TOEPLITZ C*-ALGEBRAS OVER PSEUDOCONVEX REINHARDT DOMAINS

NORBERTO SALINAS, ALBERT SHEU AND HARALD UPMEIER

Multivariable Toeplitz operators, acting on Hardy or Bergman spaces over domains in \mathbb{C}^n , occur in connection with elliptic boundary value problems [1], weighted shift operators [6] and problems in function theory of several complex variables [2]. If the underlying domain is strictly pseudoconvex [4], of finite type [1, 11] or symmetric [13], the associated Toeplitz operators (with continuous symbol) are essentially commutative or at least generate a solvable C^* -algebra of finite length. In particular, the Toeplitz C^* -algebra is of type I.

In this note we describe the Toeplitz C^* -algebra of pseudoconvex Reinhardt domains Ω , using a finite composition series which is geometrically characterized by "boundary foliations" associated with the complex geometry of Ω . Whenever these foliations are of "irrational type," we obtain Toeplitz C^* -algebras which are not of type I (this can happen for domains with smooth boundary). We also announce an index theory for these non-type I Toeplitz C^* -algebras and give some applications to the theory of proper holomorphic mappings. For concreteness, we explain here the case n=2.

Let Ω be a bounded pseudoconvex complete Reinhardt domain (in \mathbb{C}^2), with closure $\overline{\Omega}$. By [8], these domains are the natural domains of convergence of power series and are characterized by the condition that $(u,v)\in\Omega$ whenever $|u|\leq |z|,\ |v|\leq |w|$ for some $(z,w)\in\Omega$ or $|u|=|z_1|^{\lambda}|w_1|^{1-\lambda},\ |v|=|z_2|^{\lambda}|w_2|^{1-\lambda}$ for some $(z_1,w_1)\in\Omega$, $(z_2,w_2)\in\Omega$ and $0<\lambda<1$. We may assume that Ω is normalized, i.e., Ω is contained in the bidisk \mathbf{D}^2 and contains the coordinate axes $V:=\{(z,w)\in\mathbf{D}^2\colon zw=0\}$. Then the "logarithmic domain" $C:=\{(x,y)\in\mathbf{R}^2\colon (e^x,e^y)\in\Omega\}$ is an unbounded convex open set contained in the third quadrant and ∂C is a concave curve. Let \overline{C} denote the closure of C in \mathbf{R}^2 and let $\partial^j(C)$ be the union of all j-dimensional faces of \overline{C} (e.g., $\partial^2(C)=\overline{C}$ and $\partial^0(C)$ consists of all extreme points).

Given a face F of \overline{C} , denote by L_F the linear subspace of the same dimension parallel to F. For any point $t=(\xi,\eta)$ in the 2-torus \mathbf{T}^2 , consider the leaf $t_F:=\{(\xi e^{2\pi i x}, \eta e^{2\pi i y}): (x,y)\in L_F\}$ generated by F through t. This gives a foliation \mathscr{F}_F of \mathbf{T}^2 , with corresponding foliation C^* -algebra (cf. [5]) denoted by $C^*(\mathscr{F}_F)$. For $F=\overline{C}$, \mathscr{F}_F has just one leaf (\mathbf{T}^2 itself) and $C^*(\mathscr{F}_F)$ is *-isomorphic to the ideal \mathscr{X} of compact operators. For

Authors supported by NSF-Grant DMS-8702371.

Received by the editors June 28, 1988 and, in revised form, November 28, 1988.

1980 Mathematics Subject Classification (1985 Revision). Primary 47B35; Secondary 32A07.

F = P, an extreme point in ∂C , \mathscr{F}_F is the trivial foliation where every point of T^2 is a leaf, and $C^*(\mathscr{F}_F) \cong \mathscr{C}(T^2)$. Here $\mathscr{C}(X)$ is the C^* -algebra of all continuous functions on a compact space X. If F is one-dimensional, \mathscr{F}_F is the foliation of the Kronecker flow determined by the slope of F.

Let $H^2(\Omega)$ be the Bergman space of all (Lebesgue) square integrable holomorphic functions on Ω . Let $P: L^2(\Omega) \to H^2(\Omega)$ be the (orthogonal) Bergman projection. Then, for every $\varphi \in \mathscr{C}(\overline{\Omega})$, the bounded operator T_{φ} on $H^2(\Omega)$ defined by

$$T_{\varphi}(f) := P(\varphi f), \quad f \in H^2(\Omega)$$

is called the *Toeplitz operator* with symbol φ . The C^* -algebra generated by all these operators is denoted by $\mathcal{F}(\Omega)$.

THEOREM 1. Let Ω be a (normalized) pseudoconvex complete Reinhardt domain in \mathbb{C}^2 . Then the Toeplitz C^* -algebra $\mathcal{F}(\Omega)$ has a composition series $\mathcal{H} \subset \mathcal{F} \subset \mathcal{F}(\Omega)$, where \mathcal{F} is the commutator ideal,

$$\mathscr{T}(\Omega)/\mathscr{I} \cong \mathscr{C}(\partial^0(\Omega))$$

and

$$\mathscr{I}/\mathscr{K}\cong\sum_F^\oplus C^*(\mathscr{F}_F)\qquad (C^*\mbox{ -algebraic sum}).$$

Here $\partial^0(\Omega)$ is the closure (in \mathbb{C}^2) of the set $\{(\xi e^x, \eta e^y): (\xi, \eta) \in \mathbb{T}^2, (x, y) \in \partial^0(C)\}$ and F runs over all 1-dimensional faces of \overline{C} .

If we let $\mathcal{I}_0 = 0$, $\mathcal{I}_1 = \mathcal{H}$, $\mathcal{I}_2 = \mathcal{I}$ and $\mathcal{I}_3 = \mathcal{T}(\Omega)$, we can uniformly state the conclusion of Theorem 1 as

$$\mathscr{I}_{j+1}/\mathscr{I}_{j}\cong\int_{F}^{\oplus}C^{*}(\mathscr{T}_{F})\qquad (C^{*} ext{-direct integral}),$$

where F runs over all (2 - j)-dimensional faces of \overline{C} , $0 \le j \le 2$.

COROLLARY 2. $\mathcal{F}(\Omega)$ is of type I if and only if the slope of every 1-dimensional face in $\partial^1(C)$ is rational. Further, $\mathcal{F}(\Omega)$ is essentially abelian, i.e., $\mathcal{F}=\mathcal{K}$, if and only if there is no 1-dimensional face in ∂C , i.e., $\partial^1(C)=\emptyset$.

The above results are proved in detail in [12]. The following purely geometrical result is a direct consequence of Corollary 2 and [11, Corollary 3.2].

COROLLARY 3. Let Ω and Ω' be two normalized pseudoconvex complete Reinhardt domains. Let C and C' be the corresponding logarithmic domains, and assume there is a proper holomorphic mapping $\varphi \colon \Omega \to \Omega'$. If ∂C contains no 1-dimensional faces with irrational slope, then the same property holds for $\partial C'$. Further, if ∂C contains no 1-dimensional faces, then the same is true for $\partial C'$.

Now we describe the index phenomenon in the presence of irrational slopes. We do this in the simplest nontrivial case, i.e., when Ω is the logarithmic convex hull of the union of two polydisks of multiradii $(\varepsilon, 1)$

and $(1, \delta)$, $\varepsilon < 1$, $\delta < 1$ (cf. [6]). Then the boundary of C consists of the line segment F joining $(\log \varepsilon, 0)$ and $(0, \log \delta)$ together with the negative part of both axes between $(-\infty, 0)$ and $(\log \varepsilon, 0)$ and between $(0, -\infty)$ and $(0, \log \delta)$. Assume that the corresponding slope $\beta = -\log \delta/\log \varepsilon$ is irrational. Then, as a consequence of Theorem 1, we have

$$\mathscr{I}/\mathscr{K} \cong [\mathscr{C}(\mathsf{T}) \otimes \mathscr{K}] \oplus [\mathscr{C}(\mathsf{T}) \otimes \mathscr{K}] \oplus C^*(\mathscr{F}_F)$$

and

$$\mathscr{T}(\Omega)/\mathscr{I} \cong \mathscr{C}(\mathbf{T}^2) \oplus \mathscr{C}(\mathbf{T}^2).$$

Let \mathbb{Z}^2 act on \mathbb{R} by $\alpha(m,n;x)=x-n-m\beta^{-1}$, for $x\in\mathbb{R}$ and $(m,n)\in\mathbb{Z}^2$. The associated (strongly continuous) action of \mathbb{Z}^2 on $\mathscr{C}_0(\mathbb{R})$, again denoted by α , induces a crossed product C^* -algebra $\mathscr{C}_0(\mathbb{R})\rtimes_{\alpha}\mathbb{Z}^2$ (defined as the C^* -completion of the convolution algebra of $\mathscr{C}_0(\mathbb{R})$ -valued L^1 -functions on \mathbb{Z}^2 , cf. [9]), which is isomorphic to $C^*(\mathscr{F}_F)$ (not just stably isomorphic, cf. [10]). Further, we have $C^*(\mathscr{F}_F)\cong A_\beta\otimes\mathscr{K}$, where $A_\beta:=\mathscr{C}(\mathbb{T})\rtimes_{\beta}\mathbb{Z}$ is the irrational rotation C^* -algebra induced by the action of \mathbb{Z} on \mathbb{T} generated by the rotation with angle β . By Theorem 1, there is an ideal $\mathscr{I}_{\mathrm{sing}}\subset\mathscr{I}$ containing \mathscr{K} such that $\mathscr{I}_{\mathrm{sing}}/\mathscr{K}\cong [\mathscr{C}(\mathbb{T})\oplus\mathscr{C}(\mathbb{T})]\otimes\mathscr{K}$ and $\mathscr{I}/\mathscr{I}_{\mathrm{sing}}\cong\mathscr{C}_0(\mathbb{R})\rtimes_{\alpha}\mathbb{Z}^2$. The ideal $\mathscr{I}_{\mathrm{sing}}$ induces an exact sequence

$$O \to \mathcal{I}/\mathcal{I}_{\text{sing}} \to \mathcal{F}(\Omega)/\mathcal{I}_{\text{sing}} \to \mathcal{F}(\Omega)/\mathcal{I} \to 0$$
,

where $\mathscr{T}(\Omega)/\mathscr{I}_{\text{sing}} \cong \mathscr{C}(\mathbf{R} \cup \{\pm \infty\}) \rtimes_{\alpha} \mathbf{Z}^2$. Any short exact sequence $0 \to \mathscr{A} \to \mathscr{B} \to \mathscr{C} \to 0$ of C^* -algebras has a topological invariant called the *index mapping* Ind: $K_1(\mathscr{C}) \to K_0(\mathscr{A})$ on the level of K-theory (cf. [3]), which reduces to the ordinary (family) Fredholm index in case $\mathscr{A} = \mathscr{K}$ and \mathscr{C} is commutative.

THEOREM 4. The analytical index map

Ind:
$$K^1(\mathbf{T}^2) \oplus K^1(\mathbf{T}^2) \to K_0(C^*(\mathscr{F}_F))$$
,

associated with the above exact sequence (cf. [7]) has the topological expression

$$\operatorname{tr}(\operatorname{Ind}(\varphi \oplus \psi)) = \alpha(\operatorname{ch}(\varphi \psi^{-1}); 0) \quad \text{for } \varphi, \psi \in K^1(\mathbf{T}^2),$$

where $\operatorname{tr}: K_0(C^*(\mathscr{F}_F)) \to \mathbf{R}$ is the natural trace and

ch:
$$K^1(\mathbf{T}^2) \to H^1(\mathbf{T}^2, \mathbf{Z}) \cong \mathbf{Z}^2$$

is the classical Chern character.

For the proof of the above theorem, see [12].

REMARK 5. We can easily construct a continuous function θ on $\overline{\Omega}$ such that the above index applied to the image of T_{θ} in $\mathcal{F}(\Omega)/\mathcal{F}$ yields a nonzero irrational number. For instance, let θ be any continuous function on $\overline{\Omega}$ such that $\theta(z, w) = w$ for $|z| = \varepsilon$, |w| = 1, and such that $\theta(z, w) = z$, for |z| = 1, $|w| = \delta$.

REFERENCES

- 1. P. Baum, R. E. Douglas and M. E. Taylor, Cycles and relative cycles in analytic K-homology, J. Differential Geom. (to appear).
- 2. C. A. Berger, L. A. Coburn and K. H. Zhu, Function theory on Cartan domains and the Berezin-Toeplitz symbol calculus, Amer. J. Math. 110 (1988), 921-953.
- 3. B. Blackadar, K-theory for operator algebras, Springer-Verlag, Berlin and New York, 1986.
- 4. L. Boutet de Monvel, On the index of Toeplitz operators of several complex variables, Invent. Math. 50 (1979), 249-272.
- 5. A. Connes, A survey of foliations and operator algebras, Operator Algebras and Applications (R. V. Kadison, ed.), Proc. Sympos. Pure Math., vol. 38 Amer. Math. Soc., Providence, R. I., 1981.
- 6. R. E. Curto and P. S. Muhly, C*-algebras of multiplication operators on Bergman spaces, J. Funct. Anal. 64 (1985), 315-329.
- 7. R. G. Douglas, S. Hurder and J. Kaminker, Toeplitz operators and the Eta invariant: The case of S^1 , Preprint.
- 8. L. Hörmander, An Introduction to complex analysis in several variables, Princeton, Van Nostrand, 1966.
- 9. G. Pedersen, C*-algebras and their automorphism groups, Academic Press, New York, 1979.
- 10. M. A. Rieffel, Strong Morita equivalence of certain transformation group C*-algebras, Math. Ann. 222 (1976), 7-22.
 - 11. N. Salinas, The $\bar{\partial}$ -formalism and the C*-algebra of the Bergman n-tuple, Preprint.
- 12. N. Salinas, A. Sheu, and H. Upmeier, Toeplitz operators on pseudoconvex domains and foliation C*-algebras, Preprint.
- 13. H. Upmeier, Toeplitz C*-algebras on bounded symmetric domains, Ann. of Math. (2) 119 (1984), 549-576.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF KANSAS, LAWRENCE, KANSAS 66045