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likelihood estimators by the observed pro®le information. We show that a discretized version of the

second derivative of the pro®le likelihood function yields consistent estimators of minus the ef®cient

information matrix.
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1. Introduction

In many semi-parametric models, `regular' parameters can be estimated by (semi-parametric)

maximum likelihood estimators. The asymptotic theory for such estimators has been

developed for a number of models of practical interest, and is similar to the asymptotic

theory for maximum likelihood estimators in classical parametric models. In particular, the

maximum likelihood estimators are asymptotically normal, where the inverse of the `ef®cient

Fisher information matrix' gives the asymptotic covariance matrix. The latter matrix is the

Fisher information matrix corrected for the presence of an in®nite-dimensional nuisance

parameter. See, for example, Bickel et al. (1993) for an extensive review of information

bounds. See Gill (1989), Chang (1990), Gu and Zhang (1993), Qin (1993), van der Laan

(1993), Qin and Lawless (1994), van der Vaart (1994a; 1994b; 1994c; 1996), Murphy (1995),

Gill et al. (1995), Huang (1996), Parner (1998), Qin and Wong (1996) and Mammen and van

de Geer (1997) for results on the asymptotics of particular maximum likelihood estimators.

It is natural to use the asymptotic normality of the estimator in order to form con®dence

intervals and test statistics. This requires an estimator of the standard error or equivalently

of the Fisher information matrix. In some speci®c cases the ef®cient Fisher information

matrix is of closed form. For example, under the assumption that the observation time is

independent of the covariates, Huang (1996) gives an explicit estimator of the asymptotic

variance in a proportional hazards model applied to current status data. Sometimes the

`ef®cient score' or `ef®cient in¯uence function' is explicit. Then since the ef®cient Fisher

information matrix is the covariance of the ef®cient score function, one may estimate the
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ef®cient score function and use the average over the sample of the squared estimated

ef®cient score function to estimate the asymptotic variance. A similar procedure may be

carried out if the ef®cient in¯uence function is explicit. This is done in a mixture model by

Gaydos and Lindsay (1996) and also by Huang (1996) when the independence assumption

does not hold. In the latter case, the ef®cient score function is a function of the ratio of

conditional means. Huang uses nonparametric smoothing to estimate each of the conditional

means.

However, in general, the asymptotic covariance is not given by a closed formula, or even

as an expectation of a known function ± see van der Laan (1993), van der Vaart (1994b;

1994c), Murphy (1995) and Huang and Wellner (1995) for some examples. One possible

option is to consider a discretized (for instance, at observed data points) version of the

ef®cient information matrix. Then, to calculate the asymptotic covariance matrix, one must

invert the matrix of high dimension. This is true, for instance, in the semi-parametric frailty

model considered by Murphy (1995), where estimators for the standard error of the

estimated frailty variance are found by inverting a matrix, which is of the same dimension

as the data. In some models, the special structure of the model leads to other estimators

(Parner 1996). In this paper, we consider a general method for the estimation of the

asymptotic covariance based on using the `observed pro®le information'. This is a natural

generalization of a commonly used estimation method in parametric models.

A popular estimator for the asymptotic covariance of a maximum likelihood estimator in

classical parametric models is the inverse of the `observed information matrix'. The latter

matrix is de®ned as

ÿ 1

n

Xn

i�1

�l è̂(Xi), (1:1)

and is equal to ÿ(1=n) times the second derivative of the log-likelihood function, evaluated at

the maximum likelihood estimator. As is well known, this estimator is asymptotically

consistent for the inverse of the asymptotic variance under some regularity conditions. In

practice, one might replace the analytic derivative in (1.1) by a discretized derivative, which

can be computed directly from the likelihood function.

In a semi-parametric model the full parameter is partitioned into a parameter of interest

and an in®nite-dimensional nuisance parameter. The observed information matrix for the

full parameter would be a linear operator, and its inverse may not exist in the models where

a part of the nuisance parameter is not estimable at
���
n
p

-rate. Thus, estimating the

asymptotic covariance matrix of the maximum likelihood estimator of the parameter of

interest by inverting this linear operator appears impractical. Instead, we propose to replace

the likelihood function by the pro®le likelihood function, and use the `observed pro®le

information'.

More precisely, suppose that we observe a sample X1, . . . , Xn from a distribution

depending on a parameter ø � (è, ç), ranging over a set Ø � È 3 H . The parameter of

interest is è 2 È � R p. Given a `likelihood' lik(è, ç)(x) for one observation x, de®ne
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Mn(è) � sup
ç

1

n

Xn

i�1

log lik(è, ç)(X i): (1:2)

This is the pro®le likelihood function for estimating the parameter è. The maximum

likelihood estimator è̂ is the maximum point of the map è 7! Mn(è). As an estimator for the

asymptotic covariance matrix of è̂ one could propose minus the inverse of the second

derivative of è 7! Mn(è) evaluated at è̂.

We can explain heuristically why this method might provide a consistent estimator of the

inverse of the asymptotic covariance matrix as follows. If ç̂è achieves the supremum in

(1.2), then the map è 7! (è, ç̂è) ought to be an estimator of a least favourable submodel for

the estimation of è (see Severini and Wong 1992). By de®nition, differentiation of the

likelihood along the least favourable submodel (if the derivative exists) yields the ef®cient

score function for è. The ef®cient information matrix is the covariance matrix of the

ef®cient score function, and, as usual, the expectation of minus the second derivative along

this submodel should yield the same matrix.

The observed pro®le information is already used as an estimator in practice. For a

simplistic example, consider estimation of the regression coef®cient è in Cox's proportional

hazards model (with right censoring). Relative to a convenient choice of the likelihood, the

estimator ç̂è of the cumulative baseline hazard function is an explicit function of the data

and è, and the pro®le likelihood function can be computed explicitly. In fact, this is Cox's

partial likelihood (see Cox 1975; Andersen et al. 1993, pp. 481±482). The usual estimator

of the inverse of the asymptotic variance, minus the second derivative of the partial

likelihood, is precisely the observed pro®le information.

Severini and Wong (1992) and Severini and Staniswalis (1994) consider a particular class

of semi-parametric models, and use a `generalized' observed pro®le information to estimate

the covariance matrix of è̂. Their estimator of the nuisance parameter for a ®xed è is not a

maximum likelihood estimator, but a weighted maximum likelihood estimator. However,

considered as a function of è, this estimator is an estimator of the least favourable

submodel and is differentiable in è. As a result, the likelihood evaluated at è behaves as a

pro®le likelihood for è.

It is not clear from the de®nition of the pro®le likelihood è 7! Mn(è) that a second

derivative matrix exists. If it does, then it may not be easily computable in models in which

the estimator of the nuisance parameter is not explicit. To overcome these problems,

discretized versions of the observed pro®le information are proposed by Nielsen et al.

(1992), Huang and Wellner (1995) and Murphy et al. (1997). The main purpose of this

paper is to prove the asymptotic consistency of such a discretized version. More precisely,

under suitable conditions, we show that, for every hn!P 0 such that (
���
n
p

hn)ÿ1 � OP(1),

ÿ2
Mn(è̂� hnvn)ÿMn(è̂)

h2
n

!P vT~I0v, (1:3)

for every sequence of `directions' vn!P v 2 R p, where ~I0 is the ef®cient information matrix

for estimating è, evaluated at the `true' parameter ø0 � (è0, ç0). Note that as hn ! 0 and for

®xed n we obtain minus the second derivative of è 7! Mn(è) (if this exists) at è � è̂, since

its ®rst derivative at this point vanishes by the de®nition of è̂. The result (1.3) establishes the
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consistency of most discretization schemes for calculating the second derivative matrix. For

instance, with ei the ith unit vector in R p,

ÿMn(è̂� hnei � hnej)ÿMn(è̂� hnei)ÿMn(è̂� hnej)�Mn(è̂)

h2
n

!P (~I0)i, j:

We check our conditions for a number of examples, using the theory of empirical

processes. We believe that the approach works also for most of the other examples of semi-

parametric likelihood estimators that have been treated in the literature so far. The proof is

based on `sandwiching' the pro®le likelihood, using approximately least favourable

submodels. This is a similar device to that employed by Murphy and van der Vaart

(1997) on semi-parametric likelihood ratio statistics.

The de®nition of a semi-parametric likelihood estimator requires the de®nition of a

likelihood function for the model. In some models this is just a suitable version of the

density of the observations, as in classical parametric models. In other models we use an

empirical likelihood, which is a density (of the absolutely continuous part) with respect to

counting measure, even though counting measure may not dominate the model.

Combinations of these two extremes, as well as modi®cations, may be useful as well.

For the theory it is suf®cient that the function of the parameter and the observation that is

designated to be `the likelihood' satis®es certain regularity conditions. In the fourth

example, `the likelihood' is actually a penalized likelihood.

The paper is organized as follows. In Section 2 we formulate and prove the main result.

One condition of the main theorem concerns a rate of convergence. In Section 3 we give

two general approaches to establish this type of rate of convergence. In Sections 4±7 we

verify the conditions for four non-trivial examples.

The symbols Pn and Gn are used for the empirical distribution and the empirical process

of the observations, respectively. Furthermore, we use operator notation for evaluating

expectations. Thus, for every measurable function f and probability measure P,

Pnf � 1

n

Xn

i�1

f (X i), Pf �
�

f dP, Gn f � 1���
n
p

Xn

i�1

( f (Xi)ÿ P0 f ),

where P0 is the true underlying measure of the observations. A distance function on the

nuisance parameter space, H, is denoted by d(ç, ç9).

2. Main result

The maximum likelihood estimator for (è, ç) is the parameter (è̂, ç̂) that maximizes the log-

likelihood (è, ç) 7! Pn log lik(è, ç) de®ned in (1.2). The estimator è̂ maximizes the pro®le

likelihood è 7! Mn(è). We shall assume that this has already been shown to be

asymptotically normal, and that���
n
p

(è̂n ÿ è0) � ~Iÿ1
0 Gn

~l 0 � oP(1): (2:1)

We refer to ~l 0 as the `ef®cient score function', and to ~I0 as the `ef®cient Fisher information
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matrix'. This is assumed to be the covariance matrix of ~l 0(X ) under P0 and to be non-

singular.

For a ®xed è, denote by ç̂è a random element at which the supremum in the de®nition of

Mn(è) is (nearly) achieved, and set ø̂è � (è, ç̂è). Then (è̂, ç̂è̂) is the maximum likelihood

estimator of (è, ç).

Our assumptions all relate to the existence of approximately least favourable p-

dimensional submodels. We assume that, for each ø � (è, ç), there exists a map, which we

denote by t 7! ç t(ø), from a ®xed neighbourhood of è to the parameter set for ç, such that

the map t 7! l (t, ø)(x) de®ned by

l (t, ø)(x) � log lik(t, ç t(ø))(x)

is twice continuously differentiable, for all x. We denote the derivatives by _l (t, ø)(x) and
�l (t, ø)(x), respectively. The p-dimensional submodel with parameters (t, ç t(ø)) should pass

through ø � (è, ç) at t � è:

çè(è, ç) � ç, every (è, ç): (2:2)

The second important structural requirement that should lead to the construction of this

submodel is that it be least favourable at (è0, ç0) for estimating è in the sense that

_l (è0, ø0)(x) � ~l 0: (2:3)

More precisely, we need this equality together with some regularity conditions. Similar

conditions are used by Murphy and van der Vaart (1997) to prove the validity of the

likelihood ratio test. Assume that for any random sequences such that ~è!P è0 and ø!P ø0,

Gn
_l (~è, ø ) � Gn

~l 0 � oP(1), (2:4)

Pn
�l (~è, ø )!P ÿ~I0, (2:5)

P0
_l (~è, ø̂~è) � ÿ~I0(~èÿ è0)� oP(i~èÿ è0 i � nÿ1=2): (2:6)

Here the assumption ø!P ø0 implicitly assumes a topology on the set of nuisance parameters

ç. In applications of the following theorem this topology should be chosen such that ç̂~è!
P
ç0

for every ~è!P è0.

Theorem 2.1. Suppose that (2.1)±(2.2) and (2.4)±(2.6) are satis®ed and that ç̂~è!
P
ç0 for

every ~è!P è0. Then (1.3) is valid for every random sequence hn!P 0 such that

(
���
n
p

hn)ÿ1 � OP(1).

Proof. For è � è̂� hnvn, we have, by (2.2),

Mn(è)ÿMn(è̂) � Pn log lik(è, ç̂è)ÿ Pn log lik(è̂, ç̂è̂)

> Pn log lik(è, çè(ø̂è̂))ÿ Pn log lik(è̂, çè̂(ø̂è̂))

< Pn log lik(è, çè(ø̂è))ÿ Pn log lik(è̂, çè̂(ø̂è)):

8<:
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Both the upper and the lower bound are differences Pnl (è, ø)ÿ Pnl (è̂, ø), with ø � ø̂è
and ø � ø̂è̂, respectively. We apply a two-term Taylor expansion to these differences, leaving

ø ®xed.

For the lower bound, we expand around è̂ and obtain that this is equal to

hnvT
nPn

_l (è̂, ø̂è̂)� 1
2
h2

nvT
nPn

�l (~è, ø̂è̂)vn,

for ~è a convex combination of è and è̂. The ®rst term is zero because the map

t 7! Pn log lik(t, ç t(ø̂è̂)) is maximized at t � è̂, since ø̂è̂ � (è̂, ç̂), whence çè̂(ø̂è̂) � ç̂, by

(2.2). The second term is ÿ1
2
h2

n(vT
n
~I0vn � oP(1)) by assumption (2.5).

For the upper bound, we expand around è and obtain that this is equal to

hnvT
nPn

_l (è, ø̂è)ÿ 1
2
h2

nvT
nPn

�l (~è, ø̂è)vn,

for ~è a convex combination of è and è̂. The second term is 1
2
h2

n(vT
n
~I0vn � oP(1)) by

assumption (2.5). The ®rst term is equal to

hn���
n
p vT

nGn
_l (è, ø̂è)� hnvT

n P0
_l (è, ø̂è)

� hn���
n
p (vT

n
~I0

���
n
p

(è̂ÿ è0)� oP(1))ÿ hn[vT
n
~I0(èÿ è0)� oP(ièÿ è0 i � nÿ1=2)],

by (2.1) and (2.4), and (2.6), respectively. This reduces to ÿh2
n(vT

n
~I0vn � oP(1)) by the

assumptions on hn. h

Conditions (2.4) and (2.5) are regularity conditions on the least favourable submodel.

They can be veri®ed using the theory of empirical processes. See, for example, Lemma 2.2

below. These conditions can be slightly relaxed. To obtain the best result in one of our

examples, we shall need to relax (2.4)±(2.5) to the conditions that for every ~è!P è0 and

è!P è0,

Gn
_l (~è, ø̂è) � Gn

~l 0 � oP(1� ���
n
p

ièÿ è0 i): (2:49)

Pn
�l (~è, ø̂è)!P ÿ~I0, (2:59)

The theorem goes through under this latter pair of conditions.

Condition (2.6) is more involved. There are several reasons why it ought to be valid.

First, by its de®nition, ø̂è maximizes the log-likelihood for a ®xed value of the parameter

è. It should be close to the maximizer of the Kullback±Leibler information P0 log lik(ø) for

a ®xed parameter è. As shown by Severini and Wong (1992), the latter maximizers should

yield a least favourable submodel è 7! øè for the estimation of è. In other words, the score

function at è0 of the model è 7! lik(ø̂è) should be close to the ef®cient score function ~l 0.

Thus, we may expect

P0
_l (~è, ø̂~è) � (P0 ÿ Pø̂~è

) _l (~è, ø̂~è)

� ÿP0(~èÿ è0)T ~l 0
_l (~è, ø̂~è)� oP(i~èÿ è0 i):
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This would yield (2.6), because by our construction _l (~è, ø̂~è) approaches ~l 0. This is probably

the best intuitive justi®cation of the condition. However, it is hard to make it precise. For

instance, it appears already hard to show that the path è 7! log lik(ø̂è) would be

differentiable.

The second intuitive justi®cation of (2.6) is as follows. Since _l (~è, ø̂~è) is constructed to

converge to ~l 0, we may expect

P0
_l (~è, ø̂~è) � (P0 ÿ Pø̂~è

) _l (~è, ø̂~è)

� (P0 ÿ Pø̂~è
) ~l 0 � oP(i~èÿ è0 i)

� ÿP0[(~èÿ è0)Tl 0 � A0(ç̂~è ÿ ç0)] ~l 0 � oP(i~èÿ è0 i),

where l 0 and A0 are the derivatives of the log-likelihood with respect to è and ç,

respectively. Since the ef®cient score function ~l 0 is obtained by subtracting from the score

l 0 for è its projection onto the score space for the parameter ç (the range of A0), the factor

involving A0(ç̂~è ÿ ç0) can be cancelled and the inner product of l 0 and ~l 0 yields the matrix
~I0.

The third approach is the least insightful one, but is the easiest one to implement in

some examples. We start by proving that P0
_l (è0, ø̂~è) � oP(i~èÿ è0 i � nÿ1=2). This requires

special properties of the model and/or a rate of convergence on the nuisance parameter, or,

alternatively, an approach as in the preceding paragraphs. Then we may expect

P0
_l (~è, ø̂~è) � P0( _l (~è, ø~è)ÿ _l (è0, ø̂~è))� oP(i~èÿ è0 i � nÿ1=2)

� P0
�l (è0, ø̂~è)(~èÿ è0)� oP(i~èÿ è0 i � nÿ1=2)

� ÿ~I0(~èÿ è0)� oP(i~èÿ è0 i � nÿ1=2):

Here the last step follows by the usual identity relating the second derivative of the log-

likelihood to the square of the ®rst derivative, and is the population version of (2.5).

We summarize this last method, together with conditions to verify (2.4) and (2.5), in the

following lemma. See, for example, van der Vaart and Wellner (1996) for the de®nitions

and examples of Glivenko±Cantelli and Donsker classes. The lemma assumes implicitly

that exp l (t, ø)(x) is a probability density with respect to some dominating measure, up to

a factor that does not depend on t, in order to verify equation (2.8).

Lemma 2.2. Suppose that there exists a neighbourhood V of (è0, ø0) such that the class of

functions f _l (t, ø): (t, ø) 2 Vg is P0-Donsker with square-integrable envelope function, and

such that the class of functions f �l (t, ø): (t, ø) 2 Vg is P0-Glivenko±Cantelli and is

bounded in L1(P0). Furthermore, suppose that the functions (t, ø) 7! _l (t, ø)(x) and

(t, ø) 7! �l (t, ø)(x) are continuous at (è0, ø0) for P0-almost every x, and suppose that
_l (è0, ø0) � ~l 0. Then (2.4) and (2.5) are satis®ed. Furthermore, if ø̂~è!

P
ø0, then (2.6) is

equivalent to

P0
_l (è0, ø̂~è) � oP(i~èÿ è0 i � nÿ1=2): (2:7)
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Proof. Since _l (t, ø)! ~l 0 as (t, ø)! (è0, ø0), and the functions _l (t, ø) are dominated by

a square-integrable function, we have by dominated convergence

P0( _l (~è, ø )ÿ ~l )2!P 0:

Together with the assumption that the functions _l (t, ø) belong to a Donsker class, this yields

(2.4). See, for example, Lemma 3.3.5 in van der Vaart and Wellner (1996).

Similarly, using the Glivenko±Cantelli assumption, we have

P0
�l (~è, ø )!P P0

�l (è0, ø0),

Pn
�l (~è, ø )!P P0

�l (è0, ø0):

Since t 7! exp l (t, ø) is proportional to a smooth one-dimensional submodel, its derivatives

satisfy the usual identity

P0
�l (è0, ø0) � ÿP0

_l 2(è0, ø0) � ÿ~I0: (2:8)

This completes the proof of (2.5).

For the proof of (2.6) we have, by Taylor's theorem, for è a point between ~è and è0,

P0
_l (~è, ø̂~è) � P0

_l (è0, ø̂~è)� P0
�l (è, ø̂~è)(~èÿ è0):

The expectation in the second term on the right converges in probability to ÿ~I0. h

3. Rates of convergence

The veri®cation of (2.6) or (2.7) may require a rate of convergence of the `estimators' ç̂~è. In

this section we present two theorems that yield such a rate. Both theorems extend general

results on M-estimators to M-estimators with estimated nuisance parameters, and are also of

independent interest.

In our ®rst theorem, consider estimators ç̂~è such that

Pnk~è,ç̂~è ,h � 0,

for a collection of measurable functions x 7! kè,ç,h(x) indexed by the parameter (è, ç) and an

arbitrary index h 2H . In examples, these functions often take the form Aè,çh or

Aè,çhÿ Pè,çAè,çh for a `score operator' Aè,ç. De®ne

W n2(è, ç)h � Pnkè,ç,h,

W2(è, ç)h � Pè0,ç0
kè,ç,h:

(The index 2 is super¯uous here, but makes the notation consistent with proofs of asymptotic

normality of the maximum likelihood estimators, and our examples.) We assume that the

maps h 7! W n2(è, ç)h and h 7! W2(è, ç)h are uniformly bounded, so that W n2 and W2 can

be viewed as maps from the parameter set È 3 H into l 1(H ). The parameter set H for ç is
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viewed as a subset of a Banach space L with norm d. We impose the following regularity

conditions. For some ä. 0,

fkè,ç,h: ièÿ è0 i , ä, d(ç, ç0) , ä, h 2H g is Pè0,ç0
-Donsker, (3:1)

sup
h2H

Pè0,ç0
(kè,ç,h ÿ kè0,ç0,h)2 ! 0, è! è0, ç! ç0: (3:2)

Theorem 3.1. Suppose that W2: È 3 H � R p 3 L 7! l 1(H ) is FreÂchet-differentiable at

(è0, ç0) with derivative _W2: R p 3 lin H 7! l 1(H ) such that the map _W2(0, :): lin H

7! l 1(H ) is invertible with an inverse that is continuous on its range. Furthermore, assume

that (3.1) holds, that W2(è0, ç0) � 0, that ~è!P è0 and that ç̂~è!
P
ç0. Then d(ç̂~è, ç0) �

O�P(nÿ1=2 � i~èÿ è0 i) and when (3.2) also holds,

_W2(0, ç̂~è ÿ ç0) � ÿ(W n2 ÿ W2)(è0, ç0)ÿ _W2(~èÿ è0, 0)� o�P(i~èÿ è0 i � nÿ1=2):

Proof. By the de®nition of ç̂è,

W2(~è, ç̂~è)ÿ W2(è0, ç0) � W2(~è, ç̂~è)ÿ W n2(~è, ç̂~è)

� ÿ(W n2 ÿ W2)(è0, ç0)� o�P(nÿ1=2), (3:3)

by (3.1) and (3.2) ± see, for example, Lemma 3.3.5 in van der Vaart and Wellner (1996). By

the differentiability of W2,

_W2(~èÿ è0, ç̂~è ÿ ç0) � W2(~è, ç̂~è)ÿ W2(è0, ç0)� o�P(i~èÿ è0 i � d(ç̂~è, ç0)),

� ÿ(W n2 ÿ W2)(~è, ç̂~è)� o�P(i~èÿ è0 i � d(ç̂~è, ç0)) (3:4)

by the ®rst line in (3.3). Since _W2 is linear, the left-hand side is equal to
_W2(0, ç̂~è ÿ ç0)� _W2(~èÿ è0, 0). The ®rst term on the right in (3.4) is of the order

OP(nÿ1=2) by (3.1). In view of the continuous invertibility of _W2, it follows that d(ç̂~è, ç0) is

of the order OP(nÿ1=2 � i~èÿ è0 i), thus verifying the ®rst assertion of the theorem. Reinsert

this on the right-hand side of the preceding display and use the second line of (3.3) to ®nd

the second assertion. h

The preceding theorem is a variation on the theorem used by van der Vaart (1994b;

1994c) and Murphy (1995), among others, to prove the asymptotic normality of the

maximum likelihood estimator (è̂, ç̂). Actually, its conditions are implied by the conditions

imposed in these papers, so that, at least in these cases, the estimator ç̂~è behaves well

whenever (è̂n, ç̂n) behaves well and ~è behaves well. Of course, not using the maximum

likelihood estimator for ~è may cause the estimator ç̂~è for ç to be inef®cient.

In our second theorem, consider estimators ç̂è contained in a set Hn that, for a given è,

satisfy

Pnmè,ç̂è > Pnmè,ç0

for given measurable functions x 7! mè,ç(x). This is valid, for example, for ç̂è equal to the

maximizer of the function ç 7! Pnmè,ç over Hn, if this set contains ç0.
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Assume that the following conditions are satis®ed for every è 2 Èn, every ç 2 Hn and

every ä. 0. The symbols ) and ( mean greater than, or smaller than, up to a constant

that may depend on the true parameter or the model, but not on any other parameter values.

P0(mè,ç ÿ mè,ç0
) ( ÿd2

è(ç, ç0)� ièÿ è0 i2, (3:5)

E� sup
è2Èn,ç2Hn,ièÿè0 i , ä,dè(ç,ç0) , ä

jGn(mè,ç ÿ mè,ç0
)j ( ön(ä): (3:6)

Here d2
è(ç, ç0) may be thought of as the square of a distance, but the following theorem is

true for arbitrary functions ç 7! d2
è(ç, ç0). (Contrary to what the notation suggests, this

function may even take negative values. In the latter case, set dè(ç, ç0) � (d2
è(ç, ç0) _ 0)1=2.)

In particular, it may be set equal to the in®mum over è of minus the left-hand side of (3.5),

thus rendering this to be trivially satis®ed. Usually dè does not depend on è but in this form

the following theorem is ¯exible enough to apply to penalized minimum contrast estimators,

where the smoothing parameter can be included in è. See Section 7.

Theorem 3.2. Suppose that (3.6) is valid for functions ön such that ä 7! ön(ä)=äá is

decreasing for some á, 2 and sets Èn 3 Hn such that P(~è 2 Èn, ç̂~è 2 Hn)! 1. Then

d~è(ç̂~è, ç0) < O�P(än � i~èÿ è0 i) for any sequence of positive numbers än such that

ön(än) <
���
n
p

ä2
n for every n.

Proof. For each n 2 N, j 2 Z and M . 0 de®ne a set

Sn,j,M � f(è, ç) 2 Èn 3 Hn: 2 jÿ1än , dè(ç, ç0) < 2 jän, ièÿ è0 i < 2ÿM dè(ç, ç0)g:

Then the intersection of the events ~è 2 Èn, ç̂~è 2 Hn and d~è(ç̂~è, ç0) > 2M (än � i~èÿ è0 i) is

contained in the union of the events f(~è, ç̂~è) 2 Sn,j,Mg over j > M. By the de®nition of ç̂~è,

the variable sup(è,ç)2Sn,j,M
Pn(mè,ç ÿ mè,ç0

) is non-negative on the event f(~è, ç̂~è) 2 Sn,j,Mg.
Conclude that, for every ä. 0,

P�(d~è(ç̂~è, ç0) > 2M (än � i~èÿ è0 i), ~è 2 Èn, ç̂~è 2 Hn)

<
X
j>M

P�( sup
(è,ç)2S j,n,M

Pn(mè,ç ÿ mè,ç0
) > 0):

For every j involved in the sum, we have, for every (è, ç) 2 Sj,n,M and every suf®ciently

large M,

P0(mè,ç ÿ mè,ç0
) ( ÿd2

è(ç, ç0)� ièÿ è0 i2

( ÿ(1ÿ 2ÿ2M)d2
è(ç, ç0) ( ÿ22 jÿ2ä2

n:

Thus, using Markov's inequality, we see that the series is bounded by
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X
j>M

P�( sup
(è,ç)2S j,n,M

jGn(mè,ç ÿ mè,ç0
)j ) ���

n
p

22 jÿ2ä2
n) (

X
j>M

ön(2 j�1än)���
n
p

ä2
n22 j

(
X
j>M

2 jáÿ2 j,

in view of the de®nition of än, and the fact that ön(cä) < cáön(ä) for every c . 1 by the

assumption on ön. This expression converges to zero for every M � Mn !1. h

For dè � d not depending on è condition (3.5) is implied by the conditions

P0(mè,ç0
ÿ mè0,ç0

) ) ÿièÿ è0 i2, (3:7)

P0(mè,ç ÿ mè0,ç0
) ( ÿd2(ç, ç0): (3:8)

The two conditions are the natural requirement that the criterion function (è, ç) 7! P0 mè,ç

behaves quadratically (relative to a distance) around the point of maximum (è0, ç0). There is

more chance that this is true in a neighbourhood of (è0, ç0). Thus, it is useful to note that the

theorem remains true if the conditions (3.6), (3.7) and (3.8) hold only for (è, ç) in this

neighbourhood and every suf®ciently small ä, provided that (~è, ç̂~è) are known to be

consistent. We shall use this observation in our examples without much comment.

Condition (3.5) concerns the modulus of continuity of the empirical process and is more

technical. A simple method to verify this condition is given by the following lemma. Let

Mä be the set of all functions x 7! mè,ç(x)ÿ mè,ç0
(x) with dè(ç, ç0) , ä and ièÿ è0 i , ä

and write J (ä, Mä, L2(P0)) for its entropy-with-bracketing integral

J (ä, Mä, L2(P0)) �
�ä

0

������������������������������������������������������
1� log N[](å, Mä, L2(P0))

p
då:

Lemma 3.3. Suppose that the functions (x, è, ç) 7! mè,ç(x) are uniformly bounded for (è, ç)

ranging over a neighbourhood of (è0, ç0) and that

P0(mè,ç ÿ mè,ç0
)2 ( d2

è(ç, ç0)� ièÿ è0 i2: (3:9)

Then condition (3.6) is satis®ed for any functions ön such that

ön(ä) > J (ä, Mä, L2(P0)) 1� J (ä, Mä, L2(P0))

ä2
���
n
p

� �
: (3:10)

Consequently, in the conclusion of Theorem 3.2 we may use J (ä, Mä, L2(P0)) instead of

ön(ä).

Proof. The ®rst assertion is an immediate consequence of Lemma 3.4.2 in van der Vaart and

Wellner (1996).

For the second assertion, let ön be equal to the right-hand side of (3.10), and note that

the equations ön(ä) (
���
n
p

ä2 and J (ä) (
���
n
p

ä2 are equivalent. h
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4. Cox's regression model for current status data

In current status data, n subjects are examined each at a random observation time and at this

time it is observed whether the survival time has occurred or not. The survival time, T, is

assumed independent of the observation time, Y, given the covariate, Z. Suppose that the

hazard function of T given Z � z is given by Cox's regression model: the hazard at time y is

eè
T zë(y). Then the cumulative hazard at time y of T given Z � z is of the form

eè
T z
� y

0
ë(s) ds eèzË(y). The unknown parameters are è, a vector of regression coef®cients, in

a known compact subset of R p, and Ë 2 Ë, the set of non-decreasing, cadlag functions from

the positive real line to [0, M], for a known M. We observe n i.i.d. copies of X � (Y , ä, Z),

where ä � 1 if T < Y and zero otherwise.

The density of X is given by

pè,Ë(X ) � (1ÿ exp(ÿeè
T ZË(Y )))ä(exp(ÿeè

T ZË(Y )))1ÿä f Y , Z(Y , Z),

where f Y , Z is the joint density of (Y , Z). Since we are interested in inference for (è, Ë) only,

we take the likelihood lik(è, Ë, X ) equal to this expression, but with the term f Y , Z(Y , Z)

omitted.

We make the following assumptions. The observation times Y are in an interval [ó , ô]

and possess a Lebesgue density which is continuous and positive on [ó , ô]. The true

parameter è0 is an interior point of the parameter set, and the true parameter Ë0 satis®es

Ë0(óÿ) . 0 and Ë0(ô) , M, and is continuously differentiable on [ó , ô]. The covariate

vector Z is bounded and Efcov(ZjY )g. 0. Finally, we assume that the function h0 given by

(4.1) has a version which is differentiable with a bounded derivative on [ó , ô].

Under these assumptions the maximum likelihood estimator of (è, Ë) exists, è̂ is

asymptotically ef®cient in the sense of (2.1) and iË̂ÿË0 i2 � OP(nÿ1=3): Here i:i is the

L2-norm on [ó , ô]. See Huang (1996) and Murphy and van der Vaart (1997).

In this model the score function for è takes the form

l è,Ë(x) � zË(y)Q(x; è, Ë),

for the function Q(x; è, Ë) given by

Q(x; è, Ë) � eè
T z ä

eÿeè
T zË( y)

1ÿ eÿeè
T zË( y)

ÿ (1ÿ ä)

" #
:

Inserting a submodel t 7! Ë t such that h(y) � ÿ@=@ tj t�0Ë t(y) exists for every y into the

log-likelihood and differentiating at t � 0 we obtain a score function for Ë of the form

Aè,Ëh(x) � h(y)Q(x; è, Ë): (4:1)

For every non-decreasing, non-negative function h the submodel Ë t � Ë� th is well de®ned

if t is positive and yields a (one-sided) derivative h at t � 0. Thus (4.1) gives a (one-sided)

score for Ë at least for all h of this type. The linear span of these functions contains l è,Ëh

for all bounded functions h of bounded variation. The ef®cient score function for è is de®ned

as ~l 0 � l è,Ë ÿ Aè,Ëh0 for the vector of functions h0 minimizing the distance

PèË il è,Ë ÿ Aè,Ëhi2. In view of the similar structure of the scores for è and Ë, this is a
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weighted least-squares problem with weight function Q(x; è, Ë). The solution at the true

parameters is given by the vector-valued function

h0(Y ) � Ë0(Y )h00(Y ) � Ë0(Y )
Eè0Ë0

(ZQ2(X ; è0, Ë0)jY )

Eè0Ë0
(Q2(X ; è0, Ë0)jY )

: (4:2)

As the formula shows (and as follows from the nature of the minimization problem), the

vector of functions h0(y) is unique only up to null sets for the distribution of Y. However, it is

an assumption that (under the true parameters) there exists a version of the conditional

expectation that is differentiable with bounded derivative.

Thus we de®ne, for t a vector in R p,

Ë t(è, Ë) � Ë� (èÿ t)Tö(Ë)(h00 �Ëÿ1
0 �Ë)

l (t, è, Ë) � log lik(t, Ë t(è, Ë)):

Here ö: [0, M] 7! [0, 1) is a ®xed function such that ö(y) � y on the interval

[Ë0(ó ), Ë0(ô)], such that the function y 7! ö(y)=y is Lipschitz and such that

ö(y) < c(y ^ (M ÿ y)) for a suf®ciently large constant c speci®ed below (and depending

on (è0, Ë0) only). (By our assumption that [Ë0(ó ), Ë0(ô)] � (0, M) such a function exists.)

The function Ë t(è, Ë) is essentially Ë plus a perturbation in the least favourable direction,

but its de®nition is somewhat complicated in order to ensure that Ë t(è, Ë) really de®nes a

cumulative hazard function within our parameter space, at least for t that are suf®ciently

close to è. First, the construction using h00 �Ëÿ1
0 �Ë, rather than h00, (taken from Huang

1996) ensures that the perturbation that is added to Ë is absolutely continuous with respect to

Ë; otherwise Ë t(è, Ë) would not be a non-decreasing function. Second, the function ö
`truncates' the values of the perturbed hazard function to [0, M].

A precise proof that Ë t(è, Ë) is a parameter is as follows. Since the function ö is

bounded and Lipschitz and, by assumption, h00 �Ëÿ1
0 is bounded and Lipschitz, so is their

product and hence, for u < v and ièÿ ti , å,

Ë t(è, Ë)(v)ÿË t(è, Ë)(u) > (Ë(v)ÿË(u))(1ÿ åiöh00 �Ëÿ1
0 iLipschitz):

For suf®ciently small å the right-hand side is non-negative. Next, for ièÿ ti , å,

Ë t(è, Ë) < Ë� åö(Ë)ih00 i1:

This is certainly bounded above by M (on [0, ô]) if ö(y) < (M ÿ y)=(åi h00 i1) for all

0 < y < M . Finally, Ë t(è, Ë) can be seen to be non-negative on [ó , ô] by the condition that

ö(y) < cy.

It is proved below that

iË̂~è ÿË0 i2 � OP(i~èÿ è0 i � nÿ1=3): (4:3)

Thus, we shall use the L2-norm on the nuisance parameter set.

Differentiating l (t, è, Ë) with respect to t yields

_l (x; t, è, Ë) � zÿ ö(Ë)(y)

Ë t(è, Ë)(y)
h00 �Ëÿ1

0 �Ë(y)

� �
Ë t(è, Ë)(y)Q(x; t, Ë t(è, Ë)):
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For (t, è, Ë) � (è0, è0, Ë0) this reduces to ~l 0, since Ë0(ô) , M by assumption, thus

verifying equation (2.3). Murphy and van der Vaart (1997) verify the conditions of Lemma

2.2 when è is a scalar; the veri®cation for a vector è is similar.

All that remains for the application of Theorem 2.1 is a veri®cation of equation (2.7).

Abbreviating _l (:; è0, è0, Ë) to _l (Ë), we have

P0
_l (è0, è0, Ë̂~è) � (P0 ÿ Pè0,Ë̂~è

) _l (Ë0)� (P0 ÿ Pè0,Ë̂~è
)( _l (Ë̂~è)ÿ _l (Ë0)): (4:4)

Since _l (Ë0) is the ef®cient score function for è and hence is orthogonal to every Ë-score,

the ®rst term on the right can be rewritten as

P0
_l (Ë0)[( p0 ÿ pè0,Ë̂~è

)=p0 ÿ l Ë(è0, Ë0)(Ë0 ÿ Ë̂~è)]: (4:5)

Here the term in square brackets is exactly the linear approximation in Ë0 ÿ Ë̂~è of the ®rst.

Taking the Taylor expansion one term further shows that the term in square brackets is

bounded by a multiple of (Ë0 ÿ Ë̂~è)2 and hence (4.5) is bounded by a multiple of

P0(Ë0 ÿ Ë̂~è)2, which is negligible to the right order by (4.3). The second term in (4.4) can be

bounded similarly, since both Ë 7! pè0,Ë and Ë 7! _l (è0, è0, Ë) are uniformly Lipschitz

functions. This veri®es (2.7) with a oP(nÿ2=3) remainder term, but with (è0, Ë̂~è) in place

of ø̂~è � (~è, Ë̂~è). The difference of these two expressions can be seen to be oP(i~èÿ è0 i), and

(2.7) follows. (Note that P0@=@è _l (è0, è, ç0) evaluated at è � è0 vanishes, by the usual

manipulations with (ef®cient) score functions.)

Finally, we prove (4.3). Since Ë̂è maximizes the log-likelihood for ®xed è, and since

x 7! log x is concave,

0 < Pn log
pè,Ë̂è

pè,Ë0

� Pn log
pè,Ë̂è

pè0,Ë0

ÿ log
pè,Ë0

pè0,Ë0

� �

< 2Pn log
pè,Ë̂è

� pè0,Ë0

2 pè0,Ë0

ÿ Pn log
pè,Ë0

pè0,Ë0

:

With this in mind, we may apply Theorem 3.2 with ç � Ë and

mè,Ë �
log

pè,Ë0

pè0,Ë0

if Ë � Ë0

2 log
pè,Ë � pè0,Ë0

2 pè0,Ë0

otherwise:

8>><>>:
This choice of mè,Ë has the advantage over the more obvious choice log( pè,Ë=pè,Ë0

) that the

functions mè,Ë are uniformly bounded, thus permitting the application of Lemma 3.3. (Note

that, by our assumptions, lik(è, Ë0)(x) is bounded away from 0 and 1, uniformly in x and è.)

Equation (3.8) holds for è in a neighbourhood of è0 and every Ë, with d equal to the

L2-norm, by Lemma 8.5 of Murphy and van der Vaart (1997) and the well-known relation

P log(q=p) ( ÿh2( p, q), relating Kullback±Leibler divergence and squared Hellinger

distance ± see, for example, the proof of Lemma 5.35 in van der Vaart (1998). A Taylor

series argument in è suf®ces to verify equation (3.7). To verify (3.6) we use Lemma 3.3.

Arguments as the proof of Lemma 3.1 of Huang (1996) and Lemma 8.4 of Murphy and van
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der Vaart (1997) show that J (ä) ( ä1=2. A Taylor series argument can be used to verify

(3.9). Thus, Theorem 3.2 shows that (4.3) is satis®ed.

5. Proportional odds model for right-censored data

In the proportional odds model, the survival function is parameterized such that the ratios of

the odds of survival for subjects with different covariates are constant with time: the

conditional survival function SZ(u) of the event time, T, given the covariates Z, satis®es

ÿlogit(SZ(u)) � log ç(u)� ZTè,

where logit(x) � log(x=(1ÿ x)). The unknown parameters are è, a vector of regression

coef®cients ranging over a known compact subset of R p, and ç, a non-decreasing, cadlag

function from the positive real line to the positive real line, with ç(0) � 0. We observe n i.i.d.

copies of X � (Y , ä, Z), where Y � T ^ C is the minimum of T and a censoring time C

which, given a vector of covariates Z, are independent. The censoring indicator ä is 1 if

T < C and 0 otherwise.

For dç a density of ç with respect to some dominating measure, the density of X is

pè,ç(x) � eÿzTè(1ÿ FC(yÿ jz))

(ç(y)� eÿzTè)(ç(yÿ)� eÿzTè)
dç(y)

 !ä
eÿzTè

ç(y)� eÿzTè
fC(yjz)

 !1ÿä

f Z(z),

where FZ is the marginal distribution of Z, FC is the conditional distribution of C given Z,

and lower-case letters denote the respective densities. This density is not suitable for use as a

likelihood. Instead, we use the empirical likelihood, which is obtained by replacing the

densities fC, dç and f Z by the point probabilities FCfYg, çfYg and FZfYg. Since we are

interested in inference about (è, ç) only, we drop the terms involving FC and FZ, and de®ne

the likelihood to be

lik(è, ç)(x) � eÿzTèçfyg
(ç(y)� eÿzTè)(ç(yÿ)� eÿzTè)

 !ä
eÿzTè

ç(y)� eÿzTè

 !1ÿä

:

Murphy et al. (1997) show that the maximum likelihood estimator of (è, ç) exists, is

consistent and is asymptotically normal and ef®cient under the following assumptions. First,

for a ®nite number ô, both P(C > ô) � P(C � ô) . 0 and P(T . ô) . 0. Thus, the study ends

at a time ô such that, on average, a positive fraction of individuals is still at risk. Second,

P(T < CjZ) . 0 almost surely; so, for any possible covariate pattern, the chance of

observing a true event is positive. Finally, it is assumed that the support of Z is bounded,

that the true regression coef®cient, è0, belongs to the interior of the parameter space and

that the covariance matrix of Z is positive de®nite.

The maximum likelihood estimator of ç, ç̂, is a non-decreasing step function with

support points at the observed event time. Consistency of ç̂ is relative to the supremum

norm içi1 � sup y2[0,ô]jç(y)j.
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In order to de®ne an approximately least favourable submodel, we calculate the score

functions for è and ç. The score function for è is given by

l è,ç(x) � ÿz 1ÿ eÿzTè

ç(y)� eÿzTè
ÿ äeÿzTè

ç(yÿ)� eÿzTè

 !
:

The score operator for ç in the direction of h (an arbitrary bounded function) is

Aè,çh(x) � äh(y)ÿ

� y

0

h dç

ç(y)� eÿzTè
ÿ

ä

� yÿ

0

h dç

ç(yÿ)� eÿzTè
:

This score operator is a linear operator from L2(ç) to L2(Pè,ç). Let A�è,ç denote its adjoint.

After some calculation we obtain

A�è,çAè,çh(u) � h(u)Pè,ç
Ify > ug

ç(y)� eÿzTè
� äIfy . ug
ç(yÿ)� eÿzTè

� �

ÿ Pè,ç

Ify > ug
� y

0

h dç

(ç(y)� eÿzTè)2
�
äIfy . ug

� yÿ

0

h dç

(ç(yÿ)� eÿzTè0 )2

264
375

,

A�è,çl è,ç � Pè,ç
Ify > ug

(ç(y)� eÿzTè)2
� äIfy . ug

(ç(yÿ)� eÿzTè)2

� �
eÿzTèz

� �
:

(These equations are most easily established in this form by differentiating the two identities

P0l è0,ç � 0 and P0Aè0,çh � 0 with respect to ç under the expectation P0, or by calculating

the variance of the score function as in Murphy et al. 1997.) The ®rst equation gives the

information operator for the nuisance parameter ç when è is known. This is shown to be

continuously invertible on the space of functions of bounded variation on [0, ô] in Lemma 4.3

of Murphy et al. (1997). Thus, we can de®ne

h0 � (A�è0,ç0
Aè0,ç0

)ÿ1 A�è0,ç0
l è0,ç0

,

dç t(è, ç) � (1� (èÿ t)T h0)dç,

l (t, è, ç) � log lik(t, ç t(è, ç)):

Then (2.3) holds, with the ef®cient score function for estimation of è given by

~l 0(x) � l è0,ç0
(x)ÿ Aè0,ç0

h0(x):

See equation (4.12) of Murphy et al. (1997) for a veri®cation of (2.1) with the above ~l 0 and
~I0 the variance of ~l 0.

Let ç̂è be the maximizer of the log-likelihood for a ®xed è. We must verify that if
~è!P è0, then iç~è ÿ ç0 i1!P 0. To do this, restrict attention to a subsequence of n for which

the convergence of ~è is almost sure. Then a similar proof to the proof of Theorem 2.2 in

Murphy et al. (1997) can be employed. Replace ç̂, è0 and è̂ in their equations by ç̂~è,
~è and
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~è, respectively. This proof implies that iç~è ÿ ç0 i1 converges almost surely to zero along

the subsequence. Since for any sequence of n such a subsequence can be found, we have

convergence in probability.

Next, we employ Lemma 2.2 to verify (2.4) and (2.5). The function _l is given by

_l (t, è, ç)(x) � l t,ç t(è,ç)(x)ÿ At,ç t(è,ç)

h0(x)

1� (èÿ t)T h0(y)

� �
(x):

The set of all functions of the type x 7! _l (t, è, ç)(x) and x 7! �l (t, è, ç)(x), with t and è
varying in a compact set in R p and ç varying in the set of non-negative non-decreasing

functions with ç(ô) < 2ç0(ô), is Donsker and uniformly bounded. This can be seen by noting

that the above functions can be written as a Lipschitz function of members of uniformly

bounded Donsker classes and next employing Theorem 2.20.6 in van der Vaart and Wellner

(1996). Note that
� y

0
h d(ç t(è, ç)ÿ ç0) is uniformly bounded by a constant times the product

of the variation of h and iç t(è, ç)ÿ ç0 i1. As a result, the maps (t, è, ç) 7! _l (t, è, ç)(x)

and (t, è, ç) 7! �l (t, è, ç)(x) are continuous at (è0, è0, ç0) relative to the uniform topology

on ç. Thus, an application of Lemma 2.2 serves to verify (2.4) and (2.5).

To verify (2.6) in Theorem 2.1, we ®rst derive a rate of convergence for the pro®le

estimators ç̂è via Theorem 3.1. De®ne H to be the set of all functions h: [0, ô] 7! [0, 1]

that are of variation bounded by 1. De®ne

W n1(è, ç) � Pnl è,ç,

W n2(è, ç)h � PnAè,çh, h 2H :

Then Wn(è, ç) 2 R p 3 l 1(H ). Since ç̂è maximizes the likelihood for ®xed è, we have that

W n2(è, ç̂è) � 0:

The expectation of Wn is given by

W1(è, ç) � P0l è,ç,

W2(è, ç)h � P0 Aè,çh:

It is implicit in the proof Theorem 2.2 of Murphy et al. (1997) that the map

W : R p 3 lin H 7! R p 3 l 1(H ) is differentiable at (è0, ç0) with continuously invertible

derivative _W given by

(èÿ è0, çÿ ç0) 7! _W11
_W12

_W21
_W22

� �
èÿ è0

çÿ ç0

� �
,

where
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_W11(èÿ è0) � ÿP0l è0,ç0
l T
è0,ç0

(èÿ è0),

_W12(çÿ ç0) � ÿ
�

A�è0,ç0
l è0,ç0

d(çÿ ç0),

_W21(èÿ è0)h � ÿP0(Aè0,ç0
h)l T

è0,ç0
(èÿ è0),

_W22(çÿ ç0)h � ÿ
�

A�è0,ç0
Aè0,ç0

hd(çÿ ç0):

Consequently, the _W2(0, çÿ ç0) in Theorem 3.1 is given by _W22(çÿ ç0), and iç̂~è ÿ ç0 i1 is

of the order i~èÿ è0 i � nÿ1=2.

The left-hand side of (2.6) is equal to

P0
_l (~è, ~è, ç̂~è) � W1(~è, ç̂~è)ÿ W2(~è, ç̂~è)h0

� _W11(~èÿ è0)� _W12(ç̂~è ÿ ç0)ÿ _W21(~èÿ è0)ÿ _W22(ç̂~è ÿ ç0)h0

� oP(i~èÿ è0 i � iç̂~è ÿ ç0 i1),

� ÿ~I0(~èÿ è0)� oP(i~èÿ è0 i � iç̂~è ÿ ç0 i1),

by the de®nitions of _W and h0. This veri®es (2.6).

6. Logistic regression with a missing covariate

The following model is considered by Roeder et al. (1996), who use the pro®le likelihood to

set a con®dence interval in a study of the effect of cholesterol on heart disease. The model is

expressed in terms of a basic random vector (D, W , Z), whose distribution is described in the

following way (our parametrization is slightly different from that of Roeder et al.): D is a

logistic regression on exp Z with intercept ã and slope â. W is a linear regression on Z with

intercept á0 and slope á1, and an N (0, ó 2) error. Given Z, the variables D and W are

independent. Z has a completely unspeci®ed distribution ç. The unknown parameters are

è � (â, á0, á1, ã, ó ) ranging over È � R4 3 (0, 1) and the distribution ç of the regression

variable with support contained in a known, compact interval Z � R. The likelihood for the

vector (D, W , Z) takes the form pè(d, wjz) dç(z), with ö denoting the standard normal

density,

pè(d, wjz) � 1

1� exp(ÿãÿ âez)

� �d exp(ÿãÿ âez)

1� exp(ÿãÿ âez)

� �1ÿd
1

ó
ö

wÿ á0 ÿ á1z

ó

� �
and dç denoting the density of ç with respect to a dominating measure.

Roeder et al. (1996) and Murphy and van der Vaart (1996) consider both a prospective

and retrospective (or case±control) model. In the prospective model we observe two

independent random samples of sizes nC and nR from the distributions of (D, W , Z) and

(D, W ), respectively. (The indexes C and R are for `complete' and `reduced', respectively.)
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In the terminology of Roeder et al. (1996), the covariate Z in a full observation (D, W , Z)

is a `golden standard', but, in view of the costs of measurement, for a selection of

observations only the `surrogate covariate' W is available. In their example W is the natural

logarithm of total cholesterol, Z is the natural logarithm of LDL cholesterol, and we are

interested in heart disease D � 1.

We shall consider the situation that the number of complete and reduced observations are

of comparable magnitude. More precisely, the proof applies to the situation that the fraction

nC=nR is bounded away from 0 and 1. For simplicity of notation, we shall henceforth

assume that nC � nR. Then the observations can be paired and the observations in the

prospective model can be summarized as n i.i.d. copies of X � (YC, ZC, YR) from the

density

x � (yC, zC, yR) 7! pè(yCjzC)dç(zC)

�
pè(yRjz)dç(z) �: pè(yCjzC)dç(zC) pè(yRjç):

Here we denote the complete sample components by YC � (DC, WC) and ZC and the reduced

sample components by YR � (DR, WR). In the complete sample part of the likelihood we use

an empirical likelihood with çfzg, the measure of the point fzg,

lik(è, ç)(x) � pè(yCjzC)çfzCg
�

pè(yRjz)dç(z):

We shall concentrate on the regression coef®cient, â, considering both the remaining

coordinates of è and ç as nuisance parameters. (Thus, the parameter è in the general results

should be replaced by â throughout this section.) Note that the assumption of a known

support means that in the maximum likelihood estimation, ç is constrained to have support

contained in Z . Assuming that F0 is non-degenerate, Murphy and van der Vaart (1996)

show that the maximum likelihood estimator (è̂, ç̂) is asymptotically normal. Consistency of

ç̂ is relative to the weak topology. Here we shall verify that the conditions of Theorem 2.1

are satis®ed, so that the asymptotic variance of the sequence
���
n
p

(â̂ÿ â) can be consistently

estimated by minus the inverse of the curvature of the pro®le likelihood function. Since

only the prospective model falls under the i.i.d. set-up of this paper, we shall concentrate on

this model. However, since the pro®le likelihoods of the prospective and retrospective

models are algebraically identical, the result can be extended to the retrospective model, as

is shown for the maximum likelihood estimator in Murphy and van der Vaart (1996).

We start by introducing a least favourable submodel. The score function for è, l è,ç, is

the sum of the score functions for è for the conditional density pè(yCjzC) and the mixture

density pè(yRjç), given by

_l è(yCjzC) � @

@è
log pè(yCjzC), _l è0,ç0

(yR) �

�
_l è(yRjz) pè(yRjz)dç(z)

pè(yRjç)
:

Furthermore, the score operator for ç in the direction h (a bounded function satisfying�
hdç � 0) is
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Aè,çh(x) � h(zC)� Bè,çh(yR) � h(zC)�

�
h(z) pè(yRjz)dç(z)

pè(yRjç)
:

The operator Bè,ç: L2(ç) 7! L2( pè(:jç)) is the score operator for the mixture part of the

model. A version of the Hilbert space adjoint B�è,ç of this operator is given by

B�è,ç g(z) �
�

g(yR) pè(yRjz)dì(yR):

The ef®cient information matrix for è when ç is unknown is given by

~I0 � P0
_l è0,ç0

_l T
è0,ç0
� P0

_l è0
_l T
è0
ÿ P0(Aè0,ç0

(I � B�è0,ç0
Bè0,ç0

)ÿ1 B�è0,ç0

_l è0,ç0
) _l T
è0,ç0

:

As in the proportional odds model, the least favourable direction, h0, for the estimation of

è in the presence of the unknown ç is given by (A�è0,ç0
Aè0,ç0

)ÿ1 A�è0,ç0
l è0,ç0

; however,

it is easily shown that A�è0,ç0
l è0,ç0

� B�è0,ç0

_l è0,ç0
and A�è0,ç0

Aè0,ç0
� I � B�è0,ç0

Bè0,ç0
. The latter

is the information operator for ç when è is known; in Section 8 of Murphy and van der Vaart

(1996) it is shown that this operator is continuously invertible on the space of Lipschitz

continuous functions. Additionally partition è into è � (â, è2), where è2 � (á0, á1, ã, ó 2),

and partition ~I0 for è into four submatrices accordingly. Then,

aT
0 � (1, ÿ~I0,12(~I0,22)ÿ1),

h0 � (I � B�è0,ç0
Bè0,ç0

)ÿ1 B�è0,ç0

_l è0,ç0
,

dç t(è, ç) � (1� (âÿ t)aT
0 (h0 ÿ çh0))dç,

èt(è, ç) � è� (t ÿ â)a0,

where çh � � hdç and ç0 h0 � 0. In their Section 5, Murphy and van der Vaart (1996) show

that the function h0 is bounded. Thus ç t(è, ç) has a positive density with respect to ç for

every suf®ciently small jâÿ tj and hence de®nes an element of the parameter set for ç. Now

we use the least favourable path

t 7! (èt(è, ç)2, ç t(è, ç))

in the parameter space for the nuisance parameter (è2, ç). This leads to

l (t, è, ç) � log lik(èt(è, ç), ç t(è, ç)). This submodel is least favourable at (è0, ç0) in that

(2.3) is satis®ed in the form

@

@ t jt � â0

l (t, è0, ç0) � aT
0

~l 0,

where

~l 0(x) � _l è0
(yCjzC)� _l è0,ç0

(yR)ÿ Aè0,ç0
h0(yR):

The function ~l 0 is the ef®cient in¯uence function for the parameter è in the presence of the

nuisance parameter ç, while the function aT
0

~l 0 is the ef®cient score function for â in the

presence of the nuisance parameter (è2, ç), both evaluated at (è0, ç0). See Section 7 of
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Murphy and van der Vaart (1996). For the present purpose, the relevant information is that

(2.1) is satis®ed for the maximum likelihood estimator â̂ substituted for è̂, ~l 0 equal to aT
0

~l 0

and ~I0 equal to aT
0
~I0a0 � ~I0,11 ÿ ~I0,12

~Iÿ1
0,22

~I0,21.

Let (è̂2,â, ç̂â) be the pro®le likelihood estimator for (è2, ç) when â is given so that

è̂â � (â, è̂2,â). The pro®le likelihood estimator (è̂~â, ç̂~â) can be shown to be consistent

for (è0, ç0) as ~â!P â0, by the same proof as used for the full maximum likelihood estimator

in Murphy and van der Vaart (1996). (Replace â0 by ~â, â̂ by ~â and (è̂2, ç̂) by (è̂
2,~â, ç̂~â).) It

now suf®ces to verify the conditions of Lemma 2.2. By direct calculation, and with the

abbreviations èt � èt(è, ç) and ç t � ç t(è, ç),

_l (t, è, ç) � aT
0

_l èt
(yCjzC)� aT

0
_l èt ,ç t

(yR)ÿ aT
0 Aèt ,ç t

h0 ÿ ç t h0

1� (âÿ t)aT
0 (h0 ÿ ç t h0)

� �
(yR):

The class of functions _l (t, è, ç), with t varying in a neighbourhood of â0 and (è, ç) varying

in a neighbourhood of (è0, ç0), is shown to be Donsker in Section 4 of Murphy and van der

Vaart (1996). That the class of second derivatives, x 7! �l (t, è, ç)(x), is Glivenko±Cantelli

follows by similar, but simpler, arguments.

To verify condition (2.6), we apply Theorem 3.1 to study the pro®le estimators ç̂è. Let

H be the set of measurable functions h: Z 7! [0, 1] that are uniformly Lipschitz. Let

Wn � (W n1, W n2) be the element of R5 3 l �1(H ) given by

W n1(è, ç) � Pn( _l è(yCjzC)� _l è,ç(yR)),

W n2(è, ç)h � PnAè,çh(x, z)ÿ Pè,çAè,çh:

The maximum likelihood estimators (è̂, ç̂) are zeros of the maps Wn,

Wn(è̂, ç̂) � 0:

Similarly the pro®le maximum likelihood estimator, (è̂â, ç̂â), satis®es

W n1,2(è̂â, ç̂â) � 0, W n2(è̂â, ç̂â) � 0:

We shall identify each probability measure ç on Z with an element of l 1(H ) through

çh � �hdç. Then Wn can be viewed as a map from the space R5 3 l 1(H ) into itself with

domain the product of È and the set of probability measures in l 1(H ) under the given

identi®cation. The expectation of Wn under the true distribution, P0 � Pè0,ç0
is the element

W � (W1, W2) of R5 3 l 1(H ) given by

W1(è, ç) � P0( _l è(yCjzC)� _l è,ç(yR)),

W2(è, ç)h � P0 Aè,çhÿ Pè,çAè,çh:
(6:1)

With this choice of centring function, we have W (è0, ç0) � 0.

Conditions (3.1) and (3.2) are veri®ed in Section 4 of Murphy and van der Vaart (1996).

Furthermore, by Lemma 5.1 in the same paper, the map W is differentiable at (è0, ç0), with

continuously invertible derivative
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(èÿ è0, çÿ ç0) 7! _W11
_W12

_W21
_W22

� �
èÿ è0

çÿ ç0

� �
, (6:2)

where

_W11(èÿ è0) � ÿ(P0
_l è0,ç0

_l T
è0,ç0
� P0

_l è0
_l T
è0

)(èÿ è0),

_W12(çÿ ç0) � ÿ
�

B�è0,ç0

_l è0,ç0
d(çÿ ç0),

_W21(èÿ è0)h � ÿP0 Aè0,ç0
h _l T

è0,ç0
(èÿ è0),

_W22(çÿ ç0)h � ÿ
�

(I � B�è0,ç0
Bè0,ç0

)h d(çÿ ç0):

The above, combined with consistency of the pro®le maximum likelihood estimator, implies

that iè̂~â ÿ è0 i � iç̂~â ÿ ç0 iH is of the order i~âÿ â0 i � nÿ1=2 by Theorem 3.1.

The left-hand side of (2.6) is equal to

P0
_l (~â, è̂~â, ç̂~â) � aT

0 (W1(è̂~â, ç̂~â)ÿ W2(è̂~â, ç̂~â)h0)

� aT
0 ( _W1(è̂~â ÿ è0, ç̂~â ÿ ç0)ÿ _W2(è̂~â ÿ è0, ç̂~â ÿ ç0)h0)

� oP(iè̂~â ÿ è0 i � iç̂~â ÿ ç0 iH ),

� ÿaT
0
~I0(è̂~â ÿ è0)� oP(iè̂~â ÿ è0 i � iç̂~â ÿ ç0 iH )

� ÿ(~I0,11 ÿ ~I0,12
~Iÿ1

0,22
~I0,21)(~âÿ â0)� oP(iè̂~â ÿ è0 i � iç̂~â ÿ ç0 iH ),

by the de®nitions of _W , h0 and a0. This veri®es (2.6), because ~I0,11 ÿ ~I0,12
~Iÿ1

0,22
~I0,21 is the

ef®cient information for estimating â in the presence of the nuisance parameter (è2, ç).

7. Semi-parametric penalized logistic regression

In this model the observations are n i.i.d. copies of X � (Y , W , Z) for a 0±1 variable Y such

that

P(Y � 1jW , Z) � F(èW � ç(Z)),

where F(u) � eu=(1� eu) is the logistic distribution. Both W and Z are assumed to have

bounded support, which we take to be a subset of [0, 1]2. The unknown parameters are the

scalar è, and ç, a function in the Sobolev class of functions on [0, 1] whose (k ÿ 1)th

derivative exists and is absolutely continuous with J (ç) ,1, where

J 2(ç) �
�1

0

(ç(k)(z))2 dz:
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Here, k > 1 is a ®xed integer and ç( j) is the jth derivative of ç with respect to z. Mammen

and van de Geer (1997) study the estimators for è and ç obtained by maximizing the

penalized log-likelihood, given by

Pn log pè,ç ÿ ~ë2 J2(ç),

where ~ë is a `smoothing parameter' and

pè,ç(x) � F(èw� ç(z)) y(1ÿ F(èw� ç(z))1ÿ y f W , Z(w, z):

The smoothing parameter may depend on the data and hence can, for instance, be chosen by

cross-validation. The estimator ç̂ of ç is a weighted sum of a ®nite number of basis functions

determined by fZ1, . . . , Zng (O'Sullivan et al. 1986).

For the purpose of (®rst-order ef®cient) inference concerning è, there is considerable

freedom in the choice of the smoothing parameter. Following Mammen and van de Geer

(1997), we assume that

~ë2 � oP(nÿ1=2) and ~ëÿ1 � OP(nk=(2k�1)): (7:1)

To ensure the identi®ability of the parameters we assume that E0 var(W jZ) is positive, and

that the support of Z (the smallest closed set with mass 1) contains at least k distinct points

in [0, 1]. Finally, we assume that the function h0 given by (7.2) has a version with

J (h0) ,1.

Under the above assumptions, the arguments of Mammen and van de Geer (1997) can

be re®ned to prove that iç̂ÿ ç0 i2 � OP(~ë), where iai2 � E0a2(Z), and that è̂ is

asymptotically ef®cient in the sense of (2.1).

Our purpose is to show that the second derivative of the pro®le penalized log-likelihood

yields a consistent estimator of minus the inverse of the asymptotic variance of è̂. To do

this, we follow the general scheme of the paper, with the log-likelihood equal to the

penalized log-likelihood

log lik(è, ç)(x) � log pè,ç(x)ÿ ~ë2 J2(ç):

Assumption (7.1) ensures that even though this function depends on n and possibly on the

observations through ~ë, the arguments are unaffected, in the sense that Theorem 2.1 and its

proof go through with minor notational adaptations.

The score function for è takes the form

l è,ç(x) � (yÿ F(èw� ç(z)))w:

As in the previous examples, for h a function with J (h) ,1, we may differentiate the log-

likelihood (the true one, with ~ë � 0) along the submodel ç t � ç� th at t � 0 to obtain a

score function for ç, given by

Aè,çh(x) � (yÿ F(èw� ç(z)))h(z):

The ef®cient score function is given by

~l 0 � l è0,ç0
ÿ Aè0,ç0

h0 � (yÿ F(è0w� ç0(z)))(wÿ h0(z)):

Here h0 minimizes the distance P0(l è0,ç0
ÿ Aè0,ç0

h0)2, and is given by
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h0(z) � E0[Wf (è0W � ç0(Z))jZ � z]

E0[ f (è0)W � ç0(Z))jZ � z]
: (7:2)

(Note that F(1ÿ F) � f , the derivative of F.) Thus, we de®ne as least favourable submodel

ç t(è, ç) � ç� (èÿ t)h0,

l (t, è, ç) � log lik(t, ç t(è, ç)):

Differentiation of l (t, è0, ç0) with respect to t and evaluation at t � è0 and ~ë � 0 yields the

ef®cient score function ~l 0.

Let ç̂è be the maximizer of the penalized log-likelihood for a ®xed è and the same

stochastic smoothing parameter ~ë as the one used to arrive at the estimator (è̂, ç̂). Recall

that ø̂è � (è, ç̂è). In Lemmas 7.1±7.4 we prove that

~ëJ(ç̂~è)� ijç̂~è ÿ ç0j ^ 1i2 � OP(~ë� i~èÿ è0 i): (7:3)

We shall verify (2.49)±(2.59) and (2.6), where we take ø!P ø0 to mean è!P è0, and

ijçÿ ç0j ^ 1i2!P 0. We have

_l (t, ø)(x) � (yÿ F(tw� ç(z)� (èÿ t)h0(z)))(wÿ h0(z))

� 2~ë2

�1

0

(ç� (èÿ t)h0)(k)(z)(h0)(k)(z) dz,

�l (t, ø) � ÿ f (tw� ç(z)� (èÿ t)h0(z))(wÿ h0(z))2 ÿ 2~ë2 J2(h0):

The penalty terms do not play a role in the veri®cation of (2.49)±(2.59) and (2.6), since
~ë2 � oP(nÿ1=2) by assumption and

~ë2 J (ç̂~è) � OP(~ë2 � ~ëj~èÿ è0j):
Therefore, without loss of generality we may set ~ë � 0 for this part of the argument. If

(è, ø)! (è0, ø0), then, in view of the continuity of F and f, _l (è, ø ) converges a.e. to ~l 0

and �l (è, ø )(x) converges a.e. to ÿ f (è0w� ç0(z))(wÿ h0(z))2, at least along subsequences.

By the dominated convergence theorem, ÿP0
�l (è, ø ) converges to the ef®cient information

~I0 � P0 f (è0w� ç0(z))(wÿ h0(z))2:

Thus, for (2.4)±(2.5) it certainly suf®ces to show that the classes of functions _l (t, ø) and
�l (t, ø), respectively, with (t, ø) ranging over a neighbourhood of (è0, ø0), are P0-Donsker

and P0-Glivenko±Cantelli with square-integrable and integrable envelope functions,

respectively. If hn in (1.3) is chosen such that hn � OP(~ë), we have that J (ç̂~è) � OP(1) by

(7.3). Since it suf®ces to prove (2.4)±(2.5) for ø of the form ø � (è, ç̂è) with

jèÿ è0j < jè̂� hn ÿ è0j, we may then assume a priori that J (ç) � OP(1). Under the

condition that J (ç) is uniformly bounded, the classes of functions _l (t, ø) and �l (t, ø) can be

seen to be Donsker and Glivenko±Cantelli by entropy calculations as in Lemma 7.2, and the

uniform entropy central limit theorem and uniform entropy Glivenko±Cantelli theorem,

respectively ± see, for example, Theorems 2.5.2 and 2.4.3 in van der Vaart and Wellner
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(1996). Without the condition that hn � OP(~ë), we must re®ne the argument and can verify

(2.49)±(2.59) rather than (2.4)±(2.5). This is done in Lemma 7.5 below.

In order to verify (2.6) we follow the second intuitive justi®cation given in Section 2. We

may still assume that ~ë � 0. By the formula for _l , with ĝ~è(w, z) � ~èw� ç̂~è(z) and

g0(w, z) � è0w� ç0(z),

P0
_l (~è, ø̂~è) � P0(yÿ F(ĝ~è))(wÿ h0(z))

� P0(F(g0)ÿ F(ĝ~è))(wÿ h0(z)):

By Taylor's formula,

jF(g)ÿ F(g0)ÿ f (g0)(g ÿ g0)j < 1
2
i f 9i1jg ÿ g0j2:

The function f (g0)ÿ1(F(g0)ÿ F(g)ÿ f (g0)(èÿ è0)w) is uniformly bounded. Consequently,

for a suf®ciently large constant M,

jF(g)ÿ F(g0)ÿ f (g0)(èÿ è0)wÿ f (g0)[çÿ ç0]M j < i f 9i1(jèÿ è0j2 � jçÿ ç0j2), (7:4)

where [ç]M is ç truncated to the interval [ÿM , M]. Since the left-hand side is bounded, the

right-hand side can be truncated at a suf®ciently large constant and inequality (7.4) will still

hold. Since P0 f (g0)a(z)(wÿ h0(z)) is zero for every a,

P0
_l (~è, ø̂~è) �ÿ P0(F(ĝ~è)ÿ F(g0)ÿ f (g0)[(~èÿ è0)w� [ç̂~è ÿ ç0]M ])(wÿ h0(z))

ÿ (~èÿ è0)P0 f (g0)w(wÿ h0(z)):

The ®rst term on the right is bounded by a multiple of j~èÿ è0j2 � P0[(ç̂~è ÿ ç0)2 ^ 1]. This is

negligible to the desired order by (7.3). The second term is equal to ÿ(~èÿ è0)~I0.

We ®nish this section with a careful proof of the rate of convergence (7.3). For a

function g of (y, w, z) let i gi2 denote the square of P0 g2(Y , W , Z). This norm does not

depend on the parameters (è, ç) and can be taken as ®xed in the following.

Lemma 7.1. Let (7.1) hold and assume that P0 var(W jZ) is positive. Furthermore, suppose

that the support of Z contains at least k distinct points. If j~èÿ è0j!P 0, then

i p~è,ç̂~è
ÿ pè0,ç0

i2 � ~ëJ (ç̂~è) � OP(~ë� j~èÿ è0j):
This implies (7.3). If ~èÿ è0 � OP(~ë), then this also implies that J (ç̂~è) � OP(1), and next that

iç̂~è ÿ ç0 i2 � OP(~ë� j~èÿ è0j).

Proof. We apply Theorem 3.2, where we let the è of this theorem include the smoothing

parameter ë, and where

mè,ë,ç � log
pè,ç � pè,ç0

2 pè,ç0

ÿ 1
2
ë2(J2(ç)ÿ J2(ç0)):

Within this context we write ç̂è,ë rather than ç̂è. By the concavity of the logarithmic function

and the de®nition of ç̂è,ë,
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Pnmè,ë,ç̂è,ë
> 1

2
Pn log

pè,ç̂è,ë

pè,ç0

ÿ 1
2
ë2(J 2(ç̂è,ë)ÿ J2(ç0)) > 0 � Pnmè,ë,ç0

:

In view of (7.1), we may restrict (è, ë) a priori to the set Èn � fjèÿ è0j, å, ë > ëg for a

small å. 0 and for ë a suf®ciently large multiple of nÿk=(2k�1). Suppose that it can be shown

that iç̂~è,~ë i1 � OP(J (ç̂~è,~ë)� 1). Then we may also restrict ç to the set Hn �
fç: içi1 < CJ (ç)� Cg for a large constant C. (Strictly speaking, we must let ëk=(2k�1)

and C tend to in®nity, but there is no loss of generality in giving the proof for a ®xed but

arbitrary large constant only.)

The function pè0,ç0
(x)= f W ,Z(w, z) is bounded away from zero and in®nity uniformly in x.

Therefore, by continuity pè,ç0
(x)= f W , Z(w, z) is bounded away from zero and in®nity,

uniformly in x and è varying over a neighbourhood of è0. This implies that mè,0,ç(x) is

uniformly bounded in è, ç and x. Since Gnmè,ë,ç � Gnmè,0,ç, this shows that Lemma 3.3

can be applied to verify (3.6).

By the well-known inequality relating Kullback±Leibler divergence and Hellinger

distance (see, for example, the proof of Lemma 5.35 in van der Vaart 1998),

P0(mè,ë,ç ÿ mè,ë,ç0
) � P0(mè,ë,ç ÿ mè0,ë,ç0

)ÿ P0(mè,ë,ç0
ÿ mè0,ë,ç0

)

( ÿh2( pè,ç, pè0,ç0
)ÿ ë2 J 2(ç)� ièÿ è0 i2 � ë2

( ÿi pè,ç ÿ pè0,ç0
i2

2 ÿ ë2 J2(ç)� jèÿ è0j2 � ë2,

since pè0,ç0
= f W , Z is bounded away from zero. This suggests the choice of

d2
è,ë(ç, ç0) � i pè,ç ÿ pè0,ç0

i2

2 � ë2 J2(ç)

and the Euclidean norm for (è, ë). Since the derivative of the function p 7! log( p� p0) is

bounded, uniformly in p0 that are bounded away from zero,

P0(mè,0,ç ÿ mè0,0,ç0
)2 ( i pè,ç ÿ pè0,ç0

i2

2 � jèÿ è0j2:
If (è, ë) 2 Èn and dè,ë(ç, ç0) , ä, then i pè,ç ÿ pè0,ç0

i2 , ä and J (ç) , ä=ë, and hence

içi1 ( ä=ë by our working assumption that ç 2 Hn. By a result of Birman and Solomjak

(1967),

log N (å, fç: J (ç) < M , içi1 < Mg, i:i1) (
M

å

� �1=k

:

The class of functions w 7! wè for è varying over a compact has polynomial bracketing

numbers. Since the transformation (è, ç) 7! mè,0,ç is Lipschitz and essentially monotone, it

follows that

log N[](å, fmè,0,ç: (è, ë) 2 Èn, ç 2 Hn, dè,ë(ç, ç0) < äg, L2(P0)) (
1� ä=ë

å

� �1=k

:

Thus, by Lemma 3.3 condition (3.6) is satis®ed with ön and J � Jn related as in Lemma 3.3

and
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Jn(ä) ( 1� ä

ën

� �1=2k

ä1ÿ1=2k :

By Theorem 3.2 we obtain that

d~è,~ë(ç̂~è,~ë, ç0) � OP(~ë� j~èÿ è0j � (në1=k
n )ÿ1=2 � nÿk=(2k�1)) � OP(~ë� j~èÿ è0j):

This is the ®rst assertion of the lemma. The other assertions follow by Lemma 7.4.

To show that iç̂~è,~ë i1 � OP(J (ç̂~è,~ë)� 1) we apply Theorem 3.2 in a crude manner, with a

different maximal inequality. We still assume that (è, ë) 2 Èn, but drop the assumption that

ç 2 Hn. By Lemma 7.2, and a maximal inequality due to Kim and Pollard (1990) (see

Theorem 2.14.1 of van der Vaart and Wellner 1996), condition (3.6) is satis®ed for

Jn(ä) < 1� ä

ën

� �1=2k

:

In view of Theorem 3.2, this means that d~è,~ë(ç̂~è,~ë, ç0) � OP(än) for any än # 0 such

that än > (nkën)ÿ1=(4kÿ1). In particular, d~è,~ë(ç̂~è,~ë, ç0)!P 0. The result then follows from

Lemma 7.3(i). h

Lemma 7.2.

sup
Q

log N (å, fpè,ç: è 2 R, J (ç) < Mg, L2(Q)) (
1� M

å

� �1=k

:

Proof. The functions pè,ç are transformations of the functions F(èw� ç(z)) (and the 0±1

variable y). It suf®ces to give the same bound for the entropy of the latter collection of

functions.

For every ç with J (ç) ,1, there exists a polynomial ~ç of degree at most k ÿ 1 such

that içÿ ~çi1 < J (ç). (By the Cauchy±Schwarz inequality jç(kÿ1)(z)ÿ ç(kÿ1)(0)j < J (ç)

for every z. Next integrate this k ÿ 1 times.) For a ®xed function ç, let F ç be the set of all

functions F(èw� p(z)� ç(z)) with è ranging over R and p ranging over the set of all

polynomials of degree at most k ÿ 1. Then our set of functions is the union of all F ç with

ç ranging over the set H of all functions with J (ç) < M and içi1 < M .

By Birman and Solomjak (1967) the i:i1-entropy of the class H is of the order (1=å)1=k.

Each class F ç is Vapnik±Chervonenkis of index at most k � 3 and uniformly bounded.

(See, for example, Lemmas 2.6.15 and 2.6.18(viii) of van der Vaart and Wellner 1996.)

Thus its covering numbers are polynomial.

We can construct a net over [ç2H F ç by ®rst choosing an å-net over the set H, and next,

for every ç in the net, choosing an å-net over F ç. The total number of functions will be

bounded as in the lemma, and will constitute an å9-net over the functions of interest, for å9
a ®xed multiple of å. h

Lemma 7.3. (i) For every suf®ciently small ä. 0 there exists a constant C depending only on

P0 such that içi1 < C(J (ç)� 1) whenever jèÿ è0j, ä and i pè,ç ÿ pè0,ç0
i2 , ä.

(ii) For any ç we have içi1 ( J (ç)� içi2.
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Proof. (i) By assumption there exist disjoint intervals [ai, bi] such that FZ(bi)ÿ FZ(ai) . 0

for each i � 1, . . . , k. If i pè,ç ÿ pè0,ç0
i2 , ä, then, for every 0 , a , b , 1,�b

a

�
(F(èw� ç(z))ÿ F(è0w� ç0(z)))2 FW jZ(dwjz)FZ(dz) , ä2:

Therefore, there exist zi 2 (ai, bi] for which�
(F(èw� ç(zi))ÿ F(è0w� ç0(zi)))

2 FW jZ(dwjzi)(FZ(bi)ÿ FZ(ai)) , ä2

for each i � 1, . . . , k. Next for each zi there exists a wi which satis®es

(F(èwi � ç(zi))ÿ F(è0wi � ç0(zi)))
2 (

ä2

FZ(bi)ÿ FZ(ai)
:

Since F(è0wi � ç0(zi)) is bounded away from zero and one, this implies that, for suf®ciently

small ä. 0, the numbers F(èwi � ç(zi)) are bounded away from zero and one as well,

whence the numbers èwi � ç(zi) are uniformly bounded by a constant that depends on ä and

(è0, ç0) only. Since ièÿ è0 i , ä, this in turn implies that jç(zi)j < Kä for some constant Kä.

For every ç there exists a polynomial ~ç of degree smaller than k ÿ 1 such that

içÿ ~çi1 < J (ç). See the proof of Lemma 7.2. It follows that the numbers j~ç(zi)j are

bounded by Kä � J (ç). If ~ç(z) �Pajz
j � (1, z, . . . , z kÿ1) . a, then

iai <

�����
�����

1 z1 � � � zkÿ1
1

..

. ..
. ..

.

1 zk � � � zkÿ1
k

0B@
1CA
ÿ1�����
�����
�����
�����

~ç(z1)

..

.

~ç(zk)

0B@
1CA�����
����� < L

���
k
p

(Kä � J (ç)),

where L can be chosen to correspond to the worst possible choice of the points zi 2 (ai, bi].

Consequently, i~çi1 ( iai ( Kä � J (ç), and içi1 is bounded similarly.

(ii) Since içÿ ~çi1 < J (ç), we have i~çi2 < J (ç)� içi2. By the non-singularity of the

matrix P0ööT, for ö � (1, z, . . . , z kÿ1), this implies that iai ( J (ç)� içi2, whence i~çi1
is bounded similarly. h

Lemma 7.4. (i) i pè,ç ÿ pè0,ç0
i2 ) (jèÿ è0j ^ 1� ijçÿ ç0j ^ 1i2) ^ 1.

(ii) There exists a constant C depending on M only such that, whenever J (ç) , M,

i pè,ç ÿ pè0,ç0
i2 > C(jèÿ è0j � içÿ ç0 i2) ^ 1.

Proof. (i) If pè,ç ! pè0,ç0
in L2, then è! è0 and ç! ç0 in measure, whence

ijçÿ ç0j ^ 1i2 ! 0. Thus it suf®ces to prove the inequality for small values of jèÿ è0j
and ijçÿ ç0j ^ 1i2.

By a Taylor expansion (cf. equation (7.4)), uniformly in (w, z),

jF(èw� ç(z))ÿ F(è0w� ç0(z))ÿ f (g0)[(èÿ è0)w� [çÿ ç0]M ]j

( (jèÿ è0j2 � jçÿ ç0j2) ^ 1:

Conclude that
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P0(F(èw� ç(z))ÿ F(è0w� ç0(z)))2

) (P0((èÿ è0)w� [çÿ ç0]M )2 ÿ O(jèÿ è0j ^ 1)4 ÿ O(P0jçÿ ç0j4 ^ 1)

) jèÿ è0j2 � P0[çÿ ç0]2
M ÿ o(jèÿ è0j ^ 1)2 ÿ o(P0jçÿ ç0j2 ^ 1),

by the assumption P0 var(W jZ) . 0. Inequality (i) follows.

(ii) If pè,ç ! pè0,ç0
in L2 and J (ç) � O(1), then, by Lemma 7.3 içi1 � O(1). Hence the

conclusion in the ®rst paragraph of the proof of (i) can be strengthened to è! è0 and

içÿ ç0 i2 ! 0. The proof proceeds along the same lines, substituting içÿ ç0 i2 for

ijçÿ ç0j ^ 1i2. h

Lemma 7.5. Under (7.1) we have for every random sequence ~è!P è0 and è!P è0,

Gn( _l (~è, ø̂~è)ÿ ~l 0) � oP(1� ���
n
p j~èÿ è0j),

(Pn ÿ P0) �l (~è, ø̂è)!P 0:

Proof. In view of (7.1) there is no loss of generality in assuming that ~ë is bounded below by

a multiple of ën � nÿk=(2k�1) and bounded above by ånÿ1=4 for an arbitrary å. 0. By

combining Lemmas 7.3(i) and 7.1, iç̂~è i1 is bounded in probability by a multiple of

J (ç̂~è)� 1, which by equation (7.3) is bounded by a multiple of 1� j~èÿ è0j=ën. Furthermore,

by Taylor series arguments as used for the proof of (7.4),

P0

_l (~è, ø̂~è)ÿ ~l 0

1� ���
n
p j~èÿ è0j

 !2

(
j~èÿ è0j2 � P0jç̂~è ÿ ç0j2 ^ 1

(1� ���
n
p j~èÿ è0j)2

< OP

1

n
� ~ë2

� �
� OP(å2 nÿ1=2):

De®ne F n as the class of functions

_l (è, è, ç)ÿ ~l 0

1� ���
n
p jèÿ è0j : J (ç) ( 1� jèÿ è0j

ën

, içi1 ( 1� J (ç), jèÿ è0j, ä

( )

\ f f 2 L2(P0): P0 f 2 ( å2 nÿ1=2g:

Then it follows that on a set of probability arbitrarily close to 1 we can bound

Gn( _l (~è, ø̂~è)ÿ ~l 0)=(1� ���
n
p j~èÿ è0j) by iGn iF n

.

We now apply the maximal inequality Lemma 3.4.2 in van der Vaart and Wellner (1996)

to iGn iF n
. Since _l (è, è, ç) depends on (è, ç) in a Lipschitz and essentially monotone

manner,

Observed information in semi-parametric models 409



log N[](å, F n, L2(P0))

( log N[] å,
ç

1� ���
n
p jèÿ è0j : J (ç) ( 1� jèÿ è0j

ën

, içi1 ( 1� J (ç)

� �
, L2(P0)

� �

� log
1

å

(
1� (

���
n
p

ën)ÿ1

å

� �1=k

,

by Birman and Solomjak (1967), since

J
ç

1� ���
n
p jèÿ è0j

� �
� J (ç)

1� ���
n
p jèÿ è0j ( 1� 1���

n
p

ën

:

Therefore, the relevant entropy integral is equal to�ånÿ1=4

0

1� (
���
n
p

ën)ÿ1

å

� �1=2k

då ( (ånÿ1=4)(1ÿ1=2k) 1� (
���
n
p

ën)ÿ1)1=2k :
ÿ

By Lemma 3.4.2 in van der Vaart and Wellner (1996), we conclude that E� iGn iF n
! 0. This

concludes the proof of the ®rst assertion, which is the veri®cation of (2.49).
To prove the second assertion, we need a Glivenko±Cantelli theorem for classes of

functions that change with n. A suitable extension of the uniform entropy Glivenko±

Cantelli theorem is as follows. If F n are suitably measurable classes of functions with

uniformly integrable envelope functions and log N(å, F n, L1(Pn)) � o�P(n), then

iPn ÿ P0 iF n
!P 0 for every å. 0. The proof of Theorem 2.4.3 in van der Vaart and

Wellner (1996) applies with minor notational changes. We apply this theorem to the set F n

of functions �l (t, è, ç) with t and è0 ranging over a neighbourhood of è0 and ënJ (ç)

bounded by a constant. By arguments as in Lemma 7.2,

sup
Q

log N (å, F n, L1(Q)) (
1� ëÿ1

n

å

� �1=k

:

Thus the present classes F n certainly satisfy the entropy condition. Moreover, they are

uniformly bounded. Since the functions _l (~è, è, ç̂è) are contained in F n with probability

tending to 1, the second assertion of the lemma follows. h
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