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but rather with novel applications of the tools of the Malliavin calculus. 
While the applications using the Malliavin derivative (already discussed) 
are not mentioned by Bell, he does nevertheless present diverse applica­
tions in Chapter 7, including such disparate subjects as filtering theory and 
infinite particle systems. Here he could be a bit more authoritative: For 
example, in the filtering theory section he should mention further work, at 
least at the bibliographic level (e.g., [1, 2 and 5]). 
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Is every ideal J in the ring Z of integers principal?—that is, given an 
ideal J of Z, can we find an integer m—called a generator of J—such that 
/ = (m) s {km : k € Z}? The classical answer to this question is "Yes: 
for either J is {0} or else we can take m to be the smallest positive integer 
in r\ However, suppose we take the word "find" literally in the above 
question: is there an algorithm which, applied to any ideal / of Z, will 
compute a nonnegative integer m such that / = (m)? 

Consider the application of such an algorithm, if it exists, to the ideal 

J = (2) + {kan:k€Z,n> 1}, 
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where (an)^Lx is a binary sequence (that is, a sequence in {0,1}). If m is 
the single generator of / that is produced by the algorithm, then it is clear 
that either m = ±2 or m = ±1. In the first instance, we have an = 0 for all 
n\ in the second, choosing integers /, j , N such that 1 = 2i+ja,N, we see that 
JÜN cannot equal 0, so ax = 1. As the binary sequence (<z«)£Li *s arbitrary, 
it follows that an algorithm for constructing single generators of ideals in 
Z—even one applicable only to nontrivial ideals of Z—can be transformed 
into an algorithm which, applied to any binary sequence (an), either proves 
that an = 0 for all «, or else computes a value N with a^ = I. Let us call an 
algorithm of the latter type a binary sequence decision algorithm (bsda). It 
should require little thought to convince oneself that the existence of a bsda 
is highly unlikely; in fact, if one insists that all algorithms are recursive 
(the Church-Markov-Turing thesis), then the existence of a bsda is false, as 
it leads to a solution of the Halting Problem of recursive function theory: 
see [Bridges-Richman, Chapter 3, (1.3)]. 

Constructive mathematics, and in particular constructive algebra in the 
sense of the book under review, discusses questions, such as the one with 
which we started above, under a strict interpretation of "there exists" as 
"there is an algorithm that constructs". Following the approach begun by 
the late Errett Bishop, the authors prefer to take the notion of algorithm 
as primitive, rather than restrict themselves to any formal notion such as 
that provided by recursive function theory; compared with the recursive 
constructive mathematics advocated by Markov and Shanin [Kushner], 
Bishop's mathematics (which we shall refer to as BISH) has the advan­
tage of clarity of expression—it looks like the mathematics which we were 
taught as undergraduates; at the same time, by not specifying a formal 
notion of algorithm, Bishop's approach cannot accommodate many of the 
counterexamples that are produced by recursive mathematics. 

To answer our original question within BISH, we first define a subset S 
of a set X to be detachable if for each x in X either x e S or x £ S; that is, 
if there is an algorithm which, applied to any element x of X, outputs 1 if 
x € S, and 0 if x £ S. It is easy to prove within BISH that a nonzero ideal 
/ of Z is principal if and only if it is detachable; or, to be more precise, 
that 

(i) there is an algorithm which, applied to any detachable 
nonzero ideal / of Z, computes a single generator of / ; 
and 

(ii) there is an algorithm which, applied to any principal ideal 
/ of Z and any integer n, determines whether or not n 
belongs to / . 

Note that when we say that an ideal J is nonzero, we mean that we can 
compute a positive integer that belongs to / . The reader might like to 
consider why the word "nonzero" cannot be deleted from statement (i). 

The rather trivial mathematics associated with our question about ideals 
of Z serves to illustrate the basic difference between the constructive and 
classical approaches to mathematics. To take a less trivial, and from a 
constructive point of view much more challenging, problem, let us recall 
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that, classically, a ring R is said to be (left) Noetherian if either of the 
following conditions obtains: 

(Nl) for each ascending chain I\ c h C • • • of left ideals of R 
there exists n such that Im = In for all m > n\ 

(N2) each ideal / of R is finitely generated, in the sense that 
there exist elements x\,...,xn of J such that each ele­
ment of / can be written in the form X)"=i rixt f° r some 
r\,..., rn in R [Cohn, 2.2, Proposition 6]. 

Now consider the classical Hubert basis theorem: 
IfR is a Noetherian ring, then so is the ring R[X] of poly­
nomials in the indeterminate X over R. 

The standard classical proof of this theorem, as found in [Cohn, Chapter 
11, Theorem 2], is constructive. But, constructively, even the simplest 
types of ring fail to satisfy the classical Noetherian hypotheses; consider, 
for example, the ring Z, a binary sequence (an), and the ascending chain 
(ƒ„) of ideals in Z where for each n, In is the ideal generated by {#i,... , an}: 
if there exists n such that Im = In for all m > n, then 

either there exists k < n such that a^ - 1, 
or aiç = 0 for all k < n, in which case am — 0 for all m> n, 

and therefore for all m. 

In other words, if, constructively, Z satisfies the classical Noetherian con­
dition, then we can produce a bsda. 

When faced with such a situation, in which an important classical prop­
erty P of, for example, Z fails to hold constructively, the constructive 
mathematician looks for something better: a property P' which is classi­
cally equivalent to P and which does apply constructively to Z. In the 
case where P is the classical Noetherian property, the following definition 
introduces an appropriate constructive property P' which holds in the case 
R = Z: a ring R is said to be (constructively) Noetherian if for each as­
cending chain I\ c h C • • • of finitely generated ideals of R there exists n 
such that /„+i = ƒ„. 

To see that this definition of Noetherian is classically equivalent to the 
classical one, suppose the ring R is not classically Noetherian. Then there 
exists an ideal J of R that is not finitely generated; so / contains a se­
quence (xn)™=l of elements such that for each «, xn+\ is not in the ideal 
In generated by {x\,..., xn}. Then I\ c h C • • • is an ascending chain of 
finitely generated ideal of R that fails to satisfy the constructive Noetherian 
condition. 

Even with an appropriate constructive definition of Noetherian, we need 
something extra to prove a significant constructive version of the Hilbert 
basis Theorem. The authors describe two different ways of getting that 
something extra; in fact, they prove two quite different constructive theo­
rems, each of which is classically, equivalent to the classical Hilbert basis 
theorem. 
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To discuss the first version in greater detail, we define a module M 
over a ring R to be finitely presented if, for some positive integer n, there 
exists a homomorphism <p from Rn onto M such that the kernel of (p is 
finitely generated. A ring R is said to be coherent if every finitely generated 
left ideal of R is finitely presented as an iÊ-module. Classically, every 
Noetherian ring is coherent: this is a simple consequence of condition N2 
above; but, by considering a binary sequence (an) and the ring R = Z/I, 
where / is the ideal of Z generated by {ann\ : n > 1}, we can show that if, 
constructively, every Noetherian ring is coherent, then there exists a bsda. 

Coherence is an extremely powerful constructive property: for example, 
if R is coherent, then we can construct a finite set of generators for the 
intersection of two finitely generated ideals of R; we can also construct 
a finite set of generators for the left annihilator {r e R: rx = 0} of an 
element x of R. 

With an eye on the standard classical proof of the Hilbert basis theo­
rem, for a coherent Noetherian ring R the authors prove first that R[X] is 
coherent, and then that R[X] is Noetherian. Since, classically, "Noethe­
rian implies coherent," their results about R[X] are classically equivalent 
to the Hilbert basis theorem in its usual form. 

The authors' second attack on the Hilbert basis theorem uses weapons 
devised by J. Tennenbaum for his PhD thesis under Bishop's supervision. 
A Noetherian basis function for a ring J? is a function (p with the following 
properties: the domain of cp is the set of all nonvoid finite sequences of 
elements of R; for n = 2 ,3 , . . . , cp maps Rn into Rn~l\ and if (x\,X2,...) 
is an infinite sequence of elements of R, then there exist infinitely many n 
such that xn = r\X\ H \-rn-\xn-\, where (n, . . . ,r„_i) = (p(x\,... ,xn). 
For example, Z has a Noetherian basis function. To see this, first define 
(p{x) = x for each x in Z. Then consider integers X\,...,xn9 where n > 2. 
If d = gcd(xi,...,xn-\) = 0, set (p{x\,...,xn) = xn. If d / 0, choose 
integers r\,...,r„_i such that X^r/ rtxi = xn-r, where r is the remainder 
on dividing xn by d; then set ç>(.Xi,..., xn) = (n , . . . , rn_i). 

In their second version of the Hilbert basis theorem, the authors show 
that if the ring R has a Noetherian basis function, then so does R[X]. 
That this is a version of the Hilbert basis theorem follows from the fact 
that if a ring has Noetherian basis function and (algorithmically) decidable 
equality relation, then it is Noetherian. 

To produce evidence that the authors' two versions are distinct, we need 
only take a binary sequence (an) and consider the ring Z/I, where I is the 
ideal of Z generated by {ann\: n > 1}: as we observed above, it is unlikely 
that we will find an algorithm for proving that such rings are coherent; but, 
on the other hand, Z/I has a Noetherian basis function, and Tennenbaum's 
version of the Hilbert basis theorem can be used to show that (Z/I)[X] is 
Noetherian. Thus we have an example of a not uncommon phenomenon in 
constructive mathematics: a classical theorem which gives rise to several 
constructive versions which are classically equivalent but constructively 
distinct. 

In his 1973 Colloquium Lectures for the American Mathematical So­
ciety, Errett Bishop commented on the lack of progress in constructive 
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algebra, compared with that in constructive analysis (as developed in his 
seminal book, Foundations of constructive analysis, which largely consists 
of research carried out by him in the mid 1960s): 

"In spite of the pioneering efforts of Kronecker, and 
continued work by many algebraists, resulting in many 
deep theorems, the systematic constructivization of alge­
bra would seem hardly to have begun. The problems are 
formidable. A very tentative suggestion is that we should 
restrict our attentions to algebraic structures endowed with 
some sort of topology, with respect to which all operations 
and maps are continuous. The work of Tennenbaum ... 
might provide some ideas of how to accomplish this. The 
task is complicated by the circumstance that no completely 
suitable constructive framework for general topology has 
yet been found." 

(It is interesting to note that Mines and Richman were just beginning their 
research programme in constructive algebra around the time that Bishop 
gave his Colloquium Lectures. Ruitenburg joined the project several years 
later.) Although Bishop's concluding remark about topology remains true 
today, the book under review is a prime witness to the fact that, in con­
structive terms, algebra is no longer in its infancy compared with analysis. 
The book covers topics in algebra ranging from elementary results about 
the standard abstract algebraic structures to Galois theory, abelian groups, 
valuations, and Dedekind domains. Most of the material in the book is 
the product of the authors' own research over the last fifteen years. That 
product is a formidable achievement on their part. 

A legitimate question to ask is, "Who, apart from a dedicated construc­
tivist, might be interested in the book under review?" Obviously, logicians 
and workers in the foundations of mathematics, topos theorists, and the­
oretical computer scientists—particularly those interested in automated 
theorem proving [Constable, Martin-Lof]—will be drawn to it. Workers in 
recursive algebra, as practised by Nerode and others in the USA, will find 
it an invaluable reference. Algebraists looking for an excellent text for a 
graduate course with a difference would be well advised to consider adopt­
ing it. More generally, all who are concerned with algorithmic aspects of 
mathematics, or are interested in the computational origins of a branch of 
mathematics that can be made to appear abstraction par excellence, will 
appreciate the insight and technical flair displayed by its authors. 
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Complex function theory of one variable can be developed on the basis 
of three different approaches. 

(a) The (so-called) Weierstrass approach, namely the fact that holomor­
phic functions can be locally represented by their Taylor expansions. Here 
the basic properties of the ring £f(1) of convergent power series in one 
variable such as <^(1) being a principal ideal ring become important; 

(b) The (so-called) Riemann approach, based on the fact that holo­
morphic functions can be characterized as those differentiable functions 
ƒ' = g + ih 'm z — x + iy satisfying the Cauchy-Riemann equations: 

(i) V . U V + I . V \ = 0 
K) dz' 2\dx* dy) 
Here the "good" properties of the system (1) of partial differential equa­
tions are the essential feature. Namely, it is elliptic, linear with constant 
coefficients and intimately related to the Laplace operator A = 4d2/dzd~z 
with all its wonderful, well-known properties. Furthermore, (1) has as its 
natural geometric interpretation the conformality of biholomorphic maps. 

(c) The (so-called) Cauchy approach, based on the Cauchy integral for­
mula for holomorphic functions. The properties of the integral operator(s) 
with the Cauchy kernel are used as the most powerful tools from this point 
of view. In particular one has the formula 

which holds for all domains Q c C the boundary of which_consists of a 
finite number of disjoint C1 Jordan curves, for all ƒ € Cl(Q) and for all 
z e Q. It can be used very successfully in this approach. 

(It should be pointed out that the association of the names of Weier­
strass, Riemann and Cauchy with these approaches can be justified only 
partially from the historical viewpoint. For some interesting details about 
this see for instance [27].) 

Most presentations of basic function theory use a pragmatic mixture 
of the approaches (a)-(c). It can, however, also be quite interesting to 


