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A MAXIMUM PRINCIPLE FOR STOCHASTIC OPTIMAL
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Abstract. This paper is concerned with a stochastic optimal control problem where the con-

trolled system is described by a forward–backward stochastic differential equation (FBSDE), while

the forward state is constrained in a convex set at the terminal time. An equivalent backward

control problem is introduced. By using Ekeland’s variational principle, a stochastic maximum prin-

ciple is obtained. Applications to state constrained stochastic linear–quadratic control models and a

recursive utility optimization problem are investigated.
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1. Introduction. The modern optimal stochastic control theory has been well

developed since early 1960s, along the lines of Pontryagin’s maximum principle (MP),

Bellman’s dynamic programming (DP) and Kalman’s linear–quadratic (LQ) control.

A recent systematic account on the theory can be found in [13].

Sophisticated and rich as it may be, the existing stochastic control theory could

only handle pathetically limited problems. In particular, in general it has to assume

that there is no sample-wise constraint imposed on the state (a sample-wise constraint

requires that the state at certain time or at all times be in a prescribed set with

probability 1), whereas the existence of such a constraint in reality is more a rule

than an exception.

The reason that the current theory is generally incapable of solving the state

constrained stochastic control is that the two main approaches, MP and DP, fall apart

with the additional constraints. Specifically, a sample-wise state constraint essentially

introduces infinitely many additional constraints compared with a deterministic state

constrained control problem. This is also why there is indeed MP derived for the latter

where a so-called transversality condition is introduced [2], whereas its stochastic

counterpart is simply non-existent in literature. As for the DP approach, even in the

deterministic setting a state constraint may cause non-continuity of the value function
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[1], leading to the non-applicability of the DP.

This paper attacks this open problem of stochastic control with state constraints.

Specifically, the controlled system under consideration is described by a forward–

backward stochastic differential equation (FBSDE) which includes the usual forward

SDE as a special case, while the forward state is constrained in a convex set at the

terminal time. Such a general problem without state constraints was introduced and

studied in [10]. However, as discussed above the presence of a state constraint poses

great difficulty. The main idea of this paper to overcome the difficulty is inspired by

some recently developed approaches in finance, i.e., terminal perturbation method,

which is used to study the recursive utility optimization problem ([7]) and dual ap-

proach in solving a continuous-time mean–variance portfolio selection model ([3]).

El Karoui, Peng and Quenez [7] consider a portfolio-consumption model where

the objective is to optimize the recursive utility of consumption and terminal wealth.

They introduce the terminal perturbation method to solve this problem: they first

give a backward formulation of this optimization problem in which the terminal wealth

is regarded as the “control variable”, and then perturb the terminal wealth to obtain

a necessary condition for the optimal terminal wealth. On the other hand, the dual

approach is employed by Bielecki et al. [3] to solve a continuous-time portfolio selec-

tion model with nonnegativity constraint on the wealth process. This approach was

first introduced for discrete-time models by Pliska [11], [12]. It includes two steps: the

first step is to compute the optimal terminal wealth, and the second one is to obtain

the portfolio replicating the obtained optimal terminal wealth.

Appealing to these two approaches, we first re-formulate FBSDE controlled sys-

tem as a purely backward system by taking the terminal condition of the forward state

as a “control variable”. In this case the original initial condition of the forward state

becomes an additional constraint. Different from the Lagrange multiplier method

used in [3] and [7] to deal with this additional constraint, we apply Ekeland’s varia-

tional principle instead to derive a stochastic maximum principle which characterizes

the optimal terminal state. This technique is introduced in [8] and [9] to tackle the

non-convex state equations.

We also give two applications of the established stochastic maximum principle.

The first one is a stochastic linear-quadratic (LQ) optimal control problem with termi-

nal state constraints, and the second one is a recursive utility optimization problem

considered in El Karoui, Peng and Quenez [7]. It is worth pointing out that our

method makes no convexity assumption on the coefficients of the nonlinear wealth

equation, as opposed to [7].

This paper is organized as follows. In section 2, we formulate the model un-

der consideration as well as its equivalent backward formulation. Applying terminal



A MAXIMUM PRINCIPLE FOR STOCHASTIC OPTIMAL CONTROL 323

perturbation method and Ekeland’s variational principle we obtain a stochastic max-

imum principle in section 3. In section 4, we study its applications to stochastic LQ

control and recursive utility optimization problem. Finally, section 5 closes the paper

with some concluding remarks.

2. Problem Formulation. Let W (·) = (W1(·), . . . , Wd(·))′ be a standard d-

dimensional Brownian motion defined on a complete probability space (Ω,F , P ). The

information structure is given by a filtration F = {Ft}0≤t≤T , which is generated by

W (·) and augmented by all the P -null sets. For any given Euclidean space H , we

denote by 〈·, ·〉 (resp. | · |) the scalar product (resp. norm) of H . Let M2(0, T ; H)

denote the space of all Ft-progressively measurable processes x(·) with values in H

such that

E

∫ T

0

| x(t) |2 dt < ∞.

We denote by L(Rn; Rm) the Euclidean space of all m × n matrices.

2.1. Classical formulation. Consider the following stochastic optimal control

problem for a forward–backward system, which was formulated in [10].

Let

Uad ≡ {u(·) | u(·) ∈ M2(0, T ; L(Rd; Rn))},

whose elements are called admissible controls. For any given admissible control u(·),
we consider the following forward and backward SDE (FBSDE):

(2.1)







dx(t) = b(x(t), u(t), t)dt + σ(x(t), u(t), t)dW (t),

x(0) = a,

−dy(t) = ḡ(x(t), y(t), z(t), u(t), t)dt − z(t)dW (t),

y(T ) = h(x(T ))

where a ∈ Rn is given,

b : Rn × L(Rd; Rn) × [0, T ] → Rn,

σ : Rn × L(Rd; Rn) × [0, T ] → L(Rd; Rn),

ḡ : Rn × Rm × L(Rd; Rm) × L(Rd; Rn) × [0, T ] → Rm,

h : Rn → Rm.

Define the following cost function:

J(u(·)) = E

[
∫ T

0

l̄(x(t), y(t), z(t), u(t), t)dt + φ(x(T )) + γ(y(0))

]

where

l̄ : Rn × Rm × L(Rd; Rm) × L(Rd; Rn) × [0, T ] → R,

φ : Rn → R,

γ : Rm → R.
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We assume:

(H1) b, σ, ḡ, h, l̄, φ and γ are continuous in their arguments and continuously

differentiable in (x, y, z, u);

(H2) the derivatives of b, σ, ḡ and h in (x, y, z, u) are bounded;

(H3) the derivatives of l̄ in (x, y, z, u) are bounded by C(1+ | x | + | y | + | z |
+ | u |), and the derivatives of φ and γ in x are bounded by C(1+ | x |).

Then, for given u(·) ∈ Uad, there exists a unique triple

(x(·), y(·), z(·)) ∈ M2(0, T ; Rn) × M2(0, T ; Rm) × M2(0, T ; L(Rd; Rm))

which solves (2.1) (see [6, 13]). The corresponding solution (x(·), y(·), z(·)) is the state

variable for our control problem.

An essential different (and difficult) feature compared with [10] is that we consider

an additional convex constraint on the terminal state variable x(·) by

x(T ) ∈ K, a.s.

where K is a given nonempty convex subset in Rn.

In summary, our stochastic control problem is

(2.2)

Minimize J(u(·))

subject to u(·) ∈ Uad; x(T ) ∈ K, a.s.

Remark: Clearly the usual stochastic control problem where the dynamics in-

volve only the forward component x(·) is a special case of (2.2).

2.2. Backward formulation. In this subsection, we give an equivalent back-

ward formulation of the above stochastic optimal control problem (2.2). To do so we

need an additional assumption:

(H4) there exists α > 0 such that | σ(x, u1, t) − σ(x, u2, t) |≥ α | u1 − u2 | for all

x ∈ Rn, t ∈ [0, T ] and u1, u2 ∈ L(Rd; Rn).

Note that (H1), (H2) and (H4) imply the mapping

u → σ(x, u, t)

is a bijection from L(Rd; Rn) onto itself for any (x, t).

Let q ≡ σ(x, u, t) and denote the inverse function by u = σ̃(x, q, t). Then system

(2.1) can be rewritten as






−dx(t) = f(x(t), q(t), t)dt − q(t)dW (t),

x(0) = a,

−dy(t) = g(x(t), y(t), z(t), q(t), t)dt − z(t)dW (t),

y(T ) = h(x(T )),
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where f(x, q, t) ≡ −b(x, σ̃(x, q, t), t) and g(x, y, z, q, t) = ḡ(x, y, z, σ̃(x, q, t), t).

A key observation that inspires our approach of solving problem (2.2) is that,

since u → σ(x, u, t) is a bijection, q(·) can be regarded as the control; moreover, by

the BSDE theory selecting q(·) is equivalent to selecting the terminal value x(T ).

Hence we introduce the following “controlled” system:

(2.3)







−dx(t) = f(x(t), q(t), t)dt − q(t)dW (t),

x(T ) = ξ,

−dy(t) = g(x(t), y(t), z(t), q(t), t)dt − z(t)dW (t),

y(T ) = h(ξ),

where the “control” is the random variable ξ to be chosen from the following set

U = {ξ
∣
∣
∣E | ξ |2< ∞, ξ ∈ K, a.s.}.

For each ξ ∈ U , consider the following cost

J(ξ) = E

[
∫ T

0

l(x(t), y(t), z(t), q(t), t)dt + φ(ξ) + γ(y(0))

]

where l(x, y, z, q, t) = l̄(x, y, z, σ̃(x, q, t), t).

This gives rise to the following auxiliary optimization problem:

(2.4)
Minimize J(ξ)

subject to ξ ∈ U ; xξ(0) = a

where xξ(0) is the solution of (2.3) at time 0 under ξ.

It is clear that the original problem (2.2) is equivalent to the auxiliary one (2.4).

Hence, hereafter we focus ourselves on solving (2.4). The advantage of doing this is

that, since ξ now is the control variable, the state constraint in (2.2) becomes a control

constraint in (2.4), whereas it is well known in control theory that a control constraint

is much easier to deal with than a state constraint. There is, nonetheless, a cost of

doing so; that is the original initial condition x(0) = a now becomes a constraint, as

shown in (2.4).

From now on, we denote the solution of (2.3) by (xξ(·), yξ(·), qξ(·), zξ(·)), whenever

necessary, to show the dependence on ξ. We also denote xξ(0) and yξ(0) by xξ
0 and

yξ
0 respectively. Finally, it is easy to check that f, g and l satisfy similar conditions

in Assumptions (H1)-(H3).

Definition 2.1. A random variable ξ ∈ U is called feasible for given a ∈ Rn, if

the solution of (2.3) satisfies xξ
0 = a. We shall denote by N (a) the set of all feasible

ξ’s for any given a.

A feasible ξ0 is called optimal if it attains the maximum of J(ξ) over N (a). The

aim of this paper is to obtain a characterization of ξ0, i.e., a stochastic maximum
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principle. Once ξ0 is determined, we can obtain the optimal control u0(·) by solving

(2.3).

3. Stochastic Maximum Principle. Applying Ekeland’s variational principle,

we derive maximum principle (necessary condition for optimality) for the optimization

problem (2.4) in this section. To ease the presentation we only study the case where

l(x, y, z, q, t) = 0 and φ(x) = 0 in subsections 3.1–3.4, and then present the results for

the general case in subsection 3.4.

3.1. Variational equation. For ξ1, ξ2 ∈ U , define a metric in U by

d(ξ1, ξ2) , (E | ξ1 − ξ2 |2) 1
2 .

It is obvious that (U, d(·, ·)) is a complete metric space. Let ξ0 be optimal and

(x0(·), y0(·), q0(·), z0(·)) be the corresponding state processes of (2.3). Take an arbi-

trary ξ ∈ U . Then, for each 0 ≤ ρ ≤ 1, ξ0+ρ(ξ−ξ0) ∈ U . Let (xρ(·), yρ(·), qρ(·), zρ(·))
be the state processes of (2.3) associated with ξ0 + ρ(ξ− ξ0). To derive the first-order

necessary condition in terms of small ρ, we let (x̂(·), ŷ(·), q̂(·), ẑ(·)) be the solution of

the following system of BSDEs:

(3.1)







−dx̂(t) = [f0
x(t)x̂(t) + f0

q (t)q̂(t)]dt − q̂(t)dW (t),

x̂(T ) = ξ − ξ0,

−dŷ(t) = [g0
x(t)x̂(t) + g0

y(t)ŷ(t) + g0
z(t)ẑ(t) + g0

q(t)q̂(t)]dt − ẑ(t)dW (t),

ŷ(T ) = hx(ξ0)(ξ − ξ0)

where f0
x(t) = fx(x0(t), q0(t), t), f0

q (t) = fq(x
0(t), q0(t), t) and

g0
k(t) = gk(x0(t), y0(t), z0(t), q0(t), t) for k = x, y, z, q. Equation (3.1) is called the

variational equation.

Set

x̃ρ(t) = ρ−1[xρ(t) − x0(t)] − x̂(t),

q̃ρ(t) = ρ−1[qρ(t) − q0(t)] − q̂(t),

ỹρ(t) = ρ−1[yρ(t) − y0(t)] − ŷ(t),

z̃ρ(t) = ρ−1[zρ(t) − z0(t)] − ẑ(t).

We have the following convergence results:

Lemma 3.1. Assuming (H1)-(H4), we have

(3.2)

lim
ρ→0

sup
0≤t≤T

E[x̃ρ(t)
2] = 0,

lim
ρ→0

E[
∫ T

0 | q̃ρ(t) |2 dt] = 0,

lim
ρ→0

sup
0≤t≤T

E[ỹρ(t)
2] = 0,

lim
ρ→0

E[
∫ T

0 | z̃ρ(t) |2 dt] = 0.
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Proof. We only prove the first two equalities, the other two being similar. From

(2.3) and (3.1), we have







−dx̃ρ(t) = ρ−1[f(xρ(t), qρ(t), t) − f(x0(t), q0(t), t) − ρf0
x(t)x̂(t)

−ρf0
q (t)q̂(t)]dt − q̃ρ(t)dW (t),

x̃ρ(T ) = 0.

Let

Aρ(t) =

∫ 1

0

fx(x0(t) + λρ(x̂(t) + x̃ρ(t)), q
0(t) + λρ(q̂(t) + q̃ρ(t)), t)dλ,

Bρ(t) =

∫ 1

0

fq(x
0(t) + λρ(x̂(t) + x̃ρ(t)), q

0(t) + λρ(q̂(t) + q̃ρ(t)), t)dλ,

Cρ(t) = [Aρ(t) − f0
x(t)]x̂(t) + [Bρ(t) − f0

q (t)]q̂(t).

Thus
{

−dx̃ρ(t) = (Aρ(t)x̃ρ(t) + Bρ(t)q̃ρ(t) + Cρ(t))dt − q̃ρ(t)dW (t),

x̃ρ(T ) = 0.

Using Itô’s formula to | x̃ρ(t) |2 we get

E | x̃ρ(t) |2 +E

∫ T

t

| q̃ρ(s) |2 ds

= 2E

∫ T

t

〈x̃ρ(s), Aρ(s)x̃ρ(s) + Bρ(s)q̃ρ(s) + Cρ(s)〉ds

≤ KE

∫ T

t

| x̃ρ(s) |2 ds +
1

2
E

∫ T

t

| q̃ρ(s) |2 ds + E

∫ T

t

| Cρ(s) |2 ds,

where K is a constant. So

E | x̃ρ(t) |2 +
1

2
E

∫ T

t

| q̃ρ(s) |2 ds

≤ KE

∫ T

t

| x̃ρ(s) |2 ds + E

∫ T

t

| Cρ(s) |2 ds.

However, the Lebesgue dominated convergence theorem implies

lim
ρ→0

E

∫ T

0

| Cρ(t) |2 dt = 0.

Hence, applying Gronwall’s inequality, we obtain the result.

3.2. Variational inequality. In this section, we employ Ekeland’s variational

principle ([5]) to deal with the initial constraint xξ
0 = a.

Given the optimal ξ0, introduce a mapping Fε(·) : U → R by

Fε(ξ) = {| xξ
0 − a |2 +(max(0, γ(yξ

0) − γ(yξ0

0 ) + ε))2} 1
2
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where a is the given initial state constraint and ε is an arbitrary positive constant.

It is easy to check that the mappings | xξ
0 − a |2 and γ(yξ

0), both from U to R, are

continuous functional on U .

Theorem 3.2. We suppose (H1)-(H4). Let ξ0 be an optimal solution to (2.4).

Then there exist h1 ∈ Rn and h0 ∈ R with h0 ≥ 0 and |h0| + |h1| 6= 0 such that the

following variational inequality holds

(3.3) 〈h1, x̂0〉 + h0〈γy(yξo

0 ), ŷ0〉 ≥ 0

where (x̂0, ŷ0) ≡ (x̂(0), ŷ(0)) is the solution of (3.1) at time 0.

Proof. It is easy to check that Fε(·) is continuous on U and

Fε(ξ
0) = ε;

Fε(ξ) > 0, ∀ξ ∈ U ;

Fε(ξ
0) ≤ inf

ξ∈U
Fε(ξ) + ε.

Thus, from Ekeland’s variational principle [5], ∃ξε ∈ U such that

(i) Fε(ξ
ε) ≤ Fε(ξ

0);

(ii) d(ξ0, ξε) ≤ √
ε;

(iii) Fε(ξ) +
√

εd(ξ, ξε)) ≥ Fε(ξ
ε) ∀ξ ∈ U.

For any ξ ∈ U , set ξε
ρ = ξε + ρ(ξ − ξε), 0 ≤ ρ ≤ 1. Let (xε

ρ(·), yε
ρ(·), qε

ρ(·), zε
ρ(·))

(resp. (xε(·), yε(·), qε(·), zε(·))) be the solution of (2.3) under ξε
ρ (resp. ξε), and

(x̂ε(·), ŷε(·), q̂ε(·), ẑε(·)) be the solution of (3.1) in which ξ0 is substituted by ξε.

From (iii) above, we conclude

(3.4) Fε(ξ
ε
ρ) − Fε(ξ

ε) +
√

εd(ξε
ρ, ξε) ≥ 0.

On the other hand, similarly to Lemma 3.1 we have

lim
ρ→0

sup
0≤t≤T

E[ρ−1(xε
ρ(t) − xε(t)) − x̂ε(t)] = 0,

lim
ρ→0

sup
0≤t≤T

E[ρ−1(yε
ρ(t) − yε(t)) − ŷε(t)] = 0.

Thus,

xε
ρ(0) − xε(0) ≡ x

ξε

ρ

0 − xξε

0 = ρx̂ε
0 + o(ρ),

yε
ρ(0) − yε(0) ≡ y

ξε

ρ

0 − yξε

0 = ρŷε
0 + o(ρ).
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This leads to the following expansions:

| x
ξε

ρ

0 − a |2 − | xξε

0 − a |2= 2ρ〈xξε

0 − a, x̂ε
0〉 + o(ρ),

| γ(y
ξε

ρ

0 ) − γ(yξo

0 ) + ε |2 − | γ(yξε

0 ) − γ(yξo

0 ) + ε |2
= 2ρ[γ(yξε

0 ) − γ(yξ0

0 ) + ε]〈γy(yξε

0 ), ŷε
0〉 + o(ρ).

Now we consider two cases:

Case 1 : There exists ρ0 > 0 such that γ(y
ξε

ρ

0 ) − γ(yξo

0 ) + ε > 0 for all ρ ∈ (0, ρ0).

In this case,

lim
ρ→0

Fε(ξ
ε
ρ) − Fε(ξ

ε)

ρ

= lim
ρ→0

1

Fε(ξε
ρ) + Fε(ξε)

F 2
ε (ξε

ρ) − F 2
ε (ξε)

ρ

=
1

Fε(ξε)
{〈xξε

0 − a, x̂ε
0〉 + [γ(yξε

0 ) − γ(yξ0

0 ) + ε]〈γy(yξε

0 ), ŷε
0〉}.

Dividing (3.4) by ρ and sending ρ to 0, we obtain

hε
0〈γy(yξε

0 ), ŷε
0〉 + 〈hε

1, x̂
ε
0〉 ≥ −√

ε[E(| ξ − ξε |2)] 1
2

where

hε
0 =

1

Fε(ξε)
[γ(yξε

0 ) − γ(yξ0

0 ) + ε], hε
1 =

1

Fε(ξε)
[xξε

0 − a].

Case 2 : There exists a positive sequence {ρn} satisfying ρn → 0 such that

γ(y
ξε

ρn

0 ) − γ(yξo

0 ) + ε ≤ 0. In this case, by its definition Fε(ξ
ε
ρn

) = {| x
ξε

ρn

0 − a |2} 1
2 for

sufficiently large n. Since Fε(·) is continuous, we conclude Fε(ξ
ε) = {| xξε

0 − a |2} 1
2 .

Now,

lim
n→∞

Fε(ξ
ε
ρn

) − Fε(ξ
ε)

ρn

= lim
n→∞

1

Fε(ξε
ρn

) + Fε(ξε)

F 2
ε (ξε

ρn
) − F 2

ε (ξε)

ρn

=
〈xξε

0 − a, x̂ε
0〉

Fε(ξε)
.

Similar to Case 1 we derive

〈hε
1, x̂

ε
0〉 ≥ −√

ε[E(| ξ − ξε |2)] 1
2

where

hε
0 = 0, hε

1 =
xξε

0 − a

Fε(ξε)
.
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In summary, for both cases, we have hε
0 ≥ 0, and

| hε
0 |2 + | hε

1 |2= 1

by the definition of Fε(·). Then there exists a convergent subsequence of (hε
1, h

ε
0)

whose limit is denoted by (h1, h0). On the other hand, it is easy to check that

ŷε
0 → ŷ0, x̂ε

0 → x̂0 as ε → 0. Thus (3.3) holds.

3.3. Maximum principle. In this subsection we derive the maximum principle

for the case when l(x, y, z, q, t) = 0 and φ(x) = 0. To this end, we introduce the

adjoint process (m(·), n(·)) associated with the optimal solution ξ0 to (2.4), which is

the solution of the following (forward) SDE:

(3.5)






dm(t) = [(f0
x(t))∗m(t) + (g0

x(t))∗n(t)]dt + [(f0
q (t))∗m(t) + (g0

q(t))∗n(t)]dW (t),

m(0) = h1,

dn(t) = (g0
y(t))∗n(t)dt + (g0

z(t))∗n(t)dW (t),

n(0) = h0γy(y0(0)),

where f0
x(t), f0

q (t), g0
x(t) ,g0

y(t), g0
z(t), g0

q(t) are as in (3.1), y0(0) = yξ0

0 , and h0 and h1

are as in Theorem 3.2. It is easy to check that there is a unique process (m(·), n(·))
solving (3.5).

Define the Hamiltonian H : Rn×Rm×L(Rd; Rm)×L(Rd; Rn)×Rn×Rm×[0, T ] →
R by

H(x, y, z, q, m, n, t) = 〈m, f(x, q, t)〉 + 〈n, g(x, y, z, q, t)〉.

We can rewrite the adjoint equation (3.5) in terms of the Hamiltonian as

(3.6)







dm(t) = Hxdt + HqdW (t),

m(0) = h1,

dn(t) = Hydt + HzdW (t),

n(0) = h0γy(y0(0)).

Theorem 3.3. We assume (H1)-(H4). If ξ0 is optimal to (2.4) with (x0(·), y0(·),
q0(·), z0(·)) being the corresponding state of (2.3), then there exist h1 ∈ Rn and h0 ∈ R

with h0 ≥ 0 and |h0| + |h1| 6= 0 such that

(3.7) 〈m(T ) + (hx(ξ0))∗n(T ), v − ξ0〉 ≥ 0, a.s., ∀v ∈ K,

where (m(·), n(·)) is the solution of the adjoint equation (3.5).

Proof. For any ξ ∈ U let (x̂(·), ŷ(·), q̂(·), ẑ(·)) be the solution to (3.1). Applying
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Itô’s lemma to 〈m(t), x̂(t)〉 + 〈n(t), ŷ(t)〉 yields

d [〈m(t), x̂(t)〉 + 〈n(t), ŷ(t)〉]
= [〈x̂(t), (f0

x(t))∗m(t)〉 − 〈m(t), f0
x(t)x̂(t) + f0

q (t)q̂(t)〉
+〈q̂(t), (f0

q (t))∗m(t) + (g0
q(t))∗n(t)〉]dt

+[〈ŷ(t), (g0
y(t))∗n(t)〉 − 〈n(t), g0

x(t)x̂(t) + g0
y(t)ŷ(t)

+g0
z(t)ẑ(t) + g0

q(t)q̂(t)〉 + 〈ẑ(t), g0
z(t)n(t)〉]dt

+{...}dW (t)

= {...}dW (t).

Integrating from 0 to T and taking expectation, we obtain

E[〈m(T ) + (hx(ξ0))∗n(T ), ξ − ξ0〉] = 〈h1, x̂0〉 + h0〈γy(y0(0)), ŷ0〉 ≥ 0,

where the inequality is due to (3.3). Since ξ ∈ U is arbitrary, a standard argument

yields (3.7). The proof is complete.

Denote the boundary of K by ∂K. Set

Ω0 , {ω ∈ Ω | ξ0(ω) ∈ ∂K}.

By the above theorem, it is easy to see the following corollary holds.

Corollary 3.4. Under the assumptions of Theorem 3.3, for each v ∈ K,

(3.8)
〈m(T ) + (hx(ξ0))∗n(T ), v − ξ0〉 ≥ 0 a.s. on Ω0,

m(T ) + (hx(ξ0))∗n(T ) = 0 a.s. on Ωc
0.

3.4. The general case. In this subsection, we consider the general case where

l(x, y, z, q, t) 6= 0 and φ(x) 6= 0. Since the proof of the maximum principle in this case

is essentially the same as in the preceding section, we only present the result without

a proof.

Let ξ0 be optimal to (2.4) with (x0(·), y0(·), q0(·), z0(·)) being the corresponding

state of (2.3). We define the following adjoint equation analogous to (3.6):

(3.9)







dm(t) = [(f0
x(t))∗m(t) + (g0

x(t))∗n(t) + h0l
0
x(t)]dt + [(f0

q (t))∗m(t)

+(g0
q(t))∗n(t) + h0l

0
q(t)]dW (t),

m(0) = h1,

dn(t) = [(g0
y(t))∗n(t) + h0l

0
y(t)]dt + [(g0

z(t))∗n(t) + h0l
0
z(t)]dW (t),

n(0) = h0γy(y0(0))

where l0k(t) = lk(x0(t), y0(t), z0(t), q0(t), t) for k = x, y, z, q.

Theorem 3.5. We assume (H1)-(H4). If ξ0 is optimal to (2.4) with (x0(·), y0(·),
q0(·), z0(·)) being the corresponding state of (2.3), then there exist h1 ∈ Rn and h0 ∈ R
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with h0 ≥ 0 and |h0| + |h1| 6= 0 such that

(3.10) 〈m(T ) + (hx(ξ0))∗n(T ) + h0φx(ξ0), v − ξ0〉 ≥ 0 a.s., ∀v ∈ K

where (m(·), n(·)) is the solution of the adjoint equation (3.9).

Corollary 3.6. Under the assumptions of Theorem 3.5, for each v ∈ K,

(3.11)
〈m(T ) + (hx(ξ0))∗n(T ) + h0φx(ξ0), v − ξ0〉 ≥ 0 a.s. on Ω0,

m(T ) + (hx(ξ0))∗n(T ) + h0φx(ξ0) = 0 a.s. on Ωc
0.

4. Applications.

4.1. Stochastic LQ control with terminal state constraints. In this sec-

tion, we study stochastic LQ optimal control problems with terminal state constraints.

We consider two cases separately, depending on whether the state variable is a scalar

or a vector.

4.1.1. One-dimensional case. Consider the following state equation:

(4.1)

{

dx(t) = [Ax(t) + u(t)B]dt + [Cx(t) + u(t)D]dW (t), t ∈ [0, T ],

x(0) = a,

where A ∈ R1, D ∈ Rd×d, B ∈ Rd, C ∈ R1×d, (x(·), u(·)) ∈ M2(0, T ; R1) ×
M2(0, T ; R1×d) and D−1 exists.

The set of admissible control is

Uad ≡ {u(·) | u(·) ∈ M2(0, T ; R1×d)}.

Without loss of generality we consider the cost function without a running cost:

J(u(·)) = E[
1

2
x2(T )].

Suppose the terminal constraint is K = R+. Our optimization problem is to

(4.2)
minimize J(u(·))
subject to u(·) ∈ Uad; x(T ) ∈ K, a.s.

Problem (4.2) is a special case of (2.2) with

b(x, u, t) = Ax + uB;

σ(x, u, t) = Cx + uD;

φ(x) = 1
2x2;

ḡ ≡ 0, h ≡ 0, l ≡ 0, γ ≡ 0.

Now we give the backward formulation of (4.2). Setting A = A − CD−1B,

B = D−1B and q(t) ≡ Cx(t) + u(t)D, we turn (4.1) into
{

dx(t) = [Ax(t) + q(t)B]dt + q(t)dW (t), t ∈ [0, T ],

x(0) = a.
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Define

U = {ξ | ξ ∈ L2(Ω,FT , P ), ξ(ω) ∈ K, a.s.}.

Then (4.2) can be rewritten as:

Minimize J(ξ)

subject to ξ ∈ U ; xξ(0) = a.

Define Ω0 , {ω ∈ Ω | ξ0(ω) = 0} and the adjoint equation

(4.3)

{

dm(t) = −Am(t)dt − m(t)B
∗
dW (t),

m(0) = h1,

where h1 ∈ R is a parameter. Applying Theorem 3.5, we have

Theorem 4.1. If (x0(·), u0(·)) is optimal to (4.2), then there exist h0, h1 ∈ R

with h0 ≥ 0 and |h0| + |h1| 6= 0 so that ξ0 ≡ x0(T ) satisfies

(4.4)
m(T ) + h0ξ

0 = 0 a.s. on Ωc
0,

m(T ) + h0ξ
0 ≥ 0 a.s. on Ω0,

where m(·) is solution to (4.3) with parameter h1.

Proof. In this case, f(x, q, t) = −[Ax+qB], φ(x) = 1
2x2, and all the other functions

are zero. So it is easy to verify the adjoint equation (3.9) specializes to (4.3). Since

K = R+, the necessary condition (3.11) becomes (4.4). The proof is complete.

Corollary 4.2. The optimal ξ0 = x0(T ) can be represented as

ξ0 =

{

(− 1
h0

m(T ))+, if h0 > 0,

0, if h0 = 0.

Proof. The result is clear if h0 > 0 in view of the necessary condition given in

Theorem 4.1. Now assume h0 = 0, then h1 6= 0. Hence

m(T ) = h1 exp

{

−[A − 1

2
|B|2]T − B

∗
W (T )

}

6= 0, a.s.

However, the first equality in (4.4) yields m(T ) = 0 a.s. on Ωc
0; so P (Ωc

0) = 0 or

ξ0 = 0 a.s.

The original problem (4.2) can now be solved completely in the following manner.

First of all, Itô’s formula derives that m(·)x0(·) is a martingale. Hence E[m(T )x0(T )]

= h1a. Now, if a ≤ 0, then it is easy to see that the only x0(T ) that satisfies

Corollary 4.2 is x0(T ) = 0. If a > 0, then necessarily h0 > 0 (otherwise the identity

E[m(T )x0(T )] = h1a will be violated) and h1 < 0. In this case, the optimal state

process x0(·) is given by

x0(t) = m(t)−1E
(
m(T )x0(T )|Ft

)
= −h−1

0 m(t)−1E
(
m(T )2|Ft

)
.
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An explicit expression of the above is possible as m(T )m(t)−1 follows a lognormal

distribution (with known parameters) conditional on Ft, at any time t. Finally, once

x0(·) is obtained, the optimal control u0(·) can be recovered by applying Itô’s formula

to x0(·) and comparing its diffusion coefficient with the dynamics (4.1). We leave the

details to interested readers.

To conclude this subsection, let us note that although the general result in the pre-

vious section is for a problem with only the terminal state constraint, for the current

LQ case the result is also valid for pointwise (in time) state constraint. The essential

reason is that any admissible state process whose terminal value is nonnegative keeps

nonnegative all the time, as implied by the comparison theorem for BSDEs.

4.1.2. Multi-dimensional case. Consider the following state equation:
{

dx(t) = [Ax(t) + u(t)B]dt + u(t)dW (t), t ∈ [0, T ],

x(0) = x0,

where A ∈ Rn×n, B ∈ Rd, (x(·), u(·)) ∈ M2(0, T ; Rn) × M2(0, T ; Rn×d).

The set of admissible controls is

Uad ≡ {u(·) | u(·) ∈ M2(0, T ; Rn×d)}

and the quadratic cost function is

J(u(·)) = E[
1

2
(x(T ))∗Qx(T )]

where Q ∈ Sn.

Suppose K = (Rn)+. Similar analysis as with one-dimensional case leads to the

following result.

Theorem 4.3. If (x0(·), u0(·)) is optimal, then there exist h1 ∈ Rn and h0 ∈ R

with h0 ≥ 0 and |h0| + |h1| 6= 0 so that ξ0 ≡ x0(T ) satisfies

(4.5)
m(T ) + h0Qξ0 = 0 a.s. on Ωc

0,

m(T ) + h0Qξ0 ≥ 0 a.s. on Ω0,

where m(·) is the solution of the adjoint equation (4.6) below.

Proof. In this case,

f(x, q, t) = −[Ax + qB],

φ(x) = − 1
2x∗Qx.

The adjoint equation is

(4.6)

{

dm(t) = −A∗m(t)dt − m(t)B∗dW (t),

m(0) = h1.

It follows from Theorem 3.5 that (4.5) holds.
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4.2. A recursive optimization problem with bankruptcy prohibition.

Consider a market where there are d stocks and one bank account, and an investor

who can decide at time t ∈ [0, T ] the amount πi(t) to invest in ith stock (i = 1, . . . , d)

with initial wealth a > 0. We assume the stock-volatility matrix σ(·) is a identity

matrix to simplify our discussion. For more details about the financial setting, see

[6]. Thus, in general, the wealth process x(·) satisfies the following equation

{

dx(t) = b(x(t), π(t), t)dt + π(t)dW (t),

x(0) = a

where

b(x, π, t) : R1 × R1×d × [0, T ] → R1.

An interesting example of such a nonlinear wealth equation is the optimal portfolio

choice problem for a “large” investor considered in Cuoco and Cvitanic [4].

The recursive utility of the investor’s terminal wealth x(T ) is described by the

following BSDE:

{

−dy(t) = g(y(t), z(t), t)dt − z(t)dW (t),

y(T ) = h(x(T ))

where

g(y, z, t) : R1 × R1×d × [0, T ] → R1,

h(x) : R+ → R1.

We assume all coefficients satisfy (H1)-(H3). In addition, we assume

(H5) ∀t ∈ [0, T ], b(0, 0, t) ≥ 0.

This hypothesis ensures by the comparison theorem that if the terminal wealth

x(T ) ≥ 0, then the wealth process x(·) satisfies x(t) ≥ 0 a.s., 0 ≤ t ≤ T. Thus, under

this hypothesis, no-bankruptcy prohibition is equivalent to terminal wealth constraint

x(T ) ≥ 0 (see [7] and [3]).

Our problem is that under the bankruptcy prohibition, an investor chooses port-

folio π(·) so as to maximize the recursive utility of his terminal wealth x(T ), i.e.,

maximize J(π(·)) = y(0)

subject to π(·) ∈ M2(0, T ; R1×d), x(T ) ≥ 0, a.s.

It is easy to see that this is a special case of (2.2) where K = R+. Using the method

in section 3, we can obtain a stochastic maximum principle, i.e. a characterization of

the optimal terminal wealth.
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Let ξ0 be an optimal terminal wealth and y0(·) and x0(·) be the utility and the

wealth processes associated with ξ0. By Theorem 3.3, the adjoint processes are given

by the processes m(·) and n(·) such that







dm(t) = m(t)[f0
x(t)dt + (f0

q (t))∗dW (t)],

m(0) = h1,

dn(t) = n(t)[g0
y(t)dt + (g0

z(t))∗dW (t)],

n(0) = −h0

where f0
x(t) = fx(x0(t), q0(t), t), f0

q (t) = fq(x
0(t), q0(t), t), g0

y(t) = gy(y
0(t), z0(t), t),

g0
z(t) = gz(y

0(t), z0(t), t). Note that in this case the mapping γ(y) = −y which leads

to n(0) = −h0.

Set Ω0 , {ω ∈ Ω | ξ0(ω) = 0} and suppose (H1)-(H3) and (H5). We have

Theorem 4.4. There exist constants h1, h0 ∈ R with h0 ≥ 0 and |h1|2+ |h0|2 6= 0

such that

m(T ) + n(T )hx(ξ0) = 0 a.s. on Ωc
0,

m(T ) + n(T )hx(ξ0) ≥ 0 a.s. on Ω0.

Remark: El.Karoui, Peng and Quenez [7] studied a general recursive utility

optimization problem in which a consumption process was considered. Under convex

(concave) assumptions, they used Lagrange multiplier method to derive a stochastic

maximum principle which characterizes the optimal terminal state. Different from

their approach, our method doesn’t need convex (concave) assumptions.

5. Concluding Remarks. This paper investigates a state constrained stochas-

tic control problem involving a forward–backward dynamics, and establishes a stochas-

tic maximum principle via a backward formulation and Ekeland’s principle. There

are two main assumptions in this paper: 1) only the terminal state constraint is con-

sidered, and 2) the state constraint is a convex set. It remains an interesting and

challenging open problem to weaken or completely remove these assumptions.
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