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GLOBAL ORDER FROM LOCAL SOURCES 

CHARLES RADIN 

1. INTRODUCTION 

This article contains introductions to three open problems of 
significant research interest, taken from number theory, logic, and 
condensed matter physics. All three problems will be shown to 
have at their core special cases of one simply-stated optimization 
problem. Our goal is to use the intuition gained from these three 
perspectives to direct attention to this common core, which consti­
tutes, in fact, one problem of remarkable depth and importance. 
We will also show that some of the tools developed in the separate 
problems are of real value in the others. 

Since each of the three problems uses jargon peculiar to its field, 
we will give an informal introduction to each, together with all 
relevant definitions, in the following section. However it may be 
useful to include here a very brief description of each of them to 
give some idea of our eventual goal. 

Our first problem is "sphere packing," in which we consider ar­
rangements of infinitely many unit diameter spheres, each sphere 
having a variable position in R , and try to determine those "opti­
mal" arrangements in which the spheres are disjoint and yet occupy 
the largest possible fraction of space. 

The problem from logic was originally concerned with the "de­
cidability of AEA formulas." It then expanded to the area now 
known loosely as "tiling theory," in which one analyzes the tilings 
of the plane which are possible from a given set of tiles. Neigh­
boring tiles must satisfy color (or matching) rules, and we try to 
optimize agreement of these rules. 

From physics we consider the "crystal problem." Here the con­
cern is to understand why real matter seems, experimentally, to 
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have a strong tendency to have crystalline order at low temperature 
and high pressure. The problem is modeled using the equilibrium 
statistical mechanics of interacting particles, and a concise way to 
summarize that theory is that the state of the particles must be a 
minimum of the free energy. 

A common theme for all three problems is that they involve a 
system of many objects (spheres, tiles, particles) each of whose 
position in space has some influence on the others nearby, and 
we seek those arrangements in space of the objects which opti­
mize something (density, agreement of matching rules, free en­
ergy). One remarkable feature which generates interest in these 
problems is the conviction, based on a variety of evidence, that 
in optimal arrangements the objects tend to be very regularly po­
sitioned in space—although the mechanism causing this tendency 
is completely unknown. This will be formalized in §3, leading to 
natural measures of "regularity" or "order." 

In the above snapshots of the problems we have used the jargon 
of the relevant fields. In the next section we will flesh out the snap­
shots with the appropriate definitions needed by a nonspecialist. 

2. THREE OPEN PROBLEMS 

2a. Sphere packing.1 In sphere packing we try to find that arrange­
ment in space of unit diameter spheres or balls which are nonover-
lapping and yet cover the highest possible fraction of space. (This 
is part of problem 18 in Hubert's celebrated list of open problems 
[17]. A solution has recently been announced by Wu-Yi Hsiang, 
though no manuscript is generally available yet.) 

First let us be more precise about the meaning of "cover the 
highest possible fraction of space." Take the balls to be open— 
that is, translates of {{x{, x2, x3) e R3 : x\ + x\ + x\ < 1/4}— 
and, given an arrangement A of infinitely many disjoint balls, 
consider an increasing sequence S(n), of spheres of radius n, all 
centered at the origin in R . Let d{A) (the "density of A ") be 
the fraction of the volume of S(n) which is contained in those 

*In the Spring of 1990, W.-Y. Hsiang announced a solution of the 3-dimensional 
packing problem. As is frequently the case in such matters, the original writeup was 
somewhat sketchy, and it was not seen as fully convincing. As this article goes to 
press, Hsiang has circulated a far longer and more detailed paper that is currently 
being scrutinized by experts, so while this long outstanding conjecture may perhaps 
soon be considered a theorem, the jury is still out on the matter. 
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balls of A which are inside S(n), asymptotically in n , namely 

volume of balls of A in S(n) 
d(A) = liminf-

volume of S(n) 

What is then desired is the supremum of d(A) over all possible 
arrangements A, and those "optimal" arrangements A' such that 
d{A!) - sup^ d(A). (It is not hard to see that such optimal ar­
rangements exist: the supremum is really a maximum.) 

The sphere packing problem is old (going back at least to Gauss 
[13]) and unsolved, though for many years it has been gener­
ally accepted [34] that one optimal arrangement (among others) 
has the centers of the balls at the points of a "face-centered cu­
bic lattice", which, using a Euclidean basis of R3, can be given 
by: {ax(0, s, s) + a2(s, 0, s) + a3(s, s, 0) : s = ^(1/2) , aj e 

Z } . (This collection of points is called a "lattice" because it is 
of the form {alvl + a2v2 H h anvn : a. e Z} for some basis 
{vx, v2, • • • , vn} of R" ; see Figure 1(a) on p. 338. Since we 
will frequently refer to the centers of balls, from now on we will 
use the word "configuration" for the set of points which are the 
centers of the balls in some "arrangement." Also, it is not hard to 
show that there are other ways to arrange spheres in R3 to obtain 
the same density as that of the "optimal" face-centered cubic lat­
tice. This degeneracy is something we will need to discuss further 
in §2d.) The simpler problem concerning disjoint unit diameter 
disks in R2 has a complicated history going back to Thue in 1910 
[39], and has as an optimal configuration the "hexagonal lattice": 
\ax{\, 0) + a2(V(l/2), >/(3/2)) : a- e Z} ; see Figure 1(b) on 
p. 338. 

Mathematical interest in sphere packing was originally due to 
a connection with minimization of quadratic forms. Specifically, 
there is a direct connection between the lattice {alvl + a2v2 -\ h 
anvn ' aj e Z} W ^ basis {v{, . . . , vn} , and the quadratic form 

j,k=\ 

in the integer variables ax, . . . , an , where i;. • vk refers to the 
inner product in Rn . Forms are called "integrally equivalent" if 
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(a) (b) Hexagonal lattice 

FIGURE 1. Two lattices in the plane, with bases (vl9v2). 

they correspond to the same lattice under a change of basis. The 
density d(A) of the corresponding lattices A is therefore an in­
variant for this equivalence, and the forms corresponding to the 
"densest lattice packing" have a natural place in this theory. (The 
difference between a "densest packing" and a "densest lattice pack­
ing" is that in the latter we only consider lattice configurations A 
when minimizing the density d(A).) Sphere packing, especially 
when restricted to lattice packings, has also played a role in coding 
theory and several other allies of number theory. For an encyclo­
pedic survey of the uses of lattice packings see [8]. 

As a separate subject the sphere packing problem owes its depth 
to the highly ordered or regular structure of the known optimal 
configurations; it is appropriate to restrict consideration to lat­
tice configurations in number theory, but not here. To clarify the 
meaning of "optimal" then, it is convenient to reformulate the 
sphere packing problem in the following terms. We have at our 
disposal many variables (the centers of the balls in Rn)9 summa­
rized in the one quantity we call a configuration. For arbitrarily 
large bounded regions R in Rn we are trying to optimize certain 
functions FR over all possible configurations A, where FR(A) is 
defined to be: +oo if there is a point of A which is both in R 
and also separated by a distance less than 1 from some other point 
of A, and otherwise FR(A) is defined to be the negative of the 
number of points of A which are in R. ( FR basically counts the 
contribution to the density of the spheres of A in R, subject to a 
"penalty" if two spheres overlap.) In these terms then, the inter-

We repeat that the conjectured optimal configuration, the face centered cubic 
lattice, is not unique; there are other configurations, which are not lattices or even 
periodic, with the same density as the face centered cubic lattice [29,8]. This 
degeneracy is not central to our discussion however [29]. The role of degeneracy 
in our problem will be discussed below. 

> / 



GLOBAL ORDER FROM LOCAL SOURCES 339 

esting fact is that in order to minimize the function FR for large R 
we are lead to configurations A which are highly ordered (lattices)2 

2b. AEA formulas and tiling. The relevant analysis of our logic 
problem was initiated by Hao Wang, and originally concerned the 
"decidability" of the class of all "AEA formulas" [43, 44]. AEA 
formulas are sentences that begin "For every x there exists a y 
such that for every z... ," followed by a logical combination of 
predicates not containing the quantifiers "for every" or "there ex­
ists". (For example: For every subset x there exists a least upper 
bound y such that for every upper bound z it follows that z > y.) 
And a class of formulas is said to be decidable if (informally) there 
is an algorithm by which, given any member of the class, we can 
determine in finitely many steps if the formula is consistent, i.e. 
not self-contradictory. Wang found a way to analyze this decision 
problem for the class of AEA formulas through a game he invented 
called "tiling." 

In the game of tiling one uses (an unlimited number of) trans­
lates, called "tiles," of each of a finite set of "prototiles." A tile 
or prototile is a unit square in the plane, with each edge having 
some specified color, and with edges parallel to a fixed set of axes. 
For each color there is defined a "complementary" color. The ob­
ject of the game is to cover the plane with tiles in checkerboard 
fashion (that is, abutting tiles touch full edge to full edge), with 
the condition—called the color (or matching) rules—that abutting 
edges must have complementary colors; see Figures 2(a) and 2(b) 
on p. 340. We will use the word "configuration" for a covering 
of the plane by tiles in checkerboard fashion and reserve the term 
"tiling" for a configuration in which abutting tiles also satisfy the 
color rules; see Figure 2(c). (Given a set of prototiles there may 
or may not be any tilings of course—see Figure 2(d), but there 
are always configurations. Also, note that in placing tiles in the 
plane one may translate but not rotate or reflect them from the 
prototile.) One of the remarkable features of this tiling game is 
its versatility, and much of this is due to its relation with Turing 
machines, to which we now give an informal introduction. 

A Turing machine is an imaginary computer consisting of a 
"tape," a "head," and a "program." The tape is one dimensional, 
oriented as to right and left, and consists of "cells" one of which 
is said to be "under" the head at any time. There are infinitely 
many cells to the left and right of this cell. Each cell is marked by 
one symbol from the finite set {sQ, s{, ... , sp} , and cells marked 
with symbol sQ are called "blank." The program is a permanent, 
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FIGURE 2. Prototiles; complementary colors are de­
noted by bar, so 2 and 2 are complementary. 

finite, labeled list {q0, q{, . . . , qr} of "instructions" for the head, 
of which one is "current" at any given time. The instruction in 
operation at a given time is that of the "current" instruction of 
the program and may depend in its effect on the mark of the cell 
under the head. Each single operation of the machine takes one 
second for completion and is of two types; either it replaces the 
contents of the cell under the head with a given mark, then moves 
the tape one cell to the left or right, and installs a specified instruc­
tion as the next "current" instruction, or else it causes the machine 
to Halt! (permanently). We can represent the nonhalting opera­
tions by quintuples of the form (q., sj9 sk, M, qt), which means 
that if the current instruction is qt and the cell under the head is 
marked s*, then the mark in that cell is made to be sk , the tape 
is moved M (a variable taking the values "left" or "right"), and 

LZJ2 VJ 

A, B (of (a)); A unit cell is in dark 
outline 

1 2 

H2 Q 
(d) Set of prototiles which cannot 

tile the plane 
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the next current instruction becomes qt. Any pair (q., s.) not 
the beginning of such a quintuple is assumed to make the machine 
halt. At the initial time the instruction is assumed to be q0 and all 
but finitely many of the cells of the tape are blank. The "Halting 
problem" asks whether or not there is a Turing machine—i.e. an 
algorithm—which can determine precisely which Turing machines 
will eventually halt if the tape is blank initially. It was proven by 
Turing that there can be no such algorithm; the Halting problem 
is "undecidable" [40, 20, 35]. 

Now given any Turing machine one can construct a set of pro-
totiles which mirrors the action of the machine by a special one 
of its tilings. This is done as follows. (This construction is due 
to Wang, with important generalizations by Berger [5], Robinson 
[33], and others.) We represent the state of the machine (that is, 
the current instruction, the markings on the tape cells, and which 
cell is under the head) at two consecutive seconds by colors on the 
top and bottom edges of an infinite row of tiles, one tile for each 
cell, the top representing the later time. Each of these top and 
bottom edges has a color representing the marking of the corre­
sponding cell of the machine, and precisely one top edge and one 
bottom edge has an altered color denoting that it corresponds to 
the cell under the head, and also denoting the current instruction. 
Horizontal edges are also colored. We will denote the colors of 
the edges by a set of some or all of the following: a head or tail 
of an arrow perpendicular to the edge (an arrow head by definiton 
has its point touching the edge, as in the top of Figure 3(a) on 
p. 342), a cell marking and an instruction. The complement of a 
color is the set with the same marking and instruction but opposite 
end of the arrow. There are several classes of prototiles. Those in 
Figure 3(a) are for cells whose markings s. do not change during 
the machine operation under consideration. Those in Figures 3(b) 
and 3(c) represent a cell with marking Sj which is being put under 
the head, from the left or right, and will be subject to instruction 
q.. And those in Figures 3(d) and 3(e) represent cells with mark­
ing Sj which are being re-marked sk under instruction q., moved 
left or right, and with next current instruction qs. We only have 
prototiles with markings which correspond to quintuples of non-
halting operations. To represent the initial state of the machine 
which for convenience we assume includes a blank tape, we need 
the three prototiles of Figures 3(f)-3(h) (we will call the middle 
of these the "center prototile"), and the last prototile we require is 
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that in Figure 3(i), which we will call the "blank" tile. It follows 
that in any (partial) tiling of the plane containing a center tile, 
the tiles making up the horizontal row containing that tile must 
be those of Figures 3(f) and 3(h). Each successive row above this 
one is then completely determined by the operation of the Turing 
machine being "mirrored," for as many rows as there are nonhalt-
ing operations of the machine. And the rows below the initial one 
must consist of blank tiles. 

Therefore given any Turing machine we have specified a set 
of prototiles which can tile the plane using the center prototile if 
and only if the Turing machine never halts. However, the tiling 
game does not contain the condition that a given prototile (such 
as the center prototile) must be used, and without the condition 
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FIGURE 3. Prototiles used to mirrow a Turing machine. 
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we could tile the plane just using blank tiles. To eliminate this 
feature, R. Berger [5] developed a method, refined by Robinson 
[33] and others, by which given a Turing machine one extends the 
above construction to a more complicated set of prototiles which 
can tile the plane if and only if the Turing machine never halts; 
there is no longer a condition that some specified prototile must be 
used. The technique consists of mirroring at many points within 
every possible tiling of the plane arbitrarily large centered squares 
of the above construction, the only obstruction to tiling the plane 
being due to halting of the machine. (Thus it is possible, by adroit 
choice of the Turing machine being mirrored, to build sets of pro­
totiles which can tile the plane but only with tilings having special 
features. This will be discussed further below.) 

We will expand on this connection between Turing machines 
and the tiling game in various contexts, but first we want to clarify 
the original connection. By the above construction and the known 
solution of the Halting problem, it was proven that the game of 
tiling is undecidable; that is, there can be no algorithm by which, 
given a set of prototiles, one can determine in a finite number of 
steps if the corresponding tiles can tile the plane. On the other 
hand, given any finite set of prototiles which can tile the plane, 
Wang showed how to construct an AEA formula which specifies 
the positions of the tiles in the plane. It follows that if the class 
of AEA formulas were decidable, the tiling game would be; since 
the tiling game is not decidable, neither is the class of all AEA 
formulas. This is a rough outline of the role that the tiling game 
played in the original decidability problem for AEA formulas. At 
this point we will cease discussing the predicate calculus aspect of 
this circle of ideas and concentrate on the tiling game and Turing 
machines. 

Wang proved [43] that the tiling game is decidable if the fol­
lowing is true: that every set of prototiles which can tile the plane 
can also tile the plane in a "periodic" manner. (By "periodic" 
we mean that there is some "unit cell" consisting of a bounded 
collection of specified tiles in the plane, and the rest of the tiling 
consists of translations of this collection, in fact by a set of trans­
lations which constitute a lattice; see Figure 2(b).) We note that 
although it is easy to construct examples of sets of prototiles, as in 
Figure 2(a), which can tile the plane periodically, it is very hard 
to construct a set which can tile the plane but only nonperiodi-
cally. In fact the next big step was taken by Berger, who used the 
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above ideas to construct such a set of prototiles, which can tile the 
plane, but only nonperiodically, in his proof that the tiling game 
is undecidable [5]. 

Although we will refer again to the use of Turing machines in 
constructing sets of prototiles whose tilings all have interesting 
properties, at this point we want to emphasize the simplest case, 
the existence of sets of prototiles which can tile the plane but only 
nonperiodically. See Figure 4. This is reminiscent of our discus­
sion of the sphere packing problem. To make the connection more 
transparent we assume given a set of prototiles and construct, for 
each bounded region R of the plane, a function FR on the set 
of configurations A of the tiles. Define FR(A) to be the number 
of those pairs of abutting tiles in A that do not satisfy the color 
rules, and are also such that at least one of the pair is contained 
in the region R of the plane. In this notation we are interested in 
configurations A in the plane which minimize FR for large R, 
and in fact for which FR(A) = 0 for all R. Berger's example 
is then a solution of the same type of optimization problem as 
the sphere packing problem, but somewhat less ordered since the 
optimal A's are not lattices. 

Although the motivating question of decidability has been an­
swered, tiling is in fact a growing area of research. Now interest 
is basically due to the attempt to understand the contrast between 
the ease with which examples of prototiles can be given (such as 
those of Figure 2(a)) which can tile the plane periodically, and the 
great difficulty of producing examples (such as those of Figure 4) 
which can tile the plane but only nonperiodically. As we will dis­
cuss in §3d, methods are being developed to produce prototiles 
which tile the plane but only with tilings of greater and greater 
"disorder." (There is also interest in the geometrical aspects of 
tiling, "five fold symmetry" and all that, spurred in large part by 
the examples due to Penrose [25, 15] of tilings with nonsquare 

ïQ O 4Q5 6̂ 3 4Q O 5Q 3̂ 3 
1 3 4 6 3 3 4 6 

_ 1 - 1 _ 1 _ 2 _ 6 3 6 _ 4 

O *D6 JD4 O Ü 1 O 5 D 2 T\3l 

2 2 Ï 2 4 5 3 5 

FIGURE 4. Set of 16 prototiles, due to R. Ammann [14], 
which can tile the plane but only nonperiodically. 



GLOBAL ORDER FROM LOCAL SOURCES 345 

FIGURE 5. Set of 20 nonsquare prototiles, due to R. 
Penrose [3, 14], includes 18 others obtained from these 
by rotations by multiples of n/5 radians. 

"tiles;" see Figure 5. The connection between our problem of the 
"orderliness" of tilings and this geometrical subject—the study of 
the symmetries of tilings by nonsquare prototiles, is by no means 
clear, although the role of such symmetries in the study of qua-
sicrystals has tended to mix the two [38].) Now we have used 
the words "order" and "disorder" so far in a colloquial sense, to 
refer for example to the intuitive feeling that the (periodic) con­
figurations of the sphere packing solutions (Figure 1(b)) are more 
orderly or regular than the (nonperiodic) tilings of some sets of 
prototiles (Figure 4). However it will be one of our main goals to 
introduce and justify specific technical measures of order for prob­
lems of the sort we are discussing. Some of these measures will 
come from considerations in our next open problem, the crystal 
problem from condensed matter physics. 

2c. Crystals. In the crystal problem we seek the fundamental 
mechanisms underlying the tendency of real bulk matter towards 
crystalline order at low temperature and high pressure. By crys­
talline order we mean that the atomic nuclei in the material, which 
can be roughly localized as fixed points in R3, form a point set 
which is either a lattice, or more generally, periodic (that is, there 
is a "unit cell" associated with each point of a lattice; see Figure 6 
on p. 346). 

The crystal problem is old, and considered a major unsolved 
problem [7, 41, 42, 37, 29, 2]. There is a mathematical formalism 
(equilibrium statistical mechanics) in which to set up the problem, 
and we begin with a review of this formalism. 

Assume we are modeling a material made of nuclei and elec­
trons, and to be definite assume there are precisely N- 1 different 
types of nuclei, N some fixed integer ( N = 3 for table salt, which 
contains the nuclei of sodium and chlorine). In statistical mechan-



346 CHARLES RADIN 

• • • • • • • • 
• • • • 

• • • • • • • • 
• • • • 

FIGURE 6. Periodic configuration in the plane, with unit 
cell (circled) of 3 points. 

ics our model of the material contains several parameters, such as 
temperature, pressure, etc., appropriate to its macroscopic state— 
there are alternative choices for these parameters, and for conve­
nience we will use the temperature T and the chemical potentials 
M{, ... , MN of each of the constituent particle types—electrons 
and TV - 1 types of nuclei. (The chemical potential of a particle 
type measures the energy it would take to increase by one the num­
ber of that type of particle in the material.) At this point we need 
to decide on the mechanics we will use to describe the local state 
of each particle. For our purposes (understanding the origin of 
the crystalline state) it is convenient to use classical mechanics in­
stead of the slightly more accurate quantum mechanics. The state 
of the jth particle then consists of the triple (x., s., p,), where 

Xj e R3 is its position, s G {1, ... , N} is its particle type and 
Pj e R3 is its momentum. So associated with each particle there 
are several real variables. In statistical mechanics these are ran­
dom variables, and their degree of dependence on one another is 
governed to a large extent (specified below) by the forces between 
the particles; that is, the formalism does not yield specific val­
ues for the variables, but the (joint) probability that particles will 
have specific positions, particle types and momenta. (The tem­
perature and chemical potentials are parameters on which these 
probabilities will depend.) The forces between the particles enter 
the formalism as potential energies (from which the forces could 
be recovered by differentiation).3 

If we were using quantum mechanics we could use the static Coulomb potential 
energy of charged nuclei and electrons; some remarkable work has been performed 
in this way by FefFerman [10,11], Lieb [18,19] et al., but not for condensed matter, 
as we require. Since we chose to use classical mechanics we are now forced to 
use phenomenological forces to describe, not interacting nuclei and electrons but 
interacting ions and electrons, or even interacting atoms. What this means is that 
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Before specifying the potential energy that is appropriate (so as 
to determine the probabilities mentioned above), we need to make 
one further simplification wherein the local state of a particle has 
discrete values, and in particular the position varies through the 
cubic lattice Z or more generally Z instead of R . So instead 
of variables such as the position x. of the jth particle, we will 
use variables A. where j eZn is a variable point or "site" of the 
lattice; A. then represents whether or not there is a particle at j , 
and its local state (particle type etc.) if there is one. We assume A. 
runs through some finite set {1, . . . , m} , and associate a chemical 
potential Ma to each possible local state a e { l , . . . , m } . By a 

"configuration" we will mean an element of {1, . . . , m} . 
We are now prepared to describe the type of potential energy 

that is appropriate for our model. We will use a "short range, two-
body, translation invariant interaction potential", that is a real 
function F(- , •) on ({1, . . . , m) x Zn)2 such that 

V(At, Aj) expfli - j\) ^ 0 as \i - j \ -+ oo, 

(1) V(Ai+k , Aj+k) = V(At, Aj), for all i, j , k e Zn . 

Then given any bounded region R of Zn (in the middle of some 
very large region R ), we know from statistical mechanics that the 
relative probability that the sites j of R are in states A. is 

(2) £ Y,exv(-[Ek{A)-Mrf{A) Mmn*(A)]/T\ 

where 

(3) ER(A)= XI nA„Aj) 
ijez"; iV7 
i and/or j £R 

and n*(A) is the number of the sites of R in state a .4 

These probabilities simplify greatly in the limit where T | 0, 
but to describe this we need some further notation. The set 

zn 

{1, . . . , m} 

we still have N types of "particles" in our model, but now we need to chose some 
appropriate potential energy function. 

This relative probability depends negligibly on sites outside R, in a sense 
discussed below. 
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of all configurations A has, as a product, a conventional topol­
ogy and Borel measure structure. So by taking R to be a vari­
able cube centered at the origin and expanding to Zn , we can use 
(2) to define in the limit a probability measure //£ M M on 

{1, ... , m} by its values on "cylinder sets" 

C(A ,A ) 
JI Jp 

= {A' e{l,...,mf 

That is,5 

(4) ^ . . . . . . M J C ^ , . 

:A'Jk=AJk,k = l,.. 

V J R-+Z» Z{R) 

'}• 

where 
m 

jeA A:=\ 
j&i,-J*jp 

^ / -Mmn„{A)\IT\ 

and 

ZW = E E exp-f^^-M.nf^) Mmn*{A)]/T\. 

(By "translation invariant" we mean that 

fh;M,,...,M [C(Aj ,...,Aj)] 
' 1 ' ' m J\ Jn 

is unchanged as the sites j \ , ... , j of C(A. , ... , A. ) are sub-
jected to any fixed translation of Zn .) It is instructive to note that 
for the "free model" (otherwise known as a "Bernoulli shift" in 
probability theory), in which the interaction potential V is iden­
tically 0, the measure juT M M is simply the product ®jezn fij 
of copies of the local measure /u on {1, ... , m) given by 

exp(Mfi/T) 
tifi) = £™=1exp(Ma/7y 

In general the following limiting procedure depends on a choice of Aj for j 
outside R, through E^(A). However since we are trying to model a pure solid 
phase we are only interested in those values of T, Mx, . . . , Mm for which there 
is one and only one translation invariant measure that can be obtained by such a 
limit—which is therefore independent of such choices of A, for j outside R— 

and we denote this measure by //T M M . 
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Thus the interaction is the source of the dependence among the 
random variables A.. We now define the probability measure 
H M M ' called the "ground state for V," by the further limit 

t*T M M -* N M M a s T i ° > a S a i n by u s i n6 t h e values 
of the measures on cylinder sets6. As a limit of yL M M we 

» 1 » •" » m 

know that yu M M is also translation invariant. (We are really 
only interested in fiL M M for T = 0, but we introduced the 
distribution for T > 0 to emphasize the fact that the ground state 
//n M M is a probability distribution on configurations, not just 
a configuration, a fact that is crucial for our problem.) 

Eventually we will determine fi^ M M for some interaction 
potentials V, but first we want to record one very useful fact about 
f*o M M : ^ e s e t °f "Eround state configurations for V " has 
measure 1 with respect to this measure, where a configuration A 
is a ground state configuration for V if, for every bounded region 
R in IT, 

(5) FR(A) = inf [FR(A') : ^ G {1, . . . , m}Z*, 

and A'J = -4y. for all j e R\ 

where the function FR is defined by 

(6) FR(A) = ER(A) - Mxnf{A) MmnR
m{A). 

It has required a lot of definitions, but finally we are at a useful 
point to contemplate what we have. The ground state JUQ M M 

for the interaction V (and fixed chemical potential parameters 
Ma ) is a translation invariant probability measure concentrated 
on the set of ground state configurations, and the ground state con­
figurations are the solutions A of the set of optimization condi­
tions (5) for all bounded regions R of Zn . The basic objective of 
the crystal problem consists in understanding why solutions A to 
this optimization problem tend to be periodic, or highly ordered— 
that is, crystals. 

2d. Comparisons. We complete this section with a demonstra­
tion that the optimization formulations we gave for tilings and 

6 Here again one can question the existence of the limit, but again on physical 
grounds this limit should exist if the states //£ M M stay within a pure phase 

1 > m \ ' ••• •>lvlm 

as T i 0 . This is proven to hold for generic interactions in [28]. 



350 CHARLES RADIN 

for sphere packing are closely related to the one for the crystal 
problem, (5). 

Returning then to the game of tiling, we consider all possible 
finite sets of prototiles which can tile the plane. We are interested 
in certain features of the tilings of the plane which are possible for 
specific sets; for example, whether or not only nonperiodic tilings 
are possible. 

Consider some set of m prototiles which can tile the plane, as in 
Figure 2(a). Construct a coordinate system in the plane containing 
the tilings, with the integer points Z2 at the centers of the tiles. 
Now define a discrete statistical mechanical model on Z , with m 
states per site (and for configuration A, A}. = a means that the 
state at site j "is" a translate of the ath prototile—see Figure 7), 
with interaction potential V defined by: 

V(Ai9Aj) = 09 if\i-j\*l 

= - 1 , if |ƒ - j \ = 1 and tiles Ai, A. 

(7) at i, j satisfy the color rules, 

= 0, if |i - j \ = 1 and tiles At, Aj 

at /, j do not satisfy the color rules. 

(With the specific prototiles of Figure 2(a) this statistical mechan­
ical model is called the Ising antiferromagnet [36, 14].) Now 
consider the set of ground state configurations for this statisti­
cal mechanical model, assuming for simplicity that all chemical 
potentials have value 0. It is easy to see that any configuration 
corresponding to a tiling of the plane will be a ground state con-
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FIGURE 7. Configuration A of tiles A- associated with 

particles on Z 2 . 
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figuration. The converse however is not quite true. For example, 
with respect to the model using the prototiles of Figure 2(a) con­
sider the configuration of tiles with a "fault line" as in Figure 2(c). 
It is easy to check that this is not a tiling but is a ground state 
configuration. There is however a sense in which this configura­
tion is negligible, and that brings us back not just to ground state 
configurations, but to the ground state /u0 0 0 itself. 

At this point we need some further background material. First 
we note that for any collection of prototiles the corresponding set 
of tilings of the plane is a translation invariant, closed—and there­
fore compact—subset of the space of all configurations. Similarly, 
for any discrete statistical mechanical model the set of all ground 
state configurations is a translation invariant, closed—and there­
fore compact—subset of the space of all configurations. We define 
the "support" of a measure on a compact space to be the comple­
ment of the union of all open sets of measure zero, and, finally, we 
say a system consisting of a compact set, a group of homeomor-
phisms of the set, and a probability measure on the set invariant 
under the homeomorphisms, is "uniquely ergodic" if there is only 
one probability measure on the set invariant under the homeomor­
phisms. This implies the better known property of ergodicity of 
the system, which only requires that there be no other invariant 
probability measure absolutely continuous with respect to the given 
one. (A circle carrying Lebesgue measure is uniquely ergodic un­
der iterates of an irrational rotation. Bernoulli shifts—noted above 
in the example of free models, and discussed further below—are 
ergodic but not uniquely ergodic; we can see the latter from the 
existence of those invariant probability measures which give full 
measure to a single constant configuration.) The best known result 
concerning unique ergodicity is its relation with pointwise ergodic 
theorems, as we discuss in connection with (11) below. 

Now without loss of generality we can assume for the inter­
actions we consider that the set of ground state configurations is 
uniquely ergodic under translations. (This is usually easy to check 
for any given interaction of interest, and it has been proven that 
this is true for "generic" interactions in some reasonable spaces of 
interactions. The proof [28], which is a variant of the classical the­
orem that a convex function is differentiable almost 
everywhere, shows that the condition of unique ergodicity is 
just a condition of nondegeneracy, a requirement that the 
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optimization problem have a unique solution among invariant 
probability measures. This condition fails for sphere packing in 
three dimensions if the conjectured solution is correct, and this de­
generacy means that the sphere packing problem is to that extent 
atypical, and consequently of less value as a guide to our intu­
ition about such optimization problems. Because of the proof that 
unique ergodicity is generic, and other physical reasons, it is appro­
priate to require of any model of the ground state of a pure solid 
phase—as opposed to a state of coexistence of a fluid and solid 
phase say—that the condition hold that the set of ground state 
configurations must be uniquely ergodic; see [31, 29, 28].) For the 
interaction corresponding to Figure 2(a) this is easy to check. In 
fact, if we denote by A and A' the (only) two tiling configura­
tions allowed by the tiles of Figure 2(a), the one in Figure 2(b) and 
its translate by one unit, then the ground state of the associated 
interaction must be JUQ 0 0 = (ôA + ôA>)/2, the average of the 
point masses concentrated on the points A and A'. There are 
other ground state configurations for that interaction, such as that 
of Figure 2(c), but it is easy to show that the set of ground state 
configurations is uniquely ergodic, with this measure. So for this 
interaction (and others built from sets of prototiles) there is a one-
to-one correspondence between the associated tilings of the plane 
and the "relevant" ground state configurations, the configurations 
in the support of the ground state JUQ 0 0 [21]. 

We now see that the tiling problem can be considered a special 
case of the crystal problem in which: (a) all chemical potentials 
are taken to be zero, and (b) the interaction has the special form 
of equations (7). 

To see sphere packing as a special case of the crystal problem re­
quires more terminology since it relates to a continuum statistical 
mechanical model, not a discrete one as we have used. Physi­
cally, all that is needed is a force that prevents two particles from 
getting too close—what is called a "hard core repulsion" in the 
physics literature—together with either a chemical potential fa­
voring a positive density or else a pressure, which would have the 
same effect. An added complication is that in fact unique ergod­
icity does not hold for sphere packing. For these reasons we take 
the cowards' way out and refer the reader to [29] for the messy 
details; nothing new is involved other than the technical defini­
tions needed to deal with continuously distributed variables. We 
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will only discuss the discrete version of our general optimization 
problem from here on. 

To summarize what we have discussed so far, we have consid­
ered three different problems: sphere packing, tiling, and the crys­
tal problem, and have seen that at heart they are all of the form 
of the optimization problem (5), where the functions FR to be 
optimized are of the form given by (6) and (3). This type of opti­
mization problem is interesting because there seems to be a strong 
tendency for solutions A to either be periodic (even a lattice), or 
at least highly ordered, though the reason for this is unknown. 

3. ORDER AND THE ERGODIC THEORY OF SYMBOLIC DYNAMICS 

3a. The general problem and solution in dimension 1. It is now 
time to analyze the concept of "order." To do that we will make 
use of the mathematical structure developed in §2, the ergodic 
theory of symbolic dynamics. 

In the ergodic theory of symbolic dynamics we have: some 
zn 

closed subset X of a product space {1, . . . , m} , invariant un­
der the group Zn of translations (sometimes called "shifts"), and 
a Borel probability measure fi on X which is invariant under the 
translations. 

For convenience we review here the meaning of the symbol 
XV

M M . Consider the set of all A e {1, . . . , m}z such that 
1 ' *" ' m 

for every bounded region R in Zn , 

(5) FR(A) = wf{FR(A') : A e {1, . . . , mf , 

and A!j = Aj for all j e R\ 

where 

(6) FR(A) = ER{A) - Mrf(A) Mmn*(A), 

(3) ER{A)= Yl nAt,Aj), 
i,jEZn; ijij 
i and I or j£R 

n 

the "chemical potentials" Ma e R, na (A) is the number of the 
sites of R in state a, and the "interaction potential" 

V : (AnAj) e ({1, . . . , m} x Z*)2 - V{AnAj) G R 
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satisfies 

V(A.9 A.)exp(\i-j\) -»0 as \i - j \ ->oo, 
(1) 

V(Ai+k, Aj+k) = V{At, Aj), for all keZn. 
We assume that on the set of such A there is only one invari­
ant probability measure (the "ground state") denoted /IQ M M , 

and define XV
M M as the support of fZ M M . 

So taking for X the set XV
M M of solutions A of our op-

timization problem (5), and for [i the ground state //^ M M , 
we find that the structure of our problem (5) is precisely that of a 
symbolic dynamical system. The only further refinements we have 
made are: (a) the assumption that X be uniquely ergodic under 
translations, that is, that JJL should be the only invariant probabil­
ity measure on X, and (b) that the support of fi should be X. In 
dynamical systems there is a more convenient way to express con-

z" dition (b). A closed subset 7 o f { l , . . . , m } , invariant under 
translations, is called "minimal" if it contains no nontrivial closed 
invariant subset. It is easy to see that if (a) holds then condition 
(b) is just the restriction that X be minimal. Finally, the two con­
ditions that X be uniquely ergodic and minimal are summarized 
in the one condition, that X be "strictly ergodic." 

So in this new language our problem becomes: 

The general optimization problem. Consider those strictly ergodic 
symbolic dynamical systems XV

M M c {1, . . . , m}z which 
arise as the solution sets of the above optimization problems. The 
goal is to "measure" the order in such systems, and determine the 
degree of order which is generic and the causes of the various degrees 
of order. 

Now in most studies of strictly ergodic symbolic dynamical sys­
tems the dimension n is 1, which is unfortunate because that is the 
one dimension that is fairly trivial for us, at least if the interaction 
potential V is "of finite range," that is 

(8) V{Ai9Aj) = 0 i f | i - 7 | > D 

for some D > 1. In that case we have 

Theorem 1 (C. Radin and L. Schulman [27]). In dimension 1, if 
the interaction V is of finite range and XV

M M is strictly ergodic 
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then XV
M M must be a finite set, namely the translates of%some 

periodic configuration. 

This is a positive solution of our problem for dimension 1 : every 
1 dimensional problem has a periodic ground state. (We will see 
that the problem is much more interesting in higher dimensions.) 
In particular, consider those "tiling dynamical systems" which de­
fine strictly ergodic X^ 0 using V of the form (7). Since these 
V are of range 1, they (and the game of tiling itself) are relatively 
trivial in dimension 1. But as we will see this does not make ir­
relevant the known results of uniquely ergodic symbolic dynamics 
for dimension 1. 

To get back to the question of "order," we are now ready to in­
troduce three central ideas: entropy, recursive functions and spec­
trum. We will see that these measure different aspects of the "or­
derliness" of a dynamical system. In practice such a multifaceted 
approach seems to be the safest way to try to make precise the in­
tuitive notion of order, though of course this still leaves open the 
use of other possible measures of order besides these three. We 
begin with entropy. 

3b. Entropy. Using the above framework of a symbolic dynam-
ical system X ç {1, ... , m} with invariant measure /*, the 
(topological) entropy h(X) is given by 

(9) h{X)= l u r j _ * £ „[0(C)], 

where 
rj[t] = -Mog(0, if ' > 0 , 

= 0, if* = 0, 
and C(N) is the collection of all cylinder sets based in the cube 
{(j{, ... , jn) e Zn : \jk\ < N}. (Since X is strictly ergodic, it 
is known that this topological entropy coincides with "measure 
theoretic entropy" [23]. It is also relevant that it coincides with 
the entropy for ground states that is used in physics [1].) 

It is instructive to compute h(X) for the following two exam­
ples. If X is the finite set of translations of some periodic configu­
ration of period p—see Figure 2(b), then //(C) is only nonzero for 
about pn cylinder sets C e C(N), and since this bound is uniform 
in N, h(X) = 0. The other example, called a "Bernoulli shift on 
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Z ," is defined by taking fi = ® ; € Z» /*, on X = {1, . . . , m) 
with Hj = (1/m) ]£™=1 <>a - ** *s e a s y t 0 check that h(X) = log(ra). 
(Note the connection between Bernoulli shifts and the free models 
of§2c.) 

Now entropy has been widely used as a measure of disorder, for 
example in information theory [6] and physics [36]. In physics, the 
Third Law of Thermodynamics says that the ground state of any 
macroscopic material has zero entropy, and this is usually "under­
stood" theoretically to be an expression of the small number of 
configurations contributing to the distribution (2) at low temper­
ature: basically, translations and small perturbations of some pe­
riodic configuration. Of course this assumes that the ground state 
is a perfect crystal, corresponding to a periodic configuration. The 
closest there is to a proof of this law is the recent: 

Theorem 2 (J. Miçkisz and C. Radin [31]). If the interaction po­
tential V is of finite range {and XM M is strictly ergodic), then 

the entropy h{Xv
M M ) = 0. 

1 ' "• ' m 

(There is a stronger version of this result that holds for inter­
actions of longer range [30].) This proves that, at least for finite 
range interactions, our optimal configurations must be orderly as 
measured by entropy. The next idea we will use to measure the 
regularity or complexity of solutions of our optimization problem 
is that of "recursive function." 

z" 
3c. Recursive functions. A function in Z is said to be recur­
sive if there is a Turing machine program which can, with variable 
tapes corresponding to the points in the domain of the function, 
produce output (when the machine halts) interprétable as the cor­
responding values of the function [35]. We can use this notion to 
catagorize the tilings of the plane for a given set of prototiles (the 

z2 z2 

tilings being functions in {1, . . . , m] c Z ), or the ground 
state configurations of a given statistical mechanical model. It is 
clear that a periodic configuration is recursive, as it is easy to give 
an algorithm to specify uniquely, step by step, each local state in 
such a configuration. What is not so obvious is that there exists 
a set of prototiles (as was proven by Myers [22] using the tech­
nique noted in §2b), which can tile the plane, but such that all 
such tilings of the plane are nonrecursive; none of the tilings can 
be uniquely specified by an algorithm. (We note that this is an 
existence result—no such set of prototiles has been exhibited by 
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Myers or anyone else.) In this sense these tilings are "complex." It 
is debatable whether or not we should call such tilings irregular or 
disordered, but this is perhaps more a question of semantics than 
of substance. It seems reasonable to say that such a set of pro-
totiles, or corresponding interaction potential, is relevant in our 
search for the structure of solutions to our optimization problem. 
(It is possible to measure the degree by which a function, in par­
ticular a tiling, fails to be recursive. See [22].) The next measure 
of order that we will use is the spectrum. 

3d. Spectrum. Given a symbolic dynamical system X ç 
{1, . . . , m} , with invariant probability measure //, the spec­
trum we are interested in is associated with the unitary operators 
T{j) representing translations by j e Z" on the complex Hubert 
space L2(X, /u). (So [T(j)f](x) = f(y) where y = x - j.) We 
refer to the projection valued measure dE(X) on [0, 1)" such that 
for any vector ƒ e L2(X, / / ) , 

(10) (ƒ, T(j)f)= f ttj>(i2xJ-l)d(f,EWf)> JeZ\ 
•>[0,1)" 

where ( , ) refers to the inner product in L2(X, ju). The vector ƒ 
belongs to the pure point, singular continuous or absolutely contin-
uous subspace of L (X, in) if the real valued measure (ƒ, E(X)f) 
is pure point, singular continuous or absolutely continuous on 
[0, l)n . Finally, since the subspace of L2(X, fi) consisting of the 
constant functions is invariant under translations, we can and will 
restrict attention to ƒ in its orthogonal complement in L (X, / / ) . 
See [32]. 

There is an intuitive feeling that the more smooth these mea­
sures (ƒ, E(X)f) are, the more disordered the configurations in 
X are. For example, in the "most ordered" case where X is the 
finite set of translations of some periodic configuration, the mea­
sure ( ƒ , E(X)f) consists of a finite number of point masses for any 
ƒ . At the other extreme, for the Bernoulli shift on Z" discussed 
above, the typical element of X with respect to fi is intuitively as 
disordered as possible, and any measure (ƒ, E(X)f) is absolutely 
continuous. 

Our objective is to analyze the degree of order which occurs in 
strictly ergodic symbolic dynamical systems of the form XM M . 
We know from Theorem 2 that, for interaction potentials V of 
finite range, disorder is small in the sense that the entropy is zero. 
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(And this has been generalized somewhat to longer range interac­
tions [30].) On the other hand we know from the tiling examples 
of Myers [22] noted above that there exist finite range interactions 
for which XV

M M is disordered in the sense of being nonre-
cursive. We now want to consider the possible degree of disorder 
using the notion of spectrum, but we make a short digression first. 

Fixing the number m of states per site, and a bound D on the 
range of the interaction (as defined by (8)), the space of interac­
tions is finite dimensional. It is therefore natural to ask whether 
some specific sort of order is "generic" (either of full Lebesgue 
measure, or contains the countable union of dense open sets). Note 
that this approach would not be available if we restricted attention 
to tilings, or statistical mechanical models which come from tilings 
through (7), since the corresponding space of interactions would 
then contain only finitely many points, and there could be no use­
ful notion of genericity. This is one reason why the generalization 
from tilings to statistical mecahnics can be useful: it effectively 
changes the mathematics from algebra to analysis. Unfortunately 
we do not know whether generic models are recursive. 

Before we continue with this analysis we need to emphasize 
another aspect of the strictly ergodic systems we are studying. As 
we alluded above, an «-dimensional ergodic symbolic dynamical 
system X with invariant measure // is uniquely ergodic if and 
only if 

(ii) i/{2N+i)H £ [ruxflto-> / fdn{x)9 
\j\<N JX 

as N —• oo, uniformly in x e X, for every continuous function ƒ 
on X [24]. Intuitively, this means that all the points x e X are 
in some sense equivalent, and studying the disorder of X is the 
same as studying the disorder of any one configuration x of I . 
Note the essential difference between this situation and that of the 
Bernoulli shift mentioned above. For the latter at best we could 
only hope to get one type of "order" for generic configurations of 
X (in either the measure theoretic or topological sense) but cer­
tainly not for all configurations. Also, the uniform convergence in 
(11) contrasts sharply with the pointwise almost-everywhere con­
vergence of BirkhofPs ergodic theorem, which applies to ergodic 
dynamical systems (such as the Bernoulli shift) which are not 
strictly ergodic. For these reasons, as well as others, the restriction 
we have made to strictly ergodic dynamical systems means that we 
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are trying to determine the degree of order of a fairly well-defined 
"pattern," (in one interpretation the ground state configuration of 
a model of a solid), as opposed to the degree of order of a measure 
(which, again in this interpretation, could be that of a model of a 
fluid—to which one does not usually attribute any one "pattern"). 

We will now describe the types of spectrum which are known 
to occur for our dynamical systems XV

M M . Of course it is 
easy to obtain isolated pure point spectrum, corresponding to the 
highest possible order, in any perfectly periodic XV

M M as in 
Figure 2(b). The spectrum corresponding to the nonperiodic tiling 
models such as in Figure 4 has not been worked out in detail, 
though it is again expected to be pure point, but now dense in 
[0, 27c)2 (for appropriate ƒ ), as seems to be the case of real qua-
sicrystals [38]. Recently an important new method for construct­
ing prototiles with spectral disorder has been developed by Mozes 
[21], and we will discuss this after some preliminary background. 

First we outline the notion of ( 1 dimensional) "substitution dy­
namical systems." Such a system X ç {1, . . . , m}z is defined 
as the set of all points x = {x. : x}. e {1, . . . , m}, j e Z} for 
which all "blocks" {x : J < j < K} in x satisfy certain restric­
tions. These restrictions are defined through "substitution rules" 
by which, for each element a € { l m},we associate a finite 
sequence {a{, . . . , ak} where a. e {1, . . . , m} and k (the so-
called "length" of the rule) may depend on a . As an example with 
m = 2, the "Morse," or "Thue-Morse" substitution rules 

(12) 0 - > 0 1 , 1 -> 10 

are both of length 2. Now given any finite sequence B of ele­
ments of {1, . . . , m} , we define D(B) as the finite sequence ob­
tained by replacing each of the elements of B using its rule. (So 
01 becomes 0110 using (12).) Next define WQ = {1, . . . , m} , 
wn+i = UBZWH

D(B)
 a n d w = U > o ^ - T h en X is the set 

of all sequences x for which every subblock of x is a subblock 
of an element of W. (Once we have defined X we have a dy­
namical system, with discrete "time" represented by translation in 
{1, . . . , m} . And since under very mild conditions substitution 
dynamical systems are uniquely ergodic [26], they automatically 
come equipped with a canonical measure.) Finally, given a set of 
substitution rules defining the set X, we say the dynamical sys­
tem has "unique derivation" if for every x e X there is a unique 
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y e X (unique only up to translation) such that x is obtained 
from y when the substitution rules are used to replace the ele-
ments of y. For example, the dynamical system X c {0, 1} 
defined [9] by 

(13) 0 ^ 0 0 1 , 1-+11100 

has unique derivation, as does the better known Thue-Morse sys­
tem, defined by (12). An example of a dynamical system with­
out unique derivation is X c {0, 1}Z with the rules 0 -• 010, 
1 —• 101. See [21, 26]. One other definition we need is that of 
the 2 dimensional symbolic dynamical system "associated with" a 
pair X{, X2 of 1 dimensional symbolic dynamical systems, with 
translations T{ : Xx —• Xx and T2 : X2 —• X2. The associated 
2 dimensional dynamical system consists of the cartesian product 
Xx x X2 with translations 

Tx x I : (xx, x2) G Aj x A2 —* \TJXJ , x2) G Aj x A 2 , 

/ X 12 \ \XX , X2) £ A* X sC2 —• (X| , 1 yXy) G A j X JL2 . 

(For completeness we note that substitution dynamical systems can 
be generalized to higher dimensions [21].) It is perhaps noteworthy 
that Thue introduced the system (12) in one of a series of works 
devoted to combinatorial modeling of the "antithesis" of periodic­
ity. Specifically, the sequences defined by (12) are precisely those 
sequences of 0's and Ts which have the following "BBb property": 
for no block B = {b{, b2, . . . , bm} of 0's and l's does the block 

BBb = {bx, b2, . . . , bm, bx, b2, . . . , bm, b{} 

appear in the sequence. (See [16] for a discussion of Thue's work 
in this direction, and [12] for a version of the BBb characterization 
tailored to our problem.) 

Now that we have the notion of a substitution dynamical system, 
we can discuss the following recent result of Mozes, which relates 
substitutional dynamical systems with the 2 dimensional "tiling" 
dynamical systems considered above (where X is the subset of 

z2 

{1, . . . , m) consisting of all the tilings associated with some set 
of m tiles). 

Theorem 3 (S. Mozes [21]). Given any pair of 1 dimensional sub­
stitutional dynamical systems with unique derivation and with sub­
stitution rules of length at least 2, one can exhibit a (2-dimensional) 
tiling dynamical system which is measure theoretically isomorphic 
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to the 2 dimensional dynamical system associated with the pair of 
1 dimensional substitution dynamical systems. 

Although we will not reproduce Mozes' proof, it is worth not­
ing that it depends heavily on the techniques, discussed above, in­
vented for constructing a set of prototiles which mirrors the action 
of a Turing machine in all its tilings. And just as Myers, who used 
these methods to prove the existence of tiling dynamical systems 
which are disordered in the sense that all the tilings are nonrecur-
sive, Mozes uses the methods to exhibit tiling dynamical systems 
which are disordered in the sense of their spectrum. (This result 
is constructive; the prototiles can easily be exhibited.) An interest­
ing application in this direction [31] uses the 1 dimensional system 
defined by (13), and generates a tiling dynamical system for which 
the measures (f9E(X)f) on [0, l)2 are singular continuous. Un­
fortunately this method cannot yield measures (ƒ, E{X)f) which 
are absolutely continuous, because this already fails for the 1 di­
mensional substitutional dynamical systems used as components 
[9]. So it is an open question how smooth the measures can be for 
tiling dynamical systems, or more generally for XV

M M defined 
by V of finite range. 

3e. Comparison of various measures of order. We have now con­
sidered three ways to measure the order (or complexity) of our 
strictly ergodic XV

M M , using entropy, recursive functions, and 
spectrum. By any of these measures the "crystalline" case, where 
XM M *s the finite set of translates of some periodic configura-
tion, has the highest possible order. For finite range V we found 
that the entropy was always zero, but that we could get some dis­
order in the sense of recursive functions and spectrum. However 
in neither of these cases could we determine the generic situation. 

If we do not require that V be of finite range, and also drop 
the requirement that F be a two-body interaction potential, we 
can (using a technique due to Aubry [3, 4]) easily construct V 
with very disordered XM M [31]. In particular we can then 

obtain XV
M M with positive entropy, and absolutely continu­a i > — >Mm 

ous spectrum. Such results seem to belong to a different class from 
the ones we have been discussing. 

Finally, we should mention the notion of "order parameter" 
which has been used extensively in physics to help understand 
the order properties of models at positive temperatures [2]. 
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Unfortunately this has not yet proven to be of much use for ground 
states; see however [30]. 

4. SUMMARY 

We have considered a general class of optimization problems 
which contains as special cases classic open problems in number 
theory and condensed matter physics. Informally, in such a prob­
lem there are many variable points in space, with points near each 
other contributing, in pairs, to some global quantity that we want 
to minimize. The motivating feature is that there seems to be a 
strong tendency for the solution of such an optimization problem 
to consist of an array of points very regularly positioned in space, 
while the reason behind this tendency is unknown. Therefore we 
seek the degree of order of the solution of a generic problem of 
the class. 

In unifying the problem in terms of the ergodic theory of sym­
bolic dynamical systems we were lead to concentrate not on a single 
(optimal) array of points in space, but on its orbit closure under 
translations, and in place of periodic arrays we found that uniquely 
ergodic orbit closures are the natural setting. We considered a vari­
ety of ways of analyzing the degree of order of solutions, including 
entropy, recursive functions and spectrum. The calculation of en­
tropy is complete, and turns out to be too coarse a measure of order 
for this problem. There are unexpected examples of disorder in 
terms of recursive functions and spectrum. 

It is hoped that this exposition will both alert experts in specific 
aspects of the problem to advances on other fronts, and enlist fresh 
troups to the fray. In particular, consider how we used nonperiodic 
tilings to construct very unexpected and enlightening examples in 
statistical mechanics. Benefit also flows the other way. The above 
presentation develops a shift in emphasis from the individual con­
figurations of a problem, say a tiling problem, to the unique prob­
ability measure on the set of configurations; and this in turn lead 
to a shift from the original question of "periodic versus nonperi­
odic" to consideration of various aspects of order. (Questions of 
periodicity were then restated in terms of the discrete part of the 
spectrum of the measure.) Roughly, this constitutes the introduc­
tion of Analysis into the traditional Algebraic field of tiling. One 
example of the benefits of this reorientation is the set of examples 
due to Mozes described in §3d. Finally, we note that Theorem 2 
above, which implies that strictly ergodic tilings have zero entropy, 
is a natural application of statistical mechanical ideas to tiling. 
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