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On wavelet methods for estimating smooth
functions
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Without assuming any prior knowledge of wavelet methods, we develop theory describing their performance as
estimators of smooth functions, The linear part of the wavelet estimator is discussed by analogy with classical
kernel methods. Concise formulae are developed for its bias, variance and mean square error. These quantities
oscillate somewhat erratically on a wavelength that is equivalent to the bandwidth, reflecting the irregular
numerical fluctuations that are observed in practice. Nevertheless, the contributions of these oscillations to
mean integrated square error tend to dampen one another out, even over very small intervals, with the result
that mean integrated square error properties of linear wavelet methods are much closer to those of kernel
methods than is perhaps reasonable, given the local behaviour. We illustrate the adaptive qualities of the
nonlinear component of a wavelet estimator by describing its performance when the target function is smooth
but has high-frequency oscillations. It is shown that the nonlinear component automatically adapts to changing
local conditions, to the extent of achieving (except for a logarithmic factor) the same convergence rate as the
optimal linear estimator, but without a need to adjust the underlying bandwidth. This makes explicitly clear the
way in which the linear part of the estimator takes care of the “average” characteristics of the unknown curve,
while the nonlinear part corrects for more erratic fluctuations, in a manner which is virtually independent of the
construction of the linear part.
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1. Introduction

The classical theory of nonparametric density or regression estimation, dating from the work of
Rosenblatt (1956), is founded on assumptions of smoothness. Convergence rates of estimators,
indeed their very construction in terms of kernel choice and bandwidth (for a kernel estimator), are
often dictated by those assumptions. In these terms, kernel estimators enjoy convergence rates
which are the best possible, uniformly over classes of smooth functions — see, for example, Stone
(1982; 1983). In view of this superior performance one might perhaps query the need for alternative
approaches. However, that view denies the existence of a wide variety of practical problems where
the curves in question might not be smooth in the classical sense. Those curves may contain high-
frequency oscillations, or discontinuities, and require techniques which should be easily adapted to
differing local levels of smoothness.

Wavelet methods, introduced to statistics by Doukhan (1988), Donoho (1995), Donoho and
Johnstone (1992; 1994a; 1994b) and Kerkyacharian and Picard (1992; 1993a; 1993b; 1993c). enjoy
exceptional potential for adaptive smoothing. They permit two different levels of smoothing: one
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globally, in terms of the frequency of the scaling function; and the other locally, via the scale of the
wavelet function. These two levels are quite literally non-overlapping, in that the scaling and wavelet
functions are orthogonal. The global level, analogous to bandwidth choice for a kernel estimator,
might be selected so as to provide an amount of smoothing which is appropriate. in an *average’
sense, for lower-frequency parts of the curve. On the other hand, the local level provides crucial fine-
tuning, allowing a wide variety of adjustments and corrections in different places.

When viewed in this way, wavelet methods might be seen not so much as an alternative to the
kernel approach but as a way of enhancing that technique. The *basic’ wavelet estimator is none
other than a kernel estimator, albeit in generalized form. This view is not totally new — it appears,
for example. in the lecture notes of Kerkyacharian and Picard (1993¢) and the paper of Tribouley
{1993). However, there does not exist an account of wavelet methods from the familiar statistical
viewpoint, with concise asymptotic expressions for bias, variance and mean square error, as distinct
from simply upper bounds for these quantities, uniformly over function classes. One of our aims in
the present paper is to provide such a development, in the familiar context of estimation of smooth
functions. Perhaps unexpectedly, we use this smooth-function approach even to explain the local
adaptation properties of wavelet estimators. By way of contrast, the virtues of wavelet methods are
usually discussed in terms of their ability to cope well with the failure of smoothness assumptions.

Thus, we describe both the structure and the performance of wavelet methods in classical terms,
the structure being that of kernel estimators (for the linear part of the wavelet methods) plus a
degree of enhancement (the nonlinear part). In an effort to bridge the gulf between classical smooth-
function approaches to analysing curve estimators (see, for example, Silverman 1986), and the
functional-analvtic flavour of recent work on wavelet methods, we avoid emphasis of function
classes such as Besov spaces, hopefully without vielence to the views of those who might have taken
other routes.

Section 2 describes the first stage of our project, dealing with the “linear’ part of wavelet methods.
There our main results are as follows. Contrary to the case of classical kernel estimators, the terms
representing the bias and variance of generalized kernel estimators, such as those based on the
wavelet scaling function, oscillate erratically with a wavelength of the same order as the bandwidth,
h. Thus the classical bias and variance formulae,

bias (x) = E{f(x)} - f(x) = a; (x)’
and
var (x) = var {f (x)} = ax(x)(nh)~",
for smooth functions a; and a,, are no longer valid. They must be replaced by
bias (x) = ay(x)as(x/ K
and
var (x) = a;(x)ag(x/h)(nh) ",

for new, non-degenerate functions a; and ay. The erratic oscillations represented by a;(x/h) and
ag(x/h) may be readily observed in practice. in a numerical study of wavelet estimators. That they
exist at all is not a particularly endearing feature of the wavelet method. An exclusive focus on
integrated square error obscures this important issue,
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Nevertheless, precisely because the oscillations of bias and variance are so vigorous they tend to cancel
when averaged over even a small interval. Thus, formulae for mean integrated square error over
arbitrary intervals are virtually identical to their counterparts in the case of classical kernel estimators.

Still in Section 2, we address the issue of empirical bandwidth choice. We show that it is
practically feasible, although not necessarily desirable, to track very closely the oscillations of local
mean square error. Global bandwidth choice is a more straightforward matter.

Section 3 describes the ability of the nonlinear component of wavelet methods to adapt to local
features of an unknown curve. We model irregular features by high-frequency oscillations. It is
shown that the nonlinear component of a wavelet estimator adjusts to these irregularities as well as
would a classical kernel estimator, but without the need to adjust the bandwidth of the linear
component, which may be virtually arbitrary. This makes explicitly clear the way in which one may
tailor the linear part of the estimator to the "average’ part of the curve, of *average’ smoothness, and
rely on the nonlinear part to correct for more erratic features of the curve.

In Section 2 the bandwidth # of the generalized kernel estimator (or, in the wavelet context, the
linear portion of the wavelet estimator) is permitted to be a general positive number. However, in
some applications we have seen the bandwidth is taken to be an integer power of §, meaning that it is
perhaps within only 30% to 40% of its most desirable value. That fact, and the oscillations of bias
and variance noted earlier, explain a large part of the ‘roughness’ of wavelet estimators of smooth
functions.

We focus most of our attention on density estimators, since this is the simplest case from the
viewpoint of exposition. However, the case of nonparametric regression is identical in all important
respects, and is addressed in 1ts own right in subsections of Sections 2 and 3.

2. Generalized kernel estimators and linear wavelet estimators

2.1. SUMMARY

Section 2.2 defines generalized kernel density estimators, of which linear wavelet density estimators
are a special case. The latter are introduced as an example in Section 2.3. Several of the properties
that are usually associated with wavelets do not play any role in this development, and so are delayed to
Section 3. In particular, the only clear advantape of orthogonality, in the context of Section 2, is that
it confers greater ease of computation. Strang (1989) gives an example of non-orthogonal wavelets.

Section 2.4 discusses analogues of our results in the context of nonparametric regression, and
Section 2.5 describes empirical methods for local bandwidth choice. Global bandwidth choice is
discussed in an extended version of this paper, Hall and Paul (1993).

2.2. DEFINITION AND BASIC PROPERTIES
Let K( -, - ) denote a symmetric function satisfying
IK(x, )] € Ci{1+ |x— p))~ 1), ¥x,y e R, {2.1)

JK{x._rJd}-‘= 1, V¥xeR, (2.2)
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where C,, C, are positive constants. Let X, ..., X, denote independent and identically distributed
random variables from a distribution with density /. A generalized kernel estimator of f, with kernel
K and bandwidth h, might be defined by

F) = ()3 K, X,

Jml
If f is bounded, and continuous at x, then provided that # — 0 and nh — =c,

E{f (x)} = f(x) = o(1), (2.3)
var { f (x)} = (nh) "' f(x)x(h~'x) + o{(nh) "}, (2.4)

where s(x) = [K(x,x + v)*dy. Therefore the generalized kernel estimator is mean-square con-
sistent under the usual, minimal conditions on f and A. If f is uniformly continuous then (2.3) and
(2.4) hold uniformly in x.

As in the case of traditional kernel estimators, i.e. those where K(x,y) = K;(x— ) for a
univariate function K, interest centres on conditions under which bias is of order 4" for some
integer r > 1, rather than simply of size o(1) as indicated by (2.3). When [ is bounded and has r
uniformly continuous derivatives, and (2.1) holds for a constant C; > r, it may be shown by Taylor
expansion that Ef — f = Q(h") for all such fs if and only if

M(x) =0, VxeRI<j<r-1. (2.5)
where (x) = [ K(x,x+ y)dy. In this circumstance,

E{f (x)} —f(x) = K (r)"'f D ()M (h'x) + o(i). (2.6)

In the case of traditional kernel estimators the functions s and A, are constant, and so the
asympiotic behaviour of variance and bias, evidenced by (2.4) and (2.6), is exceptionally simple.
However, in other circumstances both & and A, can be non-degenerate, and the fluctuations of
variance and bias can be quite erratic. To appreciate this point, let us assume that K is piecewise
continuous, and periodic in the sense that for some p > 0,

Kix+mpy+mp)=K(x,y), Yx,yeRmeZ (2.7

(The wavelet kernels introduced in the next subsection are periodic with period p = 1.) Then for
almost all x € B, in the sense of Lebesgue measure, and for o = x or A,

limsupa(h~'x)= sup aly). 1irf1_innram-‘x]= inf o y). (2.8)

h—) e —oo o0

It follows that for almost all x, x(h~'x) and A,(h~' x) oscillate continually between the smallest and
largest values that the functions x and A,, respectively, can take.

Precisely because these oscillations are so rapid and frequent, their average over any small interval
1s very stable. For example, we may deduce from (2.4) and (2.6) that if X is periodic of period p (see
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(2.7)), and if £'"' is uniformly continuous over an open set containing the compact interval .#, then

La-ri-um () [ ()79

+o{(nh)~" +i”}. (2.9)

The oscillations have now gone.

For estimation over an interval .# the asym}::mtlcally optimal bandwidth ma}' be computed using
formula (2.9). It is h = {A4,a;(2rdsazn) ' }" 1r+“, where Ay = [y f, Ay =(r1)? [, f"" denote
unknown but estimable quantities, and a; = p~ _[P i g =g [ 2 A2 are knm-."n constants. In
terms of its der.:endence on a; and a, the aswptuhc minimum ufpﬁ E(f —f)* is an increasing

function of ai"a;.

2.3. EXAMPLES

To construct a kernel of “wavelet type’, let ¢ be a univariate function with the properties

lo(x)] < Cs(1 + |a)"0+%),  wxeR, (2.10)
Y olx+&)=1, VxeR, (2.11)
Put
=Zrﬁ{x+£}e{}'+f]. (2.12)
f

Conditions (2.10) and (2.11) imply (2.1} and (2.2}, respectively, and (2.5) is equivalent to
> (x+£)o(x+ ) = const. and ”{x —yWo(x)e(pdxdy=0, 1<j<r—1. (213
f
The constant on the right-hand side of the first identity in (2.13) must equal [y 1 a( y)dy; to see why,

integrate both sides over x € (—1,1). (Applying the same argument to (2.11), we deduce that
[ = 1.) The second part of (2.13) holds trivially if r = 2, and is equivalent to

[ ety - {j.rm: .r}d,r}z
in the cases r = 3, 4.

If K is given by (2.12), and the function ¢ satisfies (2.10) and (2.11), then K is periodic with period
p =1, in the sense defined by (2.7). Therefore, the quantities x(h 'x) and A, (A 'x) exhibit the
erratic, oscillatory behaviour described by (2.8); and averaging over an interval .# removes these
oscillations, as illustrated by (2.9). Explicitly, x and A, may be defined by

K(x) = Zzaflf:ﬁx £)0(x + &), (2.14)

&

A(x) = {-1}’{Z{x + ) d(x+ 1 }} b+ =1, (2.15)
4
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where a; = _{r_‘:[r}ou +£)dx. b, = [ [(u—v) ¢{u)¢(v)du dv, d, = [y ¢( y)dy. The integrals x and
A7 appearing in (2.9) are given by

12
=% g
J—l.-'.‘.x }; :
1/2 . " 4 x
M=bF_d 4+ *ox (x+ ) olx+ 0 dx
J_m Jx {ng V'olx+£) pdx

One class of functions ¢ satisfving the key conditions (2.10), (2.11) and (2.13) is that of ‘scale
functions’ or ‘father wavelets’, determined by the orthonormality relation

JD[.'I.‘]O[.T +~ £ )dx = dyy. —oo = f < o, (2.18)

and the dilation equation,

olx) =Y ed(2x - £). (2.17)
4

where &) is the Kronecker delta and the scaling parameters ¢, satisfy S_#¥¢; < =, ¥ ¢; = 2 and
S (=1)Fe=0, 0<j<r-1, (2.18)
(|

If (2.18) holds with r = 1 then a non-degenerate solution ¢ of (2.17) exists, and satisfies (2.11)if it is
normalized so that fo = |. If (2.18) holds for some r = 2 then ¢ (determined by (2.16) and (2.17))
also satisfies (2.13), for the same value of r. The remaiming condition, (2.10), is trivially satisfied if ¢
is compactly supported, which is tvpically the case in practice. Cases where ¢ does not have compact
support include the Meyer wavelet, but that also obeys (2.10) if the appended function v used in its
construction is sufficiently smooth (Daubechies 1992, pp. 117H.). The simplest scaling function is
@(x) = 1 for 0 < x < | and 0 otherwise. It satisfies (2.17) with ¢y = ¢; = 1 and ¢; = 0 otherwise, and
gives rise to the Haar wavelet sequence. The resulting density estimator / is the usual histogram
estimator with bin-width #. Formula (2.18) holds with r = 1. _
In view of (2.16) the function « in (2.14) simplifies to x(x) = S o(x + ), and [,k = 1.

2.4, GENERALIZATION TO NONPARAMETRIC REGRESSION

Extension of these ideas to the context of nonparametric regression is straightforward, and the
results are direct analogues of those in the density estimation case. That is, local behaviour of both
bias and variance can be very erratic, but this very property ensures that the average of local
behaviour over even a small interval is particularly stable. For example, let us consider nonpara-
metric regression in which the design points x; are conditioned upon, and where the data (x;, ¥;),
1 < i< n,are generated by the model ¥; = g{x;) + ¢;. with the errors ¢, being independent with zero
mean and variances o(x;)*, and g is to be estimated. A generalized kernel estimator of g is given by

A " 1
gf.»:}:{z.tcm 'x.h '.r,]l",-}{z.lﬂ.fr']x.!: 'x,-}} :
i=l =]
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Assuming that g. the design density f and the variance function o are sufficiently smooth, and that
the generalized kernel satisfies the usual conditions (2.1), (2.2) and (2.5), the latter in the case r = 2
for the sake of simplicity, we may deduce that

var {g(x)} = (nh) b (x)x(h " x) + of(nh) "'},
E{2(x)} — g(x) = }iPba(x)Aa(h™'x) + oK),

where b, = o°f 7', b5 =g"+2iq:f{.r‘"' and k, s are as defined in Section 2.2, If the kernel K is
periodic (see (2.7)) and if £, £ ', " and ¢* are bounded and uniformly continuous over an interval
#, then the wild oscillations of x(h~'x) and A;(4'x) may be damped by averaging variance and
bias over .#. For example, the average mean square error of £ is given by

P 2 -1 L 14 2 = Lo S
j E{g—g)° = (nh) (J b|) (p J .ur) +-—h (J b;) (_n J Jk,) +oflnh)™ +h},
I F 2 4 s -pf2

(2.20)

in direct analogy with (2.9).

When the design points x; are equally spaced, and the argument x equals one of the design points,
the denominator in (2.19) does not depend on x, provided that one is not close to the boundary of
the set of design points. More generally, in the context of equally spaced design but for general x one
would typically replace (2.19) by

g(x) = (nh)' Y K(h'x.h7'x) ¥;,
i=1

in direct analogy with the kernel density estimator f defined in Section 2.2.

2.5. SHOULD WE TRY TO TRACK LOCAL OSCILLATIONS. AND IF SO, HOW?

In order to formulate this question clearly we return to our expressions for variance and bias,
{2.4) and (2.6). Together they produce an expression for the mean square error of £ at a fixed
point x:

D(h) = E{f(x) = f(x)}* = Dy(h) + o{(nh) "' + K™},
where
Dy (k) = (nh) " (x)n(h~ 1) + K (e )20 () A (R )2

[n the context of classical kernel density estimation, the bandwidth &y = & (x) which minimizes D,,
and asymptotically minimizes D, is equal to a constant multiple of n~"/"**!'_ However, this result
does not hold if the kernel K is periodic and the functions x and A, are non-degenerate, both of
which statements are typically true for a wavelet kernel. There, for almost all real numbers x (in the
sense of Lebesgue measure), the value of #; oscillates continually between two different multiples of
n~ Y=Y a5 n — oc. Similarly, the minimum value of D;. and the asymptotic minimum value of D,
oscillate between two different multiples of o~ >/=1),

Should we try to track these oscillations by producing an empirical bandwidth &, = h,(x) which
closely emulates the properties of f;(x)7 We argue against such a procedure on at least practical



48 P. Hall and P. Patil

grounds. However, in sheer theoretical terms the reader may find that this approach is attractive. So
we shall briefly describe an empirical algorithm which produces a version of ;.

An empirical rule for minimizing Dl may be constructed by substituting estimates f(x) and f ' (x)
for f(x) and f'”(x), respectively, in the definition of D,. (These may be taken to be kernel
estimators.) The resulting function,

Dy(h) = (mh)™'flx)e(h™"x) + B (r )2 ()0 (' )2,

may be minimized with respect to h. producing an estimator hy of . However, in order to perform
in the manner expected this pmcedure must use estimators f and [ of pamcularly high quality. To
appremate why, note that smce hy is of size n ~H@r+1) then the value of hy ' x will be close to Ay 'x,
in the sense that h'x — A 'x — 0 with probability 1, if and only if &, /b = 1 + o(n™ """} with
probability 1. In order to ensure that this is the case we should select our estimators of f and £
such that

I.FFI:.T]' _f[_x] - ﬂtﬂ_[':lzr'“] and.fl:r:'[‘le —_f:”I"I} — I?l::” 1.-"':1-"*1.|J |:2.2|.}

with probability 1. Under this condition it may be proved that the quantity };1 which minimizes D,
satisfies both hy /hy = 1 +o(n™"/'*"*!) and that D, (k,)/D; (k) = 1 +o(1) with probability 1. On
the other hand, these conditions will fail if the quality of the estimators f and /" is so poor
that condition (2.21) is violated.

Such an approach can be highly computer-intensive, which is one argument against it. Note that
the values of x(h~'x) and A,(h'x), as functions of x, have period ph, where p denotes the period of
the kernel K. Therefore h(x) changes substantially within an interval whose width is of order
n ''**U This means that h,(x) has to be varied very frequently as x changes, in order to track
hy(x). Local bandwidth rules for traditional kernel estimators may be constructed on a much more
aed hoe basis, with typically only a small number (e.g. two to four) bench-mark values computed at
different xs, and the bandwidths at intervening points computed by simple interpolation.

From other points of view, too, it is disconcerting to have a bandwidth selection rule which is so
sensitive to location. For example, if one wished to estimate a density at a given point x then it would
be common practice to translate the data by the amount —x, so that the point of interest became the
origin. But at the origin the functions x(h™'x) and M (h7'x) do not oscillate at all, and so the
approach to bandwidth choice would be very different.

The extreme sensitivity of the bandwidth selector to the accuracy of the pilot estimators f and /"
is another drawback to tracking local oscillations. It can be awkward to ensure good accuracy at
such a preliminary stage of the algorithm.

There are obvious and immediate analogues of all these points in the context of nonparametric
regression, based on the parallels drawn in Section 2.4.

3. Nonlinear wavelet estimators

3.1. SUMMARY

Section 3.2 introduces the wavelet function and develops its basic properties. Wavelet density
estimators are described in Section 3.3, and their properties discussed in Section 3.4. A formal limit
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theorem describing the extraordinary adaptability of wavelet methods is stated in Section 3.5.
Finally, Section 3.6 outlines versions of our results in the context of nonparametric regression.
Related work, particularly on bounds for large deviations of estimators uniformly over Besov
spaces, may be found in Donoho er al. (1993; 1995).

3.2. THE WAVELET FUNCTION

The wavelet function 1» may be obtained from the scaling function ¢ by taking differences in the
dilation equation (2.17):

U(x) =D _(-Der1(2x + 8).

£

The functions @ and v are sometimes termed ‘father” and ‘mother” wavelets, respectively. Examples
are given by Daubechies (1992, Chapters 5-7). If the scaling and orthonormality relations (2.16)—
(2.18) hold. then for0 < j < r—1and —oc < { < o,

J.\:fﬁ_:(.t}d:r: =0, Jt_.-uqx:uc:[x + £)dx =0,

jt-;'ﬂx}i;[x + £)dx = By, Jw_;}l:xh:{lr + fldx =0,
Let k = 0 be an integer, let p > 0, and put p; = 2°p, and define

do(x) = p'*o( px + €), Ure(x) = P_L:zt"{ﬂkx +¢)

for —=¢ < £ < oc. The results noted earlier imply that the functions ¢, and v, are orthonormal:
I@f, O, = 4., jl'k,:,'{i'f'k:f: = & . 61,1, - lﬂf,"‘.—”ﬂ; =0.

Orthogonality of the functions vy, is the chief element of so-called *multiresolution analvsis’ — see
Daubechies (1992, pp. 131,

3.3, WAVELET EXPANSIONS AND WAVELET DENSITY ESTIMATORS

If f is a square-integrable function, and ¢ satisfies (2.16)—(2.18), then, for each p > 0. f may be
expanded as a generalized Fourier series in the orthonormal functions ¢, and ty,:

g
Fx) =D beoe(x) + DD bute(x), (3.
] k=0 1§

where b; = [ f&y, by = [ fiys — see Strang (1989). When f is a probability density, and X, ..., 7
are independent data values drawn from the corresponding distribution, unbiased estimators of b,
- and by, are given by

'E;f =n" Zd’fira]-. by = n! Z Upe [ X)-
i=l =]
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One approach to estimating [ is simply to ignore the (mother) wavelet terms in (3.4), focusing
attention on that part of the expansion which derives from the scaling function o. This argument
produces the estimator

flx) =" beay(x),
£

which is identical to the generalized kernel estimator defined in Section 2, with kernel K given by
(2.12) and bandwidth h = p~'. The performance of this estimator may often be enhanced, even for
smooth densities f, by incorporating the {mother) wavelet terms from (3.1). Following Kerkvacharian
and Picard (personal communication) we do this by ‘thresholding’. This method endeavours to
exclude from (3.1) those terms where accurate estimation of by, is not possible, owing to the size of
the error about the mean, by, — by,. Considerations of this nature suggest the estimator

— 5 -IT—I - . e
Fx) =" bon(x) + 3> buywlbee/6)tnelx), (3.2)
£ k=0

where g = 1.2,... and § > 0 are adjustable constants, and the *weight’ or ‘threshold’ function w
satisfies

=1 if0<u<e

0,1] ifey<u<e

M

wine)
=] ifu - €3

for constants (0 < ¢ < ¢; < cc. Examples of w include

] fo<u<l
win) = {33]
1 ifu>1,
which corresponds to *hard thresholding’, and
0 if0<u<g
wia) =3 (u-e)fa fasfusa+a
1 if u> Cy,

corresponding to ‘soft thresholding’. We suggest taking § = C(n ' log n}”z, The n~" term here is
motivated by the fact that each r‘;;‘; has variance approximately n ', the log n term arises from the
‘large deviation’ nature of the problem: and the constant C may be any sufficiently large number.
The integer ¢ should be chosen large, but not so large that the series defining &, contains so few non-
Zero terms that accurate estimation of by, is not feasible.

3.4. ADVANTAGES OF WAVELETS AND THRESHOLDING

The analysis in Section 2 shows that the estimator / has several important properties that are
virtually identical to those of a classical kernel estimator based on an rth-order kernel. In particular,
it has variance of size (nh)~'f and bias of size &'f ", where & = p~". To appreciate the limitations of
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any estimator with these features, particularly when applied to smooth densities. consider
estimating an f which, in the vicinity of x; for 1 <j < v, has rather severe oscillations with
frequency ;. For example, near x;. / might have the form ¢; + cos (w;x), where ¢; = land oy > 1is
large. Now, f'"/(x) = w} when x is near x;, and so the variance and squared bias of [ are,
respectively. of size (nh)~' and (w-jf:]lj’ there. Equating thess two guantities we see that
h oo {n-.-,'fl':l"":z"” is the optimal size for the bandwidth. It produces an estimator whose mean
sgquare error in the vicinity of x; is of size

{__L:jlllrn:llr.n'[lf-—] I {34’]

If the frequencies w; are quite different from one another then. to achieve the optimal convergence
rate described by (3.4), we must choose very different bandwidths & = k; in neighbourhoods of the
different points x,. Thus, the ‘optimal’ verion of the density estimator f may have to be based on
many different smoothing parameters, each of which has to be selected empirically. These different
versions of f need to be spliced together to produce a final estimator of f. Such an approach
demands a considerable amount of effort, both in formulating an algorithm for defining such an
estimator and in actually calculating it for real data.

The virtue of wavelet methods and thresholding is that, provided the parameters ¢ and & are
chosen appropriately, the estimator / achieves this end automatically, with relatively little effort. By
including the second series in (3.2) — that is, by appending appropriate nonlinear wavelet terms to
the ESLimamr_fj._ which was formerly linear and based solely on the scaling function ¢ — we produce
an estimator f which automatically adapts itself to the varving frequency of /. The thresholding
approach selects the required extra terms in a manner which is virtually optimal, in that it attains the
convergence rate described by (3.4) except for the inclusion of a logarithmic factor. In the next
subsection we shall state a result which demonstrates this fact. The wavelet estimator f achieves this
level of performance in a “smooth’ way. in the sense that, provided ¢, or equivalently ¢. is smooth,
the estimator § is continuous. That is, the splicing referred to in the previous paragraph is achieved
automatically. This follows on inspection of the formula for 7.

3.5. LIMIT THEOREM FOR |

We could state our result in the case of a density  which had any (finite) number of different
oscillation frequencies w;, possibly all varving with n, as postulated in the previous subsection. The
overall convergence rate of £ would then be n 'p + (wn ' logn)™* ! in mean square error terms,
where w = max {w;}. It is, however, notationally simpler to treat the case of a single frequency. and
allow the reader mentally to make the simple extension to arbitrary ». To simplify the notation
further we shall take the density f to be defined in the unit interval, although more complex settings
are easily treated using identical arzuments,

Let ay, a1, a; denote positive constants with a; < a; '. We next define a class #. = F_lay, ax, az)
of densities on (0,1), of which all members have ‘frequency’ w. Let v : (—oc, o¢) — (—2c. o0} denote
an r-times-differentiable periodic function with period 1 satisfying

1
j v=0, hl<a,h"<m
n
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Then &, is the class of densities /* that may be written in the form
f(x) =1+ azy{wx), l<x<l,

for such a ~.

Theorem 3.1 Assume conditions (2.16)-(2.18), that the wavelet function v is bounded and com-
pactly supported, and that v* is Hélder continuous on its support. Suppose that w = win) =
o{n/logn) as n — oc. Take § = C(n~'logn)'/. If C > 0 is sufficiently large, and if p = plr) — o
and g = g(n) — =c in such a manner that

21" plogn — 0 and 279mp """ logn = 0(1), (3.5)
then

sup j Ec(f =) = {1 +o(1)}n"'p+ Of(wn logn)™/ 1)} (3.6)
fe#,
as m— o0,
A proof of Theorem 3.1 is given in the Appendix.

Remark 3.1
Our prvl:s?f shows that for any r > 1. and in the case of hard thresholding, it suffices to take
C =121

Remark 3.2 )

The first part of (3.5) is equivalent to asking that the estimators &, be based on a larger number than
O(logn) sample values. This is a very weak assumption — one can hardly hope to obtain an accurate
estimate of by, from only O{logna) data values, To appreciate the validity of the claim in the first
sentence of this remark, note that since ¢ is compactly supported the expected number of non-zero
terms in the series Z;0(p X; + £) = nby, is no greater than const. npg ', which is of larger order than
log n for each k < g if and only if the first part of (3.5) holds.

Remark 3.3

Complementing the first part of (3.5), which asks that g not be too large, the second part demands
that ¢ not be too small. To appreciate that it, too, is a weak condition, let us take p, ~
const. n°(logn)? for constants ¢ >0 and 4. Then the second part of (3.5) requires that

n'“(logn)' = = O p* 12", In practice, p would typically be asymptotic to a constant multiple of
'/ 1 _ see Remark 3.5 below — and then the second part of (3.5) would be equivalent to asking that

¢ > {(2r)? + 1}/{2r(2r + 1)}, ore={(2r)* +1}/{2r(2r+ 1)} and d > 1.
On the other hand, the first part of (3.5) is equivalent to

it i orc=landd < -1.

1/(2r+1)

Thus, both parts of (3.5) are satisfied if p~ const n

s and p, ~ const. n°, with
{(2r)* + 1}/ {2r(2r+ 1)} < c < 1.
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Remark 3.4

Our assumptions on ¢ and ¢ are satisfied by the wavelet functions that are typically used in
practice — see Daubechies (1992, Chapter 6). In particular, they are satisfied in the case of the Haar
sequence.

Remark 3.5

In practical density estimation one would choose the effective bandwidth, h=p~ !, of the ‘kernel
estimator’ part of f so that it was appropriate in places where [}’ was smooth, without high-frequency
oscillations. This would, of course, require p == const. n'/ ee, for example, Section 2.5. In this
instance the first term on the right-hand side of (3.6) is dommated by the last, and so (3.6) is
equivalent to

P

sup [E/(f 1) = Of(cn” ' togn)/ 1)

Remark 3.6

Since the first version of this manuscript was prepared, related work of Donoha et al. (1995) (see, for
example, their Theorem 6) has addressed related problems in the context of large deviations of
density estimators uniformly over Besov spaces. See also Donoho er af. (1993).

3.6. NONPARAMETRIC REGRESSION

We treat the case where n = 2° for a positive integer k, and the x;s are equally spaced on the interval
(0,1).

Let a;, a; denote positive constants; let : (—00,50) — (—oc,20) be a periodic function with
period 1, sausf\fmgjq. =L || < a;. || < a; and let %, = %_(a,, a;) denote the class of functions
g on (0,1) that may be expressed in the form g(x) = v;(x) + +2(wx), with - and -, both having the
properties ascribed to . Let & = 0 be an integer, let p > 0 and put p; = ""p Define g¢; and 1y, asin
Section 3.2. The generalized Fourier expansion of g is

Z Z byl x) + Z Z bt (X),

where b; = [ gd, by = | guns. Suppose we observe ¥; = g(x;) + €. 1 i < n, where x; = i/nand the
¢;5 are independent and identically distributed with zero mean. Our estimators of b; and by, are

fl i
=5 Z Yioelx), by =n"" Z Yitoge ;).
i=l i=1

A nonlinear wavelet estimator of g is

- q_ I -~ - N
=3 betex) + 3D Browl(bue/E)a(x),
7 = 1

where g, § and w are as in (3.2).
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Theorem 3.2 Assume the conditions of Theorem 3.1, and that the s are either normally
distributed or have a compactly supported distribution, with variance ¢*. If C, in the definition
& = C(n 'logn)"*, is sufficiently large then

sup J‘E{g = g:': = {1 -+ G[] }J‘ﬂ;n_lp 4 G{I:_L,‘H_I ]_Dgn']ir.-'ﬁr—l:}
g=X,

a8 i — oG,

This result is a close analogue of Theorem 3.1, and has a similar proof. Its implications are those
of the earlier result — that nonlinear wavelet methods adapt readily to relatively high-frequency,
local irregularities in the curve, and thereby compensate for the excessive smoothing that is
sometimes inherent in a global choice of the bandwidth k = p~'.

Each of Remarks 3.1-3.5 has an analogue in the present setting, which we shall not pursue
here.
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Appendix: Proof of Theorem 3.1

We shall prove only the version of the theorem for the case of hard thresholding, where the function
w is given by (3.3). Throughout we shall take & = 12"%(n " logn)'/?; it will be clear that all our
conclusions remain valid if 12'/? is replaced by any larger positive number.

Let C,, C5. ... denote generic positive constants depending only on ay. @5, a; and ¢, and in one
instance on y>0. For j=1,2,..., let {¢,,n> 1} denote a sequence of positive numbers
converging to zero. Write max’ for the maximum of a quantity over 0 <k <gq. 0<{<p, -1
and f € F,. If |v/| < C, then |ty(x) — bye| < 2p,”*C}, and also

Bie| =

e jw{x:lf{p;' (x — £)}dx

< G (1 +a)p;'?

max’ E{ti,(X )’} = max’ J w(x)f { i (x — £)}dx
< 1 + iy < 2.

(Hélder continuity of ¢ is used to obtain the inequality here.) Hence for all n > C,,

max’ var {¢(X )} < 2.
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Using Bernstein's or Bennett's inequality (see, for example, Pollard 1984, pp. 192-193) and the
bounds established above we see that for each y > 0 and all n > C;( ),

max’ P{|bge — bl > (7" logn)'/2y)
= max Py [Z{th bu} (nlog n}]-":}:|
S EEF‘P‘{_ i Ii]- o f}nl]_]-'z ].Dg H} —_ zﬂ_[]_{"‘]}:"ﬂ_ EA- I}

(To obtain this bound from Bernstein’s or Bennett's inequality we need the first relation in (3.5).)
Observe next that

g—1 py—1

712 = § 6 - 502+ 55 e b1l > 8
=0 k=0 =D
g—1 p—1 2 Fr=]
+ bl (lbwel < 8)+ D 3 bias (A2)
k=0 é=0 k=g £=0
-l
E{Z(m vbff} =n"'p+eun”'p. (A.3)
=

Recall that &= IE“’?[H'] lognjlﬁ-":._ let 0<u<2¥? and put £=uln”’ lognj"': and n=
(1242 — ) (n~"logn)"/*. Since E(bys — bye)® < Cyn! and

I(|Bis| > 8) = I(lbre| > €) + H{|Bs — biel > 1)

then, foranya. b > 1witha™ ' +57 =1,

o
n=E (Bys = bre ) 1(|Bge] > 8)

k=0 £=0
]e.r L pp—l g—1 p—1 U _
n I(lbeel > €) + 3 Y (Elbu — buel™)*P(1bye — biel > m)' " 3. (A4)
k=0 i=0 k=0 =0
(Here and below the *big oh' notation is valid uniformly in 7 € #_.) Now, by (A.1),

g—1 m—1

D > (Bl = by ) “Pllbys — bie| > )"
k=0 ¢=0
g—1 m-1
LC P.l’l [].n'ﬁ'.l‘} I [1/2)[1—235.) Iﬁ '—Jr'l }J ‘b
.fc'=|:| =0



g=1 ; i
= .g(Zpi-f.1a'ﬂln—[lﬂb][l—ekus‘f‘—ﬂ-)

k=0

12
G{F;_ 1/ fa) = {1 F2E)(1—ez, ) (6 =) :|

- G{{nﬁ' Iﬂgn}z—“fﬂ.‘-n—“fzﬂ[l —H..-_I[ﬁ1 :_”:I:}zﬂl:ﬂ_l?r},

for any given ¢ = 0, if # > 0 is sufficiently small and « is sufficiently large.
It is straightforward to show that

< w e
D{@:P_] o5 |'5k-:f CSF;; ': /Pi)
Therefore
Ry - 1 - 2 2 2
n YN Kbl > € < o7 Y pd {CEpi (W) > €}
k=0 #=0 k=0
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(A.5)

(A.6)

=n ’Zfﬂf{fp{ (Cie 2 yieriny

L]
= Of{n~ ("2 &+

e D {.,.Jﬂ' I.'Dgn I.-':r}zl'_."':ll""l-]]
i G‘{I{wﬂ_l 2?,&2?—]}}_

Combining (A.4). (A.5) and (A.7). and taking ¢ sufficiently small, we deduce that

51 = of (wn ')},

Next, redefine £ = (12" + 2)(n"' logn)"/? and n = 2(n"' logn)'/2. Since
byl < 8) < I(|bis| < &) + I(|bie — brsl > 1),
then

g—1 ;-1
5 E{Z bl ( 5kf|"‘:5}

k=0 f=0

=l =1 m—

[Fa
.q
q

LE

=

g

=)
By (A.1), for any ¢ = 0,

g—1 pp—1 : el
Z ZbifP[lbkf =by| =)= G(Z ZP-J ={1=e3, )

k=0 {=0 k=0 i=0
= O(gn"'") = O(n~'*).

BieI(|bye| <€) + BieP(|bs — brs| > 7).

(A.10)
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By (A.8),
g=1 -1 g=1 pe=1
Zzbhf lbe| < &) = Zme R
k=0 =0 k=0 fmi)

-1
=0 [E pimin {pi ' (w/ps)” . €}

ki)

g-1 . :
= [P"--1 [IDgHJ ZIJ" min {I:n,fp}lilﬂgn}_l{w,.’p}z'z"-z"'-'k_ ]}
k=0

= O[pn™" (logn){(n/p)(logn) ™" (w/p)* }"/**V]
= O{(wn" logn)*/F+1,

Combining (A.9)-(A.11) we see that

(A.11)

52 = Of(wn ™ logn)* /1y (A.12)
By (A.6).

oo Pl oo
ZZbk;-a{Zm (w/pe) }- {EJKPJ”ZE‘“}

k=) F= k=g k=g
= 0{(w/p)"ppy "} = O{(wn™ )P V(n/p)"}
= 0{(wn logn)*¥}, (A.13)
using the second relation in (3.5). Combining (A.2), (A.3), (A.8), (A.12) and (A.13) we deduce that

o IE{JF — P =n"'p+o(n'p) + O{(wn" logn)*/F+1)},
feF,

as had 1o be shown.
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