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viewpoints or aspects cf. P. T. Johnstone [10] and J. R. Isbell [8]), I believe 
that topologists will remain in doubt whether it is worth the effort to study 
all categorical notions provided in this book, and that categorists will say 
that indeed too small a portion of their subject has been presented, even if 
repetitiously. As a researcher I welcome Preuss' book as a reference man­
ual on the great many notions on generalized topological structures used in 
the literature, but I am disappointed that the opportunity to provide gen­
uine guidance through a new field, in which the important material still 
needs to be selected from the many concepts offered, has not been used to 
its fullest. 
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Burdzy's monograph deals with a recent addition to the probabilistic 
arsenal, Brownian excursion laws, and their application to boundary prob­
lems in classical potential theory and complex analysis. Excursion laws 
first arose in the work of K. Itô, and later in that of B. Maisonneuve. 
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Itô and Maisonneuve developed a method for analyzing certain stochas­
tic processes, by breaking them up into smaller, more tractable pieces. 
The pieces, properly called excursions, are characterized by certain cr-finite 
measures. Burdzy abstracts the properties of these measures, to produce a 
larger family of measures which he calls excursion laws. He studies these 
objects systematically in their own right and applies them to certain prob­
lems from potential theory. Instead of starting with the abstraction, we'll 
first discuss the basic connections between Brownian motion and analysis, 
and then summarize the work of Itô and Maisonneuve. 

Brownian motion. A stochastic process is essentially the trajectory of 
a particle moving at random in some state space. We'll follow common 
usage, and refer to properties of the process even when we really mean 
properties of its law (that is, of the measure that assigns numbers (prob­
abilities) to sets of possible trajectories). Assume that the future evolu­
tion of the process depends on the past only through the present state of 
the process. More precisely, we assume the following (the strong Markov 
property): For a large class of random times T (called stopping times; 
any deterministic time t is one, as are times such as the first time the 
process encounters a fixed set), our best prediction of the future trajec­
tory (Y(t) = X(T + t),t > 0), even given knowledge of the entire past 
(X(s),s < T), depends only on the present state X{T). Moreover, proba­
bilities involving this prediction are those the original process would give, 
were it started off in state X(T) at time 0. We call X a Markov process. 

Among Markov processes moving continuously in R", one is singled out 
as canonical: Brownian motion is, up to a normalization transformation, 
the unique such process whose random fluctuations are homogeneous and 
isotropic in space. 

Kakutani realized that this spatial homogeneity forges a link with analy­
sis. A function h(x) is harmonic if its average value over any sphere equals 
its value at the sphere's centre. Harmonic functions arise in fields from 
PDE's and electrostatics, to functions of a complex variable. In proba­
bilistic terms, f(x) is the average value of ƒ at the first place a Brownian 
motion encounters dB, where the motion starts at x and B is any sphere 
centred at x. So much is definition, yet the property holds as well for 
arbitrary domains D containing x. This gives a probabilistic construction 
of the solution to the Dirichlet problem, that is, of a harmonic function 
with prescribed values on the boundary of a given domain. Adding a layer 
of structure often lets one understand old concepts more clearly. In our 
case, we find simple interpretations of the classical notions of harmonic 
measure, and regular boundary points; The former is simply the law of 
the first place the motion hits 3D (this law depends on the initial point 
of the motion, so we really obtain a family of equivalent measures). The 
latter are points, starting from which the motion hits dD immediately. 
Similarly, the electrostatic capacity of a set (which determines the charge 
that can be stored in a capacitor built in the shape of that set) acquires an 
interpretation as the probability that a Brownian motion will hit the set, 
starting "from infinity." 
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Brownian motion can be used to study the boundary values of func­
tions h which are positive and harmonic on a domain D. If D is the 
unit disk, then Fatou's theorem states that h has a limit along any curve 
that approaches a boundary point of D in a nontangential manner. What 
Burdzy calls a minimal-fine limit gives a replacement for nontangential 
approaches, less tied to geometry. Positive harmonic functions still have 
minimal-fine limits at almost every boundary point, and this remains true 
if the unit disk is replaced by an arbitrary domain. Now the geomet­
ric Euclidean boundary is inadequate; it must be replaced by the potential 
theoretic Martin boundary. For Lipschitz domains, the two coincide. Now 
"almost every" refers to harmonic measure. 

To go further, one needs to tie down the location at which the Brownian 
motion first leaves D. Doob accomplished this, introducing the notion of 
an h-transform. First we modify the Brownian motion, killing it upon 
leaving D. Upon first doing so, the particle evaporates, instantly jumping 
to some added "cemetery" state, from which it never returns. Now let 
h be positive and harmonic. An /^-transform is a new stochastic process, 
whose trajectories resemble those of killed Brownian motion, except that 
for small balls B centred at x e D, the law of the first exit from B starting 
at x is h(x)~xh(y)o(dy), a being normalized surface area on dB. Thus 
the A-transform is driven towards places where h is large. If A c dD 
has positive harmonic measure, let h have boundary value 1 on A, and 0 
elsewhere. Then an ^-transform is forced to leave D through A. There 
is another way of producing a process with this property: use conditional 
probability, and "condition" the killed Brownian motion to leave D through 
A. The two turn out to be the same. 

A function which is positive and harmonic in D is minimal if it is not 
a sum of two other such functions (unless of course the summands are 
multiples of the original function). When D is the unit disk, these are 
given by the Poisson kernel: hy(x) = (1 - |x|2)|x - y\~n. Here y e dD 
is the pole of hy. In general there is a one-to-one correspondence be­
tween minimal positive harmonic functions h and their poles y, the latter 
now being points of the (minimal) Martin boundary. Choquet's theo­
rem then gives an integral representation of positive harmonic functions, 
in terms of measures on this boundary. As we expect, if h is mini­
mal with pole y, then an h -transform will exit D at y. Despite the fact 
that A = {y} has harmonic measure zero, so is almost surely missed by 
killed Brownian motion, we still think of an /^-transform as a Brownian 
motion "conditioned to leave D at y." The Martin boundary then ac­
quires a probabilistic interpretation as a parametrization of the different 
ways Brownian motion can be conditioned to leave D. The potential-
theoretic notion of a function ƒ having a minimal-fine limit / at y turns 
out to be equivalent to f(X{t)) approaching / almost surely, as X(t) ap­
proaches dD, where X is a transform by the minimal harmonic func­
tion with pole at y. Similarly, the key technical concept used by Bur­
dzy, that of a set U being minimal-thin at y, can be taken to mean 
that for some initial point x, X has positive probability of missing U 
on its journey out to dD. See Doob(1984) for details. Durrett(1984) 
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provides an excellent introduction to Brownian motion and its applica­
tions in analysis. 

Excursion theory. Suppose now that (X(t)) is merely a Markov process, 
and that we have singled out a state a. We call the trajectory of X, be­
tween successive visits to a, an excursion of X away from a. If, with 
probability one, X visits a repeatedly but only at a discrete set of times, 
then we have a first, second, third, ... excursion and the Markov property 
implies that they are all independent of each other. In this case, there 
are standard methods for extracting information about the process from 
the common law H of these excursions. We think of H as the law of a 
"typical" excursion, but note also that if A is a set of possible trajectories, 
then kH(A) is the average number of excursions, among the first /c, that 
follow trajectories from A. 

Unfortunately, this does us little good when applied to Brownian motion 
in R. Regardless of a, the set of times t such that X(t) = a almost surely 
has the topological structure of a Cantor set; each excursion has another 
arbitrarily close to it. Thus we have no way of labelling the excursions as 
"first," "second," and cannot single out a "typical" excursion. For example, 
though we might choose to examine the excursion underway at some fixed 
time /, this selection predisposes the excursion to be unusually long. 

Itô(1971) circumvented this problem by using local time at a. For 
Brownian motion, {s\s < t,X(s) = a} has Lebesgue measure zero for 
each fixed t, yet there is a deterministic function g such that if this set is 
nonempty then its g-Hausdorff measure (call it L{i)) is almost surely finite 
and nonzero. L(i) gives a local time at a, that is, a way for a clock to keep 
time if it can only tick when X is at a. The excursions turn out to come 
homogeneously and independently when we keep time with this clock. 

We can no longer define the law of a "typical" excursion. Instead we 
work with the expected number of excursions that follow a trajectory from 
A, and come during a fixed interval of local time. Itô showed that the 
number of such excursions coming in disjoint intervals of local time will 
be independent of each other, and that the expected number coming in 
an interval [s, t] will be (t - s)H(A), for some measure H. Since infinitely 
many excursions may come in every open interval of local time, H may be 
an infinite measure (it is for one dimensional Brownian motion). Nonethe­
less, it has many of the same uses as our earlier H. For example, the first 
excursion of duration longer than ô has a law that can be expressed using 
H. It will be H restricted to the set As of excursions lasting at least time 
S, but multiplied by a constant that gets small as ô j 0. This factor arises 
because H (As) is the rate at which such excursions happen (in the local 
time scale), and as ô j 0, they come increasingly rapidly. For a taste of 
what can be done using ƒ/, see Williams(1979). 

Maisonneuve(1975) generalized Itô's decomposition, treating excursions 
away from more general sets M than {a}. Again, an excursion is the tra­
jectory followed by the process during a maximal interval during which 
the process doesn't visit M. For Brownian motion in R", and M the com­
plement of a domain D, one can define a local time on M, and use it as a 
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clock with which to time the starts of excursions into D. The excursions 
will no longer have the independence property described above, as they are 
tied together by the initial and final positions of the Brownian motion dur­
ing the excursion. Nonetheless, Maisonneuve gave a formula that allows 
one to compute with them. The role of H in Itô's setup is now played by a 
family of cr-finite measures Hx

9 one for each possible initial point x e M 
of an excursion. The Hx have proved useful in understanding diffusions 
that reflect, or bounce off the "barrier" M. 

Excursion laws. The H and Hx are all examples of excursion laws on Z>, 
as defined in Burdzy's book. That is, they are cr-finite measures having the 
strong Markov property at strictly positive stopping times, with respect 
to the transition mechanism of killed Brownian motion. Formally, let 
Q, consist of all possible excursion trajectories. That is, it is the set of 
co :]0, oo[-» D U A such that co moves continuously in D until such time 
(if any) as it jumps to the cemetery À, where it stays ever after. Brownian 
motion, started at x and killed upon leaving D, has a law Px which we can 
realize as a probability measure on Q. A cr-finite measure H on CI is called 
an excursion law if for every stopping time T(co) > 0 (T may be random, so 
is a function of the trajectory co), and every suitably measurable A,B cCl, 

H {co; co(- A T(co)) e A, co(- + T(co)) e B} 

= [ Pœ^w»(B)H{dco). 

In the case of interest to us, //-almost all trajectories have the same limit 
x in the minimal Martin boundary of D, as t [ 0. If this is so, we write 
Hx for //. The Hx are the objects of study in Burdzy's book. 

Though others have used excursion laws to characterize excursions, Bur-
dzy and his collaborators are the first to study the laws in and of themselves. 
Maisonneuve's construction essentially gave a nontrivial Hx for almost all 
x e dD. Burdzy provides an intrinsic construction for every (minimal, ac­
cessible) x in the Martin boundary. Such an Hx is unique, up to a constant 
multiple, if it is standard: that is, if it hits any fixed compact subset of D 
with only finite probability. There is scope for pathology though. Many 
nonstandard Hx can exist, and in odd domains there are quite natural sets 
that can receive infinite mass from even standard excursion laws. 

Minimal-thinness can be reformulated in the new language; U is mini­
mal-thin at x iff the standard Hx gives zero mass to the set of trajectories 
that hit U instantaneously. Burdzy gives a host of concrete formulae in 
the case of D the half-space. He can apply some of these more generally, 
as he shows that Hx for a C2 domain shares the same "local properties" 
as Hx for a half-space. For a C1 domain this may fail for almost every 
x. In some cases, Hx can be constructed as a rescaled limit of the Pz, 
as z approaches x from inside D. The central result of the book is an 
integral test for minimal-thinness in Lipschitz domains, ultimately based 
on Wiener's test. The illustrative application is to the "angular derivative 
problem," which asks when a conformai equivalence of complex domains 
has a derivative at a given boundary point. Carathéodory's "prime ends" 
appear as well. 
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Can one obtain the same applications, substituting A-transforms for 
Burdzy's excursion laws? Probably, especially since he uses A-transforms 
to construct the Hx in the first place. There is at least one reason not 
to do so though. His favourite technique is the "splicing together" of 
excursion laws in domains D\,Di with D1AD2 small. This works well, 
as the transition mechanism is Brownian in both D\ and D2. A similar 
construction with /^-transforms would be awkward and more technical. 
It is interesting to note that another cr-finite measure, due to Kuznetsov 
has recently provided analogous simplifications in the sometimes technical 
study of time-reversal. Perhaps excursion laws will prove to be as useful. 

The book itself is nicely written and well organised. The existing lit­
erature consists of scattered articles by Burdzy and his colleagues, with 
various stages of evolution, both of hypotheses and results. The book 
sorts it all out very clearly and carefully. It provides little general back­
ground, instead referring to some of the sources we've listed. The book is 
photoreproduced, with no index, but the T^X is very readable. 

In summary, excursion laws are interesting in themselves, yet arise nat­
urally and have an elegant theory. As Burdzy's excellent treatise demon­
strates, they may prove to be a valuable tool in analysis as well. 
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"Of making many books there is no end." The intervening thousands 
of years have surely added the verification of experience to the Divine 
Authority behind that statement, and not least in mathematics. But for 
all the truly endless making of mathematics books, there remain gaps in 
the mathematical literature; there are still books one would like to see 
written. Many of these desiderata would be works at the intermediate 
graduate level. There is no shortage of elementary works, and whatever 


