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Cartan subalgebra need not give rise to a Laplace operator on the super­
group. The author shows, however, that under suitable hypotheses, satis­
fied for U(p, q) and C(m,n), one can recover the classical result by consid­
ering instead rational Weyl invariant functions on the Cartan and the field 
of fractions of the algebra of Laplace-Casimir operators. Unforturnately, 
this interesting idea is tossed of rather lightly, leaving its meaning unclear 
(at least to the reviewer). 
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Few areas of twentieth century scientific thought have provoked more 
puzzlement, outrage, and disbelief among the general populace than that 
part of modern physics which asserts that the true geometry of the natural 
world is profoundly different from the "common sense" geometry can­
onized by Euclid. The definitive revolution in this area was, of course, 
that wrought by Einstein, Minkowski, and their contemporaries, who dis­
covered a new geometry, not of space but rather of space-time. This 
change of perspective had, in retrospect, been waiting to happen ever since 
Maxwell wrote down his field equations for electromagnetism; it was not 
new physics, but rather the casting of the symmetries of the old physics in 
a geometrical guise, that brought the new geometry into existence. 

In the last decades, a number of new geometric ideas have entered the 
arena of theoretical physics, often with lasting repercussions for mathe­
matics. The present book deals with three families of such ideas: those 
of nonabelian gauge-field theory, of twistor theory, and of supersymmetry. 
The main thrust of the work centers on an exegesis of a paper in which Ed 
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Witten [14] discovered a remarkable interplay between these three families 
of ideas, but the reader will encounter along the way a number of interest­
ing digressions which lead to results untreated elsewhere in the literature. 

Gauge theory in the present context means the study of the Yang-Mills 
equations. On a vector bundle E over a pseudo-Riemannian manifold M, 
a connection V is said to satisfy the Yang-Mills equations if its curvature 
2-form F is co-closed: 

•dv*F = 0 
where * denotes the Hodge-star operator and d^ is the lift via V of the 
de Rham exterior derivative to bundle-valued forms. (Equivalently, we 
demand that VaFab = 0.) If M is Minkowski space and E —• M is a rank 
one bundle (i.e. a line bundle), F is a 2-form in the elementary sense, and 
its six components are simply required to satisfy the equations Maxwell 
wrote down to govern the three components of the electric field and the 
three components of the magnetic field. If, on the other hand, M is a 
compact Riemannian manifold, but if E —• M is again rank one, the 
Yang-Mills equations just demand that the curvature of E be the unique 
harmonic 2-form which, by Hodge theory, represents the Chern class of 
the line bundle. The Yang-Mills equations thus may be thought of as nat­
ural generalizations of both Maxwell's equations and the Hodge equations 
for a harmonic form. Unlike these equations, however, the Yang-Mills 
equations become nonlinear when the fibers of our vector bundle have 
higher dimension. These equations (or, strictly speaking, the quantum 
theory of the action from which they spring) are now widely believed to 
govern the strong force which binds together the nuclei of atoms, and a 
slight variant is used to account for the weak force which regulates the 
beta decay of neutrons. Through the remarkable work of Simon Donald­
son [4], the Yang-Mills equations have, in addition, become the major tool 
in four-dimensional differential topology. 

Twistor theory, the second family of geometric ideas featured here, orig­
inated out of a series of insights of Roger Penrose [12] concerning rela­
tions between the conformai geometry of Minkowski space, complex anal­
ysis, and the solutions of certain conformally invariant differential equa­
tions such as Maxwell's equations. Consider the 2-sphere of all light-rays 
through a point of space-time; we may think of this as the field of vision of 
an ideal observer capable of looking in all directions at once. One might 
ask how the rest-frame of this observer influences the geometry of his field 
of vision. The answer is that its conformai geometry is independent of 
rest-frame, so that the picture of the world seen by two colliding observers 
at their moment of collision would only differ by a Möbius transformation 
of the Riemann sphere. In short, the 2-sphere of light-rays through a point 
in space-time has the structure a complex 1-manifold. In flat space-time, 
these complex structures fit neatly together, to the following beautiful ef­
fect: the set of all light-rays in Minkowski space has the structure of a 
5-dimensional real hypersurface in a complex 3-manifold; namely, it can 
be identified with a real hyperquadric in complex projective 3-space minus 
a projective line. This CP3 is known as (projective) twistor space. It turns 
out that holomorphic objects (bundles, cohomology classes, etc.) on this 
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CP3 (or suitable regions thereof) correspond to solutions of conformally 
invariant PDE's on Minkowski space via the so-called Penrose transform, 
examples of which were originally discovered by Penrose in the guise of 
contour integral formulae producing solutions of the massless Dirac equa­
tions of all helicities. A particularly beautiful version of this correspon­
dence was discovered when Richard Ward [13] realized that holomorphic 
line bundles on twistor space correspond to solutions of Maxwell's equa­
tions on Minkowski space and that, more generally, holomorphic vector 
bundles on twistor space give rise to self-dual solutions of the Yang-Mills 
equations on space-time. Here a connection on a bundle over Minkowski 
space is called self-dual if its curvature satisfies F = / * F, where again, * 
is the Hodge star-operator. Such a connection cannot have a covariantly 
constant fiber-wise inner product, and so is excluded as a physically ad­
missible classical solution of the Yang-Mills equations, but such solutions 
are nonetheless considered to have an important influence on the quantum 
version of the theory, where they allegedly give rise to tunneling behavior. 
Essentially the same Penrose transform may instead be used to interpret 
holomorphic objects on twistor space as solutions of conformally invari­
ant elliptic PDE's on Euclidean 4-space, this picture being related to the 
Minkowskian one by analytic continuation, or "Wick rotation;" the self-
duality equations on Euclidean space became the more acceptable F — *F, 
and it is suddenly possible to have solutions with invariant inner products. 
These Euclidean solutions are the so-called instantons, which were classi­
fied by Atiyah-Hitchin-Drinfeld-Manin [1] under the assumption that the 
solution is defined on all of Euclidean 4-space and has L2 curvature, the 
latter being equivalent to saying that the solution extends to S4. The key 
tool in this classification is the twistor correspondence, which reduces the 
problem to one of classifying algebraic vector bundles on CP3 subject to 
certain extra conditions, the latter question having already been studied 
extensively by algebraic geometers. 

The unsatisfactory aspect of the above state of affairs is that the most 
physically interesting solutions of the Yang-Mills equations are not the self-
dual ones, but rather those which have compact holonomy on Minkowski 
space (or perhaps some other Lorentz-signature space-time). Thus the 
search began for a twistor-like correspondence for the general solutions of 
the Yang-Mills equations, with the self-duality condition dropped. Results 
of this kind were eventually found by Isenberg, Yasskin and Green [6] and 
by Witten [14]. In this correspondence, twistor space CP3 is replaced by a 
certain nonreduced complex projective variety, namely the third infinites­
imal neighborhood of 

A= {([Z°,Z{,Z\Z3UW09WUW2,W3]) GCP3XCP3 

in CP3 x CP3. Geometrically, A represents the space of null lines in com­
plex Minkowski space. 

J2VWj = 0 
7=0 
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While Isenberg et al gave a direct, albeit complicated, proof of this 
correspondence, Witten offered a brief, dazzling argument involving su-
persymmetry and complex supermanifolds. For the present purposes, the 
appropriate definition of a supermanifold is that of Leites and Berezin [3] 
(arrived at somewhat later by Kostant [7]), which provides a slick way of 
making sense out of the physicist's vague notion of "a manifold, some of 
whose coordinates anticommute." In the Leites-Berezin formalism, this 
simply means that one considers an enlargement of the sheaf of functions 
of some manifold by the adjoining of some anticommuting objects; anyone 
who has ever manipulated differential forms has, from this point of view, 
played with a supermanifold, albeit a rather dull one. Manin devotes a 
full half of the present work to the systematic development of the theory 
of complex supermanifolds, and by so doing simultaneously fills a gaping 
hole in the expository literature and provides us with an important piece 
of original research. Unlike some attempts to develop the mathematical 
idea of a supermanifold, the present work not only provides insights into 
the foundations of the subject but goes on to tell us what all this has to 
do with the physical motivation, with nice treatments of the super-Yang-
Mills equations and TV = 1 supergravity. In particular, an account is given 
of Witten's supersymmetric twistor correspondence for the super-Yang-
Mills equations, as well as its relation to the previously mentioned twistor 
correspondence of Isenberg et al 

Because the original Russian version was written the better part of a 
decade ago, many recent developments, answering questions raised in the 
text, are necessarily left untreated. In particular, the work of Uhlenbeck, 
Taubes, and Donaldson has shed unexpected light onto the structure of 
the moduli spaces of self-dual Yang-Mills fields on compact Riemannian 
4-manifolds. Moreover, we now have a good understanding of the correct 
curved space-time analog of the twistor correspondence for non-self-dual 
Yang-Mills fields, and deep connections have turned up between this cor­
respondence, conformai gravity and supergravity (cf. [2, 8, 9, 15]). As for 
complex supermanifolds, the subject has been given renewed interest by 
the advent of superstring theory [15, 16] and the structure of the moduli 
space of super-Riemann surfaces [10, 11] has therefore become a popular 
topic. The important point is that this book provides a large amount of 
background for current research in across a spectrum of fields. While many 
readers will no doubt find much of the book heavy going, there are many 
rewards to be reaped here in exchange for the effort expended. The trans­
lators have thus done us a notable good turn by producing this serviceable 
English version. 
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The Navier-Stokes equations define an infinite dimensional dynamical 
system describing the flow of a viscous fluid. Nonetheless, one would like 
to study the dynamical behavior of fluid flows using techniques and insight 
gained from studies of finite dimensional dynamical systems. This is a 
common situation in the theory of partial differential equations; indeed 
it is implicit in most numerical computations of the asymptotic behavior 
(in time) of solutions to partial differential equations. This book gives 
a comprehensive account of a general set of techniques that have been 
developed to rigorously justify the use of finite dimensional techniques for 
the study of the dynamics of a large variety of nonlinear partial differential 
equations. The relevant PDE's include such examples as the Navier-Stokes 
equations in two dimensions, reaction-diffusion equations, nonlinear wave 
equations such as the sine-Gordon and pattern formation equations such 
as the Kuramoto-Sivashinsky equation. Although there is a general point 
of view that applies to all of the examples, many of the equations have 
their individual quirks and personalities. Thus separate discussion of each 
example is appropriate and included in the book. 


