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A linear operator is a complicated mathematical object, but many of its 
properties are captured in its spectrum, which is simply a set of complex 
numbers. For a selfadjoint linear operator, the spectrum consists of real 
numbers and has a quantum mechanical interpretation. If the operator 
represents the energy of an atomic or molecular system, the spectrum rep­
resents possible energy levels of the system. Furthermore the differences 
between these energy levels determine the permitted frequencies of emit­
ted light. The rich phenomena of color are determined by the spectra of 
linear operators. 

One striking feature of such an energy spectrum is that it usually consists 
of two parts. For the hydrogen atom the first part is a sequence of negative 
energy levels proportional to -l/n2, where n = 1,2,3,..., accumulating 
at zero. These correspond to the various bound states of the electron. The 
remaining part consists of all energies zero and above. These correspond 
to states of electrons that are free to escape. 

In the general setting when H is a linear operator acting in a Banach 
space, the spectrum of H is defined as the set of complex numbers E 
such that (H -E)~l is not a bounded operator. (A bounded operator is an 
operator defined on the Banach space that maps every bounded set into a 
bounded set.) In particular, if E is an eigenvalue of H, then the inverse 
o f H - E does not exist, and so E belongs to the spectrum. However a 
number may be in the spectrum for other reasons; for instance even when 
H - E is one-to-one it is possible that its range is not the entire Banach 
space. 

One of the most elementary ways of dividing the spectrum into two 
parts is by introducing a subset called the essential spectrum. In the Banach 
space setting there are at least five inequivalent definitions of essential 
spectrum. Fortunately, in the case of a selfadjoint operator acting in a 
Hubert space they are all equivalent. In this case the essential spectrum 
may be characterized as the part of the spectrum that does not consist of 
isolated eigenvalues of finite multiplicity. In the hydrogen atom example 
the essential spectrum is the interval from zero to infinity. 

The reason for introducing the concept of essential spectrum is that 
the essential spectrum of a bounded operator is invariant under compact 
perturbations. (An operator is compact if it maps every bounded set into 
a set with compact closure.) This is often used in the following somewhat 
more general setting. Assume that 

H = Ho + V 

and that V is relatively compact in the sense that for some fixed E not in 
the spectrum of HQ the operator V(HQ-E)~1 is compact. If both (H-E)~~l 
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and (i/o - E)~l are bounded, then there is an algebraic identity 

(H - E)~l = (H0 - E)-{ - (// - E)-lV(H0 - E)~l 

relating the two bounded operators. Since the compact operators form an 
ideal in the ring of bounded operators, the second term on the right is 
compact. Therefore the essential spectrum of (H -E)~l is the same as the 
essential spectrum of (HQ-E)~\ and it follows that the essential spectrum 
of// is the same as the essential spectrum of Ho. In summary, the essential 
spectrum is preserved under relatively compact perturbations. 

These ideas are used in quantum mechanics when the operators Ho 
and V represent kinetic energy and potential energy. These operators are 
defined on dense linear subspaces of the Hubert space L2(Rn) of square 
integrable complex functions on Rn and have values in this same Hubert 
space. Let x represent the position coordinates on Rn. The kinetic energy 
operator corresponding to mass m > 0 is 

Here h > 0 is another constant, so Ho is just a negative multiple of the 
Laplace operator. The constant h has the units of angular momentum, so 
Ho has the units of energy, as it should. Now let p represent momentum 
coordinates dual to the position coordinates, and write px for the scalar 
product with x, so that px/h is dimensionless. Since 

h2 „ 7 (ipx\ p2 (ipx\ 
-2^V'exp(^J = 2^e X PW' 

the Fourier transform may be used to show that the operator Ho is iso­
morphic to pointwise multiplication by 

MP) = £ . 
Here p2 is the square of the length of the momentum vector p, so this 
is the usual classical mechanical expression for kinetic energy. Since the 
range of this function is the interval from zero to infinity, the spectrum of 
Ho consists of essential spectrum in this interval. 

The quantum mechanical potential energy operator is pointwise mul­
tiplication by a real measurable function V(x) on Rn. The corresponding 
Schrödinger operator is the total energy operator 

H = -^VI + V{X). 

It is remarkable that while the first term is isomorphic to multiplication by 
the function ho{p) and the second term is multiplication by the function 
V(x), there is no isomorphism that turns them both into functions. This 
is the notorious complementarity of quantum mechanics. 

This structure does have advantages; it explains the discreteness of spec­
tra. If the function V(x) is not excessively singular and approaches zero 
as |*| tends to infinity, then the operator of multiplication by the func­
tion V(x) is relatively compact. It follows that the essential spectrum of 



234 BOOK REVIEWS 

the Schrödinger operator is also the interval from zero to infinity, and the 
spectrum below zero is discrete. The hydrogen atom is a good example. 
Its potential energy V(x) is proportional to - 1 /M, the potential energy 
between two charges of opposite sign. For the usual case of space of di­
mension n = 3 the local singularity of V(x) is not too severe, and the 
decrease at infinity provides the relative compactness. 

Having isolated the essential spectrum and its complement, the next 
task is to examine each part. The complement consists of isolated eigen­
values with finite multiplicity and should be the easiest to study. In the 
quantum mechanical setting a common task is to find how many energy 
levels there are less than a given energy value E. Since the early days of 
quantum mechanics there was a notion that this should be approximately 
the corresponding classical phase space volume, measured in appropriate 
units. In other words, interpret H not as an operator but as a function 

on classical phase space U2n with coordinates p and x9 representing mo­
mentum and position. Evaluate the integral over the subset of phase space 
where H < E with respect to the measure dnpdnx/(2nh)n. The condition 
for a point to be in the subset may also be written as \p\ < r(x), where 

r(x) = sJlm\E - V(x)]+ 

and [E - V(x)]+ is E - V(x) when this is positive, zero otherwise. For 
fixed x this is a ball in Rn. Therefore when we evaluate the momentum 
integral we obtain 

f f dnpdnx _ f ,n dnx 
J JH<E^^r~0}nlr{x) ( 2 ^ r 

where œn is the volume of the unit ball in Rn. One of the main results of 
the book under review is an estimate that shows in what sense this is a 
good approximation to the number of energy levels below E. 

The book of Edmunds and Evans begins with four chapters on abstract 
operator theory. The authors treat compactness and the essential spectrum 
in some detail. For example they report a result that even though there are 
five different definitions of essential spectrum, the radius of the essential 
spectrum, however defined, is always the same. There is also material on 
unbounded linear operators and on sesquilinear forms in Hubert space. 

These abstract developments are followed by a chapter on Sobolev spaces 
and Sobolev inequalities. In some situations these spaces have a quantum 
mechanical interpretation. For instance, if a complex function y/ on Un is 
sufficiently smooth and vanishes at infinity in the appropriate sense, then 
integration by parts shows that the expected kinetic energy is 

(V,How) = f<P (-£?l) Vd"x = ^ ƒ \VxV\2d"x. 

A function y/ is in the Sobolev space of functions with one derivative in 
L2(Un) if the right hand side of this expression is finite. The corresponding 
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Sobolev inequality says that when n > 2 such a y/ must be in Lp(Un), where 
2//?+2/n = 1. By Holder's inequality this implies that if a potential energy 
function V is singular but in L"/2(Rrt), then the expected potential energy 
(i//, Vy/) can be controlled in terms of the expected kinetic energy. Of course 
the mathematical significance of Sobolev spaces goes far beyond quantum 
mechanics; in the words of the authors, they "provide a natural framework 
for much of the modern theory of partial differential equations." 

The rest of the book is on second order elliptic linear partial differen­
tial operators. There are two chapters on boundary value problems in the 
Hubert space setting. The remaining five chapters are devoted to eigenvalue 
problems. There is a presentation of Molcanov's necessary and sufficient 
condition for a Schrödinger operator to have a wholly discrete spectrum. 
(It is clear that V(x) must approach infinity as |x| approaches infinity 
in some sense, but the precise statement involves the notion of capac­
ity.) This is followed by results on the location of the essential spectrum. 
The culmination of this development is a general bound on the difference 
between the number of eigenvalues below E and the corresponding vol­
ume in classical phase space. This is obtained by localization to cubes. 
As corollaries the authors obtain results on the asymptotics of the num­
ber of eigenvalues below E as this number approaches infinity as well as 
the Cwickel-Lieb-Rosenbljum upper bound for the number of eigenvalues. 
The book concludes with a discussion of singular values for Schrödinger 
operators with complex potentials. 

While a major application of this theory is to energy levels of quantum 
mechanical systems, the book attempts to put the results in a more general 
context. Thus most of the abstract theory is in the Banach space setting, 
and even when the operators are restricted to operate in Hubert space, 
they tend not to be selfadjoint. 

There is a price to this generality. The division of the spectrum into es­
sential spectrum and its complement is reasonable when the complement 
is of principal interest, as in the problem of counting eigenvalues. How­
ever there are many remaining questions about the essential spectrum. For 
instance, it is reasonable to ask whether this part of the spectrum is contin­
uous spectrum (corresponding to scattering states) or dense point spectrum 
(corresponding to a sea of bound states). Unfortunately, it is difficult to ap­
proach these problems without specializing to selfadjoint operators acting 
in a Hubert space. Of course the price of generality may be worth paying, 
since there are significant uses for linear partial differential operators that 
are not selfadjoint. The book, however, has little to say about applications 
other than quantum mechanics, and even the quantum mechanics is some­
what of a side issue. Its subject is partial differential operators; it will be a 
substantial treat for lovers of this area of analysis. 
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