} ⊂ M and {nk} ⊂ N such that

xk+1− xk = mk +nk, k = 1,2 . . . ,

and
‖mk‖ ≤

1
2k , k = 1,2 . . . .
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Then, we have
∞∑

k=1
‖mk‖ <∞. Also, we can get

∞∑
k=1
‖nk‖ <∞. Since M and N are both Banach

spaces, there exist m ∈ M and n ∈ N such that

m =
∞∑

k=1

mk, n =
∞∑

k=1

nk.

Recalling that xk→ x, we get

x− x1 =

∞∑
k=1

(xk+1− xk) = m+n,

which yields that x = x1+m+n ∈ M+N.

Corollary 2.5. Let X be a Banach space, and M,N be two closed subspaces of X. Then the
following assertions are equivalent:

(a) M+N is closed in X;

(b) (M+N)/(M∩N) is closed in X/(M∩N).

Proof. One can show this corollary by directly using Lemma 2.1. Here, we give another
proof by using Theorem 2.2.

Noting that (M+N)/(M∩N) = M/(M∩N)+N/(M∩N), it follows from Theorem 2.2
that the closeness of (M+N)/(M∩N) is equivalent to the closedness of

[(M+N)/(M∩N)]/[M/(M∩N)].

On the other hand, it is not difficult to show that (M+N)/M is isometric to [(M+N)/(M∩
N)]/[M/(M ∩ N)], and so their closedness are equivalent. Thus, the closedness of (M +
N)/(M ∩ N) is equivalent to the closedness of (M + N)/M. Again by Theorem 2.2, we
complete the proof. �

Remark 2.6. By Corollary 2.5, whenever we find an example of non-direct sum M + N,
which is not closed, we can get an example of direct sum M/(M∩N)+N/(M∩N) = (M+
N)/(M∩N), which is still not closed.
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